HYPOELLIPTICITY OF THE $\bar{\partial}$-NEUMANN PROBLEM AT EXPONENTIALLY DEGENERATE POINTS

TRAN VU KHANH AND GIUSEPPE ZAMPIERI

Abstract

We prove local hypoellipticity of the complex Laplacian \square in a domain which has compactness estimates, is of finite type outside a curve transversal to the CR directions and for which the holomorphic tangential derivatives of a defining function are subelliptic multipliers in the sense of Kohn.

MSC: 32F10, 32F20, 32N15, 32T25

1. Introduction

For the pseudoconvex domain $\Omega \subset \mathbb{C}^{n}$ whose boundary is defined in coordinates $z=x+i y$ of \mathbb{C}^{n}, by

$$
\begin{equation*}
2 x_{n}=\exp \left(-\frac{1}{\left(\sum_{j=1}^{n-1}\left|z_{j}\right|^{2}\right)^{\frac{s}{2}}}\right), \quad s>0 \tag{1.1}
\end{equation*}
$$

the tangential Kohn Laplacian $\square_{b}=\bar{\partial}_{b} \bar{\partial}_{b}^{*}+\bar{\partial}_{b}^{*} \bar{\partial}_{b}$ as well as the full Laplacian $\square=\bar{\partial} \bar{\partial}^{*}+\bar{\partial}^{*} \bar{\partial}$ show very interesting features especially in comparison with the "tube domain" whose boundary is defined by

$$
\begin{equation*}
2 x_{n}=\exp \left(-\frac{1}{\left(\sum_{j=1}^{n-1}\left|x_{j}\right|^{2}\right)^{\frac{s}{2}}}\right), \quad s>0 \tag{1.2}
\end{equation*}
$$

(Here z_{j} have been replaced by x_{j} at exponent.) Energy estimates are the same for the two domains. For the problem on the boundary $b \Omega$, they come as

$$
\begin{equation*}
\left\|(\log \Lambda)^{\frac{1}{s}} u\right\|_{b \Omega}<\left\|\bar{\partial}_{b} u\right\|_{b \Omega}^{2}+\left\|\bar{\partial}_{b}^{*} u\right\|_{b \Omega}^{2}+\|u\|_{b \Omega}^{2} \tag{1.3}
\end{equation*}
$$

for any smooth compact support form $u \in C_{c}^{\infty}(b \Omega)^{k}$ of degree $k \in[1, n-2]$.
Here $\log \Lambda$ is the tangential pseudodifferential operator with symbol $\left.\log \left(1+\left|\xi^{\prime}\right|^{2}\right)^{\frac{1}{2}}\right), \xi^{\prime} \in \mathbb{R}^{2 n-1}$, the dual real tangent space. As for the problem on the domain Ω, one has simply to replace $\bar{\partial}_{b}, \bar{\partial}_{b}^{*}$ by $\bar{\partial}, \bar{\partial}^{*}$ and take norms over Ω for forms u in $D_{\bar{\partial}^{*}}$, the domain of $\bar{\partial}^{*}$, of degree $1 \leq k \leq n-1$; this can be seen, for instance, in [9]. In particular, these are superlogarithmic (resp. compactness) estimates if $s<1$ (resp. for
any $s>0$). A related problem is that of the local hypoellipticity of the Kohn Laplacian \square_{b} or, with equivalent terminology, the local regularity of the inverse (modulo harmonics) operator $N_{b}=\square_{b}^{-1}$. Similar is the notion of hypoellipticity of the Laplacian \square or the regularity of the inverse Neumann operator $N=\square^{-1}$. It has been proved by Kohn in [12] that superlogarithmic estimates suffice for local hypoellipticity of the problem both in the boundary and in the domain. (Note that hypoellipticity for the domain, [12] Theorem 8.3, is deduced from microlocal hypoellipticity for the boundary, [12] Theorem 7.1, but a direct proof is also available, [7] Theorem 5.4.) In particular, for (1.1) and (1.2), there is local hypoellipticity when $s<1$.

As for the more delicate hypoellipticity, in the uncertain range of indices $s \geq 1$, only the tangential problem has been studied and the striking conclusion is that the behavior of (1.1) and (1.2) split. The first stays always hypoelliptic for any s (Kohn [11]) whereas the second is not for $s \geq 1$ (Christ [4). When one tries to relate $\left(\bar{\partial}_{b}, \bar{\partial}_{b}^{*}\right)$ on $b \Omega$ to $\left(\bar{\partial}, \bar{\partial}^{*}\right)$ on Ω, estimates go well through (Kohn [12] Section 8 and Khanh [7] Chapter 4) but not regularity. In particular, the two conclusions about tangential hypoellipticity of \square_{b} for (1.1) and non-hypoellipticity for (1.2) when $s \geq 1$, cannot be automatically transferred from $b \Omega$ to Ω. Now, for the non-hypoellipticity in Ω in case of the tube (1.2) we have obtained with Baracco in [1] a result of propagation which is not equivalent but intimately related. The real lines x_{j} are propagators of holomorphic extendibility from Ω across $b \Omega$. What we prove in the present paper is hypoellipticity in Ω for (1.1) when $s \geq 1$.

Theorem 1.1. Let Ω be a pseudoconvex domain of \mathbb{C}^{n} in a neighborhood of $z_{o}=0$ and assume that the $\bar{\partial}$-Neumann problem satisfies the following properties
(i) there are local compactness estimates,
(ii) there are subelliptic estimates for $\left(z_{1}, \ldots, z_{n-1}\right) \neq 0$,
(iii) $\partial_{z_{j}} r, j=1, \ldots, n-1$, are subelliptic multipliers (cf. [10]).

Then \square is locally hypoelliptic at z_{o}.
The proof follows in Section 2. It consists in relating the system on Ω to the tangential system on $b \Omega$ along the guidelines of [12] Section 8 , and then in using the argument of [11] simplified by the additional assumption (i).

Remark 1.2. The domain with boundary (1.1), but not (1.2), satisfies the hypotheses of Theorem 1.1 for any $s>0$: (i) is obvious, and (ii) and (iii) are the content of [11] Section 4.

Notice that $\partial \Omega$ is given only locally in a neighborhodd of z_{0}. We can continue $\partial \Omega$ leaving it unchanged in a neighborhood of z_{o}, making it strongly pseudoconvex elsewhere, in such a way that it bounds a relatively compact domain $\Omega \subset \subset \mathbb{C}^{n}$ (cf. [14]). In this situation \square is hypoelliptic at every boundary point. Also, it is well defined a H^{0} inverse Neumann operator $N=\square^{-1}$, and, by Theorem [1.1, the $\bar{\partial}$ Neumann solution operator $\bar{\partial}^{*} N$ preserves $C^{\infty}(\bar{\Omega})$-smoothness. It even preserves the exact Sobolev class H^{s} according to Theorem 2.7 below. In other words, the canonical solution $u=\bar{\partial}^{*} N f$ of $\bar{\partial} u=f$ for $f \in$ Ker $\bar{\partial}$ is H^{s} exactly at the points of $b \Omega$ where f is H^{s}. The Bergman projection B also preserves $C^{\infty}(\bar{\Omega})$-smoothness on account of Kohn's formula $B=\operatorname{Id}-\bar{\partial}^{*} N \bar{\partial}$.

Aknowledgments. The authors are grateful to Emil Straube for suggesting the argument which leads to the hypoellipticity of the operator \square from that of the system ($\left.\bar{\partial}, \bar{\partial}^{*}, \Delta\right)$.

2. Hypoellipticity of \square and exact hypoellipticity of $\bar{\partial}^{*} N$

We state properly hypoellipticity and exact hypoellipticity of a general system $\left(P_{j}\right)$.

Definition 2.1. (i) The system $\left(P_{j}\right)$ is locally hypoelliptic at $z_{o} \in b \Omega$ if

$$
P_{j} u \in C^{\infty}(\bar{\Omega})_{z_{o}}^{k} \text { for any } j \text { implies } u \in C^{\infty}(\bar{\Omega})_{z_{o}}^{k}
$$

where $C^{\infty}(\bar{\Omega})_{z_{o}}^{k}$ denotes the set of germs of k-forms smooth at z_{o}.
(ii) The system $\left(P_{j}\right)$ is exactly locally hypoelliptic at $z_{o} \in b \Omega$ when there is a neighborhood U of z_{o} such that for any pair of cut-off functions ζ and ζ^{\prime} in $C_{c}^{\infty}(U)$ with $\left.\zeta^{\prime}\right|_{\operatorname{supp}(\zeta)} \equiv 1$ we have for any s and for suitable c_{s}

$$
\begin{equation*}
\|\zeta u\|_{s}^{2} \leq c_{s}\left(\sum_{j}\left\|\zeta^{\prime} P_{j} u\right\|_{s}^{2}+\|u\|_{0}^{2}\right), \quad u \in C^{\infty}(\bar{\Omega})^{k} \cap D_{\left(P_{j}\right)} \tag{2.1}
\end{equation*}
$$

If $\left(P_{j}\right)$ happens to have an inverse, this is said to be locally regular and locally exactly regular in the situation of (i) and (ii) respectively.
Remark 2.2. By Kohn-Nirenberg [13] the assumption $u \in C^{\infty}$ can be removed from (2.1). Precisely, by the elliptic regularization, one can prove that if $\zeta^{\prime} P_{j} u \in H^{s}$ and $\zeta^{\prime} u \in H^{0}$, then $\zeta u \in H^{s}$ and satisfies (2.1). This motivates the word "exact", that is, Sobolev exact. Not only the local C^{∞} - but also the H^{s}-smoothness passes from $P_{j} u$ to u.

Let ϑ be the formal adjoint of $\bar{\partial}$ and $\Delta=\bar{\partial} \vartheta+\vartheta \bar{\partial}$ the Laplacian; it acts on forms by the action of the usual Laplacian on its coefficients.

If $u \in D_{\square}$, then $\square u=\Delta u$. We first prove exact hypoellipticity of the system ($\bar{\partial}, \bar{\partial}^{*}, \Delta$); hypoellipticity of \square itself will follow by the method of Boas-Straube.

Theorem 2.3. In the situation of Theorem 1.1, we have, for a neighborhood U of z_{o} and for any couple of cut-off ζ and ζ^{\prime} with $\zeta^{\prime} \mid \operatorname{supp} \zeta \equiv 1$

$$
\begin{equation*}
\|\zeta u\|_{s}^{2} \lesssim\left\|\zeta^{\prime} \bar{\partial} u\right\|_{s}^{2}+\left\|\zeta^{\prime} \bar{\partial}^{*} u\right\|_{s}^{2}+\left\|\zeta^{\prime} \Delta u\right\|_{s-2}^{2}+\|u\|_{0}^{2}, \quad u \in D_{\bar{\partial}^{*}} . \tag{2.2}
\end{equation*}
$$

In particular, the system $\left(\bar{\partial}, \bar{\partial}^{*}, \Delta\right)$ is exactly locally hypoelliptic at $z_{o}=$ 0 .

Remark 2.4. The hypoellipticity of \square_{b} under (ii) and (iii) of Theorem 1.1 is proved by Kohn in [11]. It does not require (i) but it is not exact hypoellipticity (the neighborhood U of (2.1) depends on s). However, inspection of his proof shows that, if (i) is added, then in fact (2.1) holds for $\left(P_{j}\right)=\square_{b}$. Our proof consists in a reduction to the tangential system.

Proof. We proceed in several steps which are highlighted in two intermediate propositions. We use the standard notation $Q(u, u)$ for $\|\bar{\partial} u\|_{0}^{2}+\left\|\bar{\partial}^{*} u\right\|_{0}^{2}$ and some variants as, for an operator $O p, Q_{O p}(u, u):=$ $\|O p \bar{\partial} u\|_{0}^{2}+\left\|O p \bar{\partial}^{*} u\right\|_{0}^{2}$; most often, in our paper, Op is chosen as $\Lambda^{s} \zeta^{\prime}$. We decompose a form u as

$$
\left\{\begin{array}{l}
u=u^{\tau}+u^{\nu}, \\
u^{\tau}=u^{\tau+}+u^{\tau-}+u^{\tau 0}
\end{array}\right.
$$

where the first is the decomposition in tangential and normal component and the second is the microlocal decomposition $u^{\tau \frac{ \pm}{0}}=\Psi^{\frac{ \pm}{0}} u^{\tau}$ in which $\Psi^{\frac{ \pm}{0}}$ are the tangential pseudodifferential operators whose symbols $\psi^{\frac{ \pm}{0}}$ are a conic decomposition of the unity in the space dual to $\mathbb{R}^{2 n-1}$ the real orthogonal to ∂r (cf. Kohn [12]). We begin our proof by remarking that any of the forms $u^{\#}=u^{\nu}, u^{\tau-}, u^{\tau 0}$ enjoys elliptic estimates

$$
\begin{equation*}
\left\|\zeta u^{\#}\right\|_{s}^{2} \underset{\sim}{<}\left\|\zeta^{\prime} \bar{\partial} u^{\#}\right\|_{s-1}^{2}+\left\|\zeta^{\prime} \bar{\partial}^{*} u^{\#}\right\|_{s-1}^{2}+\left\|u^{\#}\right\|_{0}^{2} \quad s \geq 2 . \tag{2.3}
\end{equation*}
$$

We refer to [6] formula (1) of Main theorem as a general reference but also give an outline of the proof. For this, we have to call into play the tangential s-Sobolev norm which is defined by $\left\|\|u\|_{s}=\right\| \Lambda^{s} u \|_{0}$. We start from

$$
\begin{equation*}
\left\|\left\|\zeta u^{\#}\right\|\right\|_{1}^{2}<Q\left(\zeta u^{\#}, \zeta u^{\#}\right)+\left\|u^{\#}\right\|_{0}^{2} \tag{2.4}
\end{equation*}
$$

this is the basic estimate for u^{ν} (which vanishes at $b \Omega$) whereas it is [12] Lemma 8.6 for $u^{\tau-}$ and $u^{\tau 0}$. Applying (2.4) to $\zeta^{\prime} \Lambda^{s-1} \zeta u^{\#}$ one gets the estimate of tangential norms for any s. Finally, by non-characteristicity of $\left(\bar{\partial}, \bar{\partial}^{*}\right)$ one passes from tangential to full norms along the guidelines of [16] Theorem 1.9.7. The version of this argument for \square can be found in [12] second part of p. 245. Because of (2.3), it suffices to prove (2.2) for the only $u^{\tau+}$. We further decompose

$$
u^{\tau+}=u^{\tau+(h)}+u^{\tau+(0)},
$$

where $u^{\tau+(h)}$ is the "harmonic extension" in the sense of Kohn [12] and $u^{\tau+(0)}$ is just the complementary part. We denote by $\bar{\partial}^{\tau}$ the extension of $\bar{\partial}_{b}$ from $b \Omega$ to Ω which stays tangential to the level surfaces $r \equiv$ const. It acts on tangential forms u^{τ} and it is defined by $\bar{\partial}^{\tau} u^{\tau}=\left(\bar{\partial} u^{\tau}\right)^{\tau}$. We denote by $\bar{\partial}^{\tau *}$ its adjoint; thus $\bar{\partial}^{\tau *} u^{\tau}=\bar{\partial}^{*}\left(u^{\tau}\right)$. We use the notations \square^{τ} and Q^{τ} for the corresponding Laplacian and energy. We notice that over a tangential form u^{τ} we have a decomposition

$$
\begin{equation*}
Q=Q^{\tau}+\left\|\bar{L}_{n} u^{\tau}\right\|_{0}^{2} . \tag{2.5}
\end{equation*}
$$

The proof of (2.2) for $u^{\tau+}$ requires two crucial technical results. Here is the first which is the most central

Proposition 2.5. For the harmonic extension $u^{\tau+(h)}$ we have

$$
\begin{equation*}
\left\|\mid \zeta u^{\tau+(h)}\right\|\left\|_{s}^{2}<Q_{\Lambda^{s} \zeta^{\prime}}^{\tau}\left(u^{\tau+(h)}, u^{\tau+(h)}\right)+\right\| u^{\tau+(h)} \|_{0}^{2} . \tag{2.6}
\end{equation*}
$$

Proof. We apply compactness estimates (cf. e.g. [7] Section 6) for $\zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}$,
$\left\|\zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}\right\|^{2} \leq \epsilon Q\left(\zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}, \zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}\right)+c_{\epsilon}\left\|\zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}\right\|_{-1}^{2}$.
We decompose Q according to (2.5). We calculate Q^{τ} over $\zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}$ and compute errors coming from commutators $\left[Q^{\tau}, \zeta^{\prime} \Lambda^{s} \zeta\right]$. In this calculation we assume that the cut off functions are of product type $\zeta\left(z^{\prime}\right) \zeta(t)$ where z^{\prime} (resp. t) are complex (resp. totally real) tangential coordinates in $T_{z_{o}} b \Omega$. We have

$$
\begin{align*}
& Q^{\tau}\left(\zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}, \zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}\right) \tag{2.8}\\
&<Q^{\tau}{ }_{\zeta^{\prime} \Lambda^{s} \zeta}\left(u^{\tau+(h)}, u^{\tau+(h)}\right)+\| \| \zeta u^{\tau+(h)}\left|\left\|_{s}^{2}+\right\|\left\|\zeta^{\prime} u^{\tau+(h)} \mid\right\|_{s-1}^{2}\right. \\
&+\left(\left\|\left(\left|\dot{\zeta}\left(z^{\prime}\right)\right|+\left|\dot{\zeta}^{\prime}\left(z^{\prime}\right)\right|\right) \Lambda^{s} u^{\tau+(h)}\right\|_{0}^{2}+\left\|\sum_{j=1}^{n-1}\left|r_{z_{j}}\right|\left(|\dot{\zeta}(t)|+\left|\dot{\zeta}^{\prime}(t)\right|\right) \Lambda^{s} u^{\tau+(h)}\right\|_{0}^{2}\right) .
\end{align*}
$$

We explain (2.8). First, the commutators $\left[\bar{\partial}^{\tau}, \zeta^{\prime} \Lambda^{s} \zeta\right]$ (and similarly as for $\left[\bar{\partial}^{\prime *}, \zeta^{\prime} \Lambda^{s} \zeta\right]$) are decomposed by Jacobi identity as

$$
\left[\bar{\partial}^{\tau}, \zeta^{\prime} \Lambda^{s} \zeta\right]=\left[\bar{\partial}^{\tau}, \zeta^{\prime}\right] \Lambda^{s} \zeta+\zeta^{\prime}\left[\bar{\partial}^{\tau}, \Lambda^{s}\right] \zeta+\zeta^{\prime} \Lambda^{s}\left[\bar{\partial}^{\tau}, \zeta\right] .
$$

The central commutator $\left[\bar{\partial}^{\tau}, \Lambda^{s}\right]$ produces the error term $\left\|\mid \zeta u^{\tau+(h)}\right\| \|_{s}^{2}$. As for the two others, we have

$$
\left[\bar{\partial}^{\tau}, \zeta\left(z^{\prime}\right) \zeta(t)\right]=\left[\bar{\partial}^{\tau}, \zeta\left(z^{\prime}\right)\right] \zeta(t)+\zeta\left(z^{\prime}\right)\left[\bar{\partial}^{\tau}, \zeta(t)\right]
$$

and similarly for ζ replaced by ζ^{\prime} and $\bar{\partial}^{\tau}$ by $\bar{\partial}^{\tau *}$. Now,

$$
\begin{equation*}
\left[\bar{\partial}^{\tau}, \zeta\left(z^{\prime}\right)\right] \sim \dot{\zeta}\left(z^{\prime}\right) \tag{2.9}
\end{equation*}
$$

On the other hand, we first notice that it is not restrictive to assume that $\partial_{z_{1}}, \ldots, \partial_{z_{n-1}}$ are a basis of $T_{0}^{1,0} b \Omega$ for otherwise, owing to (iii), we have subelliptic estimates from which local regularity readily follows. Thus, each $\bar{L}_{j}, j=1, \ldots, n-1$, is of type $\bar{L}_{j}=r_{\bar{z}_{j}} \partial_{\bar{z}_{n}}-r_{\bar{z}_{n}} \partial_{\bar{z}_{j}}$, and then

$$
\begin{align*}
{\left[\bar{\partial}^{\tau}, \zeta(t)\right] } & \sim \sum_{j=1}^{n-1}\left[\bar{L}_{j}, \zeta(t)\right] \tag{2.10}\\
& \sim \sum_{j=1}^{n-1} r_{\bar{z}_{j}} \dot{\zeta}(t) .
\end{align*}
$$

By combining (2.9) with (2.10) (and using the analogous for ζ^{\prime} and $\left.\bar{\partial}^{\tau *}\right)$, we get the last line of (2.8). This establishes (2.8). Next, since $\left(\bar{\partial}^{\tau}, \bar{\partial}^{\tau *}\right)$ has subelliptic estimates, say η-subelliptic, for $z^{\prime} \neq 0$ and hence in particular over $\operatorname{supp} \dot{\zeta}\left(z^{\prime}\right)$ and $\operatorname{supp} \dot{\zeta}^{\prime}\left(z^{\prime}\right)$ and since the $r_{\bar{z}_{j}}$ are, say, η-subelliptic multipliers even at $z^{\prime}=0$, then the last line of (2.8) is estimated by $\left\|\zeta^{\prime \prime} \Lambda^{s-\eta} \zeta^{\prime} u^{\tau+(h)}\right\|^{2}$ where $\zeta^{\prime \prime} \equiv 1$ over $\operatorname{supp} \zeta^{\prime}$. This shows, using iteration over increasing k such that $k \eta>s$ and over decreasing j from $s-1$ to 0 , that (2.7) and (2.8) imply (2.6) provided that we add on the right side the extra term $\left\|\bar{L}_{n} \zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}\right\|^{2}$. Note that, as a result of the inductive process, we have to replace $Q_{\zeta^{\prime} \Lambda^{s} \zeta}$ in (2.8) by $Q_{\Lambda^{s} \zeta^{\prime}}$ in (2.6).

Up to this point the argument is the same as in 11 and does not make any use of the specific properties of the harmonic extension $u^{\tau+(h)}$. We start the new part which is dedicated to prove that $\left\|\bar{L}_{n} \zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}\right\|^{2}$ can be removed from the right of (2.6). For this we have to use the main property of this extension expressed by [12] Lemma 8.5, that is,

$$
\begin{equation*}
\left\|\bar{L}_{n} \zeta u^{\tau+(h)}\right\|_{0}^{2}<\sum_{j=1}^{n-1}\left\|\bar{L}_{j} \zeta u_{b}^{\tau+}\right\|_{b,-\frac{1}{2}}^{2}+\left\|u^{\tau+}\right\|_{0}^{2} \tag{2.11}
\end{equation*}
$$

Note that (2.11) differs from [12] Lemma 8.5 by $\left[\bar{L}_{n}, \Psi^{+}\right]$; but this is an error term which can be taken care of by $u^{\tau 0}$ to which elliptic estimates apply. Applying (2.11) to $\zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}$ (for the first inequality below), and using the classical inequality $\|\cdot\|\left\|_{b,-\frac{1}{2}}^{2} \leq c_{\epsilon}\right\| \cdot\left\|_{0}^{2}+\epsilon\right\|\left\|\partial_{r} \cdot\right\| \|_{-1}^{2}$ (cf. e.g.
[8] (1.10)) together with the splitting $\partial_{r}=\bar{L}_{n}+$ Tan (for the second), we get

$$
\begin{align*}
\left\|\bar{L}_{n} \zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}\right\|_{0}^{2} & \underset{\text { by }}{\underset{\sim}{(2.11)}} \underset{j=1}{<} \sum_{j=1}^{n-1}\left\|\bar{L}_{j} \zeta^{\prime} \Lambda^{s} \zeta u_{b}^{\tau+}\right\|_{b,-\frac{1}{2}}^{2}+\left\|\zeta^{\prime} \Lambda^{s} \zeta u^{\tau+}\right\|_{0}^{2} \tag{2.12}\\
& <c_{\epsilon} \sum_{j=1}^{n-1}\left\|\bar{L}_{j} \zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}\right\|_{0}^{2}+\epsilon \sum_{j=1}^{n-1}\left\|\bar{L}_{n} \bar{L}_{j} \zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}\right\| \|_{-1}^{2} \\
& +\epsilon \sum_{j=1}^{n-1}\left\|\operatorname{Tan} \bar{L}_{j} \zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}\right\|\left\|_{-1}^{2}+\right\| \zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)} \|_{0}^{2} .
\end{align*}
$$

The first term on the right of the last inequality is controlled by $\sum_{j=1}^{n-1}\left\|\zeta^{\prime} \Lambda^{s} \zeta \bar{L}_{j} u^{\tau+(h)}\right\|^{2}+\| \| \zeta u^{\tau+(h)}\| \|_{s}^{2}+\| \| \zeta^{\prime \prime} u^{\tau+(h)}\| \|_{s-1}^{2}$ by the first part of the proposition; moreover, we have the immediate estimate $\sum_{j=1}^{n-1}\left\|\zeta^{\prime} \Lambda^{s} \zeta \bar{L}_{j} u^{\tau+(h)}\right\|^{2}<Q_{\Lambda^{s} \zeta^{\prime}}^{\tau}\left(u^{\tau+(h)}, u^{\tau+(h)}\right)$. The term which carries ϵ Tan, after Tan has been annihilated by the Sobolev norm of index -1 , has the same estimate as the first term. It remains to control the second term in the right which involves $\epsilon \bar{L}_{n}$. We rewrite $\bar{L}_{n} \bar{L}_{j}=\bar{L}_{j} \bar{L}_{n}+\left[\bar{L}_{n}, \bar{L}_{j}\right]$; when \bar{L}_{j} moves in first position, it is annihilated by -1 and what remains is absorbed in the left. As for the commutator, we have

$$
\begin{aligned}
\left.\left\|\left[\bar{L}_{n}, \bar{L}_{j}\right] \zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}\right\|\right|_{-1} ^{2} & <\| \| \zeta u^{\tau+(h)}\| \|_{s}^{2}+\left\|\mid \partial_{r} \zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}\right\| \|_{-1}^{2} \\
& <\left\|\left|\zeta u^{\tau+(h)}\| \|_{s}^{2}+\left\|\mid \bar{L}_{n} \zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}\right\| \|_{-1}^{2},\right.\right.
\end{aligned}
$$

where we have used the splitting $\partial_{r}=\operatorname{Tan}+\bar{L}_{n}$ in the second inequality. Again, the term with \bar{L}_{n}, which now comes in -1 norm, is absorbed in the left of (2.12). Summarizing up, we have got

$$
\begin{align*}
\left\|\bar{L}_{n} \zeta^{\prime} \Lambda^{s} \zeta u^{\tau+(h)}\right\|_{0}^{2} & \underset{\sim}{c} c_{\epsilon} Q_{\Lambda^{s} \zeta^{\prime}}^{\tau}\left(u^{\tau+(h)}, u^{\tau+(h)}\right) \tag{2.13}\\
& +\| \| \zeta u^{\tau+(h)}\| \|_{s}^{2}+\| \| \zeta^{\prime \prime} u^{\tau+(h)}\| \|_{s-1}^{2} .
\end{align*}
$$

But $\left\|\mid \bar{L}_{n} \cdot\right\| \|^{2}$ comes with a factor ϵ of compactness and hence the term in s-norm in the last line can be absorbed in the left of the initial
inequalities (2.7) or (2.6). Finally, we use an inductive argument to go down from $s-1$ to 0 . This concludes the proof of the proposition.

We remark now that

$$
\begin{align*}
\left\|\zeta u^{\tau+(h)}\right\|_{0}^{2} & <\left\|\zeta u_{b}^{\tau+}\right\|_{b,-\frac{1}{2}}^{2} \\
& <\left\|\zeta u^{\tau+}\right\|_{0}^{2}+\left\|\partial_{r} \zeta u^{\tau+} \mid\right\|_{-1}^{2} \tag{2.14}\\
& \leq\left\|\zeta u^{\tau+}\right\|_{0}^{2}+\left\|\left|\left|\bar{L}_{n} \zeta u^{\tau+}\right|\left\|_{-1}^{2}+\right\| \operatorname{Tan} \zeta u^{\tau+}\right|\right\|_{-1}^{2} \\
& <Q_{\Lambda^{-1} \zeta}\left(u^{\tau+}, u^{\tau+}\right)+\left\|\zeta u^{\tau+}\right\|_{0}^{2} .
\end{align*}
$$

The same inequality also holds for $u^{\tau+(h)}$ replaced by $u^{\tau+(0)}$ on account of the identity $u^{\tau+(0)}=u^{\tau+}+u^{\tau+(h)}$. We need another preparation result

Proposition 2.6. We have

$$
\begin{equation*}
Q_{\Lambda^{s} \zeta^{\prime}}^{\tau}\left(u^{\tau+(h)}, u^{\tau+(h)}\right) \underset{\sim}{Q^{\tau}}{\Lambda^{s} \zeta^{\prime}}\left(u^{\tau+}, u^{\tau+}\right)+Q_{\partial_{r} \Lambda^{s-1} \zeta^{\prime}}^{\tau}\left(u^{\tau+}, u^{\tau+}\right) \tag{2.15}
\end{equation*}
$$

and

$$
\begin{align*}
\left\|\zeta u^{\tau+(0)}\right\| \|_{s}^{2}< & Q_{\Lambda^{s-1} \zeta^{\prime}}^{\tau}\left(u^{\tau+}, u^{\tau+}\right)+Q_{\partial_{r} \Lambda^{s-2} \zeta^{\prime}}\left(u^{\tau+}, u^{\tau+}\right) \\
& +\| \| \zeta^{\prime} \Delta u^{\tau+}\| \|_{s-2}^{2}+\left\|u^{\tau+}\right\|_{0}^{2} . \tag{2.16}
\end{align*}
$$

Proof. The proof of (2.15) is an immediate combination of the formulas $\left\|\zeta^{\prime} u^{\tau+(h)}\right\|_{0}<\left\|\zeta^{\prime} u_{b}^{\tau+}\right\|_{b,-\frac{1}{2}}$ and $\left\|\zeta^{\prime} u^{\tau+}\right\|_{b,-\frac{1}{2}}<\left\|\zeta^{\prime} u^{\tau+}\right\|_{0}+$ $\left|\left|\left|\partial_{r} \zeta^{\prime} u^{\tau+}\right|\right|{ }_{-1}^{2}\right.$.

We prove now (2.16). By elliptic estimate for $u^{\tau+(0)}$ (which vanishes at $b \Omega$) with respect to the order 2 elliptic operator Δ, we have

$$
\begin{equation*}
\left\|\mid \zeta u^{\tau+(0)}\right\|\left\|_{s}^{2}<\right\|\left\|\zeta^{\prime} \Delta u^{\tau+(0)}\right\|\left\|_{s-2}^{2}+\right\| u^{\tau+(0)} \|_{0}^{2} \tag{2.17}
\end{equation*}
$$

This result of Sobolev regularity at the boundary is very classical: it is formulated, for functions in H_{0}^{1} such as the coefficients of $u^{\tau+(0)}$, e.g. in Evans [5] Theorem 5 p. 323. Owing to the identity $\Delta u^{\tau+(0)}=\Delta u^{\tau+}+$ $P^{1} u^{\tau+(h)}$ for a 1 -order operator P^{1} (cf. [12] p. 241), we can replace $\Delta u^{\tau+(0)}$ by $\Delta u^{\tau+}$ on the right side of (2.17) putting the contribution of P^{1} into an error term of type $\left\|\left|\zeta^{\prime} u^{\tau+(h)}\right|\right\|_{s-1}+\| \| \zeta^{\prime} \partial_{r} u^{\tau+(h)} \mid\| \|_{s-2}$, which can be estimated, on account of the splitting $\partial_{r}=\bar{L}_{n}+$ Tan, by $\left\|\left|\left|\zeta^{\prime} u^{\tau+(h)}\right|\left\|_{s-1}+\right\|\right|\left|\zeta^{\prime \prime} u^{\tau+(h)}\right|\right\|_{s-2}+Q_{\Lambda^{s-2} \zeta^{\prime}}\left(u^{\tau+(h)}, u^{\tau+(h)}\right)$. We write the terms of order $s-1$ and $s-2$ as a common $\left\|\mid \zeta^{\prime \prime} u^{\tau+(h)}\right\| \|_{s-1}$ that we can estimate, using (2.6) and (2.15), by

$$
\left\|\mid \zeta^{\prime \prime} u^{\tau+(h)}\right\| \|_{s-1}^{2}<Q_{\Lambda^{s-1} \zeta^{\prime \prime \prime}}^{\tau}\left(u^{\tau+}, u^{\tau+}\right)+Q_{\Lambda^{s-2} \partial_{r} \zeta^{\prime \prime \prime}}^{\tau}\left(u^{\tau+}, u^{\tau+}\right) .
$$

This brings down from $s-1$ to 0 the Sobolev index in the error term. This 0 -order term $\left\|u^{\tau+(h)}\right\|_{0}^{2}$, together with its companion $\left\|u^{\tau+(0)}\right\|_{0}^{2}$ in the right of (2.17), is estimated, because of (2.14), by $\left\|u^{\tau+}\right\|_{0}^{2}$ up to a term $Q_{\Lambda^{-1} \zeta}$ which is controlled by the right side of (2.16). This concludes the proof of (2.16).

End of proof of Theorem 2.3. We prove (2.2) for $u^{\tau+}$; this implies the conclusion in full generality according to the first part of the proof. We have

$$
\begin{align*}
&\left\|\left\|u^{\tau+(h)}\right\|\right\|_{s}^{2} \underset{\text { by }}{\underset{\text { (2.6) }}{<}} Q_{\Lambda^{s} \zeta^{\prime}}^{\tau}\left(u^{\tau+(h)}, u^{\tau+(h)}\right)+\left\|u^{\tau+(h)}\right\|_{0}^{2} \tag{2.18}\\
& \quad \underset{\text { by (2.15) }}{\sim} Q^{\tau}{ }_{\Lambda^{s} \zeta^{\prime}}\left(u^{\tau+}, u^{\tau+}\right)+Q^{\tau}{ }_{\partial_{r} \Lambda^{s-1} \zeta^{\prime}}\left(u^{\tau+}, u^{\tau+}\right)+\left\|u^{\tau+}\right\|_{0}^{2} .
\end{align*}
$$

We combine (2.18) with (2.16); what we get is

$$
\begin{align*}
\left\|\mid \zeta u^{\tau+}\right\| \|_{s}^{2} & \leq\left\|\left|\zeta u^{\tau+(h)}\| \|_{s}^{2}+\left\|\mid \zeta u^{\tau+(0)}\right\| \|_{s}^{2}\right.\right. \tag{2.19}\\
& <\left\|\zeta^{\prime} \bar{\partial} u^{\tau+}\right\|_{s}^{2}+\left\|\zeta^{\prime} \bar{\partial}^{*} u^{\tau+}\right\|_{s}^{2}+\left\|\mid \zeta^{\prime} \Delta u^{\tau+}\right\|\left\|_{s-2}^{2}+\right\| u^{\tau+} \|_{0}^{2}
\end{align*}
$$

By the non-characteristicity of Q, we can replace the tangential norm $\|\|\cdot\|\|_{s}$ by the full norm $\|\cdot\|_{s}$ in the left of (2.19). (The explanation of this point can be found, for example, in [12] second part of p. 245.) This proves (2.2) for $u^{\tau+}$ and thus also for a general u.

We modify $b \Omega$ outside a neighborhood of z_{o} where it satisfies the hypotheses of Theorem 1.1 so that it is strongly pseudoconvex in the modified portion and bounds a relatively compact domain; in particular, there is well defined the H^{0} inverse N of \square in this domain. There is an immediate crucial consequence of Theorem 2.3.

Theorem 2.7. We have that

$$
\begin{equation*}
\bar{\partial}^{*} N \text { is exactly regular over Ker } \bar{\partial} \tag{2.20}
\end{equation*}
$$

and
$\bar{\partial} N$ is exactly regular over $\operatorname{Ker} \bar{\partial}^{*}$.

Proof. As for (2.20), we put $u=\bar{\partial}^{*} N f$ for $f \in \operatorname{Ker} \bar{\partial}$. We get

$$
\left\{\begin{aligned}
\bar{\partial} u & =f \\
\bar{\partial}^{*} u & =0 \\
\Delta u & =(\vartheta \bar{\partial}+\bar{\partial} \vartheta) \bar{\partial}^{*} N f \\
& =\vartheta\left(\bar{\partial} \bar{\partial}^{*}+\bar{\partial}^{*} \bar{\partial}\right) N f+\bar{\partial} \vartheta \bar{\partial}^{*} N f \\
& =\vartheta \square N f=\vartheta f .
\end{aligned}\right.
$$

Thus, by (2.2)

$$
\begin{align*}
\|\zeta u\|_{s}^{2} & <\left\|\zeta^{\prime} f\right\|_{s}^{2}+\left\|\zeta^{\prime} \vartheta f\right\|_{s-2}^{2}+\|u\|_{0}^{2} \\
& <\left\|\zeta^{\prime} f\right\|_{s}^{2}+\|u\|_{0}^{2} . \tag{2.22}
\end{align*}
$$

To prove (2.21), we put $u=\bar{\partial} N f$ for $f \in \operatorname{Ker} \bar{\partial}^{*}$. We have a similar calculation as above which leads to the same formula as (2.22) (with the only difference that ϑ is replaced by $\bar{\partial}$ in the intermediate inequality). Thus from (2.22) applied both for $\bar{\partial}^{*} N$ and $\bar{\partial} N$ on $\operatorname{Ker} \bar{\partial}$ and $\operatorname{Ker} \bar{\partial}^{*}$ respectively, we conclude that these operators are exactly regular.

We are ready for the proof of Theorem 1.1. This follows from Theorem 2.7 by the method of Boas-Straube.

Proof of Theorem 1.1. From the regularity of $\bar{\partial}^{*} N$ it follows that the Bergman projection B is also regular. (Notice that exact regularity is perhaps lost by taking $\bar{\partial}$ in B.) We exploit formula (5.36) in 15 in unweighted norms, that is, for $t=0$:

$$
\begin{aligned}
N_{q}= & B_{q}\left(N_{q} \bar{\partial}\right)\left(\operatorname{Id}-B_{q-1}\right)\left(\bar{\partial}^{*} N_{q}\right) B_{q} \\
& +\left(\operatorname{Id}-B_{q}\right)\left(\bar{\partial}^{*} N_{q+1}\right) B_{q+1}\left(N_{q+1} \bar{\partial}\right)\left(\operatorname{Id}-B_{q}\right) .
\end{aligned}
$$

Now, in the right side, the $\bar{\partial} N$'s and $\bar{\partial}^{*} N$'s are evaluated over Ker $\bar{\partial}^{*}$ and Ker $\bar{\partial}$ respectively; thus they are exactly regular. The B 's are also regular and therefore such is N. This concludes the proof of Theorem 1.1 .

References

[1] L. Baracco, T.V. Khanh and G. Zampieri-Propagation of regularity for solutions of the Kohn Laplacian in a flat boundary, arxiv 0908.2149 (2009)
[2] D. Catlin-Subelliptic estimates for the $\bar{\partial}$-Neumann problem on pseudoconvex domains, Ann. of Math. 126 (1987), 131-191
[3] M. Christ-Hypoellipticity: geometrization and speculation, Progress in Math. Birkh"auser Basel, 188 (2000), 91-109
[4] M. Christ-Hypoellipticity of the Kohn Laplacian for three-dimensional tubular Cauchy-Riemann structures, J. of the Inst. of Math. Jussieu 1 (2002), 279-291
[5] L. Evans-Partial Differential Equations, Graduate Studies in Math. 19 (1997)
[6] G.B. Folland and J.J. Kohn-The Neumann problem for the CauchyRiemann complex, Ann. Math. Studies, Princeton Univ. Press, Princeton N.J. 75 (1972)
[7] T.V. Khanh-A general method of weights in the $\bar{\partial}$-Neumann problem, Ph.D. Thesis, Padua (2009)
[8] T.V. Khanh and G. Zampieri-Estimates for regularity of the tangential $\bar{\partial}$-system, preprint (2009)
[9] T.V. Khanh and G. Zampieri-Regularity of the $\bar{\partial}$-Neumann problem at a flat point, preprint (2009)
[10] J.J. Kohn-Subellipticity of the $\bar{\partial}$-Neumann problem on pseudoconvex domains: sufficient conditions, Acta Math. 142 (1979), 79-122
[11] J.J. Kohn-Hypoellipticity at points of infinite type, Contemporary Math. 251 (2000), 393-398
[12] J.J. Kohn-Superlogarithmic estimates on pseudoconvex domains and CR manifolds, Annals of Math. 156 (2002), 213-248
[13] J.J. Kohn and L. Nirenberg-Non-coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443-492
[14] J. D. McNeal-Lower bounds on the Bergman metric near a point of finite type. Ann. of Math. 136 (1992), 2, 339-360.
[15] E. Straube - Lectures on the L^{2}-Sobolev theory of the $\bar{\partial}$-Neumann problem, ESI Lect. in Math. and Physics (2010)
[16] G. Zampieri-Complex analysis and CR geometry, AMS ULECT 43 (2008)

Dipartimento di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy

E-mail address: khanh@math.unipd.it, zampieri@math.unipd.it

