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HYPOELLIPTICITY OF THE ∂̄-NEUMANN PROBLEM

AT EXPONENTIALLY DEGENERATE POINTS

TRAN VU KHANH AND GIUSEPPE ZAMPIERI

Abstract. We prove local hypoellipticity of the complex Lapla-
cian � in a domain which has compactness estimates, is of finite
type outside a curve transversal to the CR directions and for which
the holomorphic tangential derivatives of a defining function are
subelliptic multipliers in the sense of Kohn.
MSC: 32F10, 32F20, 32N15, 32T25

1. Introduction

For the pseudoconvex domain Ω ⊂ Cn whose boundary is defined in
coordinates z = x+ iy of Cn, by

(1.1) 2xn = exp

(

−
1

(
∑n−1

j=1 |zj |
2)

s
2

)

, s > 0,

the tangential Kohn Laplacian �b = ∂̄b∂̄
∗

b + ∂̄∗b ∂̄b as well as the full
Laplacian � = ∂̄∂̄∗ + ∂̄∗∂̄ show very interesting features especially in
comparison with the “tube domain” whose boundary is defined by

(1.2) 2xn = exp

(

−
1

(
∑n−1

j=1 |xj |
2)

s
2

)

, s > 0.

(Here zj have been replaced by xj at exponent.) Energy estimates are
the same for the two domains. For the problem on the boundary bΩ,
they come as

(1.3) ||(log Λ)
1

su||bΩ <
∼

||∂̄bu||
2
bΩ + ||∂̄∗bu||

2
bΩ + ||u||2bΩ

for any smooth compact support form u ∈ C∞

c (bΩ)k of degree k ∈ [1, n− 2].

Here log Λ is the tangential pseudodifferential operator with symbol
log(1 + |ξ′|2)

1

2 ), ξ′ ∈ R2n−1, the dual real tangent space. As for the
problem on the domain Ω, one has simply to replace ∂̄b, ∂̄

∗

b by ∂̄, ∂̄∗

and take norms over Ω for forms u in D∂̄∗ , the domain of ∂̄∗, of degree
1 ≤ k ≤ n−1; this can be seen, for instance, in [9]. In particular, these
are superlogarithmic (resp. compactness) estimates if s < 1 (resp. for
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any s > 0). A related problem is that of the local hypoellipticity of the
Kohn Laplacian �b or, with equivalent terminology, the local regularity
of the inverse (modulo harmonics) operator Nb = �

−1
b . Similar is the

notion of hypoellipticity of the Laplacian � or the regularity of the in-
verse Neumann operator N = �

−1. It has been proved by Kohn in [12]
that superlogarithmic estimates suffice for local hypoellipticity of the
problem both in the boundary and in the domain. (Note that hypoel-
lipticity for the domain, [12] Theorem 8.3, is deduced from microlocal
hypoellipticity for the boundary, [12] Theorem 7.1, but a direct proof
is also available, [7] Theorem 5.4.) In particular, for (1.1) and (1.2),
there is local hypoellipticity when s < 1.
As for the more delicate hypoellipticity, in the uncertain range of

indices s ≥ 1, only the tangential problem has been studied and the
striking conclusion is that the behavior of (1.1) and (1.2) split. The
first stays always hypoelliptic for any s (Kohn [11]) whereas the second
is not for s ≥ 1 (Christ [4]). When one tries to relate (∂̄b, ∂̄

∗

b ) on bΩ to
(∂̄, ∂̄∗) on Ω, estimates go well through (Kohn [12] Section 8 and Khanh
[7] Chapter 4) but not regularity. In particular, the two conclusions
about tangential hypoellipticity of �b for (1.1) and non-hypoellipticity
for (1.2) when s ≥ 1, cannot be automatically transferred from bΩ
to Ω. Now, for the non-hypoellipticity in Ω in case of the tube (1.2)
we have obtained with Baracco in [1] a result of propagation which is
not equivalent but intimately related. The real lines xj are propagators
of holomorphic extendibility from Ω across bΩ. What we prove in the
present paper is hypoellipticity in Ω for (1.1) when s ≥ 1.

Theorem 1.1. Let Ω be a pseudoconvex domain of Cn in a neighbor-
hood of zo = 0 and assume that the ∂̄-Neumann problem satisfies the
following properties

(i) there are local compactness estimates,
(ii) there are subelliptic estimates for (z1, ..., zn−1) 6= 0,
(iii) ∂zjr, j = 1, ..., n− 1, are subelliptic multipliers (cf. [10]).

Then � is locally hypoelliptic at zo.

The proof follows in Section 2. It consists in relating the system on
Ω to the tangential system on bΩ along the guidelines of [12] Section
8, and then in using the argument of [11] simplified by the additional
assumption (i).

Remark 1.2. The domain with boundary (1.1), but not (1.2), satisfies
the hypotheses of Theorem 1.1 for any s > 0: (i) is obvious, and (ii)
and (iii) are the content of [11] Section 4.
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Notice that ∂Ω is given only locally in a neighborhodd of zo. We
can continue ∂Ω leaving it unchanged in a neighborhood of zo, making
it strongly pseudoconvex elsewhere, in such a way that it bounds a
relatively compact domain Ω ⊂⊂ Cn (cf. [14]). In this situation �

is hypoelliptic at every boundary point. Also, it is well defined a H0

inverse Neumann operator N = �
−1, and, by Theorem 1.1, the ∂̄-

Neumann solution operator ∂̄∗N preserves C∞(Ω̄)-smoothness. It even
preserves the exact Sobolev class Hs according to Theorem 2.7 below.
In other words, the canonical solution u = ∂̄∗Nf of ∂̄u = f for f ∈
Ker ∂̄ is Hs exactly at the points of bΩ where f is Hs. The Bergman
projection B also preserves C∞(Ω̄)-smoothness on account of Kohn’s
formula B = Id− ∂̄∗N∂̄.

Aknowledgments. The authors are grateful to Emil Straube for sug-
gesting the argument which leads to the hypoellipticity of the operator
� from that of the system (∂̄, ∂̄∗,∆).

2. Hypoellipticity of � and exact hypoellipticity of ∂̄∗N

We state properly hypoellipticity and exact hypoellipticity of a gen-
eral system (Pj).

Definition 2.1. (i) The system (Pj) is locally hypoelliptic at zo ∈ bΩ
if

Pju ∈ C∞(Ω̄)kzo for any j implies u ∈ C∞(Ω̄)kzo ,

where C∞(Ω̄)kzo denotes the set of germs of k-forms smooth at zo.
(ii) The system (Pj) is exactly locally hypoelliptic at zo ∈ bΩ when
there is a neighborhood U of zo such that for any pair of cut-off func-
tions ζ and ζ ′ in C∞

c (U) with ζ ′|supp(ζ) ≡ 1 we have for any s and for
suitable cs

(2.1) ||ζu||2s ≤ cs(
∑

j

||ζ ′Pju||
2
s + ||u||20), u ∈ C∞(Ω̄)k ∩D(Pj).

If (Pj) happens to have an inverse, this is said to be locally regular
and locally exactly regular in the situation of (i) and (ii) respectively.

Remark 2.2. By Kohn-Nirenberg [13] the assumption u ∈ C∞ can be
removed from (2.1). Precisely, by the elliptic regularization, one can
prove that if ζ ′Pju ∈ Hs and ζ ′u ∈ H0, then ζu ∈ Hs and satisfies
(2.1). This motivates the word “exact”, that is, Sobolev exact. Not
only the local C∞- but also the Hs-smoothness passes from Pju to u.

Let ϑ be the formal adjoint of ∂̄ and ∆ = ∂̄ϑ+ ϑ∂̄ the Laplacian; it
acts on forms by the action of the usual Laplacian on its coefficients.
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If u ∈ D�, then �u = ∆u. We first prove exact hypoellipticity of the
system (∂̄, ∂̄∗,∆); hypoellipticity of � itself will follow by the method
of Boas-Straube.

Theorem 2.3. In the situation of Theorem 1.1, we have, for a neigh-
borhood U of zo and for any couple of cut-off ζ and ζ ′ with ζ ′|supp ζ ≡ 1

(2.2) ||ζu||2s <
∼

||ζ ′∂̄u||2s + ||ζ ′∂̄∗u||2s + ||ζ ′∆u||2s−2 + ||u||20, u ∈ D∂̄∗ .

In particular, the system (∂̄, ∂̄∗,∆) is exactly locally hypoelliptic at zo =
0.

Remark 2.4. The hypoellipticity of �b under (ii) and (iii) of Theo-
rem 1.1 is proved by Kohn in [11]. It does not require (i) but it is
not exact hypoellipticity (the neighborhood U of (2.1) depends on s).
However, inspection of his proof shows that, if (i) is added, then in
fact (2.1) holds for (Pj) = �b. Our proof consists in a reduction to the
tangential system.

Proof. We proceed in several steps which are highlighted in two in-
termediate propositions. We use the standard notation Q(u, u) for
||∂̄u||20+ ||∂̄∗u||20 and some variants as, for an operator Op, QOp(u, u) :=
||Op ∂̄u||20+ ||Op ∂̄∗u||20; most often, in our paper, Op is chosen as Λsζ ′.
We decompose a form u as

{

u = uτ + uν ,

uτ = uτ + + uτ − + uτ 0,

where the first is the decomposition in tangential and normal compo-

nent and the second is the microlocal decomposition uτ
±

0 = Ψ
±

0uτ in

which Ψ
±

0 are the tangential pseudodifferential operators whose sym-

bols ψ
±

0 are a conic decomposition of the unity in the space dual to
R2n−1 the real orthogonal to ∂r (cf. Kohn [12]). We begin our proof
by remarking that any of the forms u# = uν , uτ −, uτ 0 enjoys elliptic
estimates

(2.3) ||ζu#||2s <
∼

||ζ ′∂̄u#||2s−1 + ||ζ ′∂̄∗u#||2s−1 + ||u#||20 s ≥ 2.

We refer to [6] formula (1) of Main theorem as a general reference but
also give an outline of the proof. For this, we have to call into play the
tangential s-Sobolev norm which is defined by |||u|||s = ||Λsu||0. We
start from

(2.4) |||ζu#|||21 <
∼

Q(ζu#, ζu#) + ||u#||20;
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this is the basic estimate for uν (which vanishes at bΩ) whereas it is [12]
Lemma 8.6 for uτ − and uτ 0. Applying (2.4) to ζ ′Λs−1ζu# one gets the
estimate of tangential norms for any s. Finally, by non-characteristicity
of (∂̄, ∂̄∗) one passes from tangential to full norms along the guidelines
of [16] Theorem 1.9.7. The version of this argument for � can be found
in [12] second part of p. 245. Because of (2.3), it suffices to prove (2.2)
for the only uτ +. We further decompose

uτ + = uτ +(h) + uτ +(0),

where uτ +(h) is the “harmonic extension” in the sense of Kohn [12] and
uτ +(0) is just the complementary part. We denote by ∂̄τ the extension
of ∂̄b from bΩ to Ω which stays tangential to the level surfaces r ≡ const.
It acts on tangential forms uτ and it is defined by ∂̄τuτ = (∂̄uτ )τ . We
denote by ∂̄τ ∗ its adjoint; thus ∂̄τ ∗uτ = ∂̄∗(uτ). We use the notations
�

τ and Qτ for the corresponding Laplacian and energy. We notice that
over a tangential form uτ we have a decomposition

(2.5) Q = Qτ + ||L̄nu
τ ||20.

The proof of (2.2) for uτ + requires two crucial technical results. Here
is the first which is the most central

Proposition 2.5. For the harmonic extension uτ +(h) we have

(2.6) |||ζuτ +(h)|||2s <
∼

Qτ
Λsζ′(u

τ +(h), uτ +(h)) + ||uτ +(h)||20.

Proof. We apply compactness estimates (cf. e.g. [7] Section 6) for
ζ ′Λsζuτ +(h),
(2.7)
||ζ ′Λsζuτ +(h)||2 ≤ ǫQ(ζ ′Λsζuτ +(h), ζ ′Λsζuτ +(h)) + cǫ||ζ

′Λsζuτ +(h)||2
−1.

We decompose Q according to (2.5). We calculate Qτ over ζ ′Λsζuτ +(h)

and compute errors coming from commutators [Qτ , ζ ′Λsζ ]. In this calcu-
lation we assume that the cut off functions are of product type ζ(z′)ζ(t)
where z′ (resp. t) are complex (resp. totally real) tangential coordinates
in TzobΩ. We have

Qτ (ζ ′Λsζuτ +(h), ζ ′Λsζuτ +(h))

<
∼

Qτ
ζ′Λsζ(u

τ +(h), uτ +(h)) + |||ζuτ +(h)|||2s + |||ζ ′uτ +(h)|||2s−1

+

(

||(|ζ̇(z′)|+ |ζ̇ ′(z′)|)Λsuτ +(h)||20 + ||

n−1
∑

j=1

|rzj |(|ζ̇(t)|+ |ζ̇ ′(t)|)Λsuτ +(h)||20

)

.

(2.8)
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We explain (2.8). First, the commutators [∂̄τ , ζ ′Λsζ ] (and similarly as
for [∂̄′∗, ζ ′Λsζ ]) are decomposed by Jacobi identity as

[∂̄τ , ζ ′Λsζ ] = [∂̄τ , ζ ′]Λsζ + ζ ′[∂̄τ ,Λs]ζ + ζ ′Λs[∂̄τ , ζ ].

The central commutator [∂̄τ ,Λs] produces the error term |||ζuτ +(h)|||2s.
As for the two others, we have

[∂̄τ , ζ(z′)ζ(t)] = [∂̄τ , ζ(z′)]ζ(t) + ζ(z′)[∂̄τ , ζ(t)],

and similarly for ζ replaced by ζ ′ and ∂̄τ by ∂̄τ ∗. Now,

(2.9) [∂̄τ , ζ(z′)] ∼ ζ̇(z′).

On the other hand, we first notice that it is not restrictive to assume
that ∂z1 , ..., ∂zn−1

are a basis of T 1,0
0 bΩ for otherwise, owing to (iii), we

have subelliptic estimates from which local regularity readily follows.
Thus, each L̄j , j = 1, ..., n−1, is of type L̄j = rz̄j∂z̄n −rz̄n∂z̄j , and then

[∂̄τ , ζ(t)] ∼

n−1
∑

j=1

[L̄j , ζ(t)]

∼

n−1
∑

j=1

rz̄j ζ̇(t).

(2.10)

By combining (2.9) with (2.10) (and using the analogous for ζ ′ and
∂̄τ ∗), we get the last line of (2.8). This establishes (2.8). Next, since
(∂̄τ , ∂̄τ ∗) has subelliptic estimates, say η-subelliptic, for z′ 6= 0 and

hence in particular over supp ζ̇(z′) and supp ζ̇ ′(z′) and since the rz̄j
are, say, η-subelliptic multipliers even at z′ = 0, then the last line of
(2.8) is estimated by ||ζ ′′Λs−ηζ ′uτ +(h)||2 where ζ ′′ ≡ 1 over supp ζ ′.
This shows, using iteration over increasing k such that kη > s and over
decreasing j from s− 1 to 0, that (2.7) and (2.8) imply (2.6) provided
that we add on the right side the extra term ||L̄nζ

′Λsζuτ +(h)||2. Note
that, as a result of the inductive process, we have to replace Qζ′Λsζ in
(2.8) by QΛsζ′ in (2.6).
Up to this point the argument is the same as in [11] and does

not make any use of the specific properties of the harmonic exten-
sion uτ +(h). We start the new part which is dedicated to prove that
||L̄nζ

′Λsζuτ +(h)||2 can be removed from the right of (2.6). For this
we have to use the main property of this extension expressed by [12]
Lemma 8.5, that is,

(2.11) ||L̄nζu
τ +(h)||20 <

∼

n−1
∑

j=1

||L̄jζu
τ +
b ||2

b,− 1

2

+ ||uτ +||20.
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Note that (2.11) differs from [12] Lemma 8.5 by [L̄n,Ψ
+]; but this is an

error term which can be taken care of by uτ 0 to which elliptic estimates
apply. Applying (2.11) to ζ ′Λsζuτ +(h) (for the first inequality below),
and using the classical inequality || · ||2

b,− 1

2

≤ cǫ|| · ||
2
0+ǫ|||∂r · |||

2
−1 (cf. e.g.

[8] (1.10)) together with the splitting ∂r = L̄n + Tan (for the second),
we get

||L̄nζ
′Λsζuτ +(h)||20 <

∼

by (2.11)

n−1
∑

j=1

||L̄jζ
′Λsζuτ +b ||2

b,− 1

2

+ ||ζ ′Λsζuτ +||20

<
∼

cǫ

n−1
∑

j=1

||L̄jζ
′Λsζuτ +(h)||20 + ǫ

n−1
∑

j=1

|||L̄nL̄jζ
′Λsζuτ +(h)|||2

−1

+ ǫ

n−1
∑

j=1

|||Tan L̄jζ
′Λsζuτ +(h)|||2

−1 + ||ζ ′Λsζuτ +(h)||20.

(2.12)

The first term on the right of the last inequality is controlled by
n−1
∑

j=1

||ζ ′ΛsζL̄ju
τ +(h)||2 + |||ζuτ +(h)|||2s + |||ζ ′′uτ +(h)|||2s−1 by the first

part of the proposition; moreover, we have the immediate estimate
∑n−1

j=1 ||ζ
′ΛsζL̄ju

τ +(h)||2 <
∼

Qτ
Λsζ′(u

τ +(h), uτ +(h)). The term which car-

ries ǫ Tan, after Tan has been annihilated by the Sobolev norm of
index −1, has the same estimate as the first term. It remains to
control the second term in the right which involves ǫL̄n. We rewrite
L̄nL̄j = L̄jL̄n + [L̄n, L̄j ]; when L̄j moves in first position, it is anni-
hilated by −1 and what remains is absorbed in the left. As for the
commutator, we have

|||[L̄n, L̄j ]ζ
′Λsζuτ +(h)|||2

−1 <
∼

|||ζuτ +(h)|||2s + |||∂rζ
′Λsζuτ +(h)|||2

−1

<
∼

|||ζuτ +(h)|||2s + |||L̄nζ
′Λsζuτ +(h)|||2

−1,

where we have used the splitting ∂r = Tan+L̄n in the second inequality.
Again, the term with L̄n, which now comes in −1 norm, is absorbed in
the left of (2.12). Summarizing up, we have got

||L̄nζ
′Λsζuτ +(h)||20 <

∼

cǫQ
τ
Λsζ′(u

τ +(h), uτ +(h))

+ |||ζuτ +(h)|||2s + |||ζ ′′uτ +(h)|||2s−1.
(2.13)

But |||L̄n · |||2 comes with a factor ǫ of compactness and hence the
term in s-norm in the last line can be absorbed in the left of the initial
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inequalities (2.7) or (2.6). Finally, we use an inductive argument to go
down from s− 1 to 0. This concludes the proof of the proposition.

�

We remark now that

||ζuτ +(h)||20 <
∼

||ζuτ +b ||2
b,− 1

2

<
∼

||ζuτ +||20 + |||∂rζu
τ +|||2

−1

≤ ||ζuτ +||20 + |||L̄nζu
τ +|||2

−1 + |||Tan ζuτ +|||2
−1

<
∼

QΛ−1ζ(u
τ +, uτ +) + ||ζuτ +||20.

(2.14)

The same inequality also holds for uτ +(h) replaced by uτ +(0) on account
of the identity uτ +(0) = uτ + + uτ +(h). We need another preparation
result

Proposition 2.6. We have
(2.15)
Qτ

Λsζ′(u
τ +(h), uτ +(h)) <

∼

Qτ
Λsζ′(u

τ +, uτ +) +Qτ
∂rΛs−1ζ′(u

τ +, uτ +)

and

|||ζuτ +(0)|||2s <
∼

Qτ
Λs−1ζ′(u

τ +, uτ +) +Qτ
∂rΛs−2ζ′(u

τ +, uτ +)

+ |||ζ ′∆uτ +|||2s−2 + ||uτ +||20.
(2.16)

Proof. The proof of (2.15) is an immediate combination of the for-
mulas ||ζ ′uτ +(h)||0 <

∼

||ζ ′uτ +
b ||b,− 1

2

and ||ζ ′uτ +||b,− 1

2

<
∼

||ζ ′uτ +||0 +

|||∂rζ
′uτ +|||2

−1.

We prove now (2.16). By elliptic estimate for uτ +(0) (which vanishes
at bΩ) with respect to the order 2 elliptic operator ∆, we have

(2.17) |||ζuτ +(0)|||2s <
∼

|||ζ ′∆uτ +(0)|||2s−2 + ||uτ +(0)||20.

This result of Sobolev regularity at the boundary is very classical: it is
formulated, for functions in H1

0 such as the coefficients of uτ +(0), e.g. in
Evans [5] Theorem 5 p. 323. Owing to the identity ∆uτ +(0) = ∆uτ + +
P 1uτ +(h) for a 1-order operator P 1 (cf. [12] p. 241), we can replace
∆uτ +(0) by ∆uτ + on the right side of (2.17) putting the contribution
of P 1 into an error term of type |||ζ ′uτ +(h)|||s−1 + |||ζ ′∂ru

τ +(h)|||s−2,
which can be estimated, on account of the splitting ∂r = L̄n + Tan, by
|||ζ ′uτ +(h)|||s−1 + |||ζ ′′uτ +(h)|||s−2 +Qτ

Λs−2ζ′(u
τ +(h), uτ +(h)). We write

the terms of order s − 1 and s − 2 as a common |||ζ ′′uτ +(h)|||s−1 that
we can estimate, using (2.6) and (2.15), by

|||ζ ′′uτ +(h)|||2s−1 <
∼

Qτ
Λs−1ζ′′′(u

τ +, uτ +) +Qτ
Λs−2∂rζ′′′

(uτ +, uτ +).
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This brings down from s− 1 to 0 the Sobolev index in the error term.
This 0-order term ||uτ +(h)||20, together with its companion ||uτ +(0)||20
in the right of (2.17), is estimated, because of (2.14), by ||uτ +||20 up
to a term QΛ−1ζ which is controlled by the right side of (2.16). This
concludes the proof of (2.16).

�

End of proof of Theorem 2.3. We prove (2.2) for uτ +; this implies the
conclusion in full generality according to the first part of the proof. We
have

|||ζuτ +(h)|||2s <
∼

by (2.6)

Qτ
Λsζ′(u

τ +(h), uτ +(h)) + ||uτ +(h)||20

<
∼

by (2.15) and (2.14)

Qτ
Λsζ′(u

τ +, uτ +) +Qτ
∂rΛs−1ζ′(u

τ +, uτ +) + ||uτ +||20.

(2.18)

We combine (2.18) with (2.16); what we get is

|||ζuτ +|||2s ≤ |||ζuτ +(h)|||2s + |||ζuτ +(0)|||2s

<
∼

||ζ ′∂̄uτ +||2s + ||ζ ′∂̄∗uτ +||2s + |||ζ ′∆uτ +|||2s−2 + ||uτ +||20.

(2.19)

By the non-characteristicity of Q, we can replace the tangential norm
||| · |||s by the full norm || · ||s in the left of (2.19). (The explanation
of this point can be found, for example, in [12] second part of p. 245.)
This proves (2.2) for uτ + and thus also for a general u.

�

We modify bΩ outside a neighborhood of zo where it satisfies the
hypotheses of Theorem 1.1 so that it is strongly pseudoconvex in the
modified portion and bounds a relatively compact domain; in particu-
lar, there is well defined the H0 inverse N of � in this domain. There
is an immediate crucial consequence of Theorem 2.3.

Theorem 2.7. We have that

(2.20) ∂̄∗N is exactly regular over Ker ∂̄

and

(2.21) ∂̄N is exactly regular over Ker ∂̄∗.



10 T.V. KHANH AND G. ZAMPIERI

Proof. As for (2.20), we put u = ∂̄∗Nf for f ∈ Ker ∂̄. We get


























∂̄u = f,

∂̄∗u = 0,
∆u = (ϑ∂̄ + ∂̄ϑ)∂̄∗Nf

= ϑ(∂̄∂̄∗ + ∂̄∗∂̄)Nf + ∂̄ϑ∂̄∗Nf

= ϑ�Nf = ϑf.

Thus, by (2.2)

||ζu||2s <
∼

||ζ ′f ||2s + ||ζ ′ϑf ||2s−2 + ||u||20

<
∼

||ζ ′f ||2s + ||u||20.
(2.22)

To prove (2.21), we put u = ∂̄Nf for f ∈ Ker ∂̄∗. We have a similar
calculation as above which leads to the same formula as (2.22) (with the
only difference that ϑ is replaced by ∂̄ in the intermediate inequality).
Thus from (2.22) applied both for ∂̄∗N and ∂̄N on Ker ∂̄ and Ker ∂̄∗

respectively, we conclude that these operators are exactly regular.
�

We are ready for the proof of Theorem 1.1. This follows from Theo-
rem 2.7 by the method of Boas-Straube.

Proof of Theorem 1.1. From the regularity of ∂̄∗N it follows that the
Bergman projection B is also regular. (Notice that exact regularity is
perhaps lost by taking ∂̄ in B.) We exploit formula (5.36) in [15] in
unweighted norms, that is, for t = 0:

Nq = Bq(Nq∂̄)(Id− Bq−1)(∂̄
∗Nq)Bq

+ (Id−Bq)(∂̄
∗Nq+1)Bq+1(Nq+1∂̄)(Id−Bq).

Now, in the right side, the ∂̄N ’s and ∂̄∗N ’s are evaluated over Ker ∂̄∗

and Ker ∂̄ respectively; thus they are exactly regular. The B’s are also
regular and therefore such is N . This concludes the proof of Theo-
rem 1.1.

�
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