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Abstract

With the advent of precision cosmology, it is possible to test in an extremely accurate
way a variety of theories which describe the history of our Universe. The Planck ex-
periment has been able to detect with high significance the anisotropies of the Cosmic
Microwave Background, measuring the parameters that characterize the Standard Model
of Cosmology. However, a conclusive proof that inflation took place in the early Universe
has not been found yet. The inflationary stochastic background, which would be a decisive
evidence of the inflationary epoch, has not been discovered neither by looking at the po-
larization of the B-modes of the CMB or by a direct detection of a stochastic signal by the
LIGO-Virgo-KAGRA collaboration. The recent observation of a stochastic background by
the International Pulsar Timing Array collaboration raises the tantalizing hypothesis of a
detection of a primordial signal, but the measurement is not precise enough to establish
if this signal has a cosmological or astrophysical genesis. Future surveys of gravitational
waves will improve the current sensitivities to stochastic backgrounds, therefore it is likely
that in the incoming decades stochastic backgrounds will be detected in a very accurate
way. Therefore, one one the main goals of theoretical cosmology and astrophysics is the
characterization of stochastic backgrounds, in order to analyze properly the future data.
Stochastic backgrounds are expected to be dominated by a homogeneous and isotropic
contribution and to exhibit tiny anisotropies of the order 102 — 10~°. This is consis-
tent with the Cosmological Principle, which states that the Universe is homogeneous and
isotropic, when smoothed over sufficiently large scales. In this Thesis, we describe from a
theoretical and observational perspective the anisotropies of cosmological and astrophys-
ical background, characterizing their features, like the dependence on the frequency and
angular scale considered, and forecasting their detectability.

In this dissertation, we compute the anisotropies of stochastic backgrounds for three
sources of primordial gravitational waves: the quantum fluctuations of the metric during
inflation, primordial black holes and phase transitions. All these mechanisms produce grav-
itational waves at energy scales much larger than the ones of particle experiments, therefore,
because of the decoupling of gravitational interactions at early times, which makes the Uni-
verse transparent to gravitational waves, the cosmological background is a unique probe
that keeps track of the physics at temperatures typical of Grand Unified Theories. The
angular power spectrum of the cosmological background can be computed by introducing
a distribution function for the primordial graviton and solving the Boltzmann equation in
our perturbed Universe. The solution of this equation shows that the anisotropies are due



to the initial conditions on the distribution function and to the propagation of the gravi-
tational waves through the large-scale perturbations of the metric encountered along their
paths. We evaluate the initial conditions for the background generated by the quantum
fluctuations during inflation, finding that a large amount of non-adiabatic initial conditions
are present. This peculiar term generates an enhancement of the angular power spectrum
by an order of magnitude, making easier the detection with future interferometers. For the
case of a cosmological background generated by primordial black holes we find that a large
amount of non-Gaussianity could also amplify the anisotropies by orders of magnitude. In
this Thesis, we compute then the contribution to the angular power spectrum due to the
propagation of gravitons through the perturbed Universe, obtaining the interesting result
that it is sensitive to the fractional energy density of relativistic and decoupled species at
the production. Since the production of cosmological signals takes place at temperatures
much higher than the ones accessible by modern colliders, the distribution of gravitons
in the sky could be used to test theories Beyond the Standard Model of Particle Physics.
At large angular scales, gravitons and the photons of the Cosmic Microwave Background
follow similar geodesics, therefore a large correlation between these two probes is expected.
A computation of the angular power spectrum of the cross-correlation of these two signals
shows that this is actually the case and the correlation is about 1 for the first ten mul-
tipoles. This close relation could be used in the future to test in a very robust way the
large-scale structure of the Universe.

The Astrophysical Gravitational Wave Background considered in this work is generated
by the superposition of the gravitational waves emitted by the black hole binaries in the sky
which are too weak to be individually resolved. Its angular power spectrum contains three
different sources of anisotropies: the intrinsic, the shot noise and the kinetic ones. The
intrinsic anisotropies are due to pertubations of the number of sources in the sky and of
the geodesics of gravitons. They can be estimated by using the Cosmic Rulers formalism,
which accounts for all these effects by adopting gauge invariant quantities. The shot
noise is induced by Poisson fluctuations in the discrete number of emitters of gravitational
waves and it has a flat angular power spectrum. The kinetic anisotropies consist in a dipole
generated by the relative velocity between the observer and the rest frame of the sources and
it is typically and order of magnitude larger and smaller than the intrinsic anisotropies and
the shot noise respectively. Although the homogeneous and isotropic contribution to the
astrophysical background has zero circular polarization in General Relativity, because of
the isotropic distribution of the inclination angle of the binaries, the shot noise fluctuations
in the signal generate a non-vanishing V' Stokes parameter which could be detected by the
network Einstein Telescope and Cosmic Explorer with signal-to-noise ratio larger than 2
in one year of observations. We provide a characterization of this new signal, showing
how its angular and frequency dependence could be very powerful tools to subtract it
in order to measure a cosmological polarized background. The intrinsic, shot noise and
kinetic anisotropies exhibit different frequency dependences above 100 Hz, because at each
frequency binaries in distinct stages of the evolution and at separate distances contribute,
weighting (in redshift) differently the three contributions to the anisotropies. The specific
scalings with the frequency of the intrinsic, kinetic e shot noise anisotropies could be used to



separate the individual components from the total angular power spectrum. In particular,
the kinetic dipole could be reconstructed with signal-to-noise ratio larger than three in ten
years of observation, giving better constraints on our peculiar motion than other probes,
such as galaxy surveys.

The impressing progresses that could be done in theoretical physics and in the compre-
hension of the early and late Universe through the characterization of the anisotropies of
cosmological and astrophysical backgrounds of gravitational waves indicate that this field
could be one of the most important to increase our knowledge in the future.
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Preface

This Thesis collects the results of the research activity conducted during the three years
of my Ph. D. at the Department of Physics and Astronomy “Galileo Galilei”, University of
Padova, Italy, under the supervision of Prof. Angelo Ricciardone.

In Chapter 1 we have carried out a survey of stochastic backgrounds of gravitational
waves, showing the main statistical properties of these signals and the current detection
strategies, providing also the most recent constraints at different frequencies.

In Chapter 2 we have outlined the main characteristics of the ACDM model, summarizing
the features of the particle content and of the geometry of the Universe, focusing in par-
ticular on their departure from homogeneity and isotropy.

In Chapter 3 we have introduced the Boltzmann approach to compute the anisotropies of
the SGWB of cosmological origin, providing also a description of the primary candidates
which can source a primordial signal. During my visiting at the Institute for Theoretical
Particle Physics and Cosmology, RWTH Aachen University, Germany, we have developed
an optimized code GW_CLASS, presented in [1], to compute the anisotropies of cosmological
backgrounds.

In Chapter 4 we have computed the initial conditions for any inflationary gravitational
wave background. These calculations are based on the results I have obtained in [2]. We
have provided also a shorter computation of the initial conditions for other sources of cos-
mological backgrounds, according to what has been done in [1].

In Chapter 5 we have presented the first numerical predictions of the angular power spec-
trum of the cosmological background we have found in [3], where we have investigated also
the impact of relativistic and decoupled degrees of freedom at high temperatures on the
anisotropies of gravitons. In this chapter, we have extended the numerical computation
of [3] by using the optimized code GW_CLASS developed in [1].

In Chapter 6 we have explored the cross-correlation between the cosmological backgrounds
and the Cosmic Microwave Background, utilizing the outcomes of the letter [4].

In Chapter 7 we have overviewed the stochastic background of astrophysical origin. In this
chapter we have listed the most important features of a code authored by me to compute
the homogeneous and isotropic part and the anisotropies of astrophysical backgrounds,
which will be extensively used in the next two chapters.

In Chapter 8 we have recapped the outcomes about the circular polarization of the astro-
physical background achieved in the letter [5], written during the period I spent at the
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Research Center for the Early Universe, University of Tokyo, Japan.
In Chapter 9 we have studied the dipole of the astrophysical background, following [6]. In
this chapter we have described also the first, in the context of the anisotropies of stochastic
gravitational wave backgrounds, component separation technique based on the different fre-
quency dependence of the contributions to the angular power spectrum. We have adopted
this method to reconstruct, with high accuracy, our peculiar motion.



Introduction

In less than ten years from the first direct detection of a gravitational wave (GW) signal
by the LIGO-Virgo-KAGRA (LVK) collaboration [7], substantial improvements have been
achieved. After the third observing run (O3), the LVK collaboration has been able to
detect more than 90 GW signals generated by the merging of binary black hole (BBH),
binary neutron star (BNS) and black hole-neutron star systems (BHNS) [8], supplying
information about the population of astrophysical binaries and General Relativity (GR).
Furthermore, the recent detection of a stochastic background of GWs (SGWB) in the
nHz band by the Pulsar Timing Array (PTA) collaboration [9, 10, 11, 12|, confirmed
the power of GW observatories to understand our universe in a very unique fashion. In
addition, many ground- and space-based detectors are planned to be built in the incoming
decades. The third-generation interferometers Einstein Telescope (ET) [13] and Cosmic
Explorer (CE) [14] are expected to detect around 105 — 10° mergers of compact objects of
stellar masses in the deca-Hertz frequency band, while space-based missions like LISA [15]
and Taiji [16] will search for GWs in the mHz band. The most advanced and futuristic
detectors BBO [17] and DECIGO [18|, which operates in the dHz range, are presumed
to be sensitive to the weakest gravitational signals from the very early Universe. The
increasing in sensitivity requires at the same time an exhaustive characterization of the
SGWRBs, therefore it is crucial to have a theoretical understanding of the sources and of
the properties of stochastic backgrounds that could be inspected by these future surveys.

Different mechanisms which take place in the early Universe, such as inflation [19],
phase transitions [20], cosmic strings [21, 22|, second-order scalar perturbations [23] or
vector fields [24], can generate a stochastic background of cosmological origin (CGWB) with
amplitudes large enough to be detected by future interferometers. The peculiar frequency
spectra of the waves sourced by these different phenomena, could help the comprehension
of the physics operating at very high energy scales, allowing to distinguish the epoch
of the production of the background and the features of the processes which originate
the CGWBs. For instance, the detection of an inflationary CGWB would be a conclusive
proof of inflation. On the other hand, waves from phase transitions or cosmic strings would
improve our knowledge of the content of the Universe and of the fundamental interactions
at energies larger than the ones accessible by modern colliders, sheding light on the physics
Beyond the Standard Model. The different frequency bands spanned by the future earth-
and space-based interferometers will allow to constrain the models which could source the
CGWBs. Since these primordial GWs started propagating at early times, the observed
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spectra are not just related to the properties of the sources, but also to the chronology
of the Universe, making clear that there is a deep connection between study of SGWB
(and GWs in general) and cosmology. The deep relation between these two branches of
physics implies automatically that SGWBs could be used as an additional observable to
gain information on the unsolved problems in the description of our Universe.

Since the detection of the Cosmic Microwave Background (CMB) in 1965 [25], enormous
theoretical and experimental progresses have been made in cosmology, which has led to
the formulation of the ACDM model. This model represents, nowadays, the most accurate
description of the content and expansion history of our Universe. One of the main pillars
of the Standard Model of Cosmology is the assumption that the Universe is homogeneous
and isotropic on large angular scales, exhibiting anisotropies of approximately 1 part in
10°. CMB observations have supported these hypotheses [26], although some anomalies
have been noticed in the WMAP [27] and Planck [28] data on large scales. On the other
hand, the cosmic history of the Universe is well explained by the Hot Big Bang Model [29],
which describes the evolution over time of the abundance of cosmological relics in terms
of the physics of the fundamental interactions and General Relativity. Nevertheless, this
model alone cannot account for the homogeneity, isotropy and flatness of our Universe.
Therefore inflation, a period of accelerated expansion that occurred in the very early times,
was introduced [30, 31, 32, 33|. The great flexibility of the inflationary paradigm makes it
extremely challenging to confirm (or falsify) inflation. As a result, numerous attempts have
been made to validate the most exciting theory of the last century. For instance, upper
limits on the amplitude of inflationary CGWBs have been set by the non-observation of
the B-mode polarization of the CMB [34] and could also be put by the direct measurement
of the SGWB by future interferometers.

The homogeneity and isotropy of the Universe on large scales is reflected also in the
spatial features of CGWBs, which are presumed to display a dominant term (i.e., the
monopole), which depends just on the frequency, and small anisotropies which are sup-
pressed by a factor 1073 —107° w.r.t. the leading contribution. The amount of anisotropies
is quantified by the excess in the intensity (or in any other Stokes parameter) along a given
direction of observation w.r.t. the value averaged over the whole celestial sphere. The fre-
quency f of the GWs considered stays within the band of PTA, ground- and space-based
detectors, f € [107?,103] Hz, while the inhomogeneities considered are generated in regions
separated by distances of the order of rg A2, with the distance between the observer and the
surface of production of the background and the angular scales of the anisotropies equal to
ro ~ 10* Mpc and AQ ~ 7/¢, with ¢ the multipole of the angular power spectrum. Since
2me/roAQ) < f, in our framework we are considering the anisotropies of GWs of small
wavelenghts, generated by perturbations of the spacetime on much larger scales. The most
convenient technique to compute the angular power spectrum of CGWB anisotropies is
to introduce a distribution function for the stochastic GWs, which can be treated, in the
limit of high frequencies, as collisionless and massless particles (gravitons) [35, 36, 37|, and
to solve the Boltzmann equation in the perturbed Universe [38, 39, 40]. As it happens for
the CMB [41, 42], the anisotropies of the CGWB are imprinted at the production, due to
spatial inhomogeneities in the energy density at that time, and during the free-streaming,
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as a consequence of the redshift of gravitons due to the potential wells encountered along
their geodesics. In Chapter 3 we will discuss the definition of the graviton distribution
function, the initial time of propagation and the Boltzmann equation.

The initial overdensity of GWs at the time of the cosmological background production
strongly depends on the source. For adiabatic perturbations, the computation is similar to
the CMB case [42], up to a factor which depends on the spectral tilt of the CGWB at the
pivot frequency at which the anisotropies are computed. The adiabatic initial conditions
for cosmological gravitons have been inspected in [4, 1] and presented in this Thesis in
Chapter 4. Unlike many other cosmological relics, the initial conditions of the CGWB
originated by the quantum fluctuations of the metric during inflation are not adiabatic,
because they are not generated by the same field which produces photons, baryons, neu-
trinos and, eventually, Cold Dark Matter (CDM). The computation of these non-adiabatic
initial conditions has been performed in [5], adopting the original approach of evaluating
the overdensity of gravitons at early times starting from the perturbed energy-momentum
tensor of the gravitational field. These results will also be presented in Chapter 4, where
we will show how this peculiar contribution could increase the angular power spectrum
of the CGWB by an order of magnitude. A small section of this chapter is dedicated
to quantifying the initial conditions for scalar-induced GWs in the case of non-Gaussian
perturbations, following [23].

The anisotropies due to the propagation of gravitons through a perturbed Universe
consist in the standard Sachs-Wolfe (SW) and Integrated Sachs-Wolfe (ISW) terms [43],
which are the redshifts experienced by gravitons at their production and during their
free-streaming respectively. An interesting aspect is that the decoupling of gravitational
interactions at early times [37] allows to test the content of the Universe at much earlier
times than the CMB, baryons and neutrinos, which were tightly coupled until recombi-
nation, thus any trace of early-times physics has been erased by the scatterings [42]. In
Chapter 5, details on the numerical computation of these two effects for the primordial
GWs have been reported, showing that the angular power spectrum of the CGWB is sen-
sitive to the particle content of the Universe at energy scales larger than 102 GeV. The
results, derived for the first time in [3], have been improved by optimizing the Boltzmann
solver Cosmic Linear Anisotropy Solving System (CLASS) [44, 45] in the branch GW_CLASS
presented in [1]!. The sensitivity of the CGWB to other parameters (e.g., the equation of
state of the Universe) which affect the evolution of the perturbations of the Universe at
early times has been studied in [46].

Gravitons and photons propagate along null geodesics, thus it is natural to expect
that a large correlation is present between (the sky maps of the) two signals, since, at
large angular scales, the paths followed by light and GWs are the same. Under adiabatic
initial conditions, the correlation between the CMB and the CGWB is almost one, up to
¢ =10 [4]. Such a strong correlation implies that, by using the observed CMB maps, it is
possible to predict the expected CGWB uniquely through constrained realizations [4]. Such
constrained maps are extremely useful for testing foregrounds or systematic contaminations

IThe branch is available under the name GW_CLASS at https://github.com/lesgourg/class_public/
tree/GW_CLASS.
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in future data. Chapter 6 provides all the contributions to the cross-correlation, and the
physical interpretation.

The CGWB is intrinsically stochastic, but it is not the only non-deterministic su-
perposition of GWs which could be observed at interferometers. For instance, the GWs
emitted by the individual binaries which are too weak to be resolved or overlap in time in
such a way they become indistinguishable, generate a stochasic background of astrophysi-
cal origin (AGWB) [47, 48]. The possible sources of an AGWB could be rotating neutron
stars [49, 50], core collapse supernovae [51, 52| or massive stars |53, 54|, magnetars [55, 56],
compact binary systems of black holes (BBH), neutron stars (BNS) or black hole and neu-
tron stars (BHNS) [57, 58, 59, 60, 61, 62, 63]. According to the latest constraints by the
LVK collaboration on the population of GW sources [8], the most promising candidates
are expect to be BBH binaries and in this Thesis we have focused just on the amplitude of
their AGWB. The population of binary systems of stellar mass and the expected monopole
have been computed in detail in Chapter 7. As the CGWB, also the AGWB is homoge-
neous and isotropic at the leading order, and it is characterized by anisotropies due to
the fluctuation in the number of discrete events which contribute to the total signal (shot
noise) [64, 65, 66, to the peculiar velocity of the observer w.r.t. the rest frame of the emit-
ters (kinetic dipole) [67, 6, 68], and to the inhomogeneities in the distribution of the sources,
because of the cosmological perturbations (intrinsic anisotropies) [69, 70, 71, 72, 73, 74, 75].

In GR, the AGWB is supposed to be unpolarized at the leading order, because of the
isotropic distribution of the inclination angle of the binaries. This property could be used
to disentangle astrophysical and cosmological backgrounds, which reveal a large amount of
circular polarization in the case of violations of parity in the mechanism which generates
the CGWB |24, 76, 77, 78, 79, 80, 81, 82]. However, at the anisotropic level, the shot noise
fluctuations in the number of astrophysical sources generates a non-negligible amount of
circular and linear polarization [2|. This polarized AGWB could represent a troublesome
foreground that has to be subtracted in order to measure the circular polarization of cos-
mological backgrounds. In Chapter 8 we show that the amount of circular polarization
could be detected by the network of interferometers ET+CE in one year of observations.
Moreover we show that a cosmological background could be distinguished from the as-
trophysical one by exploiting the different angular and frequency dependence. A similar
analysis has been performed for PTA in [83, 84].

The AGWB keeps also track of the peculiar velocity of the observer w.r.t. the rest frame
of the sources, which generates a large dipole that dominates the intrinsic anisotropies [6].
The same peculiar velocity of the Large-Scale Structure (LSS) should impact the distribu-
tion of radio sources [85, 86, 87, 88, 89, 90| and quasars [91, 92|, and, in the ACDM model,
the CMB maps [93]. However, discrepancies in the estimates of our peculiar velocity by
using LSS and CMB probes have been found [94, 90], thus a third additional, independent,
probe should be used to shed light on this “tension”. In Chapter 9 we show that detecting
the AGWB it is possible to reconstruct the kinetic dipole with high precision, by using a
multi-frequency analysis of the anisotropies, which allows to disentangle the intrinsic, the
kinetic and the shot noise dipole [6].

The different fields involved in this Thesis, from theoretical physics and cosmology
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to astrophysics, statistics and GW interferometry, demonstrate that the anisotropies of
SGWBs are an extremely complex subject that should be understood in depth, because it
could contain a plethora of new information about different aspects of Nature.

13



14



Chapter 1

Stochastic Gravitational Wave
Backgrounds

1.1 Radiative degrees of freedom of the gravitational field

General Relativity (GR) accurately describes the relationship between the geometry of
spacetime and the energy densityof the Universe’s contents through the Einstein equations,

Guv(z) =81G Ty (), (1.1)

where G, is the Einstein tensor, which can be written as a function of the derivatives of
the metric, and T}, is the total energy-momentum tensor in the region of space and time
around the four-vector x. In analogy with electromagnetism (EM), a natural question to
ask is whether the Einstein equations admit waves as solutions. Since GR is invariant
under diffeomorphisms, in order to properly define GWs it is crucial to show that each
solution of the wave equation carries physical information and it is not an artifact due to
a particular choice of the coordinates [95]. It has indeed been shown [96] that in GR some
plane waves could be merely sinuosities in the coordinate system their velocity changes
under diffeomorphisms. In some cases, they can even exhibit superluminal behaviour
and thus violating special relativity. In [96], it was also demonstrated that plane waves,
specifically those that are transverse-traceless 97|, propagate at the speed of light in all
reference frames, defining the true radiative degrees of freedom of the system. Given the
complexity introduced by the nonlinearity of the Einstein equations, we begin by defining
gravitational waves in a flat spacetime and subsequently explore their propagation in a
curved spacetime as a second step.

1.1.1 Wave solutions in Linearized Theory

We consider the simplest case in which there is no source of energy and momentum in the
Universe, T}, = 0, and the there is a tiny perturbation h,, on top of a flat (Minkowski)
geometry. The natural definition of GWs is simply then

by (2) = g (%) — Ny (1.2)
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where |h,, ()] < 1. By introducing a coordinate transformation
ot — 2t =2t + H(x), (1.3)
with £#(z) an infinitesimal vector field, the metric transforms as

oz OxP
g;“,(x') :@wgaﬂ(x) = Guv — augu - 8V§M — hlluy(ml) = huu(x) - aufu - augu . (14)

In order to preserve the condition of having a weak gravitational field that perturbs a flat
spacetime, we impose the additional constraint

1008 (2)| < [y ()] - (1.5)

The Christoffel symbols in the presence of a small perturbations around a Minkowski
spacetime are

1 o 1 o ey
Fﬁp E?Q” (aygap + 8pgua — 8agyp) = § (77“ + ht )(81/th + 6phm, — 8ahz/p) = ( )
1.6
1
=2 (@l + Dhls — 0Dy

The Riemann tensor at first order in the perturbation of the metric assumes the simple
form
A A
Ry, =0,1%, — 0,10, + Ffr’/\I‘W — Ffj/\I‘(w = 0,1, — 0,10, =

puov

1
=5 [a,,ayhg + 0,00, — 050”hyy — (8,,8th + 0,0,hf — 8,,8phgu)] = (1.7)
1
:5(&,8”% + 0,0°hgy — 0,018, — 0;0°hy,,)
while the Ricci tensor and the Ricci scalar are

1
Ruy =R, = 5 (0u0pht, + 0,0"hyys — 00,10 — Ohy)

ey P (1.8)
R =Rl = 0"0,hf, — UR; .
The Einstein tensor at the leading order in h,, is given by
1
G/,Ll/ ER/LV - iRgm/ =
(1.9)

1
=5 [0,0,hE + 8,07k, — 0y 0uhf) — Ohyy — 1 (0" 0,0t — Dhl’j)] .
In order to extract the physical degrees of freedom from the solution of the Einstein equa-

tions, G, = 0, we need to remove any spurious information carried by the gauge trans-
formation w.r.t. £&*. Therefore we fix the gauge by imposing the conditions

1
8“ (hwj - Qnuvh;l;) = 0, hﬁ = 0, h()i =0. (1.10)
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It is easy to check indeed that in order to go from a gauge h:w to the gauge h,, we need
to apply to Eq. (1.4) the transformations

1 1
O¢r = —o* <h;“, - Q%th/> ; MEy = —shl' Ao&i + 9o = —hp; , (1.11)

2
which completely saturate any residual gauge in £*. In this gauge, the Einstein tensor
given in Eq. (1.9) has a much less complicate expression and the Einstein equations do
indeed take the form of wave equations,

Dhm, =0— Dh” =0. (112)

It is also possible to show that, in this gauge, hqgg is not a dynamical quantity, but depends
solely on the spatial coordinates. It represents the Newtonian gravitational potential,
which is zero in the vacuum since there is no source of energy and momentum. In these
few steps we have shown that there is a gauge-independent perturbation of the metric
which evolves according to the wave equation. From the 10 initial degrees of freedom of
the perturbation of the metric h,, only two of them carry physical information. These
two degrees of freedom can be interpreted as the two polarization states of the propagating
radiation.

When a tiny source of energy is present, it is possible to write the perturbations of the
energy-momentum tensor by using

Too =dp,

Toi :Uij' + O;v, (1.13)

T%j :6ij5P + mi; + 6(,7#) + (81@ — ;51]V2> ™,
where we have defined with the round parentheses the symmetrization of tensors w.r.t. the
indices within the parentheses. dp is the energy density, d P the pressure, 7714- a transverse
vector field, while 7;; is the anisotropic stress (a transverse-traceless tensor field). The
velocity v; has been decomposed into a scalar and solenoidal contributions, v and vf
respectively. Four of these degrees of freedom are constrained by the conservation of the

energy-momentum tensor,
o', =0. (1.14)

It is possible to write the metric perturbation according to the same decomposition,

hoo = — 24,

—_BL_y
hoi = = B = 0B, (1.15)

1
hij =2D 5@' + a(szL + <816J — 35¢jv2> F+ Hij ,

with BZ-J-, FZ-J- solenoidal vectors, while H;; is a transverse-traceless tensor. We will provide
additional details on the decomposition of the energy-momentum tensor and of the metric
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in Appendix A.1 and in Section 2.4.1. In order to show that there are physical degrees
of freedom that also in this case obey the wave equation, we define the following gauge
invariant variables (denoted by the subscripts “GI”)! which are combination of the metric
perturbations,

1
(I)GI =A-— 803 - 58317,
Ogr =2D — éVQF, (1.16)
EGI = — BZL — 601‘7;-L .

The transverse-traceless perturbation H;; are gauge invariant and, as we will see in Sec-
tion 2.4.1, the Einstein equations can be recasted in the following form

V20qr = — 871G dp,
V20 =4nG (5p £ 35P 3 801)),

V2Zqr = — 167G v,
OH[T = - 167G 035

(1.17)

We conclude therefore that also in this case the transverse-traceless perturbations of the
metric propagate according to the wave equation and that their dynamics does not depend
on the gauge choice. The r.h.s. of the equation of motion of the GWs shows that any
transverse-traceless contribution in the energy-momentum tensor would act as a source
term in the Einstein equations, amplifying or damping the propagation of GWs.

In the next section, we will extend this result to scenarios where the background ge-
ometry of the Universe is not flat. We will demonstrate that it remains possible to provide

a meaningful definition for the concept of radiative degrees of freedom of the gravitational
field.

1.1.2 High frequency expansion and linearized Einstein equations

In this Thesis, we characterize SGWBs in the high-frequency limit or shortwave approxi-
mation [98, 35, 36, 37|, in which the GWs have a small amplitude and their wavelengths are
much smaller than the typical scales over which the background varies. As we will see in
more detail in Sections 1.4.1, 1.5, the former hypothesis is well motivated by the fact that
only a tiny fraction of the enegy density of the Universe is expected to be in form of GWs,
since all the known sources studied here emit weak GWs. The latter assumption is justified
by the comparison between the frequencies of the GWs observed at interferometers and the
distance between the emitters and the observer for the angular scales of the anisotropies
considered (related to the size of the region over which the background changes signifi-
cantly), see e.g. Section 3.1 for a more quantitative estimate of the separation of these

'The gauge invariance can be proved by applying the gauge transformations defined in Appendix A.1,
keeping in mind that in this case the background spacetime is a Minkowski spacetime, therefore the terms
proportional to H in the gauge transformations have to be neglected.
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scales. Therefore, the underlying idea of this shortwave approximation is that it is possible
to distinguish in the metric the slowly varying background from the oscillating GWs,

g () = g (2) + 2" (@), (1.18)

where the background and the waves change on scales k and ¢ respectively,

aagfﬁ) () ~k O [QMV(Jf)] )

a5 () ~g O [YSW(@)] -

(1.19)

When the weak field limit is hold, ]’yfﬁw)(x)\ < 1, and the frequency of the GWs is much

larger than the inverse of the timescales over which the background varies, ¢ > k, the
waves can be thought as small ripples that propagate through a spacetime that curves
very slowly compared to them. According to the splitting into high- and low- frequency
modes defined in Eq. (1.18), the Ricci tensor can be expanded into terms of order zero,

linear, quadratic and cubic in ’y,(fjw),

Ryu(z) = RY)(2) + RG)(z) + R (z) + RY) (). (1.20)

The linear and the quadratic terms in %(L%W) can be written as® the following combinations

of covariant derivatives,

R E% (-DDuE = DD (EW) + DDAEW + DD EW)

R =3 [5D15 Doy
L (GW)ag (DuDu'yff;W) + DuDs(GW) - D, Dy (CW) - DD m&c;,\zv)) (1.21)
+ DIyEW (Dgy(GW) — Do )
n (%D%éGW)B — Dyy(EW) aﬂ)(D,, (GW) 4 D, (CW) — DaV&EW))} ’

where the covariant derivative for a tensor of mixed covariant and contravariant indices is

defined by
DT} =0,T} + 1L, 1T —19,TH (1.22)

po-v pvro

with I'g the Christoffel symbols that, in this framework, are computed w.r.t. the back-
ground metric. A similar expansion can be done for the Riemann tensor and for the Ricci
scalar, and it is easy to show [35, 36] that their contributions related to the high-frequency
waves are non-vanishing and gauge invariant. Since these two quantities carry the physical
information of the system and remain independent of the coordinate choice, it precisely
confirms that GWs are physical degrees of freedom of the gravitational field, as one would

2An easy way to compute these terms is to evaluate the Ricci tensor around a flat spacetime and to
substitute the partial derivatives that appear with covariant derivatives.

19



expect from the generalization of the results obtained in the previous section. According
to Eq. (1.20), the Einstein equations in vacuum give

3
G =0 = Ry, =0 = R{J) + R{)(2) + R (x) + O [(vﬁ(ﬁw’ (v)) } =0,  (123)

where we have considered just terms of order zero, one and two in fyff;’w), neglecting the

corrections due to contributions at third order. In the shortwave approximation, it is
possible to solve the Einstein equations by separating the high- and the low-frequency
modes, with the introduction of an averaging scheme over the small scales [35, 36]. More
specifically, we introduce the Brill-Hartle average [98|, which consists on an average in a
region of size Lpy, with 1/k > Ly > 1/q. In this way, the contribution of the GWs
to the background, i.e., the averaged one, is disentangled from the rapidly-oscillating one,
whose average goes to zero. Intuitively, we expect indeed that terms independent of 'yl(ﬁw)
are invariant under the average, while objects linear in the GWs have zero average, and
terms quadratic in the rapidly-oscillating waves could have both negligible or non-negligible
averages. A formal definition of this averaging scheme and of its rules have been given in
Appendix B, where we show also which kind of tensors quadratic in the GWs have negligible
averages. It is possible then to solve separately Eq. (1.23) for the part whose average gives
zero and for the high-frequency contribution,

B@) = - (RD@) .

(1.24)
) = - RZ + (RE())

BH

By looking at the expression of the Ricci tensor linear in the GW degrees of freedom, the
first row of Eq. (1.21), it is clear the the Einstein equation for the high-frequency modes
corresponds to the the wave equation for 'y,(ﬁw) in GR, including nonlinear corrections
sourced by terms quadratic in the GWs. For instance, if we consider the Lorentz gauge in

which

Dy SW(z) =0, (1.25)
and we define .
~(GW — (GW GW)a (B
;(w )(l’) = ’Y/(u/ )(x) - 5 (gz ) g&u)(x)a (126)

the equation of motion of the radiative degrees of freedom becomes

DaDoS ) + 200,70 a) = 0| (18) ] (1.27)
with R?). the Riemann tensor evaluated w.r.t. the background metric. The averaged
part of the Einstein equations, given by the first row of Eq. (1.24), determines the structure
of the energy-momentum tensor of the gravitational field, as we will discuss in detail in
the next section. The r.h.s. of Eq. (1.27) represents the corrections to the equation of
motion of the GWs due to the nonlinear nature of gravitation and they could be thought
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as an interaction between the GWs while they propagate. Nevertheless, in this work, we
will focus just on terms linear (in the equation of motion) and quadratic (in the energy-
momentum tensor) in the small-scale waves, neglecting the higher-order contributions,
which are expected to be suppressed by the large separation between the scales k£ and gq.

1.1.3 Energy-momentum tensor of the GWs

According to the equivalence principle, any gravitational field can be transformed locally
by a diffeomorphism, thus one could argue whether the GWs defined in the previous section
really carry energy and momentum. Intuitively, the r.h.s. of the first row of Eqgs. (1.24)
looks like the standard energy-momentum tensor [35, 36] that appears in r.h.s. of the
Einstein equations, Eq. (1.1),

1
W)= 1 (R@)
T (@) = ——= (BR@) - (1.28)

The interpretation of this result is that the curvature of spacetime at large-scales could be
generated by the smoothed small-scale fluctuations of the metric, which act as a source
of energy and momentum. The averaging procedure is a crucial step in the definition of
the energy-momentum tensor, because it makes clear that is possible to define an energy-
momentum tensor for the gravitational field only when we pass from a “microscopic”’ de-
scription of the metric, in which gfg) and %(“CjW) are indistinguishable, to a coarse-grained,
“macroscopic”, description [99]. By exploiting some properties of the Brill-Hartle average,
discussed in Appendix B, it is possible to show that, despite the complicated form of the
Ricci tensor generated by terms quadratic in the GWs, defined in Eq. 1.21, the Einstein
tensor for the gravitational field, defined in Eq. 1.28, reduces [35, 36, 37| to a very simple
expression given in terms of the covariant derivatives of the radiative degrees of freedom
of the metric,

1
(GW) — (GW) (GW) o8
T (@) = 5 <Dﬂa5 (z)Dyy (x)> . (1.29)

It is possible to show that, up to negligible terms in the shortwave approximation, the
energy-momentum tensor of the GWs is conserved,

DTV (2) = 0. (1.30)

It is important to stress that the definition of the energy momentum tensor given in
Eq. (1.28) is valid just in the shortwave approximation, while there are ambiguities in the
general definition of the energy density, pressure and anisotropic stress of the GWs when
q =~ k, because it is not possible to define a gauge-invariant energy-momentum tensor [100].
This could be also interpreted as the difficulty in distinguishing the background from its
perturbations, thus generating issues in discriminating the source of curvature with the
curvature itself. Alternative definitions of TF(L,(,;W) have been given for instance in [101],
where the conservation law of the total momentum of the gravitational field and matter
has been imposed, or in [102, 103|, where the Einstein-Hilbert action has been perturbed at
second order in the GW amplitude, while in [104], gravity has been treated as a nonlinear
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tensor field in a flat spacetime. Although all these ambiguities in the definition of GWs of
“low frequencies”, in this Thesis we will introduce the concept of energy density of GWs only
when the shortwave approximation is valid, thus we will use just the energy-momentum
tensor defined by Eq. (1.28), which converges, for ¢ < k, to the other definitions mentioned
in this paragraph.

1.2 Stochastic signals

In Section 1.1, we have provided a formal characterization of the GWs and of their energy-
momentum tensor, independently on the nature of the sources and on the properties of
the gravitational signal itself. Currently, all the GWs signal which have been detected
at the interferometers [7, 105, 106, 107, 108, 8] have been generated by isolated resolved
astrophysical sources. As we will discuss in more detail in Sections 7.3, these GWs are char-
acterized by known waveforms that depend on few parameters of the emitters. Therefore
the evolution of the waves in time (or, equivalently, in frequency) is quite well understood.
However, recently, the Pulsar Timing Array (PTA) collaboration (i.e., NANOGrav, EP-
TA/InPTA, PPTA, and CPTA [9, 10, 11, 12|) has claimed a detection of GWs produced
by a stochastic process, for which the shape of the waveform is aleatory and unpredictable.
In this Thesis, we will focus only on this second type of GWs, which, as we will see, is
extremely interesting for many reasons that we will explain in the next chapters.

An SGWB is a random signal h;;(t,x) that can be characterized only in terms of its
statistical properties, for instance by its probability density function (PDF), P [hs;]. Such
a PDF depends on the values of the tensor perturbations of the metric at different locations
and times?, hij(tn, %), with n that goes from one to N. In this case, the observables that
carry physical information about the mechanism that produced the GWs are the moments
of the distribution,

M N M
<H hij(tm,xm)> = / L] dhii(tn.xn) T dhij(tm, xm) P [hij] - (1.31)
m=1 n=1

m=1

For instance, when M = 0, the normalization condition on the PDF gives <(hl-j(t7 x))0> =

1, while for M =1, M =2, M =3, M = 4, the moments of the distribution are equal to
the mean, the covariance, the skewness and the kurtosis respectively.

Although this definition of SGWBs is very intuitive and clear, we would like to provide
some practical criteria which ensure that the data collected at interferometers reflect the
stochastic nature of the incoming GWs. From an observational point of view, a signal is
stochastic if a probabilistic description of the evolution in space and time of the waves
is preferred to any other deterministic waveform predicted by the theory [109, 110]. In a
Bayesian context, this is equivalent to state that the model selection computation prefers
a SGWB to any other causal GW [110]. More formally, we describe a model in which

3In this case, we discretize the spacetime in order to write down the PDF of h;; as a joint PDF of
many (correlated) random variables. We avoid in this Section the formal discussion of the limit N — oo,
in which the PDF can be written in a slightly more complicated expression.
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the signal is stochastic as Msaws (P, Osgws), with Osgwp the moments that univocally
determine the distribution of h;;. Given some observed data d, the PDF of the parameters
Oscwn associated to the model Mggwp is computed by using Bayes’ theorem [111],

L(d|8,P) 7 (0scws)
p(d) ’

where L is the likelihood of the data given the SGWB model and a specific experiment,
7 (Bsgws) is the prior that keeps into account our degree of belief on the PDF of the
parameters Oggwp before the experiment, and p (d) is the evidence, which represents the
total probability that the data are distributed according to the measurements, keeping into
account for all the possible models,

p (Oscws|P;d) = (1.32)

p(d) E/dM/dE)Mﬁ(de,M) T (O0) . (1.33)

The probability associated to the SGWB model given the data is computed by marginal-
izing the posterior of the parameters, w.r.t. all the possible values of the parameters,

p (Msgwsld) = /dBSGWB p (0scws|P;d) , (1.34)

which can be written according to Bayes’ theorem as

p (d[Mscws) ™ (Mscws)
p(d)
In Bayesian analysis, we compare two models by looking at the Bayes factor between a

model in which there is a stochastic background and the ones in which the GWs come from
deterministic processes,

p(Mscwsld) = (1.35)

p(d|Mscws)
p(d[Maet)
where the deterministic model has been defined by its own parameters @4, and by an

ensemble of different known waveform models h?ft,

BsGWB-—det = (1.36)

p(d[Maer) = / dhdet / 4040t L (d|9det,h§;t) 7r <0M,h§1ft> . (1.37)

A large Bayes factor supports the model for the SGWB more than the ones for deterministic
sources, with an evidence than increases with BggwB_det- For instance, for BsgwB—det >
12, the evidence for SGWB relative to causal waves is strong [109, 110].

In the discussion up to now, we did not care about the origin of the stochasticity of the
gravitational field, but we have just considered a generic PDF with some non-vanishing
moments. It is important however to discriminate between SGWBs that are intrinsically
stochastic, because of the nature of their sources, or “observationally stochastic”, because
they are generated by the superposition of many deterministic signals that are too weak
to be detected or that overlap in time in such a way that they cannot be decomposed
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into individual GWs. We discuss the former case in Section 1.4.1, illustrating the example
of SGWBs produced during inflation, phase transitions (PTs) and primordial black holes
(PBHs) [112, 113, 114, 115], while we list some examples of the latter in Section 1.4.2,
focusing in particular on the background generated by the superposition of the waves
emitted by binary astrophysical systems [48]. We stress that the PDF of the second kind
of SGWB could depend on the detector considered, since with larger sensitivities it would
be possible to resolve more individual sources and to reduce the amplitude of the moments
of the distribution of the background.

As we will show in Section 1.3, it is useful to characterize the SGWB in the frequency
domain, by Fourier transforming the incoming signal in time. According to the standard
plane-wave expansion [99], we can write* the SGWB as

hij(t,x) = /+Oo df/dﬁz ha (7, f)e%(ﬁ)e*%rif(tfﬁ-x) 7 (1.38)

— 00

where 7 is the direction of observation, ef;(n) is the polarization tensor of the GWs in the
direction of observation 7 for the polarization «, while h, is the (stochastic) amplitude
of the GW background that we are typically interested in. In the most general scenario,
to fully characterize the PDF of the SGWB, it is necessary to know an infinite number of
moments of the distribution, defined in Eq. (1.31). In Fourier space, these moments are
univocally related to the M-point correlators

M
<H o, (i fu>> , (1.39)
u=1

with M that goes from one to infinity. In most of the cases of interest, it is possible to
assume that the amplitude of the SGWB is a Gaussian random variable with zero mean
and covariance given by

(ha(iv, FYRE (R, 1)) = Co (i, f3 7, f) . (1.40)

In Sections 1.4.1 and 1.4.2, we show that the Gaussian approximation for the SGWB is
almost always valid, and we specify the limits in which the Gaussian limit does not hold.
For example, if the source of the SGWB keeps track of some primordial non-Gaussianity,
the statistics of the background could be more complicated. In the case of an AGWB
generated by the superposition of many unresolved GWs, the Gaussian limit is guaranteed
by the fact that the number of discrete events which source the AGWB is very large and
it is possible to apply the Central Limit Theorem (CLT), finding that P[h,;] approaches
a Gaussian distribution. Another assumption that is usually done in the SGWB context
is that the stochastic background is stationary, which means that its statistical properties
are invariant under the time shift ¢ — ¢ + 7. This assumption is motivated by the fact
that the timescales over which the correlators of h;; could change are much larger than

4With a little abuse of notation, we refer to h in real space and in Fourier space with the same symbol,
writing explicitly the dependence of h case by case.
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the times over which observations are performed. For instance, as we will see in further
sections, GWs propagate through an expanding Universe, which means that the energy
density of stochastic backgrounds decreases with time. However, the characteristic time
of the evolution of the Universe, given in terms of the Hubble constant at the present
epoch by 79 = 1/Hy ~ 5 x 10! yr, is much larger that the duration of our observations,
Tops =~ 1 — 10yr. Therefore it is possible to assume that the SGWB is stationary. The
stationarity condition is equivalent to say that the distribution of h;;(t,x) and hy(t',x")
should depend only on |t — /|, which is equivalent, in the simplified case of a Gaussian
background, to the condition

Cp'(n, f50!, f1) ~ 8(f = f). (1.41)

Furthermore, it is reasonable to assume that the GWs produced in the points (¢,¢n) and
(t’,tn') are uncorrelated, which implies that

Cr (i, fi 0, f) ~ 0(h — 7). (1.42)

Any violation of this relation would imply that statistical isotropy is broken, generating a
coupling between different frequencies that should be studied in a different framework w.r.t.
the one introduced here. Since statistical isotropy is conserved for all the cosmological and
astrophysical sources of stochastic backgrounds considered in this Thesis, from now on we
will use just Eq. (1.42) as a condition on the covariance between two GWs from different
directions in the sky. Under these assumptions, it is possible to connect the two-point
correlation functions for different polarizations to the Stokes parameters I, V, @ and U,
used, for example, in the CMB context [116]. They represent the intensity, the circular
polarization and the two orthogonal modes of linear polarization respectively. In the 4, x
polarization basis, defined in detail in Appendix C.1, we get the following relations

(f - f/)é(ﬁ B ﬁ/) Sl(ﬁv f) + SQ(ﬁ7 f)

(o (s )RR 1)) =2

47’[‘ 2 )
(hy (i, £ RS (R, 1) _o(f ~ fifr(n — ') —iSy (7, f)2+ Sy (f, f) | »
(hs (R, f)IEL(R, 1)) _I(f ~ ffifr( — /) iSy (7, f) 2+ Sy (i, f) |
(hx (1, f) ht((ﬁ”f/» E(S(f _ f/ifr(A — ') St(n, f) ; SQ(ﬁ,f) ‘

In this Thesis, we will rescale the Stokes parameters, characterizing the two-point corre-
lation function of the amplitudes of stochastic backgrounds in terms of the adimensional

parameters
R Ar?fe
QSaws(, f) = 75 Sa(n, f), (1.44)
3H;
where Hjy is the Hubble factor at the present time. These parameters are equivalent
to the energy density (associated to the Stokes parameter «) per logarithmic frequency,

normalized to the critical energy density of the Universe today,

o - 1 dpSaws
Q n, f) = n, f), 1.45
SGWB( ) it 1n f ( ) ( )
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with
3 2

Pcrit = %HO .
In the case of unpolarized backgrounds, Qg wp = 0 for a@ # I. The dependence of the
expectation value of the covariance of h on the direction of observation implies that the
stochastic background is not isotropic and that the energy density could change for GWs
propagating in different directions in the sky. The main target of this Thesis is the detailed
discussion of the angular dependence of the GW signals for different polarization states,
showing that deviations from statistical homogeneity and isotropy would carry important
physical information that could be useful to discriminate between stochastic backgrounds
and to gain a deeper understanding of the large-scale perturbations of the Universe. The
violation of statistical isotropy could be large or small, depending on the mechanism that
generated it. More formally, we define the homogeneous and isotropic contribution to the
SGWB (the monopole) as

(1.46)

~ 1
Bawn() = 3 [ 4 Qawn(i 1), (1.47)

where the frequency dependence of the monopole could be encoded in the form of a tilt
defined by -
O QGawp(f)
wp(f) = ZSGwBY ) 1.48
ng b(f) 8lnf ( )
We describe the fluctuations in different directions in the sky with

dSaws(n, f) = QCSIGWB(S:S)QV;(??GWBU) . (1.49)

When the amount of anisotropy is very small, as it is the case of cosmological back-
grounds [117, 38, 39, 40, 3| or of the astrophysical background generate by BBH, BNS and
BHNS [74, 75], the relative overdensity of GWs assumes values in the range 1072 — 1072,
depending on the properties of the source [1]. On the other hand, it is possible that the
dominant contribution to the background is anisotropic, as it happens for the signals emit-
ted by compact galactic binaries which comes just from the Milky Way and not from the
whole celestial sphere [118, 119, 120]. In the next sections we will enter more into the
detail, discussing different sources of stochastic backgrounds, showing that in most of the
cases the isotropy is broken just in a soft way.

The averages introduced in Egs. (1.31), (1.40), (1.43) represent ensemble averages,
which correspond to averages over an infinite number of realizations of the system. Even
if it is not possible to compute exactly these expectation values, because we do not have
access to all the possible realizations of the system, it is still achievable to define an unbiased
estimator for the energy density of SGWBs, by making use of the ergodic hypothesis. The
ergodic hypothesis states that in a sufficiently long period of time a system explores all
the phase space, with the amount of time spent in a given point proportional to the
PDF associated to such a configuration [121]. This implies that we could estimate the
expectation values of the ensemble average by using temporal averages, having a clear
connection between the theoretical correlators we are interested in and the quantities that
can be measured at GW detectors.
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1.3 Detectability of isotropic stochastic backgrounds

Over the last few decades, numerous experiments have been proposed to detect stochastic
backgrounds, utilizing various techniques to constrain the amplitude of SGWBs at differ-
ent frequencies. The stochastic backgrounds of cosmological origin, characterized by the
longest wavelengths accessible, have been subject to constraints by the Planck collabora-
tion [122, 123, 34, 124], which looked for a contribution to the B-mode of the polariza-
tion of the CMB due to the CGWB [125, 116, 126]. These observations have been able
to put only an upper bound on the tensor-to-scalar perturbation ratio, or, equivalently,
to the amplitude of the tensor perturbations, around the scale 1072 Mpc~!, which cor-
responds to frequencies of the order 1077 Hz. The upper limit obtained by combining
Planck and BICEP /Keck[127] is r < 0.032 at 95% CL [128]. SGWBs with frequencies in
the nHz band can be probed by pulsar timing arrays (PTA) experiments, which look for
variations in the orbital periods of many pulsars due to the presence of a SGWB. It is
known indeed that pulsars are expected to exhibit highly regular spin periods, emitting
subsequent pulses at regular times. Thus any GW that perturbs the propagation of the
signals between the emitters and the observer would generate time residuals in the pulses
that could be correlated to get information about the waves [129, 130, 131]. Recently,
NANOGrav [132] found a strong evidence for a stochastic process modeled as a power
law in frequency [133], which only few months ago, thanks to the joint effort of the PTA
collaborations NANOGrav, EPTA /InPTA, PPTA, and CPTA have been confirmed to cor-
respond to a SGWB |9, 10, 11, 12]. The amplitude of the background has been estimated
to be of the order of 1078 around 1078 Hz, see Egs. (1.91), (1.92) for more details. In
the past years, GW observations did non focus only on the monopole of SGWBs, but
also on the anisotropies of these signals. For example, the LVK collaboration found the
maximum value of the angular power spectrum of SGWB between 20 and 1726 Hz. The
most recent upper bound given by terrestrial detectors is Cp < 3.6 for 1 < ¢ < 4 and
Ngwh = 2/3 [134]. Searches for anisotropic SGWBs have been done recently also at PTA,
finding Cy < 1072 — 107! in the nHz band [135]. As we will see in the next chapters,
these bounds are few orders of magnitude larger than the anisotropies expected for cosmo-
logical and astrophysical backgrounds, therefore the most promising candidate to provide
information about the sky maps of SGWBs are the ground-based interferometers ET [13],
CE [14] and the space-based missions LISA [15], BBO [17] and DECIGO |[18|. In the
next sections, we will discuss the main techniques adopted in GW interferometry to detect
isotropic SGWBs, discussing also the specifics of these future ground- and space-based
interferometers.

1.3.1 Response of interferometers to the signal

In Section 1.1.2, we have defined the GWs as small perturbations of the metric with high
frequency, hi;(t,x). It is therefore possible to investigate the presence of GWs in a given
region of space by looking at geodesic deviations w.r.t. the case in which the background
geometry is unperturbed. The data can be written as the sum of the signals, which is
proportional to the amplitude of the GW, plus some noise which depends on the specifics
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of the interferometers under consideration,
da(t) = /cm DY (t) hij(t,n) + na(t), (1.50)

where we have introduced the detector tensor DZ that can be obtained by computing the
response of the instrument to a GW passing through it or, equivalently, by computing the
effect induced by a GW on the observable [99]. The detector tensor takes into account the
length of the arms of the detector, the orientation and the type of interferometry used.
We compute it for a generic network of interferometers in Appendix C.2. The noise of the
detector is in general a random variable that can be characterized by its PDF P[n], as
the stochastic background, and its PDF could be non-Gaussian and non-stationary [99] in
some particular cases that will be mentioned later on. In this work we assume that n(t)
is stationary and Gaussian, with zero mean, thus fully characterized by its covariance. As
mentioned in the previous section, in GW data analysis we divide the data stream in many
time segments of duration Tye and we perform the Fourier transform of the signal in this
time interval, obtaining a resolution Af = 1/Te,. For a discrete time interval, the Fourier
transform of a variable z(t) is defined by
t+Tseg /2 -
2(f) = / df e~ 2miS (1) (151)
t

—Tseg/2

which implies that the Dirac delta does not diverge in zero, 6(0) = Ti. The noise is
characterized by its power spectral density (PSD)?, defined by

o(f = f)Nap(f). (1.52)

N

(na(f)np(f) =

As we will discuss in Section 1.3.3, the noises between two different interferometers could
be correlated, as it happens for instance in LISA [15]. In 1.3.3 we will also discuss the PSD
of the noise for LVK, ET, CE, LISA, BBO and DECIGO, providing analytical formulas
for computing them and discussing the source of noise. The Fourier transform of the data
taken at interferometers in a time segment of duration Tyeg is

da(f) = / 41 S" F(i, Phalin £) +na(f) (1.53)

where the detector pattern function for the polarization « is defined by
F§(n, f) = dj (0, ) efi(7) (1.54)

with di{ (n, f) that depends on the detector tensor and on the transfer function of the

signal at the interferometers. More details on the computation of di{ can be found in
Appendix C.2.

5In the literature the strain sensitivity 1/Nag (f) is also used, but in this Thesis we will consider only
the PSD.
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1.3.2 Estimator of an homogeneous and isotropic background

In this section, we discuss the detectability of the Stokes parameters of a homogeneous
and isotropic stochastic background, characterized by Q&qwp(f), defined in Egs. (1.43),
(1.44) and (1.47). In order to quantify the capability of measuring a SGWB, we would like

to define some estimators for the Stokes parameters, denoted by Q%GWB( f), to compute
the error bars associated to them and to evaluate the signal-to-noise ratio (SNR). The
SNR is directly related to the significance that the data observed at interferometers are
not generated by random fluctuations of the noise, but by a SGWB. The choice of the
SNR to claim a detection depends on the significance required in rejecting a false alarm;
for instance, in the context of resolved GW sources, the SNR should be greater than the
the value that gives a false alarm probability equal to 2.5 x 1071 [99]. In general, we
would like to estimate together the amplitude of the background and its scaling with the
frequency, but in this first example we will work under the hypothesis that we have a full
knowledge of the frequency shape of the background and we are interested in constraining
just its amplitude. The Stokes parameters of the SGWB in this case can be written then
as a product of a frequency template, that encodes the scaling of the SGWB with the
frequency, and of the amplitude we are interested in,

QgGWB(f) = Aa 6](31(f) ) (1'55)

where p identifies the pivot frequency f;, at which we estimate the amplitude A,. Since
the energy density of the CGWB is quadratic in the metric perturbations h;;, it is natural
to build an estimator which is quadratic in the data. To understand better this, we look
at the following expectation values of the data,

(da(f)) =0.
@1 = | 3 FRG DG 1) s WD) + SNas(Pa(f - ) 15

and we note that the second expression contains the amplitudes A, we want to constrain.
By using the relations given in Eq. (1.43) and exploiting the fact that the background is
homogeneous and isotropic, it is possible to recast the two-point correlation function in
the following way,

(aaDdp() = | 25 S e ()45 + yNas(D)| 87 =) (157

dn2f3
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where we have defined the overlap reduction functions (ORFs)

dn * *
Yap(f) = | oo (FAFE"+ FXFS") .
dn . . .
Welf) = | o i (FEXF5* —FXF7) .
4h (1.58)
Ha(f) = S—F(F*FX’HLF FL),
dn « .
Vi) = | o (FiFL - FXF").

8

The most natural estimator of the amplitude of the Stokes parameters of the SGWB at
the pivot frequency f, is therefore a linear combination (in frequency and in the detector
space) of objects quadratic in the data,

/df ZdA NEZR(fdp(f) — b, (1.59)

where the bias 0% and the weights E%p have to be determined by requiring that the
estimator is unbiased and by minimizing its covariance. The unbiasedness condition is

<Aa> = Ay, (1.60)

which gives the following constraints on the bias and on the weights,

seg/df ZEAB ) Nas(f),
(1.61)
3H?

T / U fangs S o Ein (6 =1

where Tyeg comes from the Dirac delta evaluated in zero. For simplicity we work in the
case in which the SGWB could have just one non-vanishing Stokes parameter, thus there is
no contamination of different polarizations in the maps. The covariance for the estimator
we have defined is then computed by using

¢ =( (Ao - 40)") = {(4a)") - (1217 -

= ([ arar st Eepls) da(Dab(NdelNap () ~ (o)

A,B,C,D

(1.62)

The four-point correlation function in the data can be decomposed, in the Gaussian limit,
into two-point correlation functions, for all the three possible combinations. It is immediate
to see that the (A4, B) — (C, D) combination cancels with the (A,)? term and that the
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(A, D)— (B, () combination is equivalent to the (A, C)— (B, D), because of the symmetry
of the weights, therefore we get

3HZ \’ . .
i =2 [0 () 3 R

['YzD(f)’Yg‘D(f) (Aa)? & (HE(F) (1.63)

1
+ Nap(f)Npe(f)|-
In most of the cases considered, it is possible to work in the low-SNR regime, in which
Ay < Nyp(f), therefore we can neglect the terms proportional to the amplitude of the
signal in the computation of the covariance,

2 2
Cio=2Ts [F (13% ) X Bas(DEES(NNan(INach). (164

47T2f3 A,B,C,D

Note however that the contribution to the covariance provided by the monopole of the
SGWB in general is not negligible and, as shown in [136, 137], it corresponds to an intrinsic
variance term, which could play a crucial role in the estimate of the anisotropies of the
SGWB. The weights E% 5 are computed by minimizing the covariance, under the condition
that the estimator is unbiased, Eq. (1.61). The simplest way to do this is by introducing
a Lagrangian function

3H}
;C:CAQ +)\ Tseg/ 2f3 Z"}’AB EAB )g (f)—l 5 (165)

and by minimizing it w.r.t. the weights and the Lagrange multiplier,

) 0
— L =—L=0. 1.66
B o (1.66)

The derivative w.r.t. \ gives the unbiasedness condition on ES5(f), while the functional
derivative w.r.t. the weights gives

3H2 3H2
<47r2})"3> ZECD FINabp( f)NCB(f)-i—)\ﬁvﬁB(f)gp(f):O. (1.67)

We can isolate in this expression the contribution coming from the weights, by using the
inverse matrix of the noise PSD,

3H? 1
2N EiR(f) +A ZNAC neén(HNps(f) =0. (1.68)
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By multiplying this equation by Tyes 74 5(f), summing over A, B and integrating over the
frequency we get

1 1
A= — : (1.69)

ATseg [df &N S apon Vs Nee(HVEp(HNLLS)

The weights are then given by

1 47r2f3g () ZCD )’YCD(f)NB}g(f)
Twg 3H3 "7 [df [€ EABCDvAB<f>Ngé<f>wgD<f>N5,a<f> '

(1.70)
The covariance of the estimator can be computed by plugging (1.70) into (1.63), finding

E3p(f) =

1 2
C; = (1.71)

o Taeg [Af (&N X anen V3B ONaE Ve (FNA(S)

The result shows that the covariance in a single time segment is inversely proportional to
the duration of the time segment. Since the measurements in several time segments are
independent in the case of a stationary background, the covariance in an observing time
Tops Will be just
Ci = 1 2 — — . (1.72)
o Tobs [df [€ ZABCDVAB(f)NBc(f)VgD(f)NDA(f)

The SNR is defined by the ratio between the signal and the noise, thus we get

Aq
Ci

SNR =

(1.73)

o

The value of the observed SNR depends on the realization of the signal and of the noise,
that could be larger or smaller than their expected amplitudes, but, on averge, we expect
that the SNR is equal to

(SNR) = f/l ﬁ (1.74)

In this simple scenario, the SNR depends on the ORFs, on the PSD of the interferometers,
on the observing time, on the amplitude of the signal and on &,(f). In particular, we
stress that the different scaling of the signal and of the noise in frequency, &,(f) and
Nap(f)/Nap(fp) respectively, allows to disentangle a tiny SGWB from a random noise
that could be several orders of magnitude larger. This is possible because, thanks to the
large number of frequencies accessible at interferometers, one could choose a filter on the
data (the weights E ), to select just the components which vary with the frequency like
Ep(f). This is a sort of generalization of the Internal Linear Combination (ILC) technique
presented in [138, 139] and used to do component separation in the CMB context.
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Since the quantity that represents the detectability of a homogeneous and isotropic
SGWB is the average SNR computed in Eq. (1.74), it would be useful to give a pictorial
representation of the sensitivity of a network of interferometers to an incoming signal.
When &,(f) is a power law of tilt ngyt, it is possible to construct the power-law sensitivity
curve (PLS) [140], which contains all the information about the SNR. The PLS, defined here
as QSGPV%,%( f), is constructed in a way that it constitutes a threshold for the amplitude of a
SGWRB to get an SNR larger than SNRtSﬁWB for an observing time Tg,s. More specifically,
if we have that at some frequency f

Q8awr(f) > QeNB () (1.75)

then we have that for Tj
SNR > SNRJGWE (1.76)

To construct the PLS of a detector network it is sufficient to do the following steps:

1. compute the amplitude Atoéhr(ngwb) that gives (SNR) = SNRtSﬁWB for Ty, for differ-
ent values of ngwh(f). Typically we use ngwt, € [—10,10];

min

awb () which minimizes the amplitude of the

2. at each frequency find the tensor tilt n
background,

ngwn(f) = logyy, {Aglr(lwmin [Alhr(ngwb)(f/fp)"gw"}} ;

3. the PLS at the frequency f is equal to

nmin (1)
/ ) U (1.77)

O = A (R (1) (4

P
The PLS is a particularly intuitive and useful graphical representation of the SNR, because
it encodes automatically the constraints given by the integration over all the frequencies
accesible to interferometers. A different way to quantify the detectability of SGWB is the
sensitivity in a single bin,

SassB (g _ AT f0 1
Qsaws(f) = THgiNAB(f) ) (1.78)

which does not rely on template fitting and thus it provides less stringent upper bounds in
the single bins. In Figure 1.1 we plot the PSD and the PLS for all the detectors considered
in this work, for SNRtS]SWB =1 and Typs = 1yr.

The analogous computation of the optimal estimator for an anisotropic SGWB will be
done in Sections 8.3, 8.4 and 9.6.
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Figure 1.1: Plot of the PSD (left) and of the PLS (right) for different detectors.

1.3.3 GW Interferometers
Reference frames

The computation of the covariance of the optimal estimator for the amplitude of an
isotropic SGWB found in Eq. (1.72) does not rely on the choice of the basis through
which we characterize the orientation of the arms of the interferometers. In this section
we will therefore introduce a coordinate system which will be used to describe univocally
n, F¢(n, f) for all the networks of interferometers considered in this Thesis.

The positions of the objects in the celestial sphere have been evaluated in the helio-
centric and ecliptic coordinate system, in which the Sun occupies the position (0,0,0), 2 is
perpendicular to the ecliptic plane and Z points towards the vernal equinox. It is possible
then to introduce the galactic longitude and latitude®, which parametrize the position in
the components parallel and perpendicular to the ecliptic plane respectively,

x =1 (cos () cos (@) cos (9)sin(p) sin(9)) . (1.79)

Since we are considering sources very far from the Solar System, we assume that for any
detector the direction of observation  coincides with

f = (cos (¥) cos (p) cos (J)sin (p) sin(d)) . (1.80)

The position of the center of mass of the Earth orbiting around the Sun as a function of
time is then just

X]caom — T’]Ci)om (COS <T§7is t) sin (ths t) 0) s (181)

with Tg_s = 1yr and Rgart_sun = 1AU = 1.5 x 108km = 4.8 x 10 %pc. In Eq. (1.81),
we have set to zero the eccentricity of the orbit of the revolution of the Earth around the
Sun, since it provides negligible effects in the estimate of the anisotropies of SGWBs [141].
We describe the position of an object co-rotating with the Earth by a reference frame with

By definition, the latitude is defined in the range [—7/2, +-7/2].
"With a little abuse of notation, the latitude 9 defined here coincides with 7/2 — 0, where 6 is the polar
angle used in the rest of this Thesis.
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the zg axis oriented along the axis of Earth’s rotation and we use as angular coordinates
the declination dg and the right ascension ag.

xg = 7g (cos (Vg) cos (ag) cos (0g)sin (ag) sin(dg)) . (1.82)

Following [142], we connect the ecliptic coordinates to the equatorial coordinates by using

sin? =sin(dg) cos(ep) — cos(dg) sin(ep) sin (aE —apo+ ;ﬂt) ;
E

(0 — 00) = 3 +2—7Tt cos(dg)
cos(p — o) =cos { ap —amo + 7 cos(d) ’ (1.83)

sin (OéE —Qapo+ %t)
) cos(19) ’

sin(p — o) =sin(dg) sin(ep) + cos(dg) cos(ep

where we have used Ty = 1d. The angle €p is the obliquity of the ecliptic and, neglecting
effects due to precession and nutation, it is roughly equal 23.4°. The angles g, aq are fixed
at a given epoch and represent just a normalization factor. For instance, in 1950 [142],
wo = 32.93° and agg = 282.86°.

In the next sections, we list the main detector networks considered in this Thesis,
mentioning all the specifics needed to evaluate the detectability of the anisotropies of
SGWBs.

Einstein Telescope

ET is a proposed third-generation GW detector that will probably start collecting data
in the middle of 2030s [13]. Thanks to an increase in the length of the arms and to new
technologies, such as a cryogenic system to cool some of the main optics and new quantum
technologies to reduce the fluctuations of the light [143, 13, 144|, ET is expected to achieve
a better sensitivity than at least one order of magnitude than the current ground-based
interferometers LIGO, Virgo and KAGRA. The location of the ET could be in the Sos
Enattos site in Sardinia or in the Meuse-Rhine region at the border of Germany, Belgium
and the Netherlands [145]. In this work we will consider the case where ET is located in
Sardinia, for which we take the following coordinates

(6p ag)=(40°31" 9°25') . (1.84)

Among the possible different configurations, we consider a triangular detector with 10 km
arms [145], with ET-D sensitivity [146]. Although the PSD of the cross-correlation between
two channels of ET has not been clarified, in this work we consider as an example Nxy =

—Nxx/2.

Cosmic Explorer

As ET, CE is future third-generation GW detector, planned to start collecting data in the
2030s [147, 14]. Different number of L-shaped interferometers have been considered for
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the CE, such as one single 40 km interferometer, one 20 km interferometer, combinations
of two interferometers 40 or 20 km long. In this Thesis, we will consider one CE of 40 km,
combined with a 20km CE, located in Hanford and Livingston as the LIGO detectors.
A more realistic choice for the 20km interferometer would be Australia, but we expect
that the choice of the location will not alter too much the results. The locations for the
detectors in Hanford and Livingston are therefore

(5<H> (H)) = (46°24' 119°24') ,

[0
B (1.85)
(5 o) =(30°33" 90°46') .

The CE project will be divided in two stages. During the first one, it is expected to
used the improved sensitivity of LIGO “A+”, scaled up to a 40 km detector with improved
sensitivity. In the second stage, new technologies will be used to reduce the quantum and
the thermal noise of the interferometer. The sensitivity we have used for the two CE can
be found in [146].

LISA

LISA is a future space-based interferometer that is scheduled to be launched in the early
2030s [15]. LISA will consists of three spacecrafts in an Earth-trailing heliocentric orbit,
with a separation angle of 19—23° from the Earth (w.r.t. the Sun). In this work we consider
this separation equal to 20°, consistently with [148, 115, 149]. The three spacecraft are
arranged in an equilateral triangular configuration, with a separation L = 2.5 x 10% km.
The plane containing this triangle will be tilted of 60° w.r.t. the ecliptic plane. The PSD
has been computed by accounting for the presence of acceleration noise, which accounts
for random displacements of the test masses, and the “Interferometry Metrology System”
(IMS), which includes also the shot noise in the laser beams. The parametrization for these
two terms can be found in [150, 151, 152, 148|, and it depends on two parameters A, P,

0.4mHz 2 N 1\t 22
(M) 1 () | ) (F)
omHz\ * 2n f 2
(M) ()

The PSD of the noise, defined in Eq. (1.52), is evaluated for the auto- and cross-channel
following [152, 148],

fm?
siHz

Pacc(fa A) :A2

(1.86)
pm?
Hz

Ps(f, P) =P?

Nxx(f, A, P) =16sin? <2775L> {[3 + cos ( |Pace(f, A) + Pus(f, P)},

27rfL> (27TfL
—— | cos
c

Cc

mf

NXY(vaaP) = 8Sin2 < > + [4Pacc(f7A) +PIMS(faP)] :
In this Thesis we adopt P = 15 and A = 3.
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DECIGO

DECIGO consists of four clusters observatories placed in heliocentric orbit. Each of them
is made of three spacecrafts, as LISA, which form three interferometers. The spacecrafts
are separated by 60° in the heliocentric plane, while the fourth one is placed in the same
location of one of them, forming a Star of David configuration [153, 18, 154]. The arm
length is expected to be L = 103km and the sensitivity should increase by an order of
magnitude w.r.t. LISA around 0.1 Hz. The PSD of DECIGO is given following [155, 156,
157], including the acceleration and IMS noise in analogy with LISA,

1 1\*
Pace(f) =6.2 x 1074 ( )

stHz \ 2 f
1.88
Prvs(f) =4.48 x 104 L (7'5HZ>2 ! 5 (-5%)
Hz f 14+ (7.5Hz>
f

The PSD of the auto- and cross-channels are computed by plugging P... and Ppvg in
Eq. (1.87).

Big Bang Observer

BBO is a mission similar to DECIGO, with small differences in the sensitivity and in
the design. It is constituted by the same configuration of interferometers in clusters as
DECIGO, but with length of the arm equal to 5 x 10*km [158, 159, 17, 140]. In the same
fashion of DECIGO, the acceleration and the IMS noise of BBO are

1 1\*
Pace(f) =6.0 x 10~ < )

s'Hz \2nf
1 /0.15Hz\2 1 (1.89)
P =58 x 10748 < >
IMS(f) Hz f 1+ (0.15HZ>2
T

1.4 Sources of SGWB

1.4.1 Primordial sources

Gravitational interactions decouple at the Planck scale [37], Tdcégv ~ 1/Mpy =~ 10'° GeV,
therefore the scattering of GWs can be considered an extremely subdominant process,
since we consider the generation (and the propagation) of SGWBs during or after the
inflationary epoch, which took place at energy scales Ting < 1016 GeV [160, 161, 34]. Since
the CGWB is generated by the superposition of many non-interacting waves, it keeps
track of the features of the mechanisms that sourced it at early times. For other particle
species, like photon and neutrino, the energy spectrum is thermal, because of the tight
electromagnetic and weak interactions that were present from production until decoupling
of these two particle species [42]|. This peculiarity of the CGWB strongly motivates future
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GW experiments to look for it, because it would provide a unique probe of the physics
operating at very high energy scales, which are not reachable to other signals, because
of the tight coupling between the Standard Model particles. In this Thesis, we say that
a background is cosmological if it has been produced in the early Universe, before the
decoupling of the weak interactions that occurs at Tjj,. ~ 1MeV. In the most recent
reviews [162, 113, 163, 114] (see also [164, 165, 166]), a plethora of primordial sources has
been considered.

Inflationary CGWB

The most important cosmological background is the one produced by quantum fluctuations
of the metric during inflation. During this hypothetical early stage of accelerated expansion
of the Universe, the fluctuations of the metric, generated by the quantum nature of gravity,
are enhanced [167] and they could produce a signal observable by future ground- and
space-based interferometers. The amplitude and the shape in frequency of this primordial
signal depends on the model of inflation considered. For instance, the energy scale of the
background depends on the potential of the inflaton field and on the number of fields which
contributed to the dynamics of the background during inflation [113]. The computation
of the expected monopole and inhomogeneities of inflationary CGWBs will be done in
Sections 2.3.3 and 4.2 respectively.

Scalar Induced GWs

Another relevant mechanism which could source GWs in the early Universe is the classi-
cal production of a stochastic background by scalar perturbations. Scalar Induced GWs
(SIGWs) could be generated when scalar fields have a non-negligible anisotropic stress
which acts as a source in the transverse-traceless tensor part of the Einstein equations [168,
169, 170, 171, 172, 173, 174]. This classical production could take place during inflation
or during the radiation-dominated era, approximately around the time at which the scalar
perturbations re-enter the causal horizon. More specifically, scalar perturbations which
re-enter the horizon during the radiation epoch could source CGWBs in the frequency
band of interferometers. Although the SIGWs in the case of single-field inflation ® are sup-
pressed [174], several different inflationary models could amplify more the scalar perturba-
tions at small scales, generating a CGWB with larger energy densities. Typical examples
are given by the curvaton scenario [175], in which an additional field, the curvaton, does
not alter the dynamics of the background during inflation, but modifies the amplitude
of the perturbations at small scales, increasing the production of GWs [176, 177, 178|.
Other possibilities are given, for instance, by the presence of spectator fields during infla-
tion [179, 180, 181] or by the coupling of the inflaton with a spectator scalar field [182].
In this Thesis we will focus on secondary GWs induced by scalar perturbations which ex-
hibit a peak in the power spectrum at small scales [173, 23], which could enhance also
the formation of PBHs in the ealy Universe. The computation of the production of the

8To obtain these constraints, the estimate of the scalar power spectrum obtained at CMB scales are
applied to the scalar power spectrum at interferometric scales, which differ of 20 orders of magnitude.
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monopole and the inhomogeneities of this kind of background will be done in detail in
Sections 3.4.2, 4.3.

Particle Production

When the inflaton is coupled to other scalar or gauge fields, it is possible that the inflaton
energy is transferred to the other fields, which could provide a large amount of anisotropic
stress that sources GWs. This could happen for instance during axion inflation, when
the axion is coupled to a vector boson [24, 76, 77, 78, 79]. Interesting aspects of the
GWs generated during axion inflation are the circular polarization and the blue tilt of the
spectrum. These features could increase the possibility of a dection of this CGWB by
future interferometers.

Phase Transition

In many extensions of the Standard Model, it is possible that second-order phase transitions
(PTs) take place. In these transitions, the configuration of minimal energy changes with
the temperature, therefore it is possible that it is forbidden to go from the false (UV) to the
true vacuum in a smooth way. This process leads to the nucleation of bubbles [183], which
could produce GWs through different processes [20, 184, 145|, such as the collision of the
bubbles [185, 186, 187, 188, 189], the sound waves generated by the field which undergoes
through the PT [190, 191, 192], or turbolence phenomena [193, 194]. We will comment in
more detail the features of the spectrum from PT in Section 3.4.3.

1.4.2 Astrophysical sources

The astrophysical background is generated by the superposition of many unresolved as-
trophysical sources [47, 48]. An unresolved signal corresponds to a GW that cannot be
associated with sufficiently high significance to a deterministic waveform, which means that
the signal-to-noise ratio (or the Bayes factor defined in Eq. (1.36)) is smaller (or larger)
than a certain threshold. The choice of such a threshold depends on the information we
would like to extract from the resolved GWs, for instance it could depend on the accuracy
required in the estimate of the parameters that characterize the binary. In Section 7.1.1 we
will specify the threshold chosen for the purposes of this work. A stochastic background
could also be generated by astrophysical sources which emit GWs with large amplitudes,
but which also overlap in time in such a way that it is not possible to distinguish with
sufficient significance the single components [195, 196, 197]. When we talk about astro-
physical sources, we refer to any kind of process that occur in the late Universe, z < 20,
after the first population of star formed [198, 199, 200]. Among the several astrophysical
sources of GWs there are rotating neutron stars [49, 50|, core collapse supernovae [51, 52]
or massive stars [53, 54|, magnetars [55, 56|, compact binary systems of black holes (BBH),
neutron stars (BNS) or black hole and neutron stars (BHNS) [57, 58, 59, 60, 61, 62, 63]
(see also [99, 201, 112]). Another possibility is that the GWs that cannot be individually
resolved are originated by binary systems of primordial black holes (PBH), that interact
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among themselves (DPBH) [202, 203, 204] or with ABH (PBHABH) [205]. In this Thesis,
we will focus just on BBHs of stellar mass, which are the most promising candidates to
produce an astrophysical background detectable by future ground-based interferometers,
according to the information inferred about their population by recent LVK measure-
ments [107, 108, 8]. Note also that the AGWB is at the same time a foreground for the
detection of the CGWB and a complementary source of information, because it sensitive to
the content and geometry of the Universe during the late stages of its evolution. In Chap-
ter 8 and 9, we will explore these two aspects, showing how the circular polarization of
the AGWB could worsen measurements of the Stokes parameters of CGWBs and how the
dipole of the astrophysical background could be important to get a precise measurement
of our peculiar velocity.

1.5 Current bounds on stochastic backgrounds

The presence of GWs in our Universe can be tested directly, by detecting them at interfer-
ometers and PTA, or indirectly, by looking at their imprint on the cosmological observables,
like the CMB or the abundance of light elements.

At the smallest accessible frequencies, the amplitude of the CGWB produced during
inflation is constrained by Planck [122, 123, 34|. The B-mode polarization of the CMB
is indeed sensitive to the presence of primordial tensor perturbations. By combining the
Planck measurements with the ones of BICEP/KEK [124], it is possible to get, assuming
the standard single-field inflation scenario,

AFEWB(F =31 x1071%) <2.9x 10716, (1.90)

where we have used the parametrization of SGWBs given in Eq. (1.55).

The observations done by the PTA collaboration [9] in the nHz band gave the first
direct measurement of a SGWB. The current sensitivity of PTA does not allow to discrim-
inate between a signal generated by supermassive black hole binaries (SMBHB) [206] and
cosmological sources, although primordial signals have larger Bayes factors and are slightly
preferred [207]. The constraints on the amplitudes and the tilt for the SMBH model ? is

A?MBHB(J@ —39%x10"% Hz) :&fj% x 1077, (1.91)

If a more general parametrization is used, the joint contraints on the amplitude and on the
tensor tilt are

AJCWB(f =32 % 1078 Hz) = 58778 x 1078, Ngwh = 1.8+ 0.6.. (1.92)

°In [9], the scaling with the frequency of the SGWB is quantified by the tilt of the characteristic strain
o, which is connected to the tilt ngwp used in this Thesis by ngwb = 2 4+ 2a. The relation between our tilt
and the one of the energy density of the SGWB also used in [9] is then ngw, = 5 — 7. The value of the
amplitude of the characteristic strained used by the PTA collaboration AY™ is connected to our value by

- 1 f 2a A
A 2 f APTAZ
aiepwl <f) A
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Additional investigations on the interpretation of the nature of the SGWB measured by
the PTA collaboration can be found for instance in [208].

The LVK collaboration gave an upper bound on the amplitude of an isotropic SGWB
in [209]. According to the procedure introduced in Section 1.3.2, the SGWB has been
parametrized, as in Eq. 1.55, by a power law, which amplitude at a pivot frequency has
been estimated marginalizing over the tensor tilt of the signal. At 95% credible level, the
LVK collaboration found that

5.8 x 107° Ngwb = 0
Ar = Qqwp(f =25Hz) << 3.4%x107° Ngwh = 2/3 (1.93)
3.9 x 10710 Ngwh = 3

A scale-invariant GW spectrum reflects many properties of cosmological backgrounds from
single-field inflation or cosmic strings [113, 114|, while ngw, = 2/3 and ngy, = 3 are
the tensor tilts expected from the astrophysical background generate by binary systems
during the inspiral stage [47| and by supernovae [55]. These constraints are applied in the
frequency range 20 — 77 Hz for ngy, = 0, 20 — 90 Hz for ngy, = 2/3 or 20 — 230 Hz for
Ngwb = 3. In [209], upper limits on the amplitude of the SGWB have been combined with
information about the population of BBH, BNS and BHNS obtained in [108], to constrain
the maximum energy density of the background produced by these three different sources
in the frequency band of LVK,

- 50717 x 1071 BBH
Ar = Qfgwp(f =25Hz) < {21722 %1071 BNS (1.94)
8.4 x 10710 BHNS

In [210], the Planck and LVK bounds on the inflationary CGWB has been combined!?,
finding a smaller upper limit on the amplitude of the cosmological background

AFCWB(F —31x1071) <2.5x 10716 (1.95)

At frequencies larger than 1kHz, less string bounds have been set by resonant-mass
detectors like AURIGA [211|, EXPLORER and NAUTILUS [212], but they will not be
considered in this Thesis.

An additional upper limit on the total energy density of primordial GWs can be ob-
tained by observations of the abundance of light elements. Big-Bang Nucleosynthesis
provides indeed an upper bound on the number of relativistic and decoupled degrees of
freedom (including therefore also CGWBs) at temperatures larger than few MeV. We will
discuss in more details these constraints in Section 2.2.

10This relies on the assumption that the inflationary CGWB has the same spectral index at the Planck
and LVK frequencies.
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Chapter 2

Review of the Standard Model of
Cosmology

The cosmological observations of the last century seem to suggest that the ACDM model [213,
167, 29, 19, 42, 214, 215| gives the most accurate description of the expansion history of
the Universe. According to the Standard Model of Cosmology, the energy density of the
Universe is widely dominated by dark energy (DE) (70%), which drives the current accel-
erated expansion, while non-relativistic matter is mainly made of cold dark matter (CDM)
(roughly 30%), while baryons (3%) and neutrinos (less than 1%) are subdominant con-
tribution. Nowadays, the only relativistic component of the Universe is made by photon
(CMB) [25], which presents a blackbody spectrum with temperature Tonmp,o =~ 2.7 K, con-
tributing to the energy density of the Universe for less than 1%, and GWs, whose energy
density is subdominant. The Hot Big Bang model is able to explain with high accuracy
the abundance of the Standard Model particles in our Universe, providing all the details
of the thermal history of the Universe in terms of GR, high-energy physics and statistical
mechanics. However, although the Universe is homogeneous and isotropic when smoothed
over sufficiently large scales, small perturbations exist, giving rise to the structures we
observe nowadays [216]. Also CMB observations throughout the years revealed that there
are tiny fluctuations in the temperature of the homogeneous and isotropic blackbody spec-
trum [217, 27, 218, 219, 220, 26|. The most natural explanation for the presence of these
inhomogeneities and anisotropies in the Universe, which justifies also the homogeneity and
the flatness of the Universe, has been found in inflation [30, 31, 32, 33]. It is a short
period of exponential expansion that occurred during the first stage of the evolution of
the Universe. The inflationary paradigm, because of its great flexibility, is difficult to fal-
sify, which makes at the same time difficult to prove the validity of the theory. One of
the most important predictions of inflation is the production of a CGWB, because of the
enhancement of the tensor fluctuations of the metric during this hypothetical accelerated
expansion. Therefore, a detection of this primordial signal would be the “smoking gun of
inflation”.

In this Chapter, we review the main pillars of the ACDM model, illustrating the main
features of the geometry of spacetime, the thermal history of the content of the Universe,
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the dynamics of the background and of the perturbations.

2.1 Homogeneous and isotropic Universe

The Cosmological Principle states that the Universe is homogeneous and isotropic when
smoothed on sufficiently large scales [213, 167, 29, 19, 42, 214, 215]. This assumption is
justified by the observed blackbody spectrum of the CMB, which is the same in all the
directions of the sky [217, 27, 218, 219, 220, 26|, up to tiny fluctuations, smaller than
104, In addition, the distribution of matter seems to be uniform for scales larger than
200 h Mpc™! [221, 222, 223, 224, 225], where h ~ 0.67. In GR, this highly-symmetric
spacetime is described by the Friedmann-Lemaitre-Robertson-Walker metric (FLRW),

dr?

2 2 2

+ 7% (d6* + sin® 0d¢?) | (2.1)
where K is the curvature parameter and a is the scale factor that keeps into account for the
expansion of the Universe in time. The curvature indicates deviations from an Euclidean
spatial geometry, while when K = 0 the Universe is flat. The expansion of the Universe
determines a redshift in the radiation observed at the time ty w.r.t. the emitted one at ¢,

ag
=21, 2.2
2= (2:2)

with ag = a(tp), which is arbitrarily set to one in our conventions. It is useful to parametrize
the time coordinate in terms of a conformal time 7, which is connected to the cosmic time

t by the relation .
dt dt
dn:a(t)—>77—/0a(t), (2.3)

where we have set by convention 7(0) = 0. The conformal time represents the comoving
distance that could have been travelled by particles propagating at the speed of light from
t = 0 to t, thus, according to Special Relativity, it represents the size of the spherical region
at ¢ which has been in causal contact since t = 0. When the comoving distance between
two points is larger than 7, there is no way in which these two signsls could have exchanged
radiation and, equivalently, information, thus the regions are causally disconnected. By
using the conformal time, we see that the FLRW line element is conformal to the Minkowski
line element, ,

ds® = a*(n) |—dn* + % + 72 (d6* + sin® 0de?) | . (2.4)
The homogeneity and the isotropy of the Universe implies that radiation and matter are
perfect fluids, thus their energy-momentum tensor has the simple form

T = (p+ P)uyu, — Pgp, (2.5)

with u# the four-velocity of the fluid, while p and P the energy density and the pressure
that are related via the equation of state

P=wp, (2.6)
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where w = 0 for non-relativistic matter, w = 1/3 for radiation and w = —1 for a cosmo-
logical constant. The Einstein equations in this spacetime are

1da\? 8« K
m2=(-2) =Fap- =
<adt> 3 P a2

1d2%a 4G
gz~ g H3p).

(2.7)

The conservation of the energy-momentum tensor of the fluid gives an additional equation
to determine the evolution of the background,
dp
D'T, =0 — T —3H(p+ P), (2.8)

with D* = ¢g"'D,, where the covariant derivative has been defined in Eq. (1.22). If we
introduce the conformal Hubble parameter

/
"= % , (2.9)
which is related to the standard Hubble parameter by
H=aH, H’:HMQQ%I, (2.10)
we can write the set of equations by using
H? :8?7TGpa2 - K,
H = — %”G(pmp), (2.11)

p=—3H(p+P).

When the equation of state of the fluid is fixed, it is easy to derive the scaling of the energy
density with the scale factor,

—3  Matter
=po4 a~* Radiation . (2.12)
1 Dark Energy

a

dlnp dlna —3(14w)
an (14 w) QP

These relations show that the energy density for non-relativistic matter decreases in time
as a3, since the number density is diluted by the particle content of the Universe, while
the energy of relativistic species goes like a™%, because the number of particles is diluted
and the energy density (frequency) of the individual particle is redshifted too, while for a
cosmological constant the energy density does not change in time. In a flat Universe, since
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Hy [kms™! Mpc™] 67.66 & 0.42
Qp0h? 0.02242 =+ 0.00014
Qe oh? 0.11933 + 0.00091
Treio 0.0561 + 0.0071
In 104, 3.047 £0.014
ng 0.9665 + 0.0038
Qp 0.679 +0.013
Qx 0.044 £ 0.033

Table 2.1: Cosmological parameters constrained at 68% credible intervals by Planck [26]. These constraints have
been obtained by combining the TT, TE,EE+lowE+lensing+BAO measurements.

K =0, it is easy to get very simple expressions for the evolution of the scale factor as a
function of the conformal time,

d 2 n? Matter
£ = 4 /%Gpoa*(1+3w)/2 —a=aqg {Z; ‘ Zj i 1 =ap4§n Radiation
e Dark Energy
(2.13)
It is possible then to normalize the energy density of the content of the Universe w.r.t.
the critical energy density of the Universe today defined in Eq. (1.46)!, introducing the
parameters

Qo = pi(10) _
Pcrit

(2.14)

In this Thesis, we use the parameters constrained by Planck [26] written in Table 2.1. These
constraints exploit the maps of temperature, polarization, lensing and the measurements
of Baryon Acoustic Oscillations (BAO) done by BOSS [226]. According to Eq. (2.13),
the evolution of the scale factor in time depends on which is the source that provides the
dominant contribution to the energy density of the Universe. Since the energy densities for
radiation, non-relativistic matter and dark energy scale in time as described in Eq. (2.12),
it is reasonable to expect that the Universe crosses different stages of evolution in which
radiation, non-relativistic matter and dark energy dominate. To compute the redshift at
which radiation and matter or matter and dark energy have the same energy density, zeq,
Zeq, A Tespectively, it is just sufficient to impose p,, = p, and p,, = ppr and evolve the

!Notice that this definition is slightly different w.r.t. Eq. (1.45), which refers to the energy density in
a single logarithmic frequency bin.
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present energy densities, constrained by experiments, backward in time, finding

Q
(1 + 2eq)® Qo =(1 + 2eq)* Qo = Zeq = QLO — 1~ 3400,
,0
' (2.15)

(14 Zeq, 0)® Um0 =Qn = Zeq,n = <QAO> —1~0.32.
m7

In the next section, we will enter into the details of the particle species that contribute to

the energy density at different epochs, specifying how their abundance changed in time,
looking for their imprint on the evolution of the background geometry of the Universe.

2.2 Thermal history of the Universe

Thermodynamics of relativistic and non-relativistic particles

When an ensemble of particles originates from a thermal process or it is strongly interacting,
it is possible to quantify its statistical properties in terms of the temperature of the system
and the mass of the particles. For relativistic particles, the number density and the energy
density are just given by

n(T) = 9®T3 {1 bosons o(T) = gﬁT‘l {1 bosons (2.16)

72 % fermions 30 % fermions

with ¢ the Riemann function and g the intrinsic degrees of freedom of the particles, that
keep into account, e.g., for the helicity stases. When non-relativistic particles are consid-
ered, the statistics of bosons and fermions is just given by a Maxwell-Boltzmann distribu-
tion,

mA 3/2

n(T) = g (?) e™T p(T) =mn(T). (2.17)

T
If more than ore species is considered, the total energy density and entropy of the relativistic
particles can be computed in terms of some effective degrees of freedom,

7T2

p(T) = 5-Tg.(T),
) 730 (2.18)
s(T) = §%T3g*75(T) :

with 7' the temperature of photons and where we have defined the effective degrees of
freedom as

wm= Y w(B) D Y o(2)

a=bosons B=fermions
- T\ 7 T\
g*,s(T) = Z Ja (T> + g Z 9 <T
a=bosons p=fermions
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In a Universe dominated by radiation, it is easy to see that the temperature decreases
with time, because T ~ p!/* ~ 1 /a. When a particle at thermal equilibrium becomes
non-relativistic, its number density is suppressed by the exponential factor that appears
in Eq. (2.17), therefore its abundance in the Universe becomes negligible w.r.t. the other
relativistic species. Since the entropy of the Universe is conserved in this transition, the
temperature of the thermal bath increases in order to balance the entropy. Physically,
this increase is due to the fact that the heavy particle decays into non-relativistic ones,
injecting energy and increasing the temperature. In the next section, we will provide a
detailed description of gy, keeping into account for the presence of relativistic and non-
relativistic particles. A non-trivial change in g, and g, s occurs when electron and positrons
become non-relativistic. At that time, both photons and neutrinos are relativistic, but,
since neutrinos are decoupled from the thermal bath, they are not affected by changes in
the number of degrees of freedom that contribute to the entropy. Before and after electron
and positrons become non relativistic, the effective degrees of freedom of the entropy are
equal to

7 11
ges(T > 05MeV) =2+ o x 4=

2’ (2.20)
ges(T < 0.5MeV) =2.

According to the conservation of entropy, the temperature of photon is heated by a factor
compared to neutrinos, therefore the effective degrees of freedom are
11/4)Y/3 dt trinos, therefore the effective d f freed

7 4 4/3
g+(T < 0.5MeV) =2+ 6 <11> =3.4. (2.21)

Chronology of the relativistic degrees of freedom of the Universe

We consider the thermal bath made by Standard Model particles, from energy scales of the
order of 1 TeV to the current temperature of CMB photon, T = 2.73 K ~ 2.3 x 10~ %eV.
The intrinsic degrees of freedom from the lower temperature to the highest one are given in
Table 2.2, which is consistent to the one provided by [227]. The effective degrees of freedom
increase every time a particle like neutrinos, electrons and positrons, muons, pions, many of
the quarks and taons become relativistic. Since these species are all at thermal equilibrium,
at every time g, = g 5, With the only exception of the time at which electron and positrons
are non-relativistic and neutrinos are still relativistic. At around T' = 175 MeV there is
the phase transition of quantum chromodynamics (QCD), therefore the degrees of freedom
given by u, d, s quarks and the gluons, which are all relativistic at that temperature, start
contributing at the same time to the total effective degrees of freedom.

Constraints on the number of effective degrees of freedom

At low temperatures, the effective degrees of freedom are parametrized by deviations from
the expect numer of neutrino species,

7 _
g+(T) =2+ 1 (Neft + ANegr) - (2.22)
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Particle/Process | Mass/Energy Scale [MeV] | Intrinsic d.o.f. | ¢.(T) | g«.s(T)
v 0 2 2 2
v, ? 6 3.4 2
et e” 0.51 4 10.75 5.5
v Decoupling 1 10.75 10.75
T 106 4 14.25 | 14.25
at, m 135 2 16.25 | 16.25
70 140 1 17.25 | 17.25
gluon 0 16
u, U ) 12
d,d 9 12
s, 5 115 12
QCD PT 175 61.75 | 61.75
c, € 1.3 x 103 12 72.25 | 72.25
N 1.8 x 103 4 75.75 | 75.75
b, b 4.4 %103 12 86.25 | 86.25
Wt w- 80 x 103 6 92.25 | 92.25
VA 91 x 103 3 95.25 | 95.25
H 114 x 103 1 96.25 | 96.25
t,t 174 x 10° 12 106.75 | 106.75

Table 2.2: Evolution of the relativistic degrees of freedom of the Standard Model particles.
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If only neutrinos are present, Neg = 3.045, where the correction w.r.t. the standard value
of three neutrino generations comes from non-instantaneous neutrino decoupling [228, 229|
and QED effects [230] (see also [231] for a joint discussion). The parameter Neg can be
constrained by the CMB [26] or by BBN [232]|. A recent analysis that combine CMB and
BBN measurements [233, 234] shows that ANeg = —0.14£0.15, indicating deviations from
the presence of just standard neutrinos in the early Universe. As mentioned in Section 1.5,
since GWs are relativistic degrees of freedom, measurements of AN.g constitutes an indi-
rect upper bound on the amplitude of CGWB produced before BBN. Following [114], it is
possible to show that the upper bound on the energy density of the CGWB at the time 7
is

4/3
PeGWS (1), X) <00 (g*(TreC)> ZANeff, (2.23)
Perit 9*,5(T(77) 8

with Tiec &~ 0.3 the temperature of recombination of photons.

2.3 Inflation

2.3.1 Shortcomings of the Hot Big Bang model

Inflation was motivated by different puzzles regarding the statistical properties of the Uni-
verse and the geometry of the spacetime which were impossible to solve in the framework
provided by the Hot Big-Bang Model.

The first enigma which emerges in the standard description of the Universe is the
“horizon problem”, which consists in the fact that the observed homogeneity and isotropy of
the structures and of the CMB at large angular scales cannot be justified by assuming that
regions which exhibit similar properties interacted efficiently throughout cosmic history.
By looking at the definition of conformal time, Eq. (2.3), we notice that the region of
causal contact described by 7, increases during the radiation and the matter epoch, while
it diminuishes during the period dominated by DE, see, e.g., Eq. (2.13). This indicates
that the maximum region of causal connection was at 7(zeq,a) defined in Eq. (2.15), thus
two regions whose separation is larger than this conformal time would have never been
able to communicate. This lack of causal contact would require a fine tuning in the initial
conditions in order to reflect the current observations.

A second issue is the “flatness problem”; related to the very tiny value of the curvature
of the Universe measured today. Since the contribution of the curvature to the expansion
of the Universe increases in time, at very early times the Universe should have approached
to a flat Universe, up to corrections of the order 10760,

Additional problems, like the “entropy problem”; consisting in an extremely large en-
tropy of the Universe, and the “monopole problem”, keeping into account for the presence
of unwanted heavy relics, have also been considered [167].

A natural solution to all these inconsistencies, which requires no fine-tuning in the
initial conditions, is the introduction of an accelerated phase of expansion of the Universe
at early times, which reduces the value of the conformal time w.r.t. the one expected by
the Hot Big-Bang Model and at the same time drives the curvature of the Universe to
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extremely small values. In the next sections we will show that inflation permits to have a
dynamical mechanism, which is not affected by any choice of the initial conditions, which
solves al these tensions. Furthermore, inflation would be able to explain also the presence
of the small perturbations of a homogeneous and isotropic background.

2.3.2 Inflationary paradigm

In the simplest scenario of inflation, it is assumed that a single scalar field ¢ dominates
the energy density of the Universe at early times. The total action assumes then the form

S = 1org | CoVII R+ Lolpg) (2:24)

where the determinant of the metric has been defined by g = gi,. According to the
Cosmological Principle, we consider a FLRW spacetime, whose metric is given in Eq. (2.1),
up to small perturbations which will be discussed later. In full generality, the Lagrangian
density of the inflaton can be written as the sum of a kinetic term and an interaction
potential,

1 174
Ly =—59""DupDup —V(p). (2.25)
The energy-momentum tensor associated to the inflaton is simply evaluated by using
_ 2 55@[%9pu] 1 8
T;fy = \/jg 69!“’ = IDM(;DDI/(;D — 9uv Ega Da(,DDﬁ@ + V(QO) . (226)

According to the homogeneity and isotropy of the Universe, it is possible to assume that
the field is dominated by an homogeneous and isotropic contribution and that exhibits tiny
perturbations, which vary in space and time,

o(t,x) = @o(t) + dp(t, x) . (2.27)

At the zero order in the perturbations, the energy and the pressure associated to this field
are

_ = 1, = |
pp=—To = 5908 + Vo), P, = §5§'Tij =3 5 — Vigo). (2.28)
By looking at Eq. (2.7), we note that an accelerated expansion occurs when the evolution
of the Universe is governed by contents with equation of state with w < —1/3. If we

assume, for simplicity, that w = —1, we see that this is equivalent to require that

Vigo) > 543, (2:29)
This condition implies that the inflaton is slowly rolling to the minimum of the potential,
since the its kinetic energy is a subdominant contribution. An additional condition that
needs to be imposed to solve the horizon and the flatness problem is that inflation lasted
for a sufficiently long enough period, in such a way that the accelerated expansion put in
causal contact all the regions observed in the Universe today with analog features. The
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equation of motion for the leading order contribution to the inflation field is computed by
using

38, e, g oV
—————= =0 "D . D,p— — =0. 2.30
5o = 9" DD = 52 () (2.30)
This conditions gives
. . ov
Po+3Hpo+ 5 (¢0) =0, (2.31)
¥o

therefore we require that the acceleration of the inflaton field is much smaller than the
friction term due to the expansion of the Universe,

| 0| < |3H o - (2.32)

Under these two assumptions, it is possible to show that inflation is able to produce an
attractor solution to the initial conditions required to solve the problems of the Hot Big-
Bang Model. The two requirements imposed can be summarized by demanding that two

slow roll parameters, defined by
2
1 5% (o)
V' =167G \ Vipo) ’

2
1 27%(800)

W =85G Vigo)

(2.33)

are much smaller than one, ey < 1, ny < 1. By using the Friedmann equations, Eq. (2.7),
we notice that the Hubble factor during inflation is equal to

8 1.
H? = 3G <2<p3 + V(gpo)> : (2.34)

The derivative w.r.t. the cosmic time of the Hubble factor is

.18 ) 581G [0V 2 2[87G V(o))
H= ﬁng <800<P0 + a%(@o)@o) = —81Gyp = ~9i2 (8@()(@0)) =~ 9m;
(2.35)

where we have used twice the equation of motion of the inflaton, Eq. (2.30), the slow roll
condition given by Eq. 2.32, and the definition of the slow roll parameter provided by
Eq. (2.33). From this equation we see that the Hubble factor is constant, up to linear
contributions in the slow roll parameters, as we would expect from Eq. (2.12) for a stage
of accelerated expansion. The evolution of the scale factor at first order in the slow roll
parameter is computed by using

H
with H; the initial condition. The scale factor grows exponentially, because
ﬁ — — .o Hit 1 2,2
=H — a=ae 1—2evHit . (2.37)
a
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The relation between the conformal time and the scale factor is then

t 1 1
1= ), = mEe T 2

2.3.3 Quantum fluctuations during inflation
Fluctuations of the inflaton

In Eq. (2.27) we have assumed that the inflaton field is dominated by a homogeneous and
isotropic component, while small fluctuations, which depend on time and space, appear
because of the quantum nature of the field. In a similar way, the metric is perturbed
around a FLRW spacetime and, in the Poisson gauge, we can write it according to

ds? = a2(77){—d172 (1+2®) + da'da? [5;; (1 — 20) + Hyj] } , (2.39)

with H;; transverse-traceless perturbations. In Appendix A.1 and in Section 2.4.1, addi-
tional details will be provided about the choice of the gauge and the decomposition of the
metric in terms of scalar, vector and tensor fields. By using Eq. (2.30), we find that the
evolution of the perturbation of the inflaton is given by

2

9%V
5" + 2HY — V25 + 872(%)5@ —200® — Hepy (40 + @') = 0. (2.40)
0

If we neglect the impact of the perturbations of the metric on the evolution of ¢, we get

0*V
5" + 2HY — V25 + 87802(900)690 =0. (2.41)
0

In Fourier space, this equation becomes

2

0°V
5" + 2HIY + k20 + W(goo)égo =0. (2.42)
0

Since the fluctuations of the inflaton field have a quantum nature, the perturbations J¢
is not a real scalar field, but a scalar operator ¢ which acts on a Hilbert space. The
quantization of a scalar field in a FLRW spacetime is done by observing that the field
d¢/a behaves like a real scalar quantum field in Minkowski. The quantization of such a
field is done by decomposing d¢ in creation and annihilation operators,

- 4’k i xuk(n) A —i -xU*(U)A
dp(n,x) = / o) [ek " ax + ek kTaL , (2.43)

where the operators act on the vacuum in such a way that
ax]0) =0 (olal =0. (2.44)
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The commutation relation of the operators and of the fields are

il i) = — hid(k — K
o e = o bl k), (2.45)
[6¢(n,x"), 0069 (n,x")| =ihd(x —x').
The combination of these two relations gives also a condition on the wave functions,
upuy —upuy =1i. (2.46)

The differential equation of the quantum operator reduces to a classical equation of motion
of the wave function,

" 2
" 2 a o*vV 2 —
uy, + <k’ —;+67(P2(<,0)a )uk—O. (2.47)
To find the solution of this differential equation, we need to express the scale factor and
its derivatives in terms of the conformal time. By using Eq. (2.38), the conformal time is
related to the conformal Hubble factor by

1

= 2.48
1 H(1 —ey) (248)
therefore the derivatives of a are connected to n by
a2 3
—=—|1+= . 2.49
=2 (14 5e) (2.49)
If we define 2 = 9/4 + 3ey, the equation for the wave function becomes
1\ 1
" 2 2 —
uy, + I:k - (1/ —4> 772] up=0. (2.50)
This equation is a Bessel equation and the solution is
up(n) = v=ner(k) HSD (<kn) + ea(k) HP) (<kn) , (2.51)

where H (1), H® are the Hankel functions of the first and second kind, while ¢; and ¢
are initial conditions that need to be specified. To find them, match the general solution
to the solutions obtained in the limits kn < 1 and kn > 1. For sub-horizon scales the
solution coincides with the De Sitter result,

e—ik’r]

Uk:m’

while for super-horizon scales the wave function is just proportional to the scale factor.

(2.52)

up, = B(k)a(n) . (2.53)

In order to satisfy these two limits, the coefficients of Eq. (2.51) have to be equal to

c1(k) = *fel’(w%)é’ , ea(k) = 0. (2.54)
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The solution of the wave function is then

ugn) = YT+ )E RHE (<) (2.55)

In the limit of super-horizon scales we get

uk(n) = ei(wr%)gQ’/_?’/QM(_k )1/2—1/

372 (2.56)

which means that the amplitude of the perturbations is

opsp D) H (RN
[0p(n, k)| ~ 2 T(3/2) Vais <aH> . (2.57)

Fluctuations of the metric
The action of the gravitational field is given by

1
647G

Sw,, = /dndgm2(n) (Hj;(n,x)HY'(1,x) — VHj;(n,x) - VHY(n,x)) , (2.58)

where the tensor perturbation of the metric can be written in Fourier space by using

d3k ik-x
Hynx) = [ 555 3 e mmnk) €0, (2.59)
(2m)
A=+, X
It is clear that for the combination

~ a

H,\(%k) = 4m

the action is the same of a real scalar field around Minkowski. In this way, it is possible
to quantize the amplitude of the tensor perturbations in analogy with what has been done
for the inflaton,

Hy(n, k), (2.60)

7 4’k ik-x 7 —ik-x, * 7
Hj(n,x) —/ [elk ven ()b + e~ g ()b

g : (2.61)

[E—

where lA)k7 2 EL , are the creation and annihilation operators which acts on the Hilbert space

as lA)k,)\ |0) = 0 and (0| Z;L y = 0. The commutation relations in this case are

bl b x] = — ook — K,
. 8 (2.62)
[5HA(77, x'), Q06 Hy (0, X') | =ihéxn 6(x —x').

Also in this case, the normalization of the wave function is given with a condition analogous
to Eq. (2.46),
VR AURN — Ul AVkn = @ (2.63)
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The equation of motion of the tensor perturbations is obtained by the action or by looking
at the transverse-traceless part of the Einstein equations, Eq. (2.108). The anisotropic
stress of the inflaton field in this case is negligible, because it is a term quadratic in d¢p,
therefore the equation of motion of the tensor perturbations is just

Hij(n, %) + 2H(n) Hi;(n,x) — V2Hj(1,%) = 0. (2.64)

The equation of motion of the wave functions is then
a//
ot (K= S )oea =0. (2.65)
' a

This equation is identical in form to the one of the scalar perturbations, therefore the

mw -
eal) = S ), (2.66)

whose limit on super-horizon scales is equal to

solution is

(e a0 I'(v) 1 _
_ iV 1/2)71'/221/ 3/2 —k 1/2 v 2.67
‘ G2 var i

The amplitude of the tensor fluctuations is then

vg(n)

U 3/2—v
|HA(77,1<)|=\/327FG2”_3/2F1;§ /;) = <’;I) . (2.69)

Primordial Power Spectra

According to Appendix A.1, the perturbations of the inflaton field and of the metric are not
gauge invariant and transform under changes of the coordinates. Because of this reason, it
would be useful to descibe the amount of perturbations produced during inflation in terms
of gauge-invariant quantities. For the scalar perturbations, we define the gauge-invariant
curvature perturbation

Gl k) = = =Dl k) + )|~ 2 2 (2.69)

where the perturbations of the metric have been defined in a generic gauge in Eq. (A.2). An
interesting property of this object is that it is conserved on super-horizon scales, therefore
we will use from now on the notation ((k) = ((n, k)|azr=x. The primordial power spectra
of the scalar and tensor perturbations are defined by

NP 7271'2
(01 ¢¢ () 0) =T Pe(h), -
. Y 2 '
(0] Fig (1,10 FE" (7, ) 0) =730 — K) POy )
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By using Egs. (2.57), (2.68) it is possible to get

2
Pg(k) :27TGH 7
k‘36V aH=k (271)
647G
(N —
P(k) k3 laH=k'

where we have used the fact that the power spectrum of the tensor perturbation for the two
polarization is conserved for super-horizon scales. It is possible also to introduce also the
total tensor spectrum, which accounts for the total tensor perturbations produced during
inflation,

Pr(k) =Y PV (k). (2.72)
A

The tensor-to-scalar ratio quantifies the difference in amplitude of the tensor and the scalar
perturbations and it is defined by

= 16ey . (2.73)

2.4 Cosmological Perturbations

In the previous sections, we have shown that inflation provides a justification for the
homogeneity and the isotropy of the Universe on large scales and it keeps into account
also for the presence of tiny perturbations, which exhibit spatial and angular correlations
which can be measured by looking at different cosmological observables. In this section,
we focus on the description of the perturbation of the geometry and of the energy density
of the Universe, discussing the structure of the Einstein and the Boltzmann equations that
govern the evolution of the Universe.

2.4.1 Perturbations of the metric

Poisson gauge

When a tiny amount of inhomogeneity is considered, the most general extension of the line
element in FLRW, defined in Eq. (2.1), is given by

a5 = a?(n){ — an? (1 +24) - (B + B} ) d'dy
; . 1 2 1 1
+da'dal |85 (1+2D) + (0,0 — 30,V2 ) F+0F} + 0, + Hy } ,
(2.74)

where L denotes solenoidal vector fields, 8in = 0, while H;; are transverse-traceless
perturbations of the metric. This decomposition in terms of scalar, vector and tensor
degrees of freedom [235, 236| reflects the transformation properties of the perturbations
under spatial rotations. All the perturbations of the metric have to be thought as linear
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terms in the expansion in the small parameter €, while higher-order terms have been ne-
glected here, since they will produce subdominant effects for the observables considered in
this Thesis. The computation of the cosmological perturbations at second order has been
done for instance in [171, 237| and some applications to the CMB have been presented
in [238, 239, 240]. Thanks to the decomposition theorem, it can be shown that the scalar,
the vector and the tensor degrees of freedom evolve independently at first order in pertur-
bation theory. As shown in Section 1.1.1, not all these degrees of freedom are physical,
thus a natural way to deal with the problem of the choice of the gauge would be to work
with gauge invariant variables or to fix the gauge. In this Thesis, for simplicity, we will
work in the Poisson gauge, defined by setting

B=0, F=0, Ff=0, (2.75)

and relabelling the scalar perturbations ® = A, ¥ = —D. The gauge fixing we have done
saturates all the spurious degrees of freedom of associated to the coordinate transforma-
tions, ending up with just six degrees of freedom. However, it is possible to show that the
solenoidal vector field BZ-l in this gauge the vorticity is suppressed by the expansion of the
Universe [241], therefore we can neglect such a contribution, since in the model of inflation
considered here we do not expect the presence of primordial solenoidal vector fields. The
line element we will consider from now on is therefore

ds? = az(n){ — di? (1 +2®) + da'da? [5; (1 — 20) + Hyj] } , (2.76)

The metric and its inverse at first order in the perturbations are just

g g2 (~(129) 0
m 0 51](1 — 2\11) + Hz’j ’

2.77
w1 (—(1-20) 0 277)
I 0 59 (1 +2W) — HiJ )

where the indices of the tensor perturbation are raised by the Kronecker delta, HY =
89 Hyj.

Perturbations of the Einstein tensor

The Christoffel symbols are defined in terms of the derivatives of the metric by

e =

p g’ (8pgua + azzgcyp - aagpu) . (2.78)

N =
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The computation of the affine connection in the Poisson gauge gives the result

oo =H + ',
Ty, =00,
1
Iy =[H(1 - 20 —20) — ¥']5; + §H;j +HH,j,
—ry (2.79)
, 1
o=MH—-V)d + 5H}’,
[, =0" Vo — 0; W0, — O W6; + 3 (@H}€ + Ok H; — 8‘ij) .
The Riemann tensor is then computed by using
Rf,, = 0,1, —0,1%, +T%,T), —T0.T,,. (2.80)
The Ricci tensor is given by
Ry = R, (2.81)

therefore its components are

"

Roo =3H? — 3% + V2® + 31 (&' + V') |
a

Ro; =20,9' 4+ 2H0;®,

"
Ri; = Kaa + ”HZ) (1 —20 —20) — HGY + &) — V' + V2| 5 + 0;0; (¥ — ®)

1 1
+ S Hi + HH = o5 V2 Hi + (W + 2H) Hyj

(2.82)
The Einstein tensor is defined by
1
G;w = R;w - §guuRa (2'83)
where the Ricci scalar is
R=g""R,qa. (2.84)
The components of the Einstein tensor are therefore
1
GY == [H?(60 — 3) + 6HT' — 2V>U] |
2
G? = — ? (’H@l@ + 61\11/) ,
i 2 i
Go=—5 (0" +HO'D) , (2.85)
; 1 (I”
G5 :(12{ {—2@(1 —20) + H*(1 — 20) + 2H(P' + 2V) + 20" — V(¥ — @) | §;;

) . . 1 .
+0'0;(¥ — @) + H;" + 2HH;' — GQVQH;} .
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Distribution function

As discussed in Section 2.2, the energy density of the Universe is mainly provided by
photons, neutrinos, baryons, CDM and dark energy. It is possible to characterize the
abundance of these species by introducing a distribution function f(n,x,p) in such a way
that the quantity d*>x d®p f(n, x, p) corresponds to the number of particles that at i occupy
the volume of the phase space d3x d3p surrounding x and p, with p the canonical conjugate
variable of the position. The momentum in GR is defined by
o dz”

=S, (2.86)
where A is the affine parameter of the geodesic. Additional details on the physical and on
the comoving momentum will be given in Section 3.2. Consistently with the cosmological
principle, the distribution function can be decomposed into a homogeneous and isotropic
part, plus a tiny fluctuation, which depends on the position and on the direction of the
momentum,

f(U’Xa q) = f(na Q> + 6f(’l’],X, Q) : (287)

where ¢ is the comoving momentum associated to p. In the literature [42], the perturbations
of the distribution function of photons and neutrinos are often rescaled into

55 xq) = — Do o ay

i (2.88)
5fl/(77?xﬂ CI) = MN(nvxaﬁ) :

In the CMB case, the spectrum of photon is a blackbody, therefore it is characterized just
by the temperature,

-1
q
f(77’ X, q) = €Xp — — 1 ) (289)
T(n) [1+ % (n,%,7)]
where it is straightforward to see that
oT ) A
7 (n,x,7) = O, x, 7). (2.90)

Perturbation of the energy-momentum tensor

In the same philosophy of what has been done for the perturbations of the metric in the
previous sections, we would like to find the most general form of the energy-momentum
tensor of a perfect fluid in terms of scalar, vector and tensor perturbations. In [236], it has
been shown that it is possible to write

TV = (p+ P)utu, + 0L P + 7, (2.91)
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where 7/, is connected to the anisotropic stress/viscosity of the fluid and it is a term of

first order in the perturbations. The velocity and the pressure can be expanded in terms
of their background contributions, which depend just on the conformal time, and of small
fluctuations which are inhomogeneous,

p(n,x) = p(n) +dp(n,x),  P(n,x) = P(n) + IP(n,x). (2.92)

The four-velocity is computed in perturbation theory by using the condition u? = —1 and
by noticing that its spatial component should vanish at zero order in the perturbations,
u' = v'/a,

2
'y, = —1 = guuru’ = —1 — a? [—(1 +29) (u(o)) + 2u(0)u(1)] =-1, (2.93)
therefore we conclude that
1 .
W= (1= v),  w=a(=(1+2) v). (2.94)

The components of the energy-momentum tensor are then
Ty =-p—dp, T =(p+Pui, To=(p+PW' T;=05(P+6P)+m;. (2.95)

In order to connect the energy-momentum tensor, which plays a crucial role in the Einstein
equation, to the distribution function of a given species, whose evolution is computed by
using the Boltzmann equation, we write the energy-momentum as an integral over the phase
space of the distribution function. The stress-energy tensor for a species « is defined [236]

according to
9o [ dprdp2dpsp p"p,
T} o(n,x) = fa(n,x,p), (2.96)
=) e e
where g, are the intrinsic degrees of freedom of the species considered. As it will be
explicitly shown in Section 3.2, for a particle of mass m, the physical momentum is equal

to

1 ) )
po_ L - ViU (1 _ Lpr. sisk
P . (e E pn'e ( s Hjndn )) , (2.97)
pu=a(e®E phie”V (1+ $Hpndn") )

with E = \/m2 + p? the energy density of a particle, p? = 5ijpipj. It is possible to show
that, by introducing a comoving momentum ¢* = apn”, the energy-momentum tensor
can be written according to

d’q 41'py
T3 = g [ el fulnx.a). (299)

where the integral is now a standard integral over spherical coordinates. We characterize
photons in terms of the perturbations of their distribution function,

_ of.
fy=1— q;;”@- (2.99)
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It is useful to compute the energy-momentum tensor in Fourier space, denoted by k, instead
of real space, and it is useful to decompose the distribution function in terms of Legendre
polynomials of argument y = k - 1,

O(n,k, i) = ZPZ )0¢(n, k) . (2.100)

In this way, the (0,0) component of the energy-momentum tensor is

To(1.k) = =y (n)[1 + 85 (0, k)] = —pa(n)[L +460(n, k)] , (2.101)

where the background energy density is defined by

_ d3q
) =2 [ Sk o). (2,102
In a similar fashion it can be shown that

]%i T'z(?*y (777 k) =4pa (77)(91(777 k) )

i 1Y 8 (2.103)
k kz - 557, er,'y(nak) - - 507(77)@2(777k) :
The same discussion holds for the perturbation of the distribution function of neutrinos,
denoted by N. For non-relativistic species, like CDM and baryons, we just use the velocity
field and the density constrast

5= 2 (2.104)

2.4.2 Boltzmann equation

The Universe is filled by matter and radiation, whose energy density and pressure present
tiny anisotropies that influence the evolution of the metric perturbations. When some
particle species that source the energy density of the Universe strongly interact, it is
possible to assume that they are in thermodynamic equilibrium, studying the evolution
of the system in terms of Egs. (2.16), (2.17). On the other hand, when the interaction rate
decreases, coming closer to the expansion rate of the Universe, the evolution of the system
should be studied by mean of the Boltzmann equation, which is the most powerful tool
to characterize non-equilibrium processes [242, 243]. The Boltzmann equation describes
the evolution in time of the distribution function as a function of the properties of the
spacetime, of the scattering processes involved and of the presence of external sources that
could inject particles in the system,

LIf]=Cf]+ TS, (2.105)

where the collision and the source operators depend on the specific environment considered,
while the Liouville operator is equal to

) LD
LU =pt5 0 —Thp p"@ : (2.106)
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When the collision term is extremely large, the Boltzmann equation drives the distribution
function to thermal equilibrium, while, when the collision term is subdominant, the Boltz-
mann equation computes the evolution of the distribution at each time in a nontrivial way.
In Section 3.2, we show an example of the solution of the Boltzmann equation in the case
of a CGWB, while in this chapter, we will just show the explicit results of the Boltzmann
equation for the standard radiation and matter content of the Universe,

1
O +iku® =y — ikud — 7' [@0 -0 - 5?2(#)@2] ,

oL + ikv, =30, (2.107)
vl + Hoe = — ik®,
N +ikuN =V —ikud

where the term on the r.h.s. in the first equation comes from the interaction between
photon and baryons.

2.4.3 Einstein equations in the Poisson gauge

According to the decomposition theorem, the equations of motion for the scalar, the vector
and the tensor perturbations are decoupled at first order in the perturbations. This means
that it is possible to characterize the evolution of H;; independently on ® and ¥. By using
the definition of the Einstein equations given by (1.1), we combine the Einstein tensor
computed in Eq. (2.85) and the energy-momentum tensor defined in the previous section,
obtaining

1 2 TT
HYj + 2HH; — 5V Hyj =16nGr"
k‘Q\I’ + 3H (\IJ’ + /HQ)) — _ 47TGCL2 (ﬁcéc + ﬁb(sb + 157@0’7 + /31/@0,1/) ’ (2108)
E2(® — 0) = — 321Ga’p,0s,,

iTjT is the tensor component of the anisotropic stress. The system of the Einstein
and the Boltzmann equations, Eqs. (2.108), (2.107) can be solved numerically, using for

instance the numerical code CLASS [44, 45].

where T

2.5 Current constraints

The most important constraints on the ACDM model have been provided by observations
of the anisotropies of the CMB in the past decades, by the satellites COBE [217, 27|,
WMAP (218, 219| and Planck [220, 26]. The fluctuations in the CMB temperature along
different directions of observation can be computed by solving the Boltzmann equation for
O, analogously to what we will do for the CGWB in Chapter 3. At temperatures larger
than 0.5MeV, photons were tightly coupled to baryons via electromagnetic interaction,
thus any imprint of the physics operating at large energy scales is washed out by the
scattering processes [42]. Around 0.5MeV, electrons and protons form bound systems in
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form of hydrogen atoms. The evolution of the distribution function of the CMB photons is
computed since this epoch, called recombination, which occurred approximately at 7yec ~
280 Mpc, until the present time, 19 ~ 10* Mpc. To evaluate the amount of anisotropies, we
typically expand the distribution function in spherical harmonics, where the coefficients of
the expansion are defined by

Omli,m) = [ 4 () O m). (2.109)
and we compute the angular power spectrum, defined as
5@@’5mm’CgCMBXCMB = <@Zm(ﬁa nO)GZ’m/ (’fla 770)> ) (2110)

The solution of the Boltzmann equation for the fluctuations of the temperature of the
CMB, written in Eq. (6.3), shows that the angular power spectrum is sensitive to the inho-
mogeneities in the number of photons and in the gravitational potential at recombination
(Sachs-Wolfe effect), to the variations of the potentials around the geodesics (Integrated
Sachs-Wolfe), and to the velocity of photons at recombination (Doppler). An additional
effect is provided by the lensing of photons by the massive structures they encountered.
In the left panel of Figure 2.1, we plot these contribution to the angular power spectrum
of the CMB, while to the right one we show the dependence of the spectrum to different
cosmological parameters. The CMB spectrum is dominated by the SW, which exhibits a
plateau at large angular scales, where the potentials and the number density of photons
and baryons at recombination are constant. At smaller scales, the photon-baryon fluid be-
haves like an harmonic oscillator and the potential wells and the density of CMB photons
oscillate. These acoustic oscillations translate in two a series of peaks in the SW contri-
bution to the angular power spectrum of the CMB at high multipoles. At large angular
scales, the ISW is dominated by variations of the metric perturbations at large angular
scales (late-ISW), while at ¢ &~ 200 by variations of the potentials around recombination
(early-ISW). The strong constraining power of the CMB is due to the fact that varying
different cosmological parameters determines very peculiar changes in the angular power
spectrum:

e the overall amplitude of CEMB XCMB ¢ fived by e 2mreio A, with taure, the optical

depth of photons and Ag the amplitude of the power spectrum of the curvature

perturbations at the pivot scale 0.05 Mpc™!,

A = Pe(k = 0.05Mpc™); (2.111)

e the Hubble parameter Hy and the density of CDM qu affect the late-ISW effect
and the scale and the shape of the acoustic peaks;

e the overall scaling of the angular power spectrum of the CMB with ¢ depends
on the tilt of the curvature perturbations n;. The primordial power spectrum is
parametrized in such a way that

k ns—l
Pk)=A, [ —— : 2.112
<(k) <0.o5 Mpc_1> ( )
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Figure 2.1: Left: plot of the contributions to the angular power spectrum of the CMB as a function of the multipole
considered. Right: plot of the angular power spectrum of the CMB by varying one cosmological parameters, w.r.t.
the standard value.

e variaton of {}, o determine a lateral shift in the peaks of the CMB spectrum, because
of the change of the sound horizon of the photon-baryon fluid at recombination. In
addition, the baryon density affects the heights of the peaks;

o () regulates the variation of the potentials responsible for the early ISW effect, thus
its variations could affect significantly the shape of the spectrum at large angular
scales;

e the curvature of the Universe affects the geodesics of photon and could change the
location of the acoustic peaks of the CMB.

In the right plot of Figure 2.1, we plot the angular power spectrum of the CMB by varying
just one of the cosmological parameters previously mentioned, showing the effects of its
variation on the angular power spectrum. Observations of the anisotropies of the tem-
perature of the CMB allowed therefore to constrain several cosmological parameters. We
report the results provided by Planck [26] in Table 2.1. Note however that the CMB spec-
trum is sensitive to other parameters, such as the effective number of neutrinos and their
masses [244], not discussed in this section.
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Chapter 3

Anisotropies of the CGWB

3.1 Geometric-optics limit

In this Thesis we consider CGWBs that could be detected by advanced PTA or by fu-
ture space- and ground-based interferometers, having frequencies that lie within the range
1072 — 10* Hz. The relation between the comoving momentum and the frequency of the
GWs is

2 2

which means that in our case we are looking at momenta, of the order 10% — 10'® Mpc~!.
Typically, all the primordial gravitational signals start propagating long before the time
of equality between matter and radiation, at a time 7, which is much smaller than the
conformal time today, 19 ~ 10* Mpc. This implies that when we look at the anisotropies
of a signal that comes from a surface distant ng — mn & 719, we are looking for cosmological
perturbations that on such a sphere present hot and cold spots at a distance 79/¢. The
maximal amount of anisotropies is therefore given by the scales

k =~ £ : (3.2)
70

Since the multipoles that can be probed by future interferometers are quite small, {yax S
100, the angular power spectrum of the CGWB is affected only by large-scale perturbations
of the Universe, with comoving scales within the range 10™* — 1 Mpc~!. This enormous
separation of scales, ¢ > k, permits to use the shortwave approximation introduced in
Section 1.1.2, characterizing the GWs as small ripples that propagate through a slowly-
varying background. More specifically, we consider the FLRW metric in the Poisson gauge
introduced in Eq. (2.76),

ds? = a®(n) { ~d (1 + 28(n, x)) + de'da? [5,5 (1 — 20(n, x)) + Hyj(1,%) + hi(n. %))} |
(3.3)
where ®, ¥ and H;; are the large-scale perturbations of scale k, while h;; is the rapidly-
oscillating waves that compose the CGWB. As we will see in Appendix E.2, the propaga-
tion of the GWs through the Universe is modulated by the large-scale scalar and tensor
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perturbations,

hi; + hiy (2H — @ + ') + hyj (AHY +20") — V2hyj (1 + 20 + 2F) + 2H" 0, 01hs; = 0.
(3.4)
However, since it is possible to show that in the shortwave approximation the geometric
optics limit holds, we can describe the GWs as collisionless and massless particles that prop-
agate through the geodesics computed by considering only the large-scale perturbations of
the metric,

ds* = a*(n) {—dn? (1 + 2®(n, x)) + dz’d2? [6;5 (1 — 2¥(n,x)) + Hy;(n,x)]} . (3.5)

In this way, we avoid a description of the CGWB in terms of the gravitational field, Eq.
(3.4), but we use a simpler and more intuitive approach, which consists in the Boltzmann
equation for the CGWB.

3.2 Boltzmann equation

Geodesics of graviton

In the geometric optics limit, we consider gravitons propagating along trajectories x*(\)
with physical momentum p#(\), where A is an affine parameter and the momentum is

defined by
dat

PO = 0. (36)

The equation of motion is computed by recalling that massless particles propagate along

null geodesics,

dp*

e =Ty, p"p”, (3.7)
where the affine connection is evaluated w.r.t. the slowly-varying metric, Eq. (3.5). The
full expression of the Christoffel symbols in the Poisson gauge has been given in Eq. 2.79.
An intuitive way to parametrize the momentum of graviton is to write it in terms of its
direction of propagation 7, which is a unit vector that satisfies d;; A'n’/ = 1, and magnitude
p, defined by

P =g 0’ (3.8)

According to these definitions, it is straightforward to see that
, . 1 .
p=Lhie? (1 L fﬂﬁk> : (3.9)
a

Since the physical momentum is redshifted, because of the expansion of the Universe, it
would be useful to introduce the comoving momentum ¢ = ap, which gives

. A 1 A
pi=Liaie? <1 ~ 5H ﬁjﬁk> : (3.10)
a
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By exploiting the condition on the momenutm for massless particles, ptp, = 0, we get an
expression for the time component of the momentum of graviton, which also depends on
the comoving momentum and on the scalar perturbations of the Universe,

o_ 49 o
p=ge . (3.11)

The evolution in time of the position of graviton is evaluated just by using the known
expressions for the momentum,

dz? d\ dz?
=0 D % = PtV <1 - fHknJ > . (3.12)

The evolution in time of the magnitude of the comoving momentum, is computed then by
combining the geodesics equation, Eq. (3.7), for u = 0,

i’ @ 9 8(1’ 1 lam
TR —2H - + I Erili §Hllm” n" ), (3.13)
with the derivative w.r.t. A of Eq. (3.11),
A’ odp® ¢ oe ldg ., 09
02 4 _9 29— . 3.14
a P dn 1€ H+qd77 axz” (3.14)

The result shows that the amplitude of the comoving momentum of the GWs changes in
time, because the Universe is inhomogeneous,

dg , 00 1 .
— =q |V — m. 1
a q ( B 5 Him ' (3.15)

A similar result, not interesting for our purposes, could be found for the derivative of the
direction of propagation of gravitons, which, as ¢, is proportional to terms linear in the
large-scale perturbations of the metric. The results we have found show that gravitons
at the background level propagate through straight lines, with a redshift of the physical
momentum due to the expansion of the Universe, while at first order in the perturbations
the comoving momentum and the direction of propagation change in time, because of the
scalar and tensor inhomogeneities in the Universe.

Distribution function of graviton and observables

We characterize the abundance of graviton of physical momentum p in a region of spacetime
(n,x) by introducing a distribution function fcows(n,X,q) as done in [117, 38, 39, 40].
The description of GWs in terms of a distribution function is possible only in the shortwave
approximation, ¢ > k and ¢n > 1, because in this regime the propagation of the waves
is given by geometric optics. We will give a more quantitative definition of the time at
which the transition from the wave-optics and the geometrical-optics regimes occurs in
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Section 3.3. According to Egs. (2.95), (2.96), the connection between the energy density
of graviton and the distribution function is given by

1 .
poaws(1,X) = /dp1dp2dP3PfCGWB(77,X, q) = W/dn/dqq3 fecaws(n,x,4q),

(3.16)
where we have used the change of variables between the physical momentum, over which
the energy density is defined, and the comoving momentum, which is the argument of the
distribution function we have adopted. The distribution function can be connected to the
fractional energy density in GWs used in Eq. (1.45) by using

1

Pcrit

g\4
Qccws(n,x,9) = <5> feawn(n,x,q) (3.17)
with perit the critical energy density of the Universe at the present epoch. By assuming then
that the CGWB is produced isotropically, we expect that the distribution function shows a
dominant homogeneous and isotropic contribution, fcgws (7, ¢), and small inhomogeneities
and anisotropies ¢ faw(7,X,q), connected to the evolution of the inhomogeneities of the
Universe in time. An useful way to write the perturbation of the distribution function of
graviton is
oF

. feaws(n,9) .

dq
where IT' is the perturbation of the distribution function analogous to the one used for the
CMB in Eq. (2.99). The perturbation of the energy density of the CGWB in a single
frequency bin, defined in Eq. (1.49), is related to the perturbation of the distribution
function by

6fCGWB(773X’ q) = - (7]7X, q) ) (318)

of :
1 (g)45fccw13(777x,q) 1 (q)4 —qmvaviq‘mf(mx,q)

dcaws(1,X,q) =

paic \a/  Qoews(n,q)  peris \a Qcaws(n, )

(3.19)
where the derivatives of the unperturbed part of the distribution function can be written
as

dfecaws(n, q) a\’ 9Qcawn
A A=A L VA [ 4 - —27= . 3.20

It is possible therefore to connect the perturbation of the distribution function I'" to per-
turbation of the energy density in a single frequency bin in terms the tensor tilt of the
background, introduced in Eq. (1.48), via the simple relation

dcaws(n,%,q) = [4 — ngwh ()] T'(n,x,q) . (3.21)

The dependence on x of the distribution function means that in different regions in the
Universe, the energy density of graviton could fluctuate, while the dependence on 7 implies
the spectrum of the CGWB is anisotropic, since gravitons coming from different directions
carry different energy.
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Solution of the Boltzmann equation

Gravitational interactions decoupled at the Planck scale, therefore it is possible to neglect
the collision term in the Boltzmann equation defined in Eq. (2.105). Since in this work we
consider different sources of cosmological GWs separately, we write the emissivity terms in
the Boltzmann equation as an initial condition for the abundance of graviton at the end of
the production process, avoiding the complicated issue of solving the Boltzmann equation
with a model-dependent source term [39, 40]. We will provide a more detailed explanation
of the role played by the source term in Section 3.4.1, when we will define rigorously the
initial time at which we compute the initial conditions of the Boltzmann equation in the
case of GWs produced during inflation. The Boltzmann equation for collisionless particles
is

d 1d
— =0 = —— =0 3.22
o feews =0— 20 dnfCGWB ; (3.22)
which is equivalent to
dzt 0 dg 0 dnt 0
— —_— — —_— =0. 3.23
an feaws + an o foaws + dn 9 foaws + O foaws (3.23)

The last term is the product of two terms linear in the scalar and the tensor perturbations,
therefore it can be neglected in our linear approximation. By using the conditions found
in Egs. (3.12), (3.15), we get

0P

0 0 0 R alam
an i CGWB +q8*quGWB <‘1’/ ~ ot T §Hllmnln ) =0. (3.24)

By expanding the distribution function in perturbation theory, using the definition provided
in Eq. (3.18), we find

fcows + 7'

o
a*fCGWB(U,Q) =0,
0 (3.25)

. 1
8iif(n,x, q) =¥'(n,x) —n' aiiq)(n,x) — §ﬁlﬁmH{m(n,x) .

The zero-order solution of the Boltzmann equation gives foaws (1, ¢) = fcaws(q), which
means that the number density of graviton is diluted by the expansion of the Universe,

3
ncaws (1, ) = / ;é(j;) feaws(n, q) ~ %7 (3.26)

I'(n,x,q) + 7'

while the energy density scales as standard radiation, pcaws(n) ~ 1/a*(n). The evolution
of the perturbation of the energy density of the CGWB is governed, in Fouerier space, by

. ) 1.,
T'(n,k, q) +ikpl (1, %, a) = U'(n, k) — ikp®(n, k) — 5Aa'n’ Hi;(n, k), (3.27)

with p = k- 7. To solve analytically this equation, it is sufficient to recognize a partial
derivative w.r.t. time on the left hand side,

I'(n,k,q) + ikuI'(n, k,q) = 6”""‘";7 [F(n,k, q)e"";"”} : (3.28)
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therefore the solution of the Boltzmann equation is just

T'(7, k, q)ettrn

n 1 . . o

! :/ a7 [qf’(ﬁ,k)—im@(ﬁ,k)—QﬁWng(ﬁ,k)] ekl (3.29)

Tlin Tin

If we use 5
—ikp® (i), k)T = 5

we can write the solution of the Boltzmann equation in the form

(@ k)| + @/, k)T, (3.30)

L(10, k, q) = (i, k, q)eiku(mrno) + & (1, k)eiku(mnfno) — ®(ng, k)
mo ~ ~ I _ o
+ [Mai [q"(n,k) F/(0,00) — ata B (.00 |
Min
(3.31)

The first term represents the initial condition on the anisotropy of the CGWB and it keeps
into account for any inhomogeneity given by the production mechanism, while the second
term is the Sachs-Wolfe effect (SW), due to the redshift of graviton when it comes out from
the potential wells at its production (w.r.t. the value of our local gravitational potential),
while the last term is the Integrated Sachs-Wolfe (ISW), which keeps into account for
the variation of the perturbations when gravitons are crossing them. The value of the
local potential ®(ng,k) is unknown, but since this term contributes to the solution of the
Boltzmann equation as an offset independent on 7, it would affect only the monopole,
giving no physical effect on the angular power spectrum when ¢ > 1. Note also that the
energy spectrum of cosmological graviton is non-thermal, thence the perturbation of the
distribution function is sensitive to the magnitude of the comoving momentum, because
the distribution function cannot be recasted in the form of Eq. (2.89). We will discuss this
difference in more detail in Section 4.1, where the perturbations in the energy density of
the CGWB are computed in the adiabatic case and compared with those of thermalized
species.

Spherical harmonics decomposition and angular power spectrum

The quantity we have access at future interferometers is the excess of energy density of
the CGWB in a given frequency bin, defined in Eq. (1.49). This quantity is related to the
perturbation of the distribution function by Eq. (3.21), where the distribution function is
evaluated at the present time. In order to extract the information about the anisotropies
in the map of the cosmological background, it would be useful to decompose the density
field in spherical harmonics,

+oo /L

Scaws(m0,%0, @) = > D> doaws.m (10, X0, )Y (R) (3.32)
{=0 m=—/{

where xq are the coordinates of the observer. From now on, we set xg = 0 and we will not
write this dependence anymore. The solution of the Boltzmann equation at the present
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time, Eq. (3.31) evaluated for n = 1y and x = 0, can be written as a the sum of “initial”,
scalar and tensor contributions,

3 ~
S e 1(0) = 4(=i)' 4 = @) [ e (BT e )il = )]

3
Sowam.s(@) = (-4 = ngnla)] [ o
A3k

5GW,€m,T(Q) = 47T<—’i)£[4 - ngwb(Q)] / Weik.x() Z 7AY2>:n<IA€)H)\(k>Ag<k, 1o, nin) ,
A=+2

ekxoyy (B)C(K)AS (k,no, i)

(3.33)

where we have defined the scalar and the tensor source functions

A?(kv o, nin) ETCP(T/in; k)]i[k(n() - nin)] + /no d77 [T<i>(777 k) + T\/I/(nv k)] jf[k(no - 77)] )
Min

AT (70, 1) =y | 211 /no Ty (n, k) 20— )]

((—2)14 ), R —m?
(3.34)
with the tensfer function of the scalar and the tensor perturbations defined by
‘I)(ﬁa k) =To (777 k)C(k) >

Hij(n, k) =Tu(n,k) Y eija(k)Ha(k).
A==£2

Additional details on the derivation of Eq. (3.33) have been provided in Appendix D.
The source functions provided in Eq. (3.34) encode all the information related to the
evolution of the perturbations in time, given by the transfer functions, and to the projection
effects, associated to the spherical Bessel and their derivatives. The stochastic part of
the anisotropies is factorized in the primordial stochastic fields ¢, which is the curvature
perturbation defined in Eq. (2.69), and H), which corresponds to the amplitude of the
primordial tensor fluctuations during inflation, computed in Eq. (2.68). In our discussion,
we have assumed that I'(nip, X, q) does not depend on 7, allowing to use the spherical
harmonics decomposition written above. In Section 4.2 we show an explicit example in
which T'(7in, X, q) depends on the direction of observation through the combination (l% .
4)?, generating a quadrupole anisotropy in the initial conditions. A more general term
in which the initial perturbation of the distribution function depends on the direction
of propagation of gravitons alone could be generated by models that break statistical
isotropy [245, 246, 247], although this is not the only possibility. In our work, however,
we neglect this cases, leaving them for a future study. In some cases, the initial condition
contribution, daw ¢m, 1, can be written by factorizing I'(nin, X, ¢) as the product of a transfer
function and a stochastic part, see, e.g., Eq. (3.39). In Eq. (3.33), we do not use such a
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decomposition yet, in order to be as much general as possible. The angular power spectrum
of the CGWB at two different frequencies is defined then by using

Saw em (@1)0¢w o (42) + 0awW em (42) 0w prms (G1)
54016y COGWBXCGWB (0 < m m y m O'm

(3.36)
The angular power spectrum of the CGWB for two momenta ¢; and ¢ can be decomposed
as the sum of an initial, a scalar, a tensor contribution plus the cross-correlation between
the initial term and the scalar and the tensor ones,

CFOWBXCOWB (g1 o) =47 [4 — ngwb(q1)][4 — ngwb (42)]

dk 2 2
/ ? [‘A?(kﬂmﬂ]in)‘ PC(]C) + ‘Ag(k}, 7]0,77111)‘ PT(k)
+ 32[k(no — 1) Pr(k, 41, g2)
+ A7 (k,n0, in) e[k (0 — nin)] (P c(k, 1) + Px ¢ (k, q2))

+ A7 (ky 10, M) Jelk (0 — min)] (P17 (K, a1) + Py r(k, qz))} ;
(3.37)

where we have defined the following spectra, keeping into account for any possible corre-
lation between the intial conditions with the scalar and the tensor perturbations,

72
(€00)¢" ) =i (2m)" Pelha)olla — k).
(Hij(ki)H* " (k2)) 52};?(2@3 Pr(k1)d(k1 — ko),
<F(nin>k17Q1)F*(;71n,k27Q2) + C‘C‘> 52;;2(2#)3 Pr(k1,q1,q2)d (k1 —ks), (3.38)
1
. * * (00 71‘2
<F(771n’k1’q)C L (”ln’kl’Q)C(k2)> :%(2%)3Px,4(k1,Q)5(k1 ~ky),
. * * (o 7.(.2
<F(771n7 ki, Q)H (k2) ‘; r (77m, ki, CI)H(k?) > 52]{%(2703 P><,T(l€1; q)5(k1 _ k2) )

Egs. (3.33), (3.37) account for the presence of extra random fields in the early Universe
only in I'(min, k, ¢), because any source of isocurvature, that could affect the metric per-
turbations [41, 248, 249], has been constrained at lower energy scales by CMB measure-
ments [122, 123, 34|. In the most general case it is clear that the frequency dependence of
the angular power spectrum cannot be factorized out, but it depends on the convolution
of the integral over k, generating different scalings of the angular power spectrum with the
frequency at different multipoles [1]. In the case in which the tensor tilt of the CGWB does
not depend on the frequency, ngwh(q) ~ const., and the initial condition does not depend
on the frequency and is proportional to the curvature that sources the scalar perturbations,

F(nim k)jz[k(ﬁo - nin)] - Ag(ka o, 77111) C(k) ’ (3'39)
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we can write the angular power spectrum by in the simple form

i) )k [‘Aﬁ(ka%ﬂ?in) + A?(kﬂ?oﬂ?inﬁpc(k) + }Ag(kan&nin)‘QPT(k)} -
oW

(3.40)

3.3 Initial time and source term

The evolution of the distribution function of the cosmological gravitons is computed by
using the Boltzmann equation, starting from an initial time 7, until the present time at
which observations are perfomed, 1. The choice of the time at which the initial conditions
are set is different w.r.t. the CMB case. Photons are indeed tightly coupled to baryons until
recombination, therefore it is sufficient to choose any initial time for which the smallest
observable scales in the CMB are larger than the causal horizon. This is due to the fact
that any effect in the evolution of the Universe before that time is washed out by the
tight coupling of photons with baryons. On the other hand, since the CGWB decouples
at the Planck epoch, it allows to probe much earlier times in the cosmic history, thus a
more rigorous definition of the initial time, from whom we start evolving the distribution
function by using the Boltzmann equation, is needed. In this Thesis, we consider a CGWB
of frequency f generated at the time 7,4 and decoupled afterwards. If at ny.,q the GWs
are inside the horizon, it is possible to use the approach described in Section 1.1.2 and 3.1,
by using geometric optics and introducing a distribution function for graviton, setting
Tin = Nprod- On the other hand, if the shortwave approximation is no longer valid, it is not
possible to describe the CGWB as an ensemble of massless particles, because, for example,
the energy density of the gravitational field is not well defined. In the case in which the
GWs produced at 7,04 are super-horizon, the initial conditions are set at 7, = 150 Ny .,
where

1/q Radiation Domination
(R :{ / (3.41)

H(Mh.e.) 2/q Matter Domination

with H the conformal Hubble rate. The factor 150 implies that the modes are deeply inside
the horizon, ensuring the validity of the shortwave approximation. In full generality, it is
possible to compute the initial time as

nin(f) = max [nprod7 100 77h.c.(f>] . (3'42)

The vast majority of the primordial mechanisms that source a primordial background
generate GWs within the causal horizon, therefore the case 7, (f) = 15074 (f) would
apply just to few cases that are basically related to inflation. We will show an explicit
example in Section 3.4.1. The frequency dependence of the initial time implies that the
anisotropies of the CGWB at different frequencies are sensitive to the geometry of the
Universe at different times, as we will discuss in detail also in the next chapters.
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3.4 Cosmological Gravitational-Wave Background Sources

The physical observable that we can measure with interferometers is the CGWB density
contrast [39, 40, 149|, defined in Eqs. (1.49), and it is related to the perturbation of the
distribution function, defined in (3.18), by Eq. (3.21). In order to connect the solution of
the Boltzmann equation to the observable, it is necessary to know the spectral tilt of the
monopole of the CGWB, defined in Eq. (1.48). Since this tilt is model dependent, we need
to know the underlying source of GWs to properly characterize the amplitude and the shape
of the angular power spectrum. In this section we enumerate the most promising sources
of GWs, because they relate to different aspects of early universe models: inflation with a
blue tilt, first-order phase transitions, and second-order-induced GWs. In this section we
will focus just on the monopole contribution of the different sources, although differences
in the initial conditions could emerge. We will go through these additional differences in
Chapter 4.

3.4.1 Quantum fluctuations of the metric during inflation

During inflation, the quantum fluctuations of the scalar and tensor perturbations of the
metric could be amplified by the accelerated expansion of the Universe [167]. The ampli-
tude of the fluctuations of plane waves of frequency k and q, when kn = 1, gets frozen to

the value
2
(s QR 3 (a)) = T (2m)° Py (k) 5k — ), (3.4

where Pr(k) is the primordial tensor spectrum. In canonical model of inflation, it is
computed by using

2 H?
Prk) ~ =5 —% | (3.44)
w2 M3,
for kK = aH. The amplitude of the primordial tensor spectrum at the pivot scale k, =
0.01 Mpc~! is connected to the amplitude of the scalar power spectrum by the tensor-to-
scalar ratio,

Pr (k) =71 P (ky) (3.45)
while the evolution in frequency is typically determined by the tensor tilt ny,

Pr(k) = Pr(k,) (:)n . (3.46)

The most recent bound on (r,n:), obtained in [210]|, contraints r < 0.98 and n; €
[—1.37,0.42] at 95% confidence level. These constraints have been obtained by combining
measurements of the polarization of the CMB maps, from Planck (considering also the in-
tensity) |26, 250, 34] and BICEP/Kek [251], with the current limit on the direct detection
of SGWBs provided by LVK [209]. The analysis done in [210] constrains an inflationary
CGWB parametrized by Egs. (3.45), (3.46) (see, e.g., [128] for constraints on r by fixing
nt to the value predicted by single-field inflation), without considering the most general
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case in which there could be a running on the tensor tilt, that becomes frequency depen-
dent. In this Thesis, we will also focus just on the case of an inflationary CGWB with
a null running of the tensor tilt. The inflationary spectrum of the CGWB can be simply
connected to the observed background by evaluating the propagation of the GWs across
the cosmic history. By comparing the definition of fractional energy density of the CGWB
per frequency bin, given in Eq. (1.45), with the expression for the energy density of the
GWs, Eq. (2.95), where the energy-momentum tensor can be computed by using (1.28), it
is possible to show that the energy density of the primordial background is

S — T (3.47)

12H} a2

The transfer function T}, has been defined in Eq. (3.35) and its analytic expression will be
written explicitly in Eq. (F.33). The average of the square of the time derivative of the
transfer function is the corrispective the Brill-Hartle average that appears in the definition
of the energy-momentum tensor of the GWs. It is possible to show that when n — ng, the
energy density of the GWs becomes

QCGWB(U: Q) =

SR N "ng 3.48
~ RE ) 349
where 7)¢q is the conformal time at the equality between matter and radiation. This relation
takes into account the evolution of the tensor modes that re-entered the Hubble scale during
radiation domination [227], taking into account the evolution of GWs during radiation and
matter domination, while the effects due to the propagation of tensor modes during dark
energy domination are negligible. Besides, Eq. (3.48) neglects the damping of tensor modes
propagating in a Universe with non-zero anisotropic stress [252, 253, 254, amplified for
instance by free-streaming particles. When the damping is due only to active neutrinos,
this effect is close to 0.82, while in general it is proportional to the fractional energy density
of relativistic and decoupled particle species at the time at which the tensor perturbations
start oscillating, n ~ 1/q. We provide additional details on the derivation of Eq. (3.48) in
Section 5.2. In this prescription, the quantity Pr in Eq. (3.48) is the same power spectrum,
evaluated at a different scale, that generates the tensor contribution to the ISW of the CMB
and of the CGWB, defined in Eq. (3.40).

In this scenario, the production time of the CGWB corresponds to inflation, during
which the tensor fluctuations are amplified. However, once the GWs cross the Hubble
horizon, they are frozen and do not oscillate in space and time, thus it is difficult to define
properly the energy density of the CGWB. This problem is analogous to the definition
of the energy-momentum tensor when the shortwave approximation is not valid, see Sec-
tion 1.1.3. As debated in Section 3.3, to compute the anisotropies of gravitons, it is crucial
to define time 7);;, at which we evaluate the initial conditions on the distribution function.
Considering that at 7,04 the tensor modes are outside the causal horizon, we should define
the minimum time at which the shortwave approximation holds. By construction, q > k,
therefore we should chose a value of ¢gn large enough in such a way that GWs could be
considered an ensemble of collisionless and massless particles. To do this, we look at the

Qcews(n,q)
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Figure 3.1: Plot of the transfer function of the energy density of the CGWB, multiplied by a*. When gn & 150, the

energy density scales like a=4, thus the CGWB behaves like a standard radiation fluid.

evolution of the energy density of the GWs, Eq. (3.47), during the radiation dominated
epoch. As we will see in Eq. (F.33), the transfer function of the tensor perturbations that
re-enter the horizon during the radiation epoch is

Th(n,q) = jolan) , (3.49)
therefore the energy density of the primordial background is

1 1
PG

1262 "
Note that when gn > 1, it is possible to use (sin?(qn)) = (cos?(gn)) = 1/2 and (sin(qn)) =
(cos(qn))0. In Figure 3.1, we plot a* <(T,’1)2> as a function of ¢gn. We note that when

Qcewn(n, ) = ([ - (3.50)

qn ~ 150, a*Qcgwr ~ const., thus the energy density of the CGWB scales like standard
radiation. In this case, we define 7, = 150/q, because at this time gravitons can be
described as a radiation fluid. From 7,4 up to 150/¢, the evolution of the CGWB should
be characterized by the transfer function of the tensor perturbations, keeping into account,
eventually, for any kind of wave-optics effect in the propagation [255].

3.4.2 Primordial Black Holes

GR is a nonlinear theory, therefore, although at linear order the evolutions of scalar and
tensor modes are decoupled, secondary GWs could be produced by quadratic contributions
in the scalar perturbations, which act as a source in the transverse and traceless part of
the Einstein equations [168, 169, 170, 171, 172, 173, 174] (see [256] for a recent review).
In [174] it has been shown indeed that if the scalar power spectrum used to compute the
perturbations of the CMB is assumed, the amplitude of the cosmological background is
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expected to be subdominant, Qcgws ~ 10722 (f/1Hz)~%!. Consequently, to produce
a notable amount of GWs, it is necessary to have an enhancement in the scalar power
spectrum, at the frequencies of the CGWB, compared to the inflationary predictions.
Deviations from scale invariance [257| happens for instance in an ultra-slow-roll phase [258,
259, 260], or in multi-field models [261, 262, 263]. The magnification of P at small scales
implies that a big number of regions with large density fluctuations is present in the early
Universe. When the density fluctuations of these regions are larger than a critical value,
they collapse forming PBHs [264, 265, 202]. The mass range of these PBH are of the order
~ (0.001 — 1000) M, which enclose the actual mass range probed by current detectors.
The peak in the scalar power spectrum could augment the production of PBHs in such a
way their abundance could be constrained by future observations'. The CGWB associated
to the secondary-GWs has been computed for different shapes of the primordial power
spectrum [266]. In the monochromatic case, with a primordial scalar spectrum featuring a
Dirac delta-function, P¢, () = As ¢+ 0 (¢ — g«), the SGWB energy density can be computed
analytically and results [267, 23]?

1 A} fPTARR
adH3n? 15552 f2 | f?

where 0 is the Heaviside step function, and
72 <f* f*)
ff

729 [ F\" 22\ " 2\ Af2
S NG S RIS Rl =

— 1]201{ (2f. — f) T? <f ?) (3.51)

Qcaws(no, f) = 7

2
(G5 1)

)

(3.52)
The peak GW frequency f, is related to the spike scale g, by
c
= . - 3.53
fe=grart (3.53)

3.4.3 Phase Transition

When a PT takes place, the Universe goes from a metastable to a stable state, which
represent the configurations of minimal potential energy at high and low temperatures
respectively. If latent heat is involved, the PT is of the first order and the phases of the
Universe are converted from the false to the true vacuum in a discontinuous way, through
the nucleation of bubbles [183]. Such first order PTs can happen in many extensions of
the Standard Model (e.g., with additional scalar singlet or doublet, spontaneously broken
conformal symmetry, or phase transitions in a hidden sector). In [20], it has been realized

!Together with the secondary GWs, an additional SGWB could be produced by the merging of binary
systems of PBHs. This SGWB would have a similar shape in frequency of the AGWB discussed in Section 7
and could be constrained by space- and earth-based interferometers, depending on the mass of the PBHs.

2This expression is valid during radiation domination.
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for the first time that a large CGWB could be produced during a first-order PT and this
is potentially detectable by present and future GW interferometers [184, 145|. In general,
three main mechanisms contribute to the generation of GWs [114], by acting as a source
in the transverse-traceless part of the Einstein equations:

e Bubble wall collisions creating distortions in the plasma. Their action is usually
accounted with a method called envelope approximation [185, 186, 187, 188, 189,
consisting in approximating the bubble motion with an infinitesimally thin spherical
layer. This is the backbone of the scalar field ¢ contribution to the SGWB signal.

e Sound waves generated by the coupling of the scalar field to the plasma during
the expansion of the bubbles. These compressional modes constitute an important
source of GWs also long after the collision of the bubbles [190, 191, 192].

e Turbulence phenomena after the bubble collision, which generate vortices in the
fluid with a non-vanishing quadrupole moment. The amount of GWs sourced by
these eddies from Magneto-Hydro-Dynamics (MHD) turbulence has been computed
for instance in [193, 194].

As a consequence, the density of GWs generated by phase transitions can be split into
three contributions,

QGW(f) = Qd)(f) + st(f) + Qturb(f) . (3~54)

Broken Power-law

Each of these three contributions can be well described by a broken power law (BPL)
spectrum. In CLASSGW we use the same parametrization as in the LIGO analysis of
_ _ f n
ot 9. (1)

Ref. [268],
S A
)t (f)

with n1 = 3 to account causality, ny takes the value —4 (resp. —1) for sound waves (resp.
bubble collisions), and the contribution from turbulence (MHD) is neglected.

ng—nq
A

(3.55)
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Chapter 4

Initial conditions of the CGWB

The non-thermal nature of gravitons poses a significant challenge in setting the initial con-
ditions. In the case of CMB photons, the tight coupling of the photon-baryon fluid leads
to the evolution of any initial distribution in phase space toward the Maxwell-Boltzmann
distribution, as defined in Eq. (2.89). The effects of inhomogeneities in the electromag-
netic field at early times, occurring well before the thermalization of photons, remain
unobservable due to the opacity of the Universe during these earlier epochs, long before
recombination. On the other hand, the CGWB decouples when energy scales fall below
the Planck scale, denoted as Tp; = 1.22 x 10, GeV [37]. Consequently, the spectrum of
its monopole and anisotropies contains valuable information about the mechanism respon-
sible for its generation or, equivalently, about the initial conditions. In this section we
quantify the amount of initial inhomogeneities in the energy density of CGWB from dif-
ferent sources, keeping track of adiabatic and non-adiabatic contributions. The approach
we employ in this chapter is general and can be extended to compute the initial conditions
of any stochastic background of primordial origin. We begin by illustrating the simplest
scenario in which the initial conditions of the CGWB are assumed to be adiabatic. This
initial examination reveals significant differences between the CGWB and other cosmolog-
ical relics, such as the CMB. In subsequent sections, we compute the initial conditions for
non-adiabatic perturbations, including those generated by the quantum fluctuations of the
metric during inflation or SIGW.

4.1 Adiabatic initial conditions

If the Universe is filled with many different particle species, the adiabatic initial condition
imposes that the relative entropy between two different particles, defined by

1 1
Sog = — 0 0, 4.1
af 1+wl 'L+1+wj]7 ( )

is equal to zero. We recall that we have defined, consistently with Eq. (2.104), the density
contrast of the species 1,
Sp:
5 =L (4.2)
Pi
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Under this assumption, the density contrast of different perturbations are just rescaled by
their equation of state parameters,

1+wi5

5 =
! 1—|—’LUj]

(4.3)

When the perturbations are adiabatic, it is immediate to get a relation between §; and the
metric perturbations, and thus the curvature perturbation ¢. The (0,0) component of the
Einstein equation given in Eq. (2.108), if we use Eq. (4.3), assuming that all the species
involved are relativistic, gives

50, ) = — 2 ¥, ) — 2o, ). (4.4
where we have neglected the term proportional to k?¥ in the Einstein equations, because
we set the initial conditions when the modes are super-horizon, kn ~ k/H < 1. In
Section 5.1, a more precise derivation of the initial conditions will be done and we will also
show that W’ is negligible at early times, because the variations of the scalar potentials are
suppressed by the expansion of the Universe. In the CMB case, the spectrum is thermal
and, as we have shown in Eq. (2.101), the perturbation of the distribution function is just

1 1
O©o(1in, k) = Z5CMB(771n, k) = —§‘I>(ﬁin, k). (4.5)

The graviton spectrum is non-thermal, therefore the density contrast is not dcqgwn defined
in Eq. (1.49), but a bolometric quantity, integrated over the frequency of gravitons,

ol _dpcawnink) S grmaf@ 0+ (4- ngwb< ))T(n, k, )]
dcaws(n k) = roawsln) f( i ‘ (4.6)

In the graviton case, the adiabatic initial condition corresponds to

58%\7\713 (777 k) = _2(1)(777 k) ) (47)

which is an integral equation for I'(n, k, q) that needs a further assumption to be solved.
The generalization of the adiabatic initial condition we make consists in considering gravi-
tons in each bin as many independent and decoupled species and for each of them we apply
the adiabatic initial condition. In a mathematical language, we assume that

2
scaws(n. k,q) = dcawn(n, k) = &3y (0, k) = T(n,k,q) = ——————0(n, k), (4.8)
4 — ngwb(Q)

where the density contrast has been defined in Eq. (3.21). This condition can be obtained
by requiring that the adiabatic initial condition has to be true for any f(q),

3
/ (d LI @RI0K) + (= ngn(@) Tk =0,V @), (49)
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thus the integrand over ¢ has to be always zero and we get the adiabatic initial condition

2

T'(n,k,q) =T5P(n,k,q) = ————~
(n,k,q) =To"(n,k,q) PR——

d(n, k). (4.10)
The subscript 0 clarifies that in the adiabatic case the initial condition is a monopole term,
while higher multipoles are suppressed. To see explicitly this, it is sufficient to notice that,
by combining the (0,0) and the (0,7) Einstein equations, see e.g. Eq. (2.108), one would
get

1 k U (nin, k)
2P (i, k, q) = — [ 4 @ (i, k)| 4.11
Uk 4) = @) ) | Ay UM (4.11)
from which we conclude that
T3P (in, ke, )| < ‘4_n b(q)é(mn,k)‘. (4.12)
foag

In analogy with CMB photons, we can assume that higher multipoles are also suppressed,
because of some tight coupling regime between GW modes at the production. Furthermore,
at the initial time 7, the structure of the Boltzmann hierarchy! requires I'y(nin, k, q) ~
Enin To—1(in, k, q), therefore the ¢ contribution is suppressed w.r.t. the £ — 1 one, since
knin < 1. The substantial difference between the CMB and the CGWB case is encoded in
the factor 4 —ngy1,, which reflects the contrast between photons, which are thermalized and
the perturbation of their distribution function © does not depend on the frequency, and
gravitons, whose initial condition is set by requiring that the perturbation of the energy
density in a given frequency bin dcgwp does not depend on the frequency.

Behind the idea of adiabatic initial conditions, there is the assumption that any kind of
perturbation in the Universe is generated by a single-clock during inflation. The conjecture
relies on the fact that there exists a time-shifting function é7n(x) such that the perturbation
of any homogeneous and isotropic field X can be written according to
0X(n,x)

S b —3H(n)(1+wx)dn(x) .
(4.13)

The time shifting function is the same for all the fields, thus it is immediate to get the
condition provided in Eq. (4.3). Adiabatic initial conditions are therefore typically gener-
ated when in the early Universe there is just a single source of energy and momentum that
produces other cosmic relics at later times. To prove this, suppose for instance that ¢ par-
ticles are present during reheating and are originated by one single-clock. The continuity
equations at the background and at the perturbed level are

§X (n,x) = X (n+ dn(x)) = X' (n)on(x) — dx(n,x)

ﬁ; + 37‘[(1 + wz)ﬁz :Qi ,

4.14
5p; + 37‘[(1 + wi)épi — 3\If/(1 + wz)ﬁl =00Q); , ( )

where the energy transfer rate is subjected to the constraint ) . @Q; = 0. For instance, i
could run over the inflaton, standard radiation, and the CGWB. It is possible to show [269]

' A detailed discussion of the Boltzmann hierarchy will be done in Section 5.1.
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that, in the case of single-field inflation, for the species ¢ sourced by the above continuity
equations, the initial conditions are adiabatic. On the other hand, if other fields are present
in the early Universe or if non-Gaussianity is taken into account, the initial conditions could
be non-adiabatic (NAD). It would be useful, for convenience, to express the initial condition
as the sum of an adiabatic and a non-adiabatic term,

T (Nin, k, @) = TP (in, k, @) 4+ TP (1, Kk, q) (4.15)

In the subsequent sections, we will discuss the initial conditions for the sources of
cosmological backgrounds presented in Section 3.4, illustrating mainly the features of the
non-adiabatic contribution (if present).

4.2 Initial conditions in single-field inflation

Non-adiabaticity of the primordial GWs

During single-field inflation, the scalar and the two tensor degrees of freedom fluctuate
independently, since we assume no interaction between these fields in the most vanilla
scenario. The most important consequence of this fact is that it is no longer possible to
assume apriori the adiabatic initial condition,

l—i-wi
l—l-wj’

0 # 0; (4.16)
because the “separate universe” condition is unvalidated by the existence of more than
one clock in the early Universe. Furthermore, the energy density of a cosmological back-
ground is supposed to be much smaller than the energy density of standard radiation,
PcGWB (Min) < Prad(Min), according to BBN+Planck constraints discussed in Section 1.5.
This means that the Einstein equations give no direct relation between dcgwn and draq,

1

2
P42V 4+ H) = ——
3H ( ) Prad + PCGWB

(ﬁrad@(),rad + ﬁCGWB58%WB) ~ =00 rad ;

(4.17)
where we have used the definition of the “bolometric” energy density of the CGWB,
Eq. (4.6). An alternative way to say this is that the metric perturbations are not sen-
sitive to the inhomogeneities in the distribution of gravitons at early times, because such a
contribution is suppressed by the little input that the primordial GWs provide to the total
energy budget of the Universe.

Therefore, the only way possible to compute the energy-momentum tensor of the
CGWB is directly from the gravitational field. The main reason for this is that we have
equations that characterize for the magnitude of the fluctuations and the evolution of the
tensor modes, thus there are no further assumptions (like the adiabatic one) we should
make to evaluate the energy density. In this way, we can connect the only source of infor-
mation we have access (the microphysics involving h;j), to the macroscopic properties of
the system (the smoothed energy density pcawn)-
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Energy-momentum tensor of the CGWB

We recall that in this work we are considering the line element in the Poisson gauge given
in Eq. (3.3), which is

ds” = a(n) {~dnP (1 + 20(n, %)) + da'de (55 (1 — 20(5,%)) + Hij (1,%) + hig(n, )]}
(4.18)
According to the prescription of |35, 36|, explored in Section 1.1.2, the GWs are defined as
the high-frequency part of the metric,

YoV (n,x) =a®(n)hij(n,%) ,

i i : 1 i . (4.19)
YW (,%) =g™ (1, %) (n, 30" (%) = —— | (1 + 40T + HOR]) |

where the metric and its inverse considered have been defined in Egs. (2.77) and does
not contain the rapidly-oscillating waves. In the shortwave approximation, the energy-
momentum tensor is defined by Eq. (1.28), and it corresponds to

1
(GW) () — (GW) (GW) af
T (@) = 75— (Dl @)Dy (2)) (4.20)

Since in the shortwave approximation gn > 1 and ¢/k > 1, it possible to neglect any
containing temporal and spatial derivatives of the metric, because they are subdominant
compared to variations of the GWs, which are proportional to q. The covariant derivatives
of the radiative degrees of freedom of the metric are

ij ipd)!
- (1+4W)hi" — HFGpy, 4.21
DO (’7 J) = a2 s ( )
. (1 4 49)9phi7 — HGgyh)
Dk (’YGW J) = - a2 l )
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which means that the components of the energy-momentum tensor are

1 ) o
= — OGW: / w! — — / J! tk
pawW < 327TGa2<(h ' (1 = 2® + 40) — 20! 1] H )>
1
— J i GW __ k1ij rlaspm
Poaws =57 T 32W€a23<a hi;OFhiT [(1 + 69)5], + HY) + H™9°h™d, hlm>,
TQGW 3

viCaWB == — ((1=20) [(1+4w)n" — 28 h/| Dy )
pcews + Pcaws 4 < hii 'h§j>

) 1 i7,lm 1 7 m
T CGWB :W<(1 +60) (3 R0 hign, — §5jakhl 3khzm>
. 1.
+ (H’kakhlmc‘)jhlm - 36}H7“k8khlm8,hlm>
) 1.
+ (H”alh;najhlm - 35;.Hﬂaswashlm> > :
(4.22)

As discussed in Appendix B, in the shortwave approximation, tensors of the form D,SJ, ,
with Sf, quadratic in %(;J.W’ can be dropped under averages. It is possible to see that,
up to a four-divergence G defined in Eq. E.8, the contributions to the energy-momentum
tensor become

1 ii i1 rrik
POV =555 (i (1 = 20 + aw) — 2m ] B
1 y
Poaws = 2 < R (1 - 20 4 40) + H?"laswashlm> ,
vicawB < dpaw , (4.23)

. 1 . 1.,
7T;~ CGWB :327TGCL2 < <H2kakhlmajhlm - 3(5}H’”k8khlm8rhlm>

. 1.
+ <H”alh;flajhlm — 35;.Hﬂasmashlm) > :

In this way we have shown explicitly that the equation of state of the CGWB is still the
one of standard radiation, Pcqws = pcaws/3-

Initial condition on the distribution function in single-field inflation

The energy density, the pressure, the velocity and the anisotropic stress of the CGWB
evaluated in Eq. (4.23) are “bolometric” quantities, evaluated integrating over all the
frequency spectrum of the CGWB, because the GWs considered h;j(n,x) are the superpo-
sition of many small-scale GWs of frequencies ¢g. It is possible then to use the expansion
of the GWs introduced in Eq. (1.38), decomposing the CGWB into many plane waves,

d3 19X rim
hij (1,%) = / 3Zeq A @A™ (0, Q)T (1, 9) (4.24)
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where Tj(n, q) is the transfer function of the tensor perturbations of momentum ¢ at the
time 7, introduced in Eq. (3.35) for the large-scale tensor perturbation H;;. The two-point
correlation function of the GWs at a generic time after inflation is given by

1875

(ha(n, @)y (n,d)) = 3 g7 Fr(@)dwdla - d) [Ti(n.q)]” (4.25)

where the tensor power spectrum from inflation has been defined in Eq. (3.43). In this
way, by using the normalization condition

elj(9)e" ' (§) = dav (4.26)

we get that the energy density of the CGWB is equal to

1 d3q 272 2
= =P T,
peews = g5-gaz | T Pri@ ([Thim o))

1 —2®8(n,x) 4+ 4V (n,x) — 2HY (n,x Zek
' (4.27)
It is also possible to show that the polarization tensors obey
Z eir(q = 0ij — Gidj , (4.28)
which means that the perturbation in the energy density of the CGWB is
3 2
PCGWB =35 1Ga2 / (3733 2(17;PT(Q) <[T/L(777 Q)]2> (4.29)

[1—2®(n,x) + 4¥(n, x) + 2H" (n,%)q:d;] -

In order to connect the perturbation of the energy density to the perturbation of the
distribution function, we recall that the energy density of the CGWB can be written in
terms of the distribution function by combining Eqgs. (3.16) and Eq. (3.18), we write the
energy density as

Pq - [ q df }
pCGWB:/fq - =~ (@I'(nxq)|, 4.30
i) 1= 5 G @r %, (430
which makes possible to connect the unperturbed distribution function of gravitons to the
primordial tensor power spectrum,

fa)

™

= WPT((]) <|:Tf/L(777Q):|2> ) (4.31)

in agreement with Eqgs. (3.17), (3.48). The perturbation of the distribution function of
graviton is then

(n,x,q) = ) [—2®(n, x) + 4V(n, x) + 2HY (0, %) G:d;] - (4.32)

4 — ngwh(q
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The Fourier transform this expression at n;, gives the initial conditions in the case of
single-field inflation,

L (1in, k, q) = —20(1in, K) + 40 (i, k) +2Y  Hx(1in, k)€ (k) Gsd

(4.33)
By assuming that the primordial tensor modes are unpolarized we can use Eq. (4.28),
finding

T(n,k,q) = {—2<I>(n,k) + 4 (n, k) + 2H(n, k) [1 - (k: : qﬂ } . (4.34)

4 — ngwb(q)
We recognize in this equation the adiabatic contribution, Eq. (4.10), plus non-adiabatic
terms which reads

FNAD(

n,k,q) = {4@(77, k) + 2H (1, k) [1 - (k: : q) 2} } (4.35)

4= ngwn(q)
By recalling that the first Legendre polynomials are
1

Po(p) =1,  Pilp)=p, Pap) =502 -1), (4.36)

where p = k - G, we get that the initial anisotropy of the CGWB is the sum of a monopole
and a quadrupole,

1 2
To(nin, k = | -2®(ny. k 4 (ny, k —H(ny, k
0(771n7 aQ) 4 _ nng(q) (771n7 ) + (771n7 ) + 3 ("7m, ) >
Fl(nilh ka q) :0 9 (437)
1 2
I'o(Min, k, Q) = — ————— H (Wi, k) .
2(77111 Q) 4 _ nng(q) 3 (ﬁm )

In this interesting case, the initial condition does not consist of just a monopole term
proportional to the primordial scalar perturbations, but it includes also a quadrupole
related to the large-scale tensor modes. The source functions associated to this peculiar
initial conditions are similar to the ones defined in Eq. (3.34) and it can be decomposed
into a scalar and a tensor contribution,

AP :4—nlb(q) (2T (Nin, k) + 47w (1in, k)] jelk(no — 7in)] 5
At 1 [ Dk = ) 439
T T () R\ = 2) R o — mn)?

If the monopole of the CGWB does not depend on the frequency, the angular power
spectrum can be computed by using

CEGWB B / %
47‘((4 — ngwb)2 k

[PR(k) (Afs + A§)2 + Pr(k) (AfT + A,Tﬂ . (4.39)
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4.3 Initial conditions in presence of primordial non-Gaussianity

In this section, we evaluate the initial conditions of the CGWB sources by second-order
scalar perturbations discussed in Section 3.4.2. In this case the CGWB is originated by
scalar perturbations which are adiabatic, therefore the presence of the adiabatic initial
condition, Eq. (4.10), is unavoidable. However, in [23] it is shown that if some (local)
underlying non-Gaussianity is present in the primordial curvature perturbation, an addi-
tional intrinsic primordial GW inhomogeneity is produced. We parametrize the curvature
perturbation as in 23],
d®p

09 =609+ ¢ . [ 556 ) Gk ), (440

where the subscript g identifies the Gaussian part of the perturbations. The fn1, parameter
is assumed here to be scale-independent. In this case, on top of the adiabatic contribution,
the CGWB energy density exhibits an additional inhomogeneities proportional to the non-
Gaussian term. The total energy density reads

e - 2 % d3k ik-x
Qcaws(n,%,q9) = Qeaws (7, 9) [1 yR—pnY ngwb(q)q)(n’k) +5 fNL/ 27 e (g ((k) 7)
4.41

where the monopole has been computed in (3.51). The additional perturbations to the
energy density in a given frequency bin, proportional to fxi,, do not depend on q, thus we
conclude that also in this case the non-adiabatic initial condition is a monopole,

1 24 3k
NAD (. _ / ex oK) 4.42
0 (77 » X, Q) 4 nng(q) 5 fNL (27{')3 € Cg ( ) ( )

In Fourier space, this initial condition reads

1

FNAD - k —
0 (TI ) 7Q) 4 — ngwb(Q)

%4 Fan Go(K) (4.43)

where (4(k) represents the Gaussian curvature perturbation on large (cosmological) scales,
whose power spectrum is given by P¢(k) in the notations of previous sections. In this case
the non-adiabatic contribution exactly correlates with the adiabatic and the scalar ones,
while the correlation with the tensor perturbations is zero.
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Chapter 5

Imprint of relativistic and decoupled
species on the anisotropies of the

CGWB

The angular power spectrum of the CGWB depends on the initial conditions, I'(niy, k, q),
and on the evolution of the large-scale scalar and tensor perturbations of the metric,
®(n,k), ¥(n,k) and H;j(n, k). Since the energy density and the anisotropic stress of
the CGWB are subdominant w.r.t. the other particle content of the Universe, the dy-
namics of the metric perturbations during cosmic history is univocally determined by
the combined Einstein and Boltzmann equation for radiation, matter and dark energy,
Egs. (2.107), (2.108). In this Chapter, we review the evolution of the metric perturbations
at different times and for different scales, discussing their impact on the angular power
spectrum of the CGWB. As discussed in Section 3.3, the angular power spectrum of the
CGWSB is sensitive to the geometry of the Universe at very early times, because there is
no tight coupling that could wash out this contribution. This is the reason why a lot of
attention will be devoted to discuss the initial conditions of the scalar perturbations at .

5.1 Initial conditions for the scalar perturbations of the met-
ric

We consider the Universe at early times populated by some relativistic tight-coupled par-
ticles with energy density pcoup and by relativistic decoupled species with energy density
Pdec- We consider the CGWB as an independent decoupled species whose energy density
is subdominant, pcawB < peoup- Most of the mechanisms that could produce a CGWB
occur at energy scales much larger than 100 GeV, therefore it is reasonable to assume
that all the Standard Model particles are coupled via the electroweak and the strong in-
teractions, while the decoupled degrees of freedom could emerge because of some physics
Beyond Standard Model, such as Supersymmetry [227|. The relativistic degrees of free-
dom are characterized by the perturbations of the distribution functions ©coup and Ogec,
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introduced for the CMB analog in Section 2.4. The distribution function for the tight-
coupled particles consists just in a monopole and in a dipole term, because the remaining
contributions are suppressed by the large number of interactions, while for the decoupled
species one could use the collisionless Boltzmann equation to understand the behaviour of
the distribution function [42],

@éiec(na kv TAZ) + ik/j“@dec(na k7 ﬁ’) = \I//(’I’], k) - Zkﬂ‘p(na k) . (51)
By expanding the distribution function in Legendre polynomials,

@dec(nv k) ﬁ) = 2(26 + 1)PE(N)@dec,€(n) k) ) (52)
14

we can derive an hierarchy of Boltzmann equations for the f-coefficient of the multipole
expansion of the perturbation of the distribution function,

/ P oy (i de, ) + ik use (., ) — Pol) ¥ (. K) + ik Py () (. K)] = 0.

2 (=)
(5.3)
which leads to
@:iec,O(n7 k) + kgdec,l(nv k) :‘I’/(Ua k) )
1 2 k
iiec,l(na k) - gk@dec,oo% k) + §k9dec,2(777 k) :gcb(nv k) ;
/ 2 3 (5.4)
dec,2 (777 k) - 5k@dec,1(nv k) + gk@dec,S(na k) :07
ke k(¢+1)
! k) - —— _ k)+ ——= k) =
@dec,é(n’ ) 20 + 1@dec,€ 1(777 ) + 20+ 1 @dec,ﬁ—‘rl(na ) Oa
where the last equation holds for £ > 2 and we have used the relation
=——[(l+1 LPy_ . 5.5
uPe(p) = 5 [+ 1)Pesa(p) + EPe—1 (u)] (5.5)
From the last equation it is clear to see that, when kn < 1 and ¢ > 3, we have
@dec,ﬂ ~ k77 @dec,ffl — @dec,é < @dec,éfl 3 (56)

therefore we are allowed to neglect all the multipoles above the quadrupole. Then, the
hierarchy of the Boltzmann equation for the coupled species is

itoup,O(”? k) + k@COUP,l(Th k) :‘PI(% k) s

1 k
::oup71(777 k) - gk@COURO(n’ k) :g‘b(% k) )

where all the multipoles above the dipole are zero. If we assume to be in radiation domina-
tion, the scalar and the transverse-traceless part of the Einstein equations, given in (2.108),
read

(5.7)

1 1 2
k2\1j + - \I// + Q| =—-— [(1 - fdec) (-)coup,O + fdec@dec,O] ’
n " n?

12
kz (CI) - \Ij) - ﬁfdecedecz >

(5.8)
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where we have introduced the fractional energy density of relativistic and decoupled particle
species
Pdec (77)
Jaec(n) = = - - : 5.9
w«() Pdec(n) + Peoup (1) + Pcaws(n) 29
where pcagwp has been written for completeness, but it is negligible compare to the other
two energy components. When kn < 1, the first equation of the Boltzmann hierarchy
gives

6, 0= éiec,O = \II/ . (510)

coup,

If we combine this relation with the derivative w.r.t. the conformal time of the (0,0)
Einstein equation we get
nv" + 30 + ' =0, (5.11)

where we have neglected the k¥ term that appears in the Einstein equations. These
equation has a constant solution and another one, which goes as =% that is suppressed
by the expansion of the Universe. It is therefore legitimate to consider just the constant
solution and, by neglecting the temporal derivatives of ¥ in the (0,0) Einstein equations,
the initial condition for the monopole of the perturbation of the distribution function reads

2
¢ = _? [(1 - fdec) ®c0up,0 + fde(:@dec,o] . (5.12)

If the initial conditions are adiabatic, Ocoup,0 = Odec,0 and we find the initial condition
used for the CMB [42], which simply connects the perturbation of the energy density to

the Newtonian potential,
1

®coup,0 = _5(1) . (513)
It is possible then to find a relation between ® and ¥ by combining the transverse-traceless
part of the Einstein equations and the Boltzmann hierarchy of the distribution function of
the decoupled degrees of freedom. By taking two times the derivative w.r.t. the conformal
time of the transverse-traceless part of the Einstein equations, neglecting the derivatives
w.r.t. the scalar perturbations, we get
k2
Moo= ———(® — V). 5.14
dec,0 6 fdec ( ) ( )
By plugging this expression in the derivative w.r.t. conformal time of the equation for the
evolution of the quadrupole in the Boltzmann hierarchy we get
2 k> 2 1 2 1
Heco = =k Olees = ————(® = ¥) = Zk* | =Ofeco — = O ~® . 5.15
dec,2 5 dec,2 6fdec( ) 5 3 dec,0 3 dec,2 + 3 ( )
By expressing ©gec,0 by using the adiabatic initial condition, Eq. (5.13), and Ogec,2 through
the transverse-traceless part of the Einstein equations, we get a relation between the two
scalar perturbations as a function of the fractional energy density of relativistic and de-
coupled species, defined in Eq. (5.9),

w319 = [14 2 )| 000,10 (5.10)
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It is useful to write the initial condition as a function of the primordial stochastic fields
sourced during inflation, in particular as a function over the primordial curvature pertur-
bation ¢ defined in Eq. (2.69). This quantity, which is gauge invariant and constant on
super-horizon scales, is defined in terms of the line element given in Eq. (2.74) by

1 op(n, k)
¢(k E—[Dn,k +k2Fn,k]—H_. 5.17
(k) (1, k) + k" F (1, k) 500 (5.17)
In the Poisson gauge D = —W¥ and F' = 0, while under adiabatic initial conditions and

in a Universe dominated by radiation the second term, which corresponds to the total
fractional density perturbations, simplifies to

op pa 0pa 2 1 p
- - —_Z9 £ 5.18
P Z Pa g —3H(1 + wa)pa H Z 1 4 Wa Pa (5.18)

« o

In the case in which all the particles are relativistic, we set w, = 1/3, finding the initial
conditions on the scalar perturbations

~1
(b(nv k) == ; |:1 + éfdec(n)] C(k) ) (5 19)
5 .

Wk =~ 2 [1+ Zgaet] [14 25 facn] <0

These expressions are consistent with the result found in [270, 271] for relativistic neutrinos
at much lower temperatures, which could produce interesting signatures in other relics, like
the CMB. Note also that, as realized in [46], the transfer function of the scalar potentials at
high energies is sensitive also the equation of state of the Universe, P = wp. For instance,
if we suppose that there are no decoupled species that contribute to the energy density
of the Universe, which is dominated by a fluid with an equation of state of parameter w,
under adiabatic initial conditions, we can write Eq. (2.69), according to the expression
found in (5.18), by using
2 3(1 4+ w)

(=-v 3(1+w)(1)_>(1)_ 513w C. (5.20)
As we will see in Section 5.3, the initial conditions given by Egs. (5.19), (5.20) play an
important role in the computation of the angular power spectrum of the CGWB, by en-
hancing/damping the anisotropies, depending on the amount of relativistic and decoupled
species and on the equation of state of the Universe at early times.

5.2 Transfer function of the metric perturbations

Once the initial conditions on the metric fluctuations have been determined, it is crucial
to evaluate the evolution of the scalar and tensor perturbations in order to compute the
line-of-sight integrals, Eqgs. (3.33), that allow to predict the CGWB amount of anisotropies.
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The transfer functions introduced in Eqgs. (3.35) are obtained by solving the system of the
Boltzmann and Einstein equations, Eqs. (2.107), (2.108), by numerical integration. In
this Thesis we have modified the Boltzmann solver code CLASS [44, 45| to compute the
angular power spectrum of the CGWB at early times in order to keep into account also for
relativistic and decoupled species and for an exotic equation of state w # 1/3 at 1. In this
section we will comment on the main analytical and numerical features of the computation
of the transfer functions of the metric perturbations, in order to justify the shape of the
angular power spectrum of the CGWB we will obtain. Since the evolution of ®, ¥ and
H;j depends on the nature of the mode (scalar and tensor) and of the wavelength of the
perturbations, we will discuss separately the properties of the scalar and the tensor transfer
functions.

Transfer function of scalar perturbations

As discussed in the previous section, when kn < 1 and the equation of state of the
Universe is constant, Eq. (5.19) regulates the evolution of the scalar perturbations in
time. The only source of variation of ® and V¥ is the change in the fractional energy
density of relativistic and decoupled species, which stays between zero and one, while any
other variation is suppressed by the fact that the wavelength of the perturbations is larger
than the causal horizon. As discussed in Section 2.2, the fractional energy density of
relativistic and decoupled species, defined in Eq. (5.9), is constrained by BBN (232, 272]
and CMB [26] observations. Therefore after nmin ~ 0.1 Mpc, variations in fgec(n) due to
anisotropic stresses are known and can be computed numerically (see, e.g., Section 2.2).
In this section we discuss the evolution of the scalar perturbations from 7y, to 19, while
the transition from n;, and 7Nmin, which depends on the history of the Universe at energy
scales not probed by current experiments, will be examined in detail in Section 5.3.

In the literature [42], the evolution of the scalar transfer function is divided into three
cases, depending on the scale of the perturbation considered. We define the scale of the
modes that re-enter the horizon at the equality between matter and radiation by

1
——— ~0.08 Mpc?, (5.21)

ke
a Teq(Zeq)

where the redshift of the equality has been defined in Eq. (2.15).

When £k < keq, the transfer function is constant during the radiation dominated epoch,
because of the solution for ® and ¥ of Eq. (5.11), when the fractional energy density of
relativistic and decoupled particles is constant. Around zq, the equation of state of the
Universe is changing and the scalar potentials experience a smooth transition from the
end of the radiation dominated era to the beginning of the matter dominated epoch. In
absence of decoupled particles, it is possible to show [42] that the transfer function of the
scalar potentials through z¢q can be expressed as an analytic function,

To(n, k) = Ty(n, (163/T+ () + 95 () + 252 (n) = 8y(1) = 16) W (min, )

(5.22)

1
)= 10y3
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where we have defined the parameter

14 2¢q
=—-. 5.23
vn) = 15 (5:25)
If faec(n) # 0 and ¥ # @, it is still possible to show that the solutions still converge to
3
To(n, k < keq) = Tu(n>> Neq, k K keq) = — (5.24)

During the matter dominated epoch, the transfer function remains constant, because non-
relativistic matter has not enough kinetic energy to escape from the potential wells and
to reduce their depth. On the other hand, T, Ty decay exponentially during the dark
energy era, where the accelerated expansion of the Universe dilutes the amplitude of the
metric perturbations.

If & > keq, the potential starts a decaying before 7.4, because of the high kinetic
energy of relativistic particles that damps the metric perturbations. Also in this case,
when no decoupled particles are present, and thus ® = W, it is possible to find an analytic
solution [42] for the scalar perturbations during the radiation epoch,

kn kn

. kn
[ kn sin 7 — 5 €os 7o
Tu(. k) = Tuln k) = s (51) =3 o (5.25)
V3

The evolution of these perturbations at times 1 2 7¢q is not important, because around
the equality epoch these fields have already undergone over many oscillations, therefore ®
and U at z¢q evolution after the equality produces no effects on the CMB and the CGWB.
For k ~ keq, a smooth transition around zeq occurs, but with larger damping than the
one computed in Eq. (5.24). During the matter dominated epoch, also these perturbations

remain constant and then decay when z < zeq—a.

In Figure 5.1, we plot the transfer functions Ty (solid) and T (dashed) for k < keq
(red), k = keq (blue) and k > keq (green).

Transfer function of tensor perturbations

Because of the decomposition theorem, the tensor transfer function at linear order can be
computed neglecting the presence of the scalar perturbations in the Universe. This assump-
tion, combined with the fact that in GR the equation of motion for the two polarizations
of the tensor modes are decoupled, simplifies a lot the computation of T (n, k), which can
be evaluated analytically in most of the cases of interest. According to [227], it is possible
to find the following solutions for the equation of motion of the tensor perturbations, given
by the first row of Eq. (2.108). When the anisotropic stress is zero, the transfer functions
of tensors are then

Tr(n < Neqs k > keq) =jo(kn) ,
Ne .
T (0 > Neg, k > keq) =7’q [A(K)j1(kn) 4+ B(k)y1(kn)] ,
J1(kn)
Ty (0, k < hog) =20

(5.26)
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Figure 5.1: Left: plot of the transfer function of the scalar perturbation ¥ (solid) and ® (dashed). Right: Plot of
the transfer function of the tensor perturbations H;;. In both plots, we have considered the case in which k < keq
(red), k & keq (blue) and k >> keq (green).

where jp, and y, are the spherical Bessel function of the first and second kind, while the
coefficients A and B come from the matching of the solution during the radiation dominated
era with the one evaluated during the matter dominated era at the equality,

3 cos(2kneq) | sin(2kneq)

A(k) = ,
( ) 2kneq 2k77eq (kneq)Q (5 27)
Blk)=—1+ 1 cos(2kneq)  sin(2kneq) '
B (kneq)? (kMeq)? 2kNeq

In the case of tensor perturbations, the transfer function is just constant when kn < 1,
independently on fge. and w, while it starts an oscillating and damping behaviour for
kn z 1. The main difference between tensor modes that re-entered the horizon during
the radiation and the matter dominated epochs are the oscillating parts in the transfer
function, which consist in different combinations of the spherical Bessel functions. When
a source of anisotropic stress which contributes considerably to the energy density of the
Universe is present, the evolution of the tensor modes around the time kn &~ 1 slightly differ
from (F.33). In [252, 253| it has been shown that the anisotropic stress of neutrinos reduces
the squared amplitude of tensor modes by 35.6 % when k > kq, while the effect is smaller
when k < keq, because the contribution of neutrinos to the energy density of the Universe
at 1 S 1/keq is smaller. As a rule of thumb, we could say that the transfer function of
tensor modes is sensitive to the decoupled degrees of freedom at the time corresponding to
the horizon crossing, i.e., when the GWs start oscillating.

5.3 Scalar contribution to the angular power spectrum of the
CGWB

One of the most important contribution to the anisotropies of the CGWB is due to the
propagation of gravitons through the large-scale scalar perturbations of the Universe ®
and ¥. Egs. (3.33), (3.34) show that the angular power spectrum of the CGWB depends
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on the source function

0
A7 (k,m0, i) = Tq><nin,k)jz[k(no—nin)]+/ dn [T (n, k) + Ty (n, k)] gelk(no—n)], (5.28)
Nin
where the two terms represent the SW and ISW contributions, introduced for the first
time in the CMB context [43]. The main difference w.r.t. the CMB case is given by the
fact that the SW and the ISW are sensitive to the physics operating at 7y, while for
photons the Universe is opaque before 7¢c, because of the tight coupling of the CMB with
baryons. In this section we will explore the main features of these two effects, discussing the
scaling of the angular power spectrum with the multipole and the sensitivity to additional
parameters that govern the evolution of the metric perturbations in the early Universe,

such as faec(1in) or w(7in).

Sachs-Wolfe of the CGWB

The SW is the redshift experienced by a graviton when crossing a potential well at its
production, which enhances/reduces the energy density, depending if the background has
been produced in an underdense/overdense region. A peculiarity of the CGWB is that the
background is generated at early times, when all the perturbations of interest were inside
the causal horizon, since scales that are comparable to the horizon at 1y, would affect the
angular power spectrum! at multipoles much larger than the ones that could be detected

by future interferometers,
Ok~ 1 107 — 1022, (5.29)
Tin
where we have used the frequencies of the CGWB discussed in Section 3.1. If the initial
time, computed by using Eq. (3.42), does not depend on g, the potentials at 7, are constant,
thus the transfer function of the scalar modes at 7y, is independent on k, ¢ and it is equal

to

2

—1
To(nin) = 3 |: + 145fdec(771n):| ) (5.30)

which makes clear that the presence of relativistic and decoupled species at the production
of the background generates a damping in the SW contribution to the angular power
spectrum. In the case of a power-law dependence of the scalar power spectrum, it is
possible to provide an analytic formula of the SW of the CGWB,

4 4 -2 dk, k ng—1 .
CESWXSW =Ar - |1+ 7fdec(nin) / - As — ]?[k;(no _ nin)] —
9 15 i Py .
4, [1+ 2 fee )}_Q/Ood na=3j2 () |
- — — ¢ Jdec\Tin xrxs z),
9[kp (10 — )]s~ 154 ; 4172

where the relation between the Bessel and the spherical Bessel functions is given by

) =\ ool (5:32)

!Note also that in this case the shortwave approximation is no more valid.
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A derivation of the solution of the integral over = has been given in Eq. (G.3) and we get

2ms w2 A 4 213 —n,)T (M)
G = : P+ mm] 2 L. (5.33
¢ g[kp(no - nin)]nsil 15fd (n ) 12 (43n5) T (2Z+E§fns) ( )

In the limit ng — 1, the SW contribution to the angular power specturm of the CGWB is

swxsw _ 8 4 2
Gy = oA |1+ 75 face(mn) q (5.34)

9 04+1)°
where we have used I'(n) = (n — 1)!, T'(3/2) = /7/2. According to the constraints
given by Planck [34, 26], at the scales of interest ns = 0.96, therefore the angular power
spectrum of the CGWB scales approximately like ¢(¢ 4+ 1), with a small decrease in /¢,
due to the fact that the primordial scalar spectrum is red tilted. From theses analytic
results, it is clear that when fgec(7in) increases, the SW contribution to the angular power
spectrum of the CGWB is suppressed, thus the angular power spectrum is sensitive to the
particle content of the Universe at early times. The same result holds of course for the
equation of state parameter of the Universe at ny,, which affects the initial conditions for
the scalar potentials, and consequently the SW, via Eq. (5.20). In Figure 5.2, we plot the
SW contribution to the angular power spectrum of the CGWB for ngyy, = 0.35 and for
faee(min) equal to zero and one respectively. In our plot, we assume that at n;, the Universe
is filled by radiation, thus we impose w(ni,) = 1/3, neglecting the degeneracy between w
and fge for simplicity.

Integrated Sachs-Wolfe of the CGWB

The ISW is the redshift of graviton when they cross metric perturbations that change their
amplitude in time. The ISW generates a net amount of anisotropies when the length of
the perturbations is much smaller than the time required to the particles to cross them;
in this way the GWs experience a coherent damping/amplification due to variations of the
potentials. On the other hand, when kn >> 1, gravitons are redshifted by each of the many
potential wells crossed, but since the crossing time is very small, the overall effect is a net
cancellation (incoherent amplification) and the ISW gives zero anisotropies [41]. As we
have discussed in Section 5.2, the evolution in time of the potentials from mni, to Nmin is
governed just by the evolution of fgec(n), while from 7y, to 19, the time dependence is the
standard one depicted in Figure 5.1. Because of this reason, we divide the computation of
the ISW into a primordial-ISW (p-ISW), that is model dependent and can be computed
analytically, and into a standard ISW, which depends on the constraints on the cosmological
parameters provided by other independent observations.

The p-ISW depdends on the particle physics model one would choose to describe the
content of the Universe at energy scales much larger than the ones that can be probed
by present colliders, that is strongly model dependent. However, it is straightforward to
notice that the spherical Bessel function jy[k(n9 — n)] is almost constant in the interval in
which we compute this effect, since kng < 1 and 719 > Nmin > Min. 1t is possible then to
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Figure 5.2: Left: plot of the SW, the ISW and the SW+ISW contribution to the angular power spectrum of the
CGWSB, for fgec(nin) equal to zero and one. In this plot, a constant tensor tilt, ngwp, = 0.35 has been assumed.
Right: plot of the total contribution to the angular power spectrum of the CGWB for adiabatic initial conditions,
for fyec(nin) equal to zero and one and ngywp = *1.

compute analytically the p-ISW [3, 46, 1], showing that it is function just of the value of
the fractional relativistic and decoupled species from 7, t0 Nmin,

p—ISW TImin . , ,
AVERAE dn jolk(no —n)] [Ty (n, k) + T (n, k)]
Tin
TImin
= ilk(m = ma)] | To(r. ) + To(o. )
Tin

3 fdec(”in) - fdec(nmin)
15 1+ %fdec(”min)

= Jelk(mo — 7in)] T (nin, ) - (5.35)

For the standard ISW, we can understand the impact of variations of the potentials on the
angular power spectrum by looking at the transfer functions for different scales at different
times plotted in Figure 5.1. At large angular scales, the CGWB is sensitive to the ISW due
to the variations of the scalar perturbations that re-enter the horizon during the matter
dominated era, therefore to the transition of the potentials around zeq (early-ISW) and to
the decay of these potentials after zeq—a (late-ISW). At small angular scales, the ISW is
sensitive to the variations of the potentials that re-enter the horizon during the radiation
dominated era. As it can be seen in Figure 5.1, the variations of these potentials are
larger, because these potentials decays almost completely, so the ISW increases at small
scales. This is the opposite of the CMB case, in which everything is computed around
recombination, where the variations of the potentials in the radiation-dominated era do
not play any role, since the angular power spectrum of the CMB is basically integrated from
recombination, Mrec > Neq. At small angular scales, the ISW is dominated by the early-ISW
from 7min to 7o, therefore the sensitivity to fgec(7in) due to the p-ISW is reduced, thus
one could not see the impact of relativistic and decoupled species on the ISW by looking
at the angular power spectrum only at small angular scales, where the late-ISW from i,
to mp has a much smaller impact on the anisotropies and is not able to hid the p-ISW
contribution.
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Figure 5.3: Left: plot of the monopoles of the CGWB from inflation, PT and PBH. Right: plot of the angular power
spectra for these three sources.

5.4 Sensitivity of the spectrum to relativistic particles for
adiabatic initial conditions

The dominant contribution to the angular power spectrum of the CGWB at large angular
scales is the sum of the IC, SW and p-ISW. Each of these terms depend on fgec(7in) and
w(nin) through the transfer functions of the scalar perturbations, Eq. (5.19) and (5.20). All
these effects are proportional to jg[no — min], therefore it would be natural to ask whether
a cancellation among them could appear in such a way that the angular power spectrum
is no more sensitive to the two early Universe parameters discussed in this Section. Under
adiabatic initial conditions, defined by Eq. (4.10), it is possible to see that, by summing
the source functions of the SW and of the p-ISW, the total spectrum is proportional to

AAD " AS N % + %fdec(nin)
¢ ¢ 1 + %fdec(nin)
which implies that when ngw,(¢) = 0 the spectrum does not vary with fyec(nin). In the
right panel of Figure 5.2 we plot the total angular power spectrum of the CGWB with
ngwh = E1 for adiabatic initial conditions, showing that the spectrum is indeed sensitive
to the presence of relativistic and decoupled degrees of freedom when the tensor spectrum
is not scale invariant. Note also that the case of adiabatic initial conditions and ngy, = 0
seems to be quite unrealistic, because many physical models generate non-adiabatic initial
conditions, see, e.g., Eq. (4.35) for single-field inflation and Eq. (4.43) for the scalar-induced
GWs with non-Gaussianity. Furthermore, most of the monopoles considered in this Thesis
scale with the frequency, thus the cancellation given by Eq. (5.36) does not occur.

, (5.36)

5.5 Total angular power spectrum for different initial condi-
tions

Egs. (4.10), (4.35) and (4.43) show that the initial conditions could be very different,
depending on the source of CGWB considered. In this section, we compare three angular
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power spectra for three different mechanisms that generate GWs detectable by the future
space-based interferometers BBO/DECIGO:

e PT with adiabatic initial conditions. For the phase transitions we choose the following
parameters that characterize the GW monopole, given in Eq. (3.55),

Q. =30x10"%,  f,=01Hz, n3 =30, ng=-40, A=20. (537)

e PBH with AD+NAD initial conditions given by Eq. (4.43). The parameters that
describe the monopole, Eq. (3.51), and the anisotropies are

A, =13x107%, f,=01Hz, fxr =0.01. (5.38)

e inflationary background, with AD+NAD initial conditions given by (4.35). To char-
acterize the monopole we use

r=030, npr=035. (5.39)

In the left panel of Figure 5.3, we plot the monopoles of the CGWB for the three sources
we have chosen and the PLS of BBO, defined in Section 1.3, for Ty,s = 1yr. In the right
panel, we plot the angular power spectra for these three models for fgec(nim) = 0 and
fdec(Min) = 1, at the frequency f, =3 x 10~2 Hz.

The amplitude and the scalings with the multipoles of the three spectra can be ex-
plained in terms of the initial conditions and of the tensor tilt of the CGWB at the pivot
frequency [1]. At low multipoles, the angular power spectra are sensitive mainly to the
combination of the initial conditions and the SW, therefore the spectra would scale like

2

2
O SWEXCEWE 14— ng ()] Kl - > T (1in, k) + TP (i, &, )
4 — ngwb(fp)
(5.40)
At f, = 3 x 1072 Hz, the spectral tilt of the three backgrounds are
nation (£) =035, ngwn(fp)TT =242, nbetl =0.48. (5.41)

For the inflationary case, the NAD initial condition is given by Eq. (4.35), while for the PBH
scenario by Eq. (4.43). In the case of fyec(7in) = 0, Eq. (5.40) predicts an enhancement of
the CGWB from inflation w.r.t. the backgrounds from PT and PBH equal to

C%nﬂation

PT
CZ

C%nﬂation

= 1500, —35. (5.42)

NoLe
These predictions differ with the numerical results of Figure 5.3, because they do not take
into account for the early- and late-ISW contributions. More specifically, the early-ISW
induced by changes of the potentials with & < keq around neq, described in Eq. (5.22),
contribute with a term of the same sign of the adiabatic initial conditions, reducing the
enhancement expected from TNAP. In a similar fashion, it is possible to evaluate the
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difference in amplitude of the angular power spectrum at low and high multipoles, defined

by
¢ =

CFEWE 3000(3000 + 1)
This difference at low multipoles will be approximately given by the sum of AD+NAD+SW,
while at large multipoles by AD+NAD-+SW-+ISW. At the smallest angular scales, the ISW
is provided by variation of the potentials which enter the horizon during the radiation epoch
and, by looking at Figure 5.1 it is clear that this ISW should be twice the SW. For the
three CGWBs we expect something like

(5.43)

(1= =2y ) ToOm k) + AT (b)) — (2T o, )P
(1= =277 ) Tomas k) + 4T (i, k:)r

(1 sy Tl )] — (2T, )P
(1 =) Talmn )]

(1= =2y ) Tl b) + % e T o, k)f 12T (s )2

Ngwb

{(1 - m> T (1hins k) + % = T (s k)r

Ngwb

ACEeak—Inﬂatlon N N 1‘2’

peak—PT -~

~ 56,

ACEeak—PBH N N 16,

(5.44)

where we have assumed that the SW+AD+NAD and the ISW are uncorrelated, thus they
can be summed in quadrature. In the case of the inflationary background, the difference
in amplitude of the spectrum at high and low multipoles is explained by the fact that
the NAD initial conditions has opposite sign w.r.t. SW+AD-+ISW, therefore the spectrum
does not grow. In an analogous way, it is possible to explain the scaling of the three spectra
with fgec(7in), as already mentioned in Section 5.4.

5.6 ISW from tensor perturbations

The anisotropies generated by the ISW effect associated to the tensor perturbations, whose
source function is A7 defined in Eq. (3.34), are subdominant compared to the ones induced
by the scalar perturbations. This happens because the tensor power spectrum is suppressed
w.r.t. the scalar one by a factor » < 0.035. In the left panel of Figure 5.4, we plot the
scalar, the tensor and the total contribution to the angular power spectrum of the CGWB,
according to the latest constraints on the tensor-to-scalar ratio [247]. The CGWB has
adiabatic initial condition and a tensor tilt ngy, = 0.35. In the right panel of Figure 5.4,
we plot the tensor contribution for the case of single-field inflation, comparing the ISW
and the NAD contribution, showing that these two terms sum, since they have the same
sign. These coherent amplification enhances of a factor of 4 the tensor contribution, which
is however still subdominant if compared to the scalar one.
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Figure 5.4: Left: Plot of the angular power specturm of the CGWB for scalar, tensor and scalar+tensor contributions,
for adiabatic initial conditions and ngy1, = 0.35. Right: plot of the tensor contribution to the angular power spectrum
of the CGWB with adiabatic and NAD initial conditions from single-field inflation.
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Chapter 6

Cross-correlation between the CMB
and the CGWB

6.1 Correlation of cosmological signals produced at different
epochs

Photons and gravitons start their free streaming at npec ~ 280 Mpc, nin < 10719 Mpe. The
dominant contribution to the anisotropies typically comes from scales around k =~ ¢/np,
which means that the ratio between the separation of the last-scattering surfaces of the
CMB and CGWB and the wavelength that generates the angular power spectrum at a
given multipole is

us m 50

When ¢ < 10, one would expect that the CMB and the CGWB are highly correlated,
because the separation between the two surfaces is very low and the two signals share
the same geodesics, which give rise to very similar SW and ISW effects. On the other
hand, when ¢ > 50, the difference between 7. and 7, becomes important, because the
length of the metric perturbations that generate the anisotropies is much smaller than
the separation of the two surfaces, therefore the perturbations that produce the redshift
of photons and gravitons are uncorrelated [4, 1]. A more mathematical interpretation of
this result could be given in terms of projection effects. Suppose that at a given scale £,
the anisotropies of CMB and photons are generated by perturbations of scale k which are
sharply peaked around 7; and 7. For the SW of CMB and graviton it is straightforward
to have 11 = Mrec and 72 = Min. As a first approximation, the angular power spectrum of
the cross-correlation between the CMB and the CGWB, which will be defined in Eq. (6.5)
of next section, would depend (approximately) on the integral

rec — /i T 14
k(nrec - 77in) ~ EM ~ En € ~ (61)

]_ _"11*"726

I(ni,me) = /szje[k(no —m)]Jelk(no — n2)] ~ Vi ; (6.2)

——e

C(f+3)
where we have written the spherical Bessel as a Bessel function, Eq. (5.32), and then we
have used the result obtained in Eq. (G.2). Eq. (6.2) is valid when 77 > 72 and shows that
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when / is sufficiently large, there is an exponential suppression of the signal, also in the
case N1 — 12 < 1. In the next section, we will define and compute numerically the angular
power spectrum of the cross-correlation between the CMB and the CGWB, explaining the
features (peaks, damping, etc.) in terms of a generalization of I;(n1,72).

6.2 Angular power spectrum of the cross-correlation between
CMB and CGWB

The solution of the Boltzmann equation of the CMB [42], gives the following coefficients of
the spherical harmonics expansion of the perturbation of the distribution function of the
CMB,

. d3k. ik-Z * (7. e
ot = (=1)" [ Gy Vi () RAE) O (k).

OF (k) = [ dnfg(m) (Toy (1. + Tl ) el = )

TImin
+9(n) k™ Ty, (0, k)jglk (o — )]

e ATD LT 1 ]

(6.3)

where the visibility function g(n) in the limit of instantaneous recombination is approxi-
mated by §(1 — nrec), while the optical depth of photon e=r) gives OHeaviside (7 — Mrec)-
Also the CMB anisotropies are sensitive to the tensor perturbations of the metric through
an ISW analogous to the CGWB one, but since it is expected to be subdominant, in this
Chapter we will neglect it. In the CMB case there is also a Doppler term, proportional to
the velocity of baryons, which does not appear in the CGWB with adiabatic initial condi-
tions, because gravitons do not interact, see, e.g., Eq. (4.11) The CGWB is then computed
by using Egs. (3.33), (3.34),

Saw,em(q) =4m(—i)[(4 — ngwp(q)]

Br s . (6.4)
2y Yo () [COSJAF (ks 0 ) + el 10 = 1) T s )
The angular power spectrum of the cross-correlation is defined by
1, ., "
(Sgelémm/CeCMBXCGWB(q) = 5 <a[m(5GW7@m(q> + afdeW,Zm@» . (65)

To facilitate the interpretation of the features of the angular power spectrum, it is useful
to decompose the spectrum as the sum of different contributions,

CéCMBXCGWB — CESWXSWI_‘_CESWJASW_'_C%SWXSWI+C§SW><ISW+C?OP><SWI+C;DOP><ISW

)

(6.6)
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where we have used the short notation SWI = SW + IC for the CGWB. In the case of
adiabatic initial conditions, these contributions are given by

S =t [ SRRk — )il — )
— Ngwb k
X |:T®0 (77*7 k) + Ty ("7*7 k):| [TTAD(ninv ka q) +Tp (nina k)] )

CSWXISW dk
G —r [ k0 — 1] [To (e ) + Ta (., )
— Ngwb

x / " dn [T (0. 8) + Ty 0. ) eeOom — ).

in

CISWXSWI dk
447 =4W/ ?Pc(k)je[k(no — )] [T1P (0in, &, @) + To (1hin, k)]
— Ngwb

x /n " dn[[Th 0. 8) + T . ) e Oom — ).

. (6.7)
ISW xISW Mo
QT [ Gerc) [ dn[ o) + T ) il — )

4 — ngwp e
70
< [ di[Ti ) + o0 lbon - 7],
Tlin
— =4 —P:(k) plk(no — ns)] delk(no — Min
L =i [ SRR ko — n) ek — )
X k_lTQb(n*a k) [TI—AD(T/in, k, Q) + T@(nina k)]] )
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70
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Tlin

In Figure 6.1, we plot the contributions to the angular power spectrum of the cross-
correlation for fgec(7in) = 0 and for ngwy, = 0.35. As discussed in the previous sections, it
is possible to give an explanation of the features of the spectra in terms of the overlap of
the spherical Bessel functions for the different contributions.

SW x SWI contribution

If we assume instantaneous recombination, these the SW of the CMB and the SW-+IC of
the CGWB are sourced at 7. and i, respectively. According to Egs. (6.1), (6.2), when
(Nrec — Min) /Mo < 1, the primordial perturbations of that give the dominant contribution
to the multipole ¢ imprint the same pattern to the CMB and CGWB, since the inhomo-
geneities that generate the anisotropies for the two signals are strongly correlated. On the
other hand, when #(nyec — 7in) /M0 > 1, the spectrum decreases exponentially, according to
Eq. (6.2), thus there is no correlation between these two contributions. It is easy to check
that, for npe. ~ 280 Mpc, this suppression starts around ¢ = 40.
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Figure 6.1: Plot of the contributions to the angular power specturm of the cross-correlation between the CMB and
CGWB without the Doppler (left) and including the Doppler (right). For the CGWB we used fgec(nin) = 0 and
Ngwh = 0.35.

ISW x SWI contribution

The ISW of the CMB is made of a late-ISW term, which peaks in the dark energy dominated
epoch, at times much larger than recombination, and of a early-ISW term, which is due to
the variation of scalar perturbations that re-entered the horizon at e, of scales keq = 1/7cq-
The first contribution gives a tiny correlation, because of the large-separation between the
times at which the late-ISW is operating and n,, while the latter is zero, because the
early-ISW of the CMB peaks at e and at angular scales ¢ ~ 200, therefore, according to
the suppression described by Eq. (6.2), is close to zero.

SW x ISW contribution

The ISW of the CGWB is made of a late-ISW term, identical to the CMB one, and by
an early-ISW term that for scales k 2 keq is peaked around 1/k, while for scales k < keq
is peaked around at the equality between matter and radiation. At large angular scales,
the correlation of the late-ISW and the early-ISW of the CGWB gives a small correlation,
comparable to the ISW x SWI contribution, while at large angular scales, where early-
ISW of the CGWB is larger, the angular power spectrum is enhanced. According to
Eq. (6.2), in order to have a correlation between the perturbations, at large angular scales
the SW of the CMB and the ISW have to be sourced at the same time, therefore a peak
is expected for the early-ISW generated by the perturbations that re-entered the horizon
around recombination, £ & 1y /Nyec = 200.

ISW x ISW contribution

Since the ealy-ISW of CMB and CGWB are identical, at small angular scales we have
an exact correlation between these two effect. At large angular scales, a smaller peak
resembles the features discussed for the SW x ISW term.
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Figure 6.2: Left: plot of the angular power spectra of the auto-correlation of the CMB and CGWB and of the
cross-correlation between the two for adiabatic initial conditions and ngwt, = 0.35. Right: plot of the correlation
between the CMB and CGWB for with ngy1, = 0.35 for adiabatic initial conditions and NAD initial conditions from
inflation.

DOP x SWI contribution

This discussion is very similar to the one done for the SW x SWI term, with the only expec-
tion that for super-horizon scales Tj, (7, k) vanishes, therefore the associate contribution
to the Doppler term is null at small angular scales.

DOP x ISW contribution

In this case, analogous to the SW x ISW term, the spectrum presents two peaks due to
pesks in the CMB spectrum with different phases. We should also notice that the peaks in
the Doppler terms are slightly shifted compared to the ones associated to the SW of the
CMB, because the time derivative of the Bessel function that appears in such contributions
generated a tiny shift in the angular scales determined by Eq. (6.2).

6.3 Constrained realizations of the CGWB from the CMB
map

At large angular scales, the angular power spectrum of the cross-correlation between the
CMB and the CGWB is very large, therefore it is reasonable to expect that the maps of
the anisotropies of photons and gravitons share similar features. It is possible to define the
correlation between the CMB and the CGWB at the angular scale ¢ by

MB B
C@C xCGW ( Q)

CMBxCMB ~CGWBxCGWB
\/ G Gy

CMBxCGWB
) x (q)

(6.8)

(¢.0)

In Figure 6.2, we plot the correlation between CMB and CGWB for a spectrum with
Ngwh = 0.35. We have considered a spectrum with adiabatic initial conditions and another
one generated by the quantum fluctuations during inflation, when the non-adiabatic initial
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conditions computed in Eq. (4.35) have to be taken into account. In the adiabatic case,
the correlation is close to one at large angular scales, while for the inflationary spectrum
the correlation is about 0.9, because of the NAD initial conditions. When the correlation
is close to one, it means that fluctuations of a map univocally determine variations of
the other one.To see more explicitly this, it is known that the CMB and the CGWB are
Gaussian random variables with zero mean and covariance given by the angular power
spectrum, therefore the distribution in the Universe follows a multivariate Gaussian of the
form

CCMBxCMB CCMBxCGWB
1 s ) ) Aom
co £ €Xp\| —3 (agm GW,ém) CCMB xCGWB CCGWB xCGWB 5
¢ ¢ GW . fm

=11 11

2
10 et (27) (CZCMBXCMBCEGWBXCGWB _ (CEMBxCGWB)

)

(6.9)
where we have assumed that the frequency dependence of the anisotropies can be factorized
out. The CMB map has been observed by the Planck collaboration, which means that it
is possible to compute, starting from the likelihood £, the PDF of conditioned map of
the CGWB, given the observations of the CMB. It is known [?] that the conditioned
distribution daw ¢m, given agy, is a Gaussian distribution,

constr

00 l
1 1 _
Leond = H Hz Wexp [—2 (daw,om — Baw,mm) (CEO™") ' (daw,om — HGW,im)

(=0 m=—
(6.10)
where the mean and the covariance are given by
CCMBXCGWB
=t .
HCW fm = CCMB m
¢
<CCMB><CGWB>2 ,
Cconstr _CCGWBXCGWB _ ¢ _ OCGWBXCGWB 1— TCMBXCGWB
L Y CCMB - ¢ :
¢
(6.11)

From the last row it is clear that the knowledge of the CMB map allows to predict de-
terministically the hot and the cold spot of the map of the CGWB when r — 1, because
the covariance of the condition Gaussian goes to zero, thanks to the large correlation of
the two signals. As depicted in the right panel of Figure 6.2, the correlation at angular
scales between the CMB and the CGWB is almost one, which is the map of the cosmo-
logical backgrounds exhibits the same seeds of the CMB one, just rescaled by the ratio
of the angular power spectra that appears in the definition of pgw ¢m. At small scales,
when rgMBXCGWB deviates from one, the CGWB map presents fluctuations w.r.t. the
CMB one, therefore the CGWB becomes another, independent, probe. In Figure 6.3, we
show the example of a realization of the expected CGWB map, given the Planck SMICA
map [273]. As already stressed, different realizations would change just the features of the
map at small scales, that are affected by a source of uncertainty which goes like C§°. In
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Figure 6.3: Left: plot of the CMB SMICA map for #max = 200. Right: plot of the constrained realization of the
CGWB, for ngwt, = 0.35, fgec(nin) = 0 and adiabatic initial conditions.

the next sections, we will show an application of these constrained realization that would
be particularly useful to reconstruct the intrinsic dipole of the CMB, cleaning the signal
from contaminations due to the kinetic dipole, by using a joint analysis of photons and
gravitons.

6.4 Detectability of the anisotropies of the CGWB

6.4.1 The impact of Instrumental Noise

The main limitation in the detection of the anisotropies of CGWBs is due to the large
instrumental noise at present and future interferometers. Intuitively, in order to measure
fluctuations of the order of 1072 — 1075 in the energy density of stochastic Gws along
different directions, one should be able to observe the monopole with SNR around 103 —10°.
The possibility of detecting a CGWB in the near future depends mainly on improvements
in the sensitivity of the instruments and on the amplitude of the CGWB we are interested
in. In Sections8.3 9.6 we will describe the state-of-the-art procedure to obtain the best
unbiased estimator of the map of AGWB, while in this section we evaluate the detectability
of the anisotropies in a different, but equivalent, way. Following [274], we assume that the
observed coeflicients of the spherical harmonics expansion at interferometers can be written
as

3Rt = 08 e + . (612)
where ny,, are Gaussian random variables with zero mean and covariance described by the
angular power spectrum of the noise

(ngmnzm,> = Oppr Oy Ny - (6.13)

The Ny has been computed by minimizing the covariance associated to the reconstruction
of dgw ¢m, therefore it is sensitive to the scaling in frequency of the CGWB and on the
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Figure 6.4: Plot of the angular power spectrum of the noise, normalized w.r.t. the amplitude of the CGWB, as a
function of the multipole for different detectors.

amplitude of the monopole. The expression of the angular power spectrum of the noise is

) 9 Re [Apc,om(f)AD 4 ,0m(f)
Nt = T‘;bs > /df [?QCGWB(JC)] Nap(HNep ()Y [ BCZ2£+ 1DM ’

A,B,C,D m

(6.14)
where the A4p ¢m is the coefficient of the spherical harmonics expansion of the antenna
pattern, defined by

5 - L
Aup = §B£Be_2mf"'(x3_x"‘) , (6.15)

where the tensors B have been defined in Eq. (8.20). The angular power spectrum of
the noise decreases with the observing time and the amplitude of the monopole and it
is sensitive to the different scaling in frequency of the CGWB. As already discussed in
Section 1.3, the different frequency dependence of the cosmological signal and noise helps
in disentangling the two contributions by using a Wiener filter. For simplicity, we consider
a CGWB of the form

_ _ £\ e

fteawn(9) =00 (£) (6.10)
fo

with ngwn = 0.35 and in Figure 6.4 we plot N;/ Qcaws(fp) for different detectors. From

this picture it is clear to see that detectors like BBO/DECIGO are much more sensitive

than LISA or ET/CE to the anisotropies of CGWB and represent the most promising

experiments to detect the angular power spectrum of the CGWB.

6.4.2 SNR of the anisotropies of the CGWB

The coefficients of the expansion in spherical harmonics of the maps of the CMB and of the
CGWRB are Gaussian random variables of zero mean and covariance given by the angular
power spectra, therefore the likelihood takes the simple form given in Eq. (6.9). This result
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can be generalized in the case in which the noises of the experiments are considered by

replacing the
CCGWBXCGWE _, (CGWBXCGWE 4 (6.17)

By using this substitution we have assumed that the noise of CMB and CGWB experiments
are uncorrelated and that the noise associated to CMB measurements is negligible. This is
a good approximation in the Planck case up to ¢ ~ 2500. As shown in Eq (H.4), in order
to estimate the angular power spectra we combine the observed maps in the following
estimators,

CMBxCMB _
C X ZZ n 1 Z afmaﬁm s
—L

CCGWBXCGWB _% i Z Saw éméc;w o — Ny, (6.18)
V4 * *
CCMBXCGWB _ 1 Z afm‘SGw,em + 0GW,em gy,
20+ 1 2 )

As explicitly proved in Appendix H, if we define the covariance between two estimators as

XYW = cov [CFY, V7], (6.19)
it is easy to find that
(CMBCMB—CMBCMB _ (CCMBXCMB> 2
¢ )
2
C?GWB CGWB-CGWBCGWB _ (CCGWBXCGWB N ) ,
CEMB CGWB-CMBCGWB _ [ CCMBXCGWB) CECMBXCMB (CECGWBXCGWB T Ng>:|
(CMB COMB-CGWB CGWB _ ( CMBXCGWB) 2
26 +1 ’
CCMB CMB—CMBCGWB __ 2 CCMBXCMBCCMBXCGWB
2+ 1 ’
2
CCGWB CGWB-CMBCGWB __ TEm (CCGWBXCGWB N ) CEMBXCGWB _

(6.20)

In order to provide an estimate for the detectability of the CGWB, we compute the SNR.
If we define the total covariance matrix of the Cys as

CCMB CMB-CMB CMB CCMB CMB-CGWB CGWB CCMB CMB-CMB CGWB
J4 J4 J4
EC’ — CCMB CMB-CGWB CGWB CCGWB CGWB-CGWB CGWB CCGWB CGWB-CMB CGWB
¢ — {4 4 {4
CCMB CMB-CMB CGWB CCGWB CGWB-CMB CGWB CCMB CGWB-CMB CGWB
I4 14 4
(6.21)
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the square of the SNR is computed according to

T
oo CEMB xCMB CEMB xCMB
NR?2 § : CGWBxCGWB -1 CGWBxCGWB
i CKCMB CGWB ECZ CZCMB CGWB . (6-22)
— X X
=\ C§

Note however that the CMB experiments are mainly cosmic variance limited, therefore
we should focus our analysis on the marginalized likelihood, withouth considering the
contributions of the CMB auto-spectrum on the SNR. We define then

_ CCGWB CGWB-CGWB CGWB CCGWB CGWB-CMB CGWB
J4
Yo, = ( COGWBCGWB-CMBCGWB  COMB CGWB-CMBCGWE > (6.23)
f4
and we compute the SNR by using
fmax CCGWBXCGWB CCGWBXCGWB
SNRautoJrcross = Z ( CCMBXCGWB ) ECZ ( CCMBXCGWB > : (624)

(=2

We quantify the amount of information which comes from the auto- and cross-channels
only by defining

oo COGWBXOGWB)
SNR? :
auto = Z CGWBCGWB-CGWBCGWB
=2
, (6.25)
. <CCMB><CGWB)
¢
2 _
SNRcross - Z CCMB CGWB-CMB CGWB ’
=2

In the definition of the SNR we stop to £max = 100, since it is the most reasonable target
of future interferometers. In Figure 6.5, we plot the SNR of a signal parametrized by
Eq. (6.16). In the left panel of Figure 6.5, we have plotted the SNR as a function of
Qcaws( fp) for different interferometers, for one year of observations. Note that the pivot
frequencies we have used have been chosen considering the sensitivities of the instruments
and they are

fII;IGO — 63Hz, fI;ET+CE — 1Hz, fII;ISA — 102 Hz, fZ]?BO/DECIGO — 05Hz.
(6.26)
From this picture it is clear that BBO and DECIGO are the most promising candidates
to detect the anisotropies of the CGWB, because of their larger sensitivity. In the right
plot of Figure 6.5, we have shown the contributions to the SNR given by the auto- and
cross-correlation for BBO/DECIGO in five years of observations.

6.4.3 Estimate of the number of relativistic and decoupled species with
future detectors

The likelihood of the maps of the CMB and CGWB is a multivariate Gaussian, therefore
the distribution of the estimators of the angular power spectra, the “pseudo-Cys” defined in
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Figure 6.5: Left: plot of the SNR of auto- plus cross-correlation for different interferometers, as a function of the
amplitude of the background at the pivot frequency fp. The pivot frequency depends on the detector considered.
Right: plot of the contributions to the SNR given by the auto- and cross-correlation for BBO.

Eq. (6.18) is a Wishart [275]. In Appendix H, a derivation of the likelihood of the angular
power spectra has been done and the result is

_ AXX AXY AYY|AXX AXY AYYY |Del Ce|
2In £ (G, G, €) ‘Cé ,CXY O} )_;(2“1) R , (6.27)

where we have defined the following determinants,
|Dy| = (CF* + NX¥) (é{y +NZYY> + (C*ZXX +N,§<X> (Y +NY)
~2(C N (0 4 ).
Col = (CFX 4+ NEX) (@ + NYY) = (XY + N2

. N N ~ 2
Col = (CFX 4+ NFX) (Y + M) = (G 4+ W)

(6.28)

In this section, we forecast the sensitivity of future GW detectors to the cosmological pa-
rameters constrained by Planck and to the additional parameters introduced in this Thesis,
such as fgec(nin) and fnr,. Among the possible detectors introduced in Section 1.3.3, we
focus on the network of ET+CE, even though space-based interferometers like BBO and
DECIGO are expected to have a better angular resolution, see e.g. Figure 6.4. Follow-
ing [276], we generate a mock likelihood of the form of Eq. (6.27), fitting mock data with
a Markov-Chain-Monte-Carlo (MCMC) method. The MCMC analysis has been done by
using the parameter inference package MontePython [277, 278|. Note that in this analysis
we are assuming that the anisotropies of the CGWB scale in frequency as the monopole
and we are approximating the noise of the detector by adopting the angular power spec-
trum Ny. These assumptions could be useful to forecast the order of magnitude of the
detectability of the anisotropies, although a more dedicated analysis should be done in the
future.

We perform the analysis for the three CGWB discussed in Section 3.4, for the pa-
rameters discussed in Section 5.5. In order to compare the forecasts with detectors with
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Figure 6.6: Left:

plot of the fiducial monopole of the CGWB compared with the PLS of LVK, CE+ET,

CE+4+ET+ET100, CE+ET-+ET1000. Right: plot of the angular power spectrum of the CGWB and of the an-
gular power spectrum of the noise of LVK, CE+ET, CE+ET+ET100, CE+ET+ET1000 for the fiducial monopole
considered.

improved sensitivities, we introduce CE4+ET+ET100 and CE+ET+ET1000 as two net-
works with the sensitivities of ET increased by a factor 100 and 1000 respectively. The
posteriors of the cosmological parameters will be computed also for the cosmic variance
(CV) limit, in which the instrumental noise of the detector is negligible.

Inflation with a blue tilt

We consider an inflationary CGWB with r = 0.025 and ngy, = 0.4, consistent with the
Planck+Bicep+Keck bounds [128]. We assume then that the tensor spectrum follows a
power-law scaling in frequency of a single ngyy, with no running. Under this assumption,
the CGWB could have large amplitude at interferometric scales, thus allowing to detect
the anisotropies with large SNR. However, any other background parametrized by a power
law in the CE+ET frequency band would lead to similar results, therefore our assumption
is not unrealistic. In order to be consistent with [1], in our forecasts we use adiabatic initial
conditions for this CGWB, neglecting the NAD term computed in Eq. (4.35). In the left
panel of Figure 6.6, we plot the monopole of the CGWB as a function of the frequency
and the PLS for LVK, CE+ET, CE+ET+ET100, CE+ET+ET1000. In the right plot we
show the angular power spectrum of the CGWB and the angular power spectrum of the
noise for the three networks. From the picture it is clear that the anisotropies could be
detected when the monopole is roughly 103 — 10 times larger than the minimum of the
PLS.
The parameters considered in our analysis, with uniform priors, are
{h,wWm,In 10*°A,, ng, Treios faec(Min) } - (6.29)
In this analysis we have neglected the impact of tensor fluctuations in the temperature
of the CMB and on the overdensity of the CGWB, since we have found in Figure 5.4
that this contribution is negligible. In Table 6.1 we have written the fiducial values and
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the priors on the parameter, discussing the error obtained by CMB and CGWB measure-
ments. In Figure 6.7, we plot the posteriors for the parameters considered. As expected,
realistic GW experiments like CE+ET or CE4+ET+ET1000 will not be able to constrain
the cosmological parameters better than Planck, because of the low SNR of the detec-
tion of the CGWB anisotropies. On the other hand, additional parameters like fyec(7in)
could be measured just by observations of the anisotropies of the CGWB, therefore in the
case CE+ET+ET1000 it is possible to significantly measure them. In the CV limit of
measurements of the CGWB, up to fpax = 2500, GW observations could help breaking
the degeneracy in the CMB spectrum, such as the one between Tyeio and As. This could
be particularly useful to bring decisive information about the neutrino mass by removing
these degeneracies [279, 280]. Figure 6.7 shows also that the amount of information on
{h,wn,} and wy, are almost the same, while ng could be constrained better since the CGWB
spectrum is not affected by the Silk damping.

PBH in presence of primordial non-Gaussianity

We consider a CGWB parametrized by Eq. (3.51), with A, = 2 x 1075, f, = 100 Hz and
fni = 1. In the left panel of Figure 6.8 we plot the monopole and the PLS of the detectors,
while in the right plot one we show the angular power spectrum computed with GW_CLASS
and the angular power spectrum of the noise. In this case, the SNR at the interferometers
is much smaller than the ones produced during inflation considered in Fig. 6.6, thus no
constraints can be put on fgec(nin). On the other hand, fxr, plays an important role in
the amount of anisotropies, because the NAD initial condition, quantified by Eq. (4.43),
could be very large. For a fiducial value fny, = 1, with CE+ET-+ET1000 it is possible
to constrain |fx,| = 1 efficiently, as shown in Figure 6.9. The sign of fx, cannot be
understood properly because the dominant contribution comes from the auto-correlation
of the NAD term, which depends on fI%L, while the terms which depend on the cross-
correlation between the adiabatic modes and the NAD initial conditions (in the CGWB
spectrum and in the cross-correlation between CMB and CGWB) are subdominant. An
alternative way to constrain primordial non-Gaussianity is to look at the anisotropies of
astrophysical backgrounds, as shown in [281].

PT with uncorrelated power-law NAD initial conditions

We consider as last example a CGWB produced by a PT with a spectrum parametrized
by Eq. (3.55) with n; = 3, ng = —4, A = 2 and Q, = 1078, In Figure 6.10, we show
that this monopole is consistent with the current LVK bounds and that it is potentially
detectable by CE4+ET. Also in this case, the anisotropies could e detected by the network
CE+ET+ET1000. In this case, we consider, on top of adiabatic perturbations, an uncor-
related, non-adiabatic initial condition. Following Eq. (3.37), we parametrize this term
by

Pr(k) = Agwi, Pxc(k)=0,Pxr(k)=0, (6.30)

with Agwi = 10719 or Agwi = 10~7. We consider to cases to understand the differences when
the NAD contribution dominates the angular power spectrum. The results are presented
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Parameter | Fiducial [Prior] Planck + Planck + Planck
CE+ET+ET1000 | CV(£max = 2500) alone
h 0.6736 0.5 - 0.8] 0.6741 +0.0096 | 0.6756 4 0.0068 0.674 +0.010
W 0.143  [0.1-0.2| 0.1429 £0.0020 | 0.1426 + 0.0014 | 0.1429 + 0.0021
In 1004, 3.044  [1.7-5) 3.044 +0.015 3.0413 £ 0.0053 3.044 +0.016
ns 0.965 [0.9- 1] 0.9654 + 0.0051 | 0.9662 + 0.0028 0.965370 007
wp 0.02237  [0.02 - 0.025] | 0.02238 & 0.00020 | 0.02240 + 0.00016 | 0.02238 + 0.00022
Treio 0.0544  [0.02-0.08] | 0.0547£0.0071 | 0.0536 +0.0012 | 0.0545 + 0.0073
Faee(in) 0 [0-1] < 0.597 < 0.159 -

Table 6.1: Forecasted errors on parameters extracted from temperature anisotropy data from Planck, alone or in
combination with mock GW anisotropy data.
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Figure 6.7: For the same forecast as in Table 6.1, one-dimensional posteriors and two-dimensional 68% / 95%
confidence limits on the reconstructed cosmological parameters.
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Figure 6.8: Left: plot of the fiducial monopole of the CGWB compared with the PLS of LVK, CE+ET,
CE+ET+ET100, CE+ET+ET1000. Right: plot of the angular power spectrum of the CGWB and of the an-
gular power spectrum of the noise of LVK, CE+ET, CE+ET+ET100, CE+ET+ET1000 for the fiducial monopole
considered.

Parameter | Fiducial [Prior| CE+ET+ET100
I 1 [11.1-9.3] | 11715753, —1.747053
fdec(nin) 0 [O - 1] -

Table 6.2: Forecasted errors on the cosmological parameters affecting only the CGWB anisotropies, assumed to
be measured by the GW detector combination CE+ET+ET100. We assume a CGWB produced by PBHs like in
Figure 6.8.
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confidence limits on the reconstructed cosmological parameters.
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in Table 6.3 and Figure 6.11. The results make clear that for this kind of mechanisms, the
anisotropies could be significantly detected just in case of a large NAD initial condition.
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considered.

Parameter | Fiducial [Prior| CE+ET+ET100
In 1010 A4 0 [-10 - 10] < 0.927
Ngwi 0 [-2 - 2] > 0.0344
fdec(nin) 0 [0 - 1] —

In 1019 A, 6.9 [-10 - 30] 6.6 + 3.1
Ngwi 0 [-2 - 2] —0.06 £ 0.65
fdec(nin) 0 [0 - 1] -

Table 6.3: Forecasted errors on the cosmological parameters affecting only the CGWB anisotropy spectrum for the

detector combination

CE+ET+ET100.
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Figure 6.11: For the same forecasts as in Table 6.3 one-dimensional posteriors

confidence limits on the reconstructed cosmological parameters.
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Chapter 7

The Astrophysical Gravitational
Wave Background

7.1 AGWB from unresolved sources

7.1.1 Threshold for the detection of a GW source

In Section 1.4.2, we have defined the astrophysical background as the superposition of many
astrophysical sources that cannot be individually detected. Among many GW emitters,
we consider here mainly the case of BBH of stellar masses, which are expected to give the
dominant contribution to the AGWB at future ground-based interferometers like ET and
CE [48, 8]. In some specific cases, we will show also some results for BNS and BHNS.
In [197], it has been shown that the number of BBH is not large enough to produce an
overlap in the individual waves to make them indistinguishable. Therefore, in our work we
consider a BBH to be unresolved only when it produces a signal so small that its SNR at
the detector is lower than a threshold SNR{};. If we define a source in terms of its intrinsic
properties, 8, of the redshift at which emits GWs, z, and of its location in the celestial
sphere, n, it is possible to define the window function for a detection of the event and the
efficiency of a network of interferometers by

w(B,z) =1—€(0,z) = Oy (SNRi1; — SNR(0, 2)) . (7.1)

In analogy with the procedure discussed in Section 1.3.2, it is possible to show that the
SNR for the detection of a resolved source, obtained after matched filtering [99], is equal
to

+oo h2 0
(SNR (7,0, 7)) = 4/0 de‘ JZAAZ Ll (7.2)
where we have defined
ha(n, 0,2z, f) = ZFA nf), (7.3)
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with h, the amplitude of the GW and F'§ the detector pattern function for the polarization
a defined in Eq. (1.54), while N44 is the auto-spectrum of the noise of the interferometer
A. The choice of the threshold strongly depends on the analysis that one is interested in.
For instance, if one wants to look for a cosmological background and would like to remove
the astrophysical sources, a large threshold is necessary, in order to not have a spurious
contribution to the background due to the imperfect subtraction of the sources [282, 283,
284]. On the other hand, if the population of the binaries needs to be inferred, a slightly
smaller threshold could be used. When a precise localisation of the source is necessary to
combine GW and EM measurements, the threhsold could be even larger than 300 [285].
In this work, in order to avoid contaminations to the SGWB due to the subtraction of
the BBH, we use the conservative value SNRi{j} = 80 in the network ET-+CE, which
corresponds to SNR{}. = 20 in all the single interferometers. This choice is consistent
with [286].

7.1.2 Superposition of unresolved sources

According to |47, 48|, the energy density of the AGWB is computed by using

r ~ dE*
Qo (. f) = f Z ]\7(11}1\1)\/5%(71,td,6’,:<:)7dfedge 0,2z, f) (7.4
AGWB\'% - , .
pcrit02 ta 0,2 (1 + Z)H(Z)Tobs%(z)

with NE3™ the number of unresolved sources that emits GWs at redshift z, with intrinsic
parameters @ and that emit GWs after a time ¢4 from the production of the binary system.
dE®/dfedQ. is the energy spectrum of the individual binary, while T4 is the observing
time and dV/dzd€Q is the volume element at the source. In this case « identifies the Stokes
parameters introduced in Egs. (1.43), (1.44). If the population of the sources is known,
it is possible to estimate the spectrum of the AGWB by using the “direct integration”
method given by Eq. (7.4). This expression is valid when the number of sources is large
enough to represent faithfully the population of the GW emitters, characterized by Ng™.
In the case in which the number of sources is small or the energy spectrum of the binaries
is rapidly oscillating, the low number of events would not reflect the entire population,
therefore the poor sampling would generate an astrophysical background different to the
one computed in Eq. (7.4). The astrophysical background generated by the population® in
this case is computed by summing the many individual signals produced in a realization
of Né%ed in a time T,

T,
obs
NGW

1 g3 ) ;
Tons 8Gpe ; ['hﬂ‘(f)’ + (N (7.5)

Qaaws(n, f) =

where we have defined

NGy = Y NEwS(7,14,0, 2). (7.6)
td,O,z

In this chapter we focus just on the intensity, while in Chapter 8 we will consider also the other Stokes
parameters.
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Figure 7.1: Left: plot of the monopole of the AGWB for different observing times and SNR{}; = 80. Right: plot
of the AGWB for different sources for SNR{}5 — oo. The blue and orange shaded regions correspond to the LVK
bounds on the amplitude of the AGWB from BBH and BNS respectively.

When N(T;‘{}\’,S — 00, Egs. (7.4), (7.5) coincide, otherwise the background computed by sum-
ming the individual signals would fluctuate (presenting spikes and irregularities) w.r.t. the
smooth contribution computed by considering the full population of emitters. In the case
of the GWs emitted by BBH during the inspiral, the merger and the ringdown, the num-
ber of sources in one year is large enough and the background computed with Eq. (7.4)
and (7.5) coincide. In the right panel of Figure 7.1, we plot the homogeneous and isotropic
contribution to the monopole computed by using the two approaches, by considering dif-
ferent observing times, showing how the Poisson fluctuations due to the discrete number
of sources would affect the shape of the background. For this background, we have used
SNR{}; = 80. In the right panel of figure 7.1, we show the monopole of the AGWB gener-
ated by BBH, BNS and BHNS, considering the populations described in the next section.
In the same Figure, we plot also the LVK bound on the AGWB from BBH, Eq. (1.94),
rescaled w.r.t. the local merger rate of the populations we have considered in this work,
Eq. (7.21). In order to check that the AGWB we have computed is consistent with the
LVK bounds, the window function introduced in Section 7.1.1 has been taken equal to
one (which is equivalent to set SNR{}, — 00). In the left panel of Figure 7.2, we plot the
AGWRB which is expected to be detected by the network ET+CE for different values of
SNRi5:-

7.2 Population of BBH

CBCs are characterized by their intrinsic properties 8, by the redshift of the merger z and
by the time delay between the formation of the binary and the merger of the two objects?.
In our work we assume that we can factorize the dependence of the binary parameters

2For practical purposes, here we include in the description of the populations the window function of
the detector, thus the population discussed here are not the full BBH, BNS and BHNS populations, but
the ones that contributes to the astrophysical background.
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w.r.t. the redshift and the time delay,

aNg, dR(tg,2),, AV

— lil
(td7 97 z) p (0) dtd obs ddee

[6
dtyd6 dz (za)w" (0, 2), (7.7)

where i is the type of source considered (BBH, BNS, BHNS), T4, is the observation time
of the background, while dV/dzd€Q, is the comoving volume element. In our framework, we
are considering binaries that emit GWs at z, which is the redshift at the time ¢, produced
at zg, which is the redshift at the time ¢ — t4. The expression of the number of events
given by Eq. (7.7) is not the most general, since it could not be possible to factorize
the dependences on z and 0. For instance, this happens for the posterior derived from
observations of resolved sources at current interferometers [8]. Moreover, here we assume
that the distribution of the astrophysical parameters that characterize the binary can be
factorized in the following way,

pI(8) = pll(my, ma)pt (x1, x2)p(1) , (7.8)

with mq, mo the masses of the objects in the system, x1, x2 the spin and ¢ the inclination
angle. Note that all the distributions we will consider in our work are affected by large
uncertainties, because of the low number of CBC detections by the three runs of LVK [107,
108, 8|. In principle. each of the probability distribution should be marginalized w.r.t.
its nuisance parameters, however, since in this Thesis we are considering the network of
ET+CE, it is safe to assume that Eq. (7.8) is not affect by lack of knowledge in the
population of the binaries, because of the large number of individual sources which will be
detected by 3¢ interferometers. We will compute therefore the background by conditioning
the values of the parameters of the distributions to the maximum a posteriori estimates
of [8].

Mass Distribution

For BBH, we use the Power Law + Peak mass distribution [108, 8], which is favoured by
the last GW observations,

pPPH (my,my) = pPPH (ma|m1)pPPH (m1)S(ma) | (7.9)
where we have
—QBBH (m1—ppEH)?
[BBH] (1 (1 — agpu)my -
P (m1) = (1 )\BBH)MEanH jEr— MIEEIHl_O‘BBH + /\BBHi\/ﬂaBBHe BBH |
(7.10)
with appy = 3.4, MBBH = 2.5 M, MBBH = 100 My, uppn = 34 Mg, oppn = 5.09 Mg,
Appi = 0.039. We have also used a smoothing function for my,
O (my — MBBHE) 9 (MBBH 45, —m
Sy M) 0 QBB o )

[, )
€xp [ ﬁBBH + m1*M%H*5M}

m1—Mpyin min
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Figure 7.2: Left: plot of the monopole of the AGWB for different detection threshold of the resolved sources. Right:
plot of the monopole of the AGWB for a BPL and PLPP mass distribution.

with 0p the Heaviside theta function and dpy = 7.8 M. We have considered them a
uniform distribution in the mass ratio ¢ = mgy/m;, with ¢ <1,

dq 1 1 1
m2‘m1) = pBBH(Q|m1) = BBH (7'12)

dm2 1— Mﬁlln m1 MIEEIH

pIBBHI (

In the BNS case, we assume that the masses of NSs in merging binaries are uniformly

distributed [8] between M [BNS] =1Mg and Mr[faﬁs] = 2.5 Mg,
PPNy, my) = ! (7.13)
(MBS — MBNS)?- '

For BHNS we use the MULTI SOURCE model adopted in [8], describing the distri-
butions of the masses of the BH and of the NS as two Gaussians with mean puppuNsBH =
7.5 My, peansns = 1.33 Mg and rms opunsa = 0.75 Mg, opunsns = 0.09 Mg (287,
288).

Spin Distribution

We assume that the spin distribution of BBH

PPBE(x1, xo) = H (7.14)

1V 27T0'X ’

where o, = 0.1 [8]. According to [288], assuming zero spin for both the objects in BNS
systems seems to be a very good approximation. On the other hand, the spin of the objects
in BHNS systems could be large in some cases, but we expect that on average it is close to
zero; therefore, considering also the large amount of uncertainties in modelling the BHNS
population, we neglect it.
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Inclination Angle Distribution

The inclination angle of the binary is defined as the angle between the total angular
momentum of the binary and the line of sight,

~

cost=J-n. (7.15)

If the Universe is homogeneous and isotropic, the inclination of the binaries w.r.t. the
line-of-sight is distributed isotropically. In this Thesis, we will assume an isotropic distri-
bution of the sources, therefore cos ¢ is drawn from a uniform PDF, thus iota is distributed

according to

dcost  sine

p(t) = p(cost) ATE) = - (7.16)

Merger Rate

In our work we characterize the merger rate of compact binaries in terms of the star-
formation rate (SFR). The dependence of the SFR on the redshift is still debated, because
different surveys provide different constraints, since it is sensitive to the distribution of
the mass and metallicity of the host galaxies. We decide to evaluate the SFR by using
Universe Machine [289, 75|, in which it is shown that the SFR inside an halo of mass M),
ad redshift z is distributed according to a log-normal distribution,

2
p(SFRIM. 2) = [1 - fo(Mi.2)] 1 {_ InSFR — SFRsp (M, 2)] } |

\/ﬁtTSF(Mh,Z)SFReXP 205p(Mp, 2)

(7.17)
where fg is the fraction of quenched galaxies that produce no more stars at z. The
expectation value and the covariance associated to the SFR per halo of mass M), are

0.2
(SFR)(Mj, z) =SFRgp(My, 2) exp <;F> ,
<[SFR — (SFR)(Mj, z)]2> = [exp (02p(Mp, 2)) — 1] exp [2SFRgp (M, 2) + 02 (My, 2)] .

(7.18)

The average SFR at a given redshift is obtained therefore just by integrating the average
SFR per halo of mass Mj, times the number of halos with mass M}, over the halo mass Mj,
B dN}, . 3

Ro(:) = [ My (SFR)(My,2) 08 (My2) Moy 'Mpe ), (719)
where we use the halo mass function dN/dMj, of [290]. In the left panel of Figure 7.3 we
compare the SFR obtained with the Universe Machine approach with the ones computed
by Madau [291, 292], and Vangioni [293]. It can be easily seen that different approaches
to compute the SFR lead to very different results. To connect the merger rate to the
SFR we convolve the SFR distribution in redshift with a time delay distribution, keeping
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into account for the formation time of the binary and for the early inspiral stage of the
evolution of the system, normalizing this new SFR w.r.t. the local number of compact
objects detected by LVK,

J dtap® (ta) Rulza(2, ta))]
fdtdpm (tg) Relza(z = 0,t9))]

The LIGO normalization factors® have been taken from [8],

Ri(z) = Rl (2 =0) (7.20)

RERIL (2 = 0) =28.3783° Gpe 3 yr 7t
RERSo (2 = 0) =105.57 3% Gpe S yr (7.21)
RPIEG (2 = 0) =45.07750 Gpe ?yr .
The time delay distribution has been taken from [294, 295, 296|, where PDF can be
parametrized as an inverse power law,
1
p(talne,) o« i (7.22)
d

In our work, we condition the time delay distribution to ns;, = 1, although the uncertainties
on this tilt would affect the shape in redshift of the merger rate. In this way p(t4) can be

written by using
i tmax 1
pil(ty) =In | —4— | =, (7.23)
t([;] min | ¢,

with ¢3¢ equal to the age of the Universe at the redshift of the emission of the GWs,
#(z), while ¢[PBHmin _ yBHNSmin:_ 508\ pyp and ¢BNS™I — 90 Myr [297, 298] In the
above expression z is the redshift at which GWs are emitted, ¢ is the time at redshift z
and zg4 is the redshift at* ¢ — ¢5. In the right panel of Figure 7.3, we plot the merger
rate obtained with our approach, starting from Universe Machine, the merger rate of [288|
(Iacovelli), obtained from the undelayed Madau SFR with a different choice of the local
merger rate, and the one computed in [284], which differs from our prescription just because
of a different choice of the SFR (the Vangioni model) and because of a rescaling in the
SFR which depends on the metallicity of the stars. In [284], it is considered that BHs with
masses larger than 30 Mg can be produced in low-metallicity environments, therefore the
SFR for large masses has been rescaled by the factor

+o0 1
fmet = / dZmetp(Zmet) 0Heaviside <2Z® -3 Zmet) ) (725)
0

3To be consistent, the local merger rates considered here are the ones obstained by assuming the mass
distributions discussed in Section 7.2.
4To compute z4 we invert the relation

= 1
ta=— /Zd TG (7.24)

Note that for very high redshifts the SFR is zero, thus the imprint of very high z4 on the AGWB is zero
too.
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Figure 7.3: Left: plot of the SFR as a function of the redshift for three different parametrizations: Universe
Machine (blue), Madau (orange), and Vangioni (green). Right: plot of the merger rate of BBH obtained from
Universe Machine, Madau and Vangioni. For the Madau model a different local merger rate has been chosen.

vyhere the metallicity distribution is a logl0-normal distribution with ot = 0.5 and mean
Zmet(2) [291],

logy(€) 1 7 2
Z = —F— X 10 Z -7 z . 726
p( met) \/ﬂUmet 7 p 2 rgn o ( 10 £met rnet( )) ( )

By looking at Eq. (7.20), it is therefore straightforward to see that the merger rate for a
given time delay, introduced in Eq. (7.7), is

dR[l] (tdﬂ Z) — RM (z _ O) pm (td)R*[zd(z7td))]
dtg MO [t gplil(te) Rulza(z = 0,ta))]

(7.27)

Note that the merger rate defined in Eq. (7.20) is the comoving merger rate, therefore
to compute the total number of events at z = 0 we use

dVv
Npebs / d ] 2
BT, (7.28)
. . . . [BBH],0bs __ 4. —1 -
For the three models considered in this section we find N¢w = 4.1 x 10%*yr~" with

the Universe Machine approach, N, [BBH] % — 7.5 x 10*yr—! in the Tacovelli case [288] and

N([;BV%H]’ObS = 5.0 x 10*yr~! for the Vangioni model [284].

Bias of CBC

The bias of CBCs is computed with the approach used in 75|, connecting the halo bias to
the bias of GW emitters via

fth dM,, dz(Mh’ 2) bp(Mp, 2)

]
fth thdz(Mh’ z)

B (2) = , (7.29)

130



where the halo bias has been computed in [299] and the number of resolved GW events is
given by

AN i 0 0

[ dtap(ta) (SFRY(My, zq) Sh (Mh,Zd)dZCK) (za)
fth fdtdp td) <SFR>(Mh,Zd) dM,, (Mh,zd)

(7.30)

In the Universe Machine prescription, many terms simplifies and we get that the bias of
the resolved sources is

[ dMj, [ dtap(ta) (SFR)(Mj, zg) e - (Mp, 24) g (2a) bn(Mp, 2)

b[é] res(z) _
w fth fdtdp(td) <SFR>(Mh,Zd) SA]\ZLL (Mh,zd) dzc}?l (Zd)

(7.31)

Note that the bias does not depend on the window function related to the efficiency of the
detector network considered w, which means that the bias for the resolved and unresolved
GW events is the same. This is related to the fact that we discriminate between resolved
and unresolved sources by some functions which depend on z, 8, which do not depend on
My, and tg4, therefore any contribution from these terms cancels in the computation of the
bias. In the same way, we notice that the bias does not depend on the mass distribution
or on other properties of the sources, therefore in our approximation in which p(@) can be
factorized in uncorrelated redshift and mass distribution, the bias is the same for BBH,
BNS and BHNS. We conclude therefore that

baw () = I (z) = pIWTeS(2) | (7.32)

The bias defined in Eq. (7.29) should not be confused with the “effective bias” introduced
in [75], which is defined by

ol f) i i) unres
A S WiGwa (= Db (2)

QH i
> %%WLEWB( )

b et () : (7.33)

where the window function of the AGWB generated by the source ¢ is simply defined by

e 1 4ol
Wi ) = = 2
Qacws(f)

The effective bias in this case depends on the frequency, on the source considered and it is
different for unresolved and resolved sources. In Figure 7.4 we plot the “true” bias, defined
in Eq. (7.29) and the effective biases, defined in Eq. (7.33), for BBH, BNS and BHNS.
We note that the GW bias we find is consistent with [300, 301]. The effective biases of
BNS and BHNS are suppressed, because the monopole of the AGWB generated by BBH
dominates the energy spectrum, according to the right plot of Fig. 7.1.

(2, f). (7.34)
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Figure 7.4: Plot of the bias of the GW events and of the effective bias of BBH, BNS and BHNS as a function of the
redshift.

7.3 Energy spectrum of the binary system

We describe the Fourier transform of the chirp signal emitted by a binary system by using
the parametrization of [99], which gives for the two polarizations

1/2 5/6
ho(f) = (D) gt € (G 1 14 cos®s
+iJe 7-(-2/3 € f7/6 9 )

24 r\ (7.35)

° .35
h(fe) 1 (2 v i+ (fe)+im/2 € GM. e L cos L
T R2/3 (24 r\ £I/6 ’

with 7 the physical distance from the source, related to the luminosity distance by Dy (z) =
(14 z)r. The chirp mass is defined by

(m1m2)3/5

M. = .
(my + mo)l/?

(7.36)

The observed frequency and strain f are redshifted w.r.t. to the ones at the emitter,
fe=0+2)f, h(f) = (1 + z)h(f.), thus the observed waves at interferometers are

_ 1 5 1 5/6 1 ’i‘1/+(fe) 1 + COS2 L
he(f) ~2/3:3/2 ﬂDL(z) (GM.) We 9

_ 1 /5 1 5/6 1w (fo)in/2
hx(f) _7_‘_2/303/2 24 DL(Z) (GMC) f7/6€ COS L.

This expression can be generalized to each stage of the evolution of the binary, including
also the merger and ringdown, and by considering also post-Newtonian corrections in the
inspiral stage. The Fourier transform of the GW signal for each polarization state is then

(7.37)

_1+COS2L~

he(0.1) == h(0. 1),

h« (6, f) =COSL€m/2f~L(0,f),

(7.38)
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where the GW amplitude & has been computed with the fit of [302, 303, 304],
h(f) = A8, fe =00 (7.39)

where the phase plays no role in the AGWB. For the inspiral, merger and ringdown it is
possible to parametrize A in the following way,

—7/6
(f—fl (1+ av? + azv?) f<h
A0 _ b (GMc)5/6 (1 +2)5/6 -7/6 s —2/3
0, f) = 24 72/3:3/2 Dr(2) h Wi, (ﬁ> (14 e1v + e2v?) f€lf, fol
%W f € lfz fs]
(7.40)
By evaluating all the frequency-dependent quantities at the emitter the amplitude becomes
—7/6
(%) (1 + a2v2 + a3v3) fe < fl,e
A 0 f) _ 5 (GMC)5/6 (1 + Z)Qf—7/6 7 ¥ —2/3 9
1) =\ 51 w2man by e Yom (£2) (U tavtar®) L€ lfie fod
%}m fe € [fo,es f3,e]
(7.41)

For the inspiral stage, the GW strain is connected to the energy spectrum per frequency
at the emitter [99, 61], by

dE  w%/3

dfe — 3G

thus a generalization of this result to any stage of evolution of the binary gives

dE 3D (2)

dfedQe  2G(1 + 2)?

(GM)P P f3, (7.42)

F2 1l ()P + [hsc ()P - (7.43)

The waveform used in Eq. (7.40) is not the only possible choice. More recent waveforms,
such as PhenomD [305, 306], have been proposed and provide a more accurate description
of the GW signals during the merger and the ringdown. Nevertheless, the AGWB is
expected to depend slightly on the choice of the waveform, thence these differences would
not affect the validity of the result we will find for the anisotropies of the background. The
extension of the energy spectrum given in Eq. (7.43) to any Stokes parameter is given by

dE®  wDi(z)
df.dQ.  2G(1+ 2)?
where the Stokes parameters are related to the expectation values of the strain by Eq. (1.43).

f25a(f), (7.44)

7.4 Intrinsic anisotropies of the AGWB

7.4.1 Contributions to the anisotropies

As other cosmological observables, like the CMB [42]| and the galaxy number count [216],
the energy density of the AGWB is expected to reflect the homogeneity and isotropy of
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the Universe at leading order, showing tiny deviations from a uniform spectrum in the sky
of the order of 1072 or smaller. In the case of the CGWB, discussed in chapter 3, the
fluctuations have been evaluated by using a Boltzmann approach, computing the evolution
of the distribution function of graviton in space and time, assuming no external sources
and collisions of GWs. In the case of the AGWB the situation is different, because at
every time new binary systems emit GWs for a short duration, thus it could be difficult
to solve the Boltzmann equation in presence of a source term which depends on space
and time. In addition, different uncorrelated sources of anisotropies would impact the
spectrum of astrophysical gravitons, therefore, for practical purposes, it is more convient
to characterize them separately. The dominant contribution to the angular power spectrum
of the AGWB is due to shot noise (SN), induced by Poisson fluctuations in the number
of discrete events that contribute to the signal [65, 66, 64]. Another important effect is
the kinetic dipole [307, 308, 67, 6, 68] produced by the peculiar motion of the observer
w.r.t. the rest frame of the sources. Subdominant contributions are given by the intrinsic
anisotropies, generated by cosmological perturbations of the metric and in the number
density and velocity of the GW emitters [69, 309, 70, 71, 72, 73, 74]. In Chapters 8, 9 we
will focus on the SN and the kinetic contribution to the anisotropies respectively, while in
the remaining part of this section we will compute only the intrinsic anisotropies.

7.4.2 Cosmic rulers

The necessity of a gauge-invariant approach

The energy density of the AGWB along a direction of observation in the sky, at the
frequency f is equal to

NEWS (1, 14,0, 2 0, z,
dz/de/dtd #0,2) i, f), (7.45)

WBaws(f, f) =
AGWB(n f) 1 +Z)H( )Tobsdzdd‘gle (Z)

Pcrit c?

where we have taken the continuous limit of Eq. (7.4). It is useful to introduce the total
physical energy density of the AGWB,

1 L aNg, (10,29
(142087, (2) dtgd0dz " @7 7 df.da,

ng] (td,H,z,ﬁ, f) = (0,2, f) ) (746)

bSd dQ

where the factor (1 + 2)3 comes from the fact that N([?W is a comoving number density.
We introduce also the comoving distance of the source from the observer, obtained by
integrating the distance travelled by GWs at the speed of light from their production at ¢
up to the time tg

v= [ diali / daz/;dzjg (&) Hté) :/Ozd%(1-|—§)121r{(2)' (7.47)

By comparing the definition of comoving distance with the one of conformal time given in
Eq. (2.3), it is immediate to see that x = n9 —n, with x and 7 evaluated at the same time.
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The energy density of the AGWB expressed as a function of the comoving distance is

[l]
7 ~ td 0 s X n f)

Qs Ll d/de/dt AR , 7.48

acws( f) = PerinC X d 1+ 2)2 (7.48)

where z is function of x. The homogeneous and isotropic contribution to an], which is
defined by

. 1 ,
ﬁ([)zz](tdvaaza f) = 4/dﬁng](tda0azaﬁa f)7 (749)
s

is used to compute Q4 qwp defined in Eq. (1.47) and plotted in Figures 7.1, 7.2. The main
issue associated to the computation of the perturbations of Q% is that the quantities
that induce the anisotropies, like the inhomogeneities in the matter distribution, are gauge
dependent, therefore, in order to obtain the true physical information on the observer
angular power spectrum, one should evaluate the fluctuations in terms of gauge-invariant
variables. The approach we use is the Cosmic Rulers formalism, introduced in [276, 310]
to study other kind of LSS effects, by using observed, thus gauge-independent, quantities
to compute the anisotropies of the AGWB

Connection between the physical and observed frames

We denote with z#(x) the physical frame and with z#(x) the observer’s frame where we
perform observations. The observed frame is associated to measured quantities, thence it
is not affected by unphysical degrees of freedom due to the choice of the coordinates and it
contains all the physical information we want to extract. In a generic gauge, the physical
frame is characterized by the line element introduced in Eq. (2.74). In the observer’s frame,
geodesics are flattened along the past GW cone, therefore the trajectories of gravitons are
parametrized by

T=n—%X, X=X, (7.50)

where the comoving distance y can be written as a function of the conformal time by using
X = 1o — 7. Following the definition of the 4-momentum, Eq. (3.6), in the observer frame

we have
dzt Kt
= — = 2nf, =, 7.51
=0 mf 2 (7.51)

where we could set ag = 1 by convention and we have defined the unit vector
k=——= (-1 n). (7.52)

The transformation that connects the observed frame, where photon and graviton geodesics
are straight lines, with the real frame, in which the GW trajectories are perturbed by the
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inhomogeneities in the Universe, are defined by
6zt (x) ="(x) — 7"(X) ,

Art(x) =2 (x) — T4(X) = 2 () + Cg‘;mﬂmax _ah(y) = szx“(i)fsx T 6 (x).

(7.53)

In the physical frame the 4-momentum can still be written as a function of a unit vector
and of the observed frequency, but it also depends on the scale factor at y,

AT
Pow = —27rf0¥ , (7.54)

where the relation between k* and k* is given in terms of the transformations introduced

in Eq. (7.53),

(0 = T (%) = L (3 + 60 () = B + g (%) (7.55)
dx dx dx
We define then the variation of the 4-vector k* as
Sk () = K*(x) — k*(x) = (6f 0n) . (7.56)

Since dk*(x) = dox*(x)/dy, the transformation law that maps the coordinates of the
observer frame to the ones of the physical frame is

52 (%) = bt + / * AR (R). (7.57)
0

By using the geodesic equation, Eq. (3.7), it is possible to show |74] that
5f:—5ao—Ao—|—’UHo—|—2A—BH —2I,
1
571” =da, + A, — U)o — A— iHH + 27, (758)
onf =—oi ,+ iplinon] + B, — B —PHn! + 25,
where the velocity of the observer is

ut = é (1-4 o) (7.59)

and we have introduced the decomposition
X =a'id Xy, Y =Py, =Y - il (7.60)
The solution of the geodesic equation depends also on the integrals

1 X / / 1 /
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Perturbation of the energy density

In the observer frame, the energy density given in Eq. (7.46), is characterized by the

unperturbed value, ﬁ[oi] (tq,0,7, f). The relation between the perturbation of the energy

density in the physical and observer frames is
A P d . P ,
u([)zz] (tdv 07 xz, f) = n[ozz] (tdv 01 77) + diﬁn[ozc] (tda 07 m, f)Awo + n[ozz] (tdv 07 7, f)(s[l] (:E) ’ (762)
with 800 the intrinsic density perturbation. By introducing the comoving energy density,

mg] (tda 07 T, f) = (1 + 2)3‘15] (td7 07 €, f) (763)

we get

(14,0, 2, f) = N (tg, 0,7, £)(1+2%)

] _
1+ Aln(a) (dh“ Na (t,0.1. f) _ 3) + 611 (a:)] ,

dlna
(7.64)
where we have defined
_alx) L _
Aln(a) :C_L(_) -1= _5f+A+U|| - B” - 5ao+ (Ao _U”O) _A+U|| +2[,

; Yo ] (7.65)
—Al =— —A+ — 2—1.
0 n(a) X + dX'U” + dx

By expanding Eq. (7.48) at first order in the perturbations, by using Egs. (7.58), (7.64) we
get

ol Jo [4raed e
agws = [ dxd@dla 7 Tz

crit
A dln il 1d
1+ 6 Al il I T N | .
+0" +4f + Aln(a) (dln(a) T ) Hix n(a)]

(7.66)

By using the solution of the geodesic equation we find

alt o — syt([;]
e = 22 [ axdods;

crit

/ . /
1464+ 4 <3 — bl + ;’i) — B +2I (b[g}a — 35 2)

g M g M
+ <bg}a — 1) + [bao + Ao — vy ] (b[e}a — o - 2)

1fd, d g Lty

(7.67)
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where we have defined the evolution bias

il = dIn

“* ™ dlna

(7.68)

Connection with CLASS - Poisson gauge

In Section 2.4.1, we have shown that the Poisson gauge is defined by B =0, F = 0, FjL =0,
d=Aand ¥V =-D. BZ»L = 0 is not a gauge choice, but a consequency of the expansion of
the Universe that suppresses solenoidal vector fields. In the synchronous-comoving gauge,
the density of binaries of type ¢ are connected to the underlying density of matter through
a bias,

511 (SO _ 4fil5(SC) (7.69)

The bias has been computed by using Eq. (7.29) and the result is shown in Figure 7.4.
As shown in [310], in the Poisson gauge, the density perturbation is connected to the
perturbation of CDM by

S (P) — 3l (5., — 3HV) — (bgla _ 3) HY (7.70)

)

where the velocity potential is defined as

vV. (7.71)

0l

The term proportional to the derivative w.r.t. the comoving distance of v, which appears
in Eq. (7.67), can be simplified by using the Euler equation of CDM,

- - d
T+HT+VE =0—>n- <1_)’, + HU + V\I’) =0— _di)_(v” +8Hv|| —1—7'[7)” —1-(9“\1’ =0. (7.72)
The computation of the Fourier transform of the density contrast of the AGWB, defined
in Eq. (1.49), gives
1ld] /
7] _ — ol i O i O, . H
Hown = [ a0ty [b” (305 ) — = llgms +w (3o, + 2

~

/ o , /
of <b[;]a _H 2> - ”,—kkem (-b[g}a L 2)

H?2 i H?2
P ek . !
+ 67’kak.n <(5a0 + v, — %em o> <b[el’]a - ﬁ - 2)

. 2
_ik (kﬁ> 0 _'_iq)/_i}HTT/ i g | ikykn
A TR 70 R A R
(7.73)

where we have defined

0=V 0. (7.74)



The total anisotropy of the AGWB is the sum of the anisotropies over many infinitesimal
shells at different distances from the observer. The window function W(Eﬂ represents the
weight of the contribution given by the inhomogeneities at the comoving distance x w.r.t.

the total,

- . 1 dQ [l]
Wll(tq,0,n, f) = T ‘3GWB (% f) =
Qpcgws(f) X
1 1 1 dNZ, dE®
“oali (td?a?z)i(gazhf) .
Qigle< £) (U 2)H(2) Typs 707 (2) dtaddz df.dQ,

(7.75)

The window function selects the redshift that can be probed by observations of the AGWB
and differences in its shape could change significantly the angular power spectrum of the
AGWB. It is possible to note that the cosmological perturbations 0,,, 0, ¥, ®, H;;
that influence the evolution of the density contrast of the AGWB are insensitive to the
parameters @ and ¢4 that characterize the population of the sources. It is therefore natural
to perform the integration over these parameters separately, introducing some effective
function,

A, f) = / 40 Aty Wi (t0, 0,1, f),
WL, Yoot () = / A dta Wl(ta, 0,m, £) b1 (), (7.76)

Wc[jLeff(Th f) Z] eﬁ(” f) /d0 dtq Wo[j] (tda 0,n, f)b[ei,]oz(td7 0,1, f) :

We will come back on the shape of the window functions and on their frequency dependence
in Chapter 9, where the frequency scaling of these terms will play a crucial role to do the
component separation of the anisotropies. By factorizing the integrals w.r.t. @ and tg4,
it is possible to compute the angular power spectrum of the AGWB as an integral over
the conformal time/comoving distance. This allows to implement the computation in
the Boltzmann solver CLASS in analogy to what has been done for LSS observables in
CLASSgal [311]. Following [75], in analogy with Eq. (3.33), it is possible to expand the
anisotropies of the AGWB in terms of source functions,

5[’] —4 V4 dgk ik-xo * (7 den D1 rsd

AGWB,om = 4m(—1) /(27T)36 [Yzm(k) (Ae + AP+ AP + A

+ AGl + AGQ + AG3 + AG4 AG5—S
+ A7)k +Z Y (k) HA (AT
(7.77)

where ¢ and H) are the same primordial scalar and tensor perturbations used to compute
the CMB and the CGWB anisotropies in the previous chapters. The source functions have
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been defined according to

70 - A H
g = [ a e (v, + 3%450,,) 500,

70 . , H d
D1 _ [i] eff - gl eff : N

1o o il e aH .,
AD? :/0 dn Wl (plilefl 3)p9m]£(k><) ;
70 -l 1 d?
Arsd _ et Ly s
; /0 dy Wt =0 ] Je(kX) s

70 - . H C
Aglzi/ dnwyhﬁw<4—lﬁgﬁ+fﬂ)Jdkx%
0 a

AF? =0, (7.78)
AG3_/nOd W[i]eﬁiq)h (k‘_)
AF* =0,

!/

— o 37l e il e H ﬁ nq % n n
ags = ["agwfier (<t I0 ) [Magite) @@+ v@)

7o - , H' 1
omon __ [¢] eff [i]eff _ _ -
Ae /O dn L[ a (5@0 + \IIO) <be,a CLH2 3) 26 I 15[0 )

odipole o 1rli) e ile H/ 1 1
Afdpl :/0 d’l]W(L] ff <b[e7]oéﬂr_aﬂ2_3> %Qmoméﬁv

where we have connected the Hubble rate to the conformal Hubble rate by using Eq. (2.10)
and we have neglected the ISW effect due to the tensor perturbations. The notation used
for the different contributios is the same used in [311]. The density terms represents
the anisotropies induced by the density perturbation of the matter field which traces the
sources, while the D and the rsd contributions are the redshift space distorsion terms
induced by the peculiar motion of the sources, while the G-source functions encode the
information about the redshifting of gravitons induced by the metric perturbations, like the
ISW. The last two terms represent the monopole and the dipole at the observer and contain
information about the local perturbations of the metric and peculiar velocity respectively.
The perturbation of the monopole can be reabsorbed in the definition of QKGWB, therefore
it is not observable, while the dipole plays an important role and will be discussed in
Chapter 9. In Figure 7.5, we plot the different contributions to the angular power spectrum
of the AGWB at the pivot frequency 25 Hz. As expected from the galaxy number count,
the anisotropies of the AGWB are dominated by the overdensity of the CDM, while the
RSD and the GR corrections play a negligible role.
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Figure 7.5: Plot of the different contributions to the angular power spectrum of the AGWB at f, = 25 Hz.
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Chapter 8

Circular polarization of the AGWB

In the discussion of the anisotropies of the CGWB we have mainly focused on the fluctua-
tions in the intensity, neglecting the other Stokes parameters defined in Eq (1.43). However,
many cosmological models, like axion-inflation [24, 76, 77, 78, 79] or Chern-Simons oper-
ators [80, 81, 82|, could produce a circularly-polarized monopole of the CGWB. At the
anisotropic level, it is expected that, in analogy with the CMB, the polarization of gravi-
tons can be generated by the propagation of the signal through the scalar perturbations
(E modes) or by weak lensing and large-scale tensor perturbations (B modes) [312, 313].
Because of the lower amplitudes of these two contributions compared to the intensity, in
Chapter 3, we have focused just on the perturbations of the intensity, which have the
highest chance to be detected, while we consider in this Thesis that any amount of circular
polarization of primordial GWs is contained in the monopole. A parity-violating signature
of a SGWB could be an important feature to exploit in order to distinguish between the
astrophysical or cosmological origin of the signal, because, as we will show, the AGWB, for
an isotropic distribution of the inclination angle of the binaries is expected to be unpolar-
ized in GR. Nevertheless, anisotropies in the distribution of the GW emitters could induce
a net amount of circular polarization which could be detected by future interferometers [5].
A proper characterization of these anisotropies and circularly-polarized background is nec-
essary to subtract efficiently the astrophysical contaminations to the data, which could hid
the more interesting GWs from the early Universe. In addition, the polarization of the
AGWRB could be used to study the statistical isotropy of the Universe and the population
of the binaries. In this chapter we focus on the dominant contribution to the anisotropies
of the AGWB, induced by the Poisson fluctuations in the number of sources, which is
much larger compared to the intrinsic anisotropies computed in Section 7.4 and the kinetic
dipole discussed in Chapter 9. The low number of BBH in the local Universe, Eq. (7.21),
makes clear that the fluctuations of the sources would generate a large fluctuation of the
order of 1072 — 1073,
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8.1 Stokes parameters of the monopole of the AGWB

The definition of the Stokes parameters provided in Eq. (1.43), shows that the intensity,
the circular and linear polarization of a single source can be written as the following
combinations of hy and hy,

)

<1+C082L>2 5
—— | +cos”tL

51(0.5, £) =l (0.0, 1) + (0,5, )P = |6, )| (15

2

Sy (8,01, [) =i (hy (0,70, )50, 70, f) — (0, 70, [l (6,70, f ‘h ‘ )71+ cos? ) cose,
2
N«

)
Su (0.7, ) =h+(8, 2, YN8, 1, f) + W (0,7 [ (0,7, ) = =i |B(6, /)| (14 cos ) cose,

n, f) =
< + cos? L) 9
— cos” ¢

where we have used the parametrization of the waveform given in Egs. (7.37), (7.38), with
h computed for the inspiral, merger and ringwdown stages by using Eqgs. (7.39), (7.40). In
GR, the individual binary could emit circularly-polarized (V') and linearly-polarized GWs
(Q), because of the inclination angle of the system. In some modified theories of gravity
in which parity is violated, there is a mixing between the + and x modes that generate
a nontrivial dependence of the Stokes parameters on the inclination angle [314, 315]. In
these models of birefringent GWs, the amount of circular polarization could be enhanced
and used to constrain the alternative theories of gravity [316]. Moreover, higher-order
multipoles could play a role in a different dependence of the waveform on the inclination
angle [317, 8, 318]. From now on, we will consider the standard case of GR and we quantify
the polarization of the AGWB by using the parameter

Sq(0,7, f) =|hy (0,7, f)> — |hx (0,7, f)> =

)

(8.1)

(1+62052i>2 +cos’t a=1I
(1 + cos? 1) cost a=V
—i(14cos?t)cost a=U

2
2
(71“;8 L) —cos?. =Q

The Stokes parameters of the AGWB depend on the energy spectrum of the individual
binaries, given by Eq. (7.44), which are related to the inclination angle of the binaries
through the @, parameter defined in Eq. (8.2). The total energy spectrum can be computed
by using Eq. (7.4), therefore the dependence on the inclination angle can be factorized and
the AGWB is sensitive to the following integral

Qalt) = (8.2)

O ~ / dip(1) Qule) =

E‘MOOW\%
S L Lo 2
I
O I <~
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where we have used the isotropic distribution of the inclination angle, Eq. (7.16). It is clear
therefore that the amount of circular polarization is zero if the inclination angle of the
binaries is distributed isotropically, while a tiny amount of linear polarization is produced,
Q/?GWB = Qlowp/6- Any deviation of the V and U modes from zero would indicate
new aspects about GR of the population of the binaries that has not been completely
understood.

8.2 Shot noise of the AGWB

In Eq. (7.4), we have introduced the number of sources which contribute to the AGWB
and which emit GWs at redshift z, after a time delay t4 from their formation, with intrinsic
parameters € and along the direction of observation n. This number corresponds to the GW
events which occur per unit time and around an infinitesimal volume centred at redshift z
along the direction n. Since the number of GW events that occur are independent and take
place with constant rate, N&3™ is a Poisson random variable, whose mean and covariance
depend on the population of the sources. To see more explicitly this, we write the number
of events in terms of a number density,

dNZ,

Nunres (n td, 0 Z) dtd da d

(R, tq,0,2) Atg AO Az . (8.4)
Consistently with Eqgs. (7.19), (7.20), we trace the distribution of sources starting from
the SFR per halo and convolving it with the halo mass function, for all the possible halo
masses,
dNGW dNGW
tq, 0, , My, tq,0,2)AM}, , 8.5
dt,a0d; "t 0:2) Z Ay dtgafds 1 M ta: 0, 2) AMy (8:5)

where we have defined the discrete summation in the following way,
Tmax ( )
dNaw (My) dNgwn (M) )
= AM, .
Z thdtddOdz My = Z thdtddOdz ’ (86)

and we have defined the number of GW events per each bin in all the halos of mass Mj, as

N (7, M ta, i
dNaw (Mpy) AM 8 Zh ‘ )dNGWIh

= . 8.7
dM;,dt,d0d > dtddOdz( n) (8.7)

The number of GW events per halo and the number of halos are both Poisson random
variables,

_ N¢

, _ Newin'e e~ Nawin
P(NGwn Nawin) =—— 77—
GW|h’ (8.8)
B NNk =Ny
_ Ny
p(Np, Np) = N
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whose mean and covariance are given by

Rivk (0)(SFR(My, ta, 2)) qv
[ dtap(ta)Rylza(z = 0, td))]p(td)p(e)w(e,z T, 2) Aty A Az,

) °‘°Sddee( )
N,
Mty 2)AM
th( hyldy % ) h s

Newin(Mp,tq,0,z) =

Np(Mp, tq, 2) =
(8.9)

with dNj,/dMj, the halo mass function. By looking at Egs. (8.4), (8.5), it is clear that
the number density of mergers is the combination of two Poisson variables and it follows a
compound Poisson distribution [65, 66]. The expectation value of the CPD is the product
of the expectation values of the two Poisson distributions,

NEWS(ta,0,2) = > Np(Mp, ta, 2), Nown (M, ta. 0, 2) . (8.10)
My,

This result has been used to compute of the homogeneous and isotropic part of the AGWB,

shown in Figures 7.1, 7.2 and whose Stokes parameters have been evaluated in Eq. (8.3).

The covariance of the compound Poisson distribution then gives

0—]2\/5%65]\75%65/ =COoV [Né%es ('fl, td, 9, Z) Nunres( td? 0, )

_ _ 8.11
Y N, (NGW|h + Némh) Sai gtr 302 (8.11)
My,
where we have introduced the short notation for the Kronecker delta,
X = €Ty .
{X’:gjj _>5XX’ :(5” (812)

The term proportional to the square of the number of GW events per halo is subdominant,
because the number of BBH per halo is very low. The amount of polarization of the AGWB
induced by the shot noise is then computed from the covariance of the Poisson fluctuations
in the number of sources,

O =cov | Bawn (i f>, Wawn(@, )] =

1 [ dEY o v /.,
-3 Y trarmarae e a2 1) igas (055

td,9 zt) 6’ !

2
g
NGWN,GW

Tozbsddee (z)djd‘?] (2')
dE>_ (p de” (g
e )
= 2 2 2\
s [(1 + Z)H(Z)] |:Tobs djd‘?le (Z)] (antc )

td,e,Z

Nh(Mhatd>Z) [NGW\h(thtdaé:Z) + NCZ}W|h(Mh7td79_:z):| 5ﬁﬁ’-
(8.13)
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The interesting result is that the integral over the inclination angle which determines the
Stokes parameters in this case depends on a different combination of the @, ’s, because the
shot noise fluctuation is sensitive to the square of the energy spectrum,

o~ [ 4 p0Qu(0)Qu). (814

What emerges is that the covariance of the fluctuations of the V and U Stokes parameters
is non-null, therefore a net amount of circular polarization is generated. More specifically,

the covariance ?ﬁ,ﬁﬁ’ is proportional to the factors

I 1v I1Q IU 2 0 —8Bx 0
VI VV VQ VU| _ 0 2 0 ~iigs | (8.15)
QI QV QQ QU —8r 0 = 0
Ul uv uUQ UU 0o -z o0 -2

This expression tells us that the I and ) parameters are slightly correlated, while the
correlation between U and V is exactly one. When the number of sources is very large, the
central limit theorem holds and the Poisson distribution is approximated by a Gaussian
distribution, therefore the amount of circular polarization induced in the AGWB is a
realization of a Gaussian random field of zero mean and covariance given by Eq. (8.13),
where the covariance between different Stokes parameters is proportional to the factors
given in Eq. (8.15). In Figure 8.1, we plot the intensity of the monopole of the AGWB and
the amplitude of the circular polarization induced by the shot noise. At low frequencies,
when all the binaries emit in the inspiral stage, there is an exact correlation between the
shot noise fluctuations ar different frequencies,

o o = [ fC (8.16)

This happens because all the BBH emit in the inspiral stage, therefore any frequency
dependence can be factor out and the amplitude of the fluctuations at one frequency
univocally determine the others. The amplitude of the circular polarization has therefore
the same scaling of the monopole,

QUaws (s ) ~ 1/ CF s ~ £ (8.17)

At around 200 Hz, when binaries of different intrinsic parameters emit in different stages
of evolution of the binary, the situation becomes more complicated and the correlation is
no longer equal to one. We will consider in more detail this frequency dependence of the
anisotropies of the AGWB (including the shot noise) in Section 9.3.

8.3 Detectability of the circular polarization of the AGWB

The detectability of homogeneous and isotropic SGWBs has been discussed in Section 1.3.2,
where an optimal estimator for a uniform (in the sky) GW map has been defined. In this
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section, we will go through the same procedure in order to build an estimator for Q% qwg,
in the case in which the Stokes parameter could depend on the direction of observation.
The underlying assumption we make is that the correlation of the shot noise at different
frequencies is exactly one, and we write the AGWB signal in a similar fashion of Eq. (1.55),
by decomposing the background in terms of a function which encodes the frequency scaling
and an amplitude evaluated at the pivot frequency f,,

Waws (@ ) = Yhaws(f) + Qews(F) + Aa(REL(F). (8.18)

In this discussion, we neglect the monopole contributions QAGWB, Q/?GWB’ because it is a
good approximation to assume that there is no leakage of the intensity map into the one of
the circular polarization. A more detailed discussion of the component separation between
different contributions to the SGWB will be done in Section 8.4 and in Chapter 9. The
observed data in the interferometer A, defined in Eq. (1.53), have mean and covariance
given by

(da(f)) =0,

(da(f) d*B(f’)> :%(5(]‘ - f’) <NAB(f) +Z/dﬁ333(ﬂ7 ) Aa(f) 53(f)) ’ (8.19)

where the tensors Ej g have been defined in terms of the detector pattern function defined
in Eq. (1.54) according to

Bi(h 1) = s (FL G RS0, + 5 G NFE0.5)
B0 ) =gl (F5 0,05 (0, 1)~ F G DES ™ (0.) i .
B0 ) = gl (F5 0,05 (0, 1)+ F G DES0.5)) o
B0 ) = gl (F5 0, 1) (0, 1)~ F G DFE0.)

As we have done for QZ&QWB, we neglect any contamination of the shot noise of the Stokes
parameters « # V to the reconstructed map of the circular polarization. We leave the joint
estimate of all the Stokes parameters together for a future work. The optimal estimator
of the map A,(n) is a quadratic object in the data, which exploit the auto- and the
cross-correlation channels of the detectors,

Aoli) = [ 4F da(r) B £) ()~ (), (8.21)
AB

The functions E and b have to be chosen to minimize the covariance and the bias of the
estimator respectively. By imposing that <Aa (n)) = Ay(n), we get the constraints on the
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bias

~

ES (N
() =Toeg /df ABé’f)NAB(f), (8.22)
A,B

and on the weights

> [ SR B 1) (P Bl 1) = 50— ). (8.23)
A,B

The factor Tye comes from the Dirac delta evaluated in zero. In a similar fashion of
Eq. (1.62), the covariance of the estimator of the circular polarization depends on the
four-point function of the data and by using Eq. (8.19), the covariance has the simple form

éoe’ (i, ) / af S B3, £)E2p(') 2 Tecg

A,B,C,D

[ i (B, ) Bep(i, 1) (A E(NE (1) + {Nap(Nac(D)].
(8.24)

The choice of the weights E can be done by minimizing the covariance, considering also the
constraints provided by Eq. (8.23). The optimal way to do this is to introduce a Lagrangian
function, as in Section 1.3.2,

£ = o i) 4 X | Ty [ A S [ df JESu(f. Fi)E5(DBYs(0. 1) 1] . (325)
A,B

and minimize it w.r.t. the weights and the Lagrange multiplier,

1) 1)
—— L =—-L=0. 8.26
SES (7, f) A ( )

From now on, we work in the low signal regime, A, < Nap, therefore we neglect any
contribution induced by cosmic variance in the AGWB signal. The condition on the
functional derivative w.r.t. E gives

> E&p(m, f)Nap(f)Nes(f') + A BSp(h, £)E(f) =0. (8.27)
C,D

We can isolate in this expression the contribution coming from the weights, by using the
inverse matrix of the noise PSD,

E(f)ESp0n, f) + ZNAC )Bep (7, f)NpE(f) =0. (8.28)
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Figure 8.1: Plot ot the dominant contributions to the intensity and circular polarization of the AGWB and of the
PLS curves for the network ET+CE for the intensity and circular polarization. The sensitivities of ET4+CE have
been computed for Tops = 1yr.

By multiplying this equation by Tgee B’j (1, f'), summing over A, B and integrating over
the frequency we get

A= — 1 2 —— - (8.29)
Segfdf ZABCDBAB( f)NBC(f)BCD( f)NDA(f)

The weights are then given by

1 E(f)2XepN e (HBEL(R, FING(S)

ESp(n, -
sl )= i zABCDBABm FINGL(DBep (i NS ()

(8.30)

The covariance of the estimator can be computed by plugging (1.70) into (1.63), finding

1 2(n —m)
Tobs fdf ZABCDBAB(TZ f) (f)Bg‘D(A f)NB}Ll(f)

C;. (i) = . (831)

where the factor 1/T,s comes from the fact that Eq. (1.63) describes the covariance in
a single time segment of duration Ty, while the total information we get on the SGWB
is obtained by integrating the information at different times for the total duration of
our observations, Typs. In Figure 8.1, we plot the PLS for ET+CE for Ty,s = 1yr for
the covariance matrix defined in Eq. (8.31) for « = V. In the same Figure we plot the
monopole of the AGWB for SNR{} = 80 with the associated PLS.
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8.4 Foreground subtraction of the astrophysical signal

The circular polarization of the AGWB represents at the same time an interesting target
for future ground- and space-based interferometers and a foreground for the detection
of the Stokes parameters of primordial signals. For instance, if a CGWB is sourced by
axion-inflation [24, 76, 77, 78, 79] or Chern-Simons operators [80, 81, 82|, a non-negligible
amount of circular polarization is produced. In this section, we would like to quantify
the detectability of the Stokes parameters of the cosmological gravitons in presence of a
circularly-polarized AGWB. To simplify the computations, we assume that the CGWB
is homogeneous and isotropic and we characterize its frequency scaling by a power-law
spectrum with a constant tensor tilt,

I Vv

— _ f ny _ _ f ng
Obews(f) = Alaws <1Hz . ews(f) = Alcws 1, ; (8.32)
with fléGWB, flgGWB the amplitudes of the background at 1Hz. In general, n! and n}

can be different, but we assume here that they are equal, n{ = n,Y = nz. In this case, the

total incoming signal at the interferometers is

o ~\ _ 1 AGWB ~ 7 CGWB
which corresponds to the following covariance matrix of the data,
* d f B f/
(da() d(1) = (2>{NAB<f>+

/dﬁ BSp(n, f) [(QQGWB(JCP) + 0% cws ()
£\
+ Qaws (P, fp) + QWews (R, fp)) <fp> +
+ (Abgws + Alaws) (f) ] } :
p
(8.34)

In this chapter, we do not consider the propagation of errors on fléGWB and n; on the
estimate of flgGWB. We build therefore the estimator for the amplitude of the circular
polarization in a similar way to what has been done in Eq. (1.59), by considering as source
of noise just the presence of the circular polarization of the AGWB. The estimator is

Aows = / aF S da(h) EY s () (f) — b7 (8.35)
AB

As seen in Section 1.3, it can be shown that the covariance of our estimator due to instru-
mental noise is given by Eq. (1.72),

1 2

CA4V = 2n¢
Toos faf (£) " Sapen isDNsDWEnHNGAD)

, (8.36)
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where h* means that the error is related to the four-point function of the data. The
presence of a circularly-polarized AGWB generates an additional source of noise in the
estimator we have provided, since the average (of the square of the strain h;;) gives

fo

(8.37)
where we have neglected contaminations from other Stokes parameters. On average, the
shot noise fluctuation is zero, but its covariance is given by Eq. (8.13), therefore it is possible
to estimate the impact of the astrophysical foreground on the error on the cosmological

background by using
R . _ 2
CLv = <(<AgGWB> - AgGWB) > ; (8.38)

where cs denotes that the contribution is related to the component separation of the signals,
while the average is now taken w.r.t. the realizations of the shot noise. By using the weights
to minimize the instrumental noise given by Eq. (1.70), it is possible to show that the noise
due to the presence of the astrophysical foreground in this case is equal to

A = Tye - . A 2/3
<AgGWB> = AgGWB + /dfz QgEXB(f) /dn BXB(T% f)QXGWB(nyfp) <f> )
A,B

[ AfapanTe [STHNTY (NS THNBG )| T [STHAY (S B@, )| CFY

cAv =
1\ 21t 2 ’
Far ()" Saen s ING I D NG )

Cs

(8.39)
where we have defined

Cyy = / dn’ CY Y i (8.40)

with C’]‘c/f‘{ﬁﬁ, the covariance of the shot noise computed in Eq. (8.13). In Section 9.6,
we will give additional details on this computation. Eq. (8.39) shows that, since QEGWB
and QXGWB have two very different angular dependences, the numerator is suppressed
w.r.t. the denominator and the covariance goes to zero. This implies that it is possible,
in principle, to exploit the angular dependence of the shot noise (whose angular power
spectrum is constant in £), to reconstruct faithfully a stochastic background of primordial
origin. When the frequency scaling of the two signals is different, the component separation
of the two terms becomes more efficient, in analogy with what has been done in Section 1.3.
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Chapter 9

Kinetic dipole of the AGWB

9.1 Determination of our peculiar motion with different probes

As discussed in 2.1, the cosmological principle assumes that the Universe is homogeneous
and isotropic when smoothed over sufficiently large scales. Observations of the CMB [93]
and LSS probes, such as radio sources [85, 86, 87, 88, 89, 90| and quasars [91, 92|, show
that this assumption is true, when a dipole in the temperature anisotropies of the CMB
and in the distribution of galaxies in the sky is subtracted. These dipoles are associated
to the velocity of the observer w.r.t. the rest frame of the CMB and LSS respectively.
The LSS measurements of the kinetic dipole are affected by contaminations due to shot
noise fluctuations in the number of sources, which are enhanced in the case of partial sky
coverage [86], furthermore contaminitions from intrinsic anisotropies in the distribution of
the sources should be carefully considered too. In the case of the CMB, it is not clear if the
CMB anomalies [138, 319, 320, 321, 322, 323, 324, 325, 326] at low multipoles could affect
the estimate of our peculiar velocity. Current measurements of the kinetic dipole obtained
by CMB and LSS measurements are in tension [94, 90|, because the CMB dipole differ
significantly w.r.t. the LSS one in amplitude and direction. In this chapter, we consider
the AGWB as an additional source of information for our peculiar velocity [6], exploring the
possibility of cleaning the total signal observed at inferferometers from the shot noise and
the intrinsic contributions by exploiting the full-sky coverage of future GW interferometers
and the frequency dependence of the AGWB anisotropies. The results we have found show
that it is possible, in the limit of low instrumental noise or large monopoles, to reconstruct
our peculiar velocity with observations of the AGWB with higher precision than with the
other cosmological probes considered nowadays.

9.2 Kinetic dipole of the AGWB

The velocity of the observer w.r.t. the rest frame of the AGWB is the superposition of
many, uncorrelated, contributions. We consider here the sum of the velocity of the Earth
around the Sun, of the Sun w.r.t. the center of the Milky way (MW), of the MW w.r.t.
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the Local Group (LG) and of the Local Group w.r.t. the LSS,

Vi = vp + ve + vaw + VLG - (9.1)
The motion of the Earth around the Sun, vg ~ 30km/s, is considered automatically in
the analysis of the detector response at GW interferometers, since the detector pattern
function defined in Eq. (1.54) keeps into account for the position of the interferometers
in time. An extension of the standard pipeline which uses the prior knowledge of vg has
been presented in [68|. In this work we assume that the motion of the Sun w.r.t. the
center of the MW, vy ~ 230km/s, and of the MW w.r.t. the LG, vyw ~ 100km/s, have
been already subtracted from the data stream. In this way it is possible to set v, = vi,q,
which is the only unknown velocity we are interested in. From CMB observations [93],
vpg A~ 622km/s and vf°" ~ 370 km/s, because the LG and the Sun velocity have opposite
directions.

The computation of the anisotropies of the AGWB done in Section 7.4 shows that local
perturbations of the metric and our peculiar velocity generate a monopole and a dipole
term respectively, see e.g., Eq. (7.73). The first term can be reabsorbed in the definition
of Q%GWB? therefore the only local term which affects the angular power spectrum is the
kinetic dipole,

ali N — 117l - i - H'(x o A
N .0) = [ W) (W0 f) — L 3) v = Ra(D) o,
(9.2)

where v, is our peculiar velocity, bg}fﬂ the evolution bias defined in Eq. (7.68) and R, is
the Kaiser-Rocket factor, defined by

— 0 37[d] eff ( [4] eff . H'(n) _ )
Ra(f) = [ an W, 1) (a0 ) - s <) 93
From now on, we will focus just on the intensity of the AGWB and we will omit the
index which specifies the Stokes parameter. The Kaiser-Rocket factor represents a Doppler
boosting over many infinitesimal shells, accounting for the GWs emitted at different 7 (or,
equivalently, x). Eq. (9.2) refers to the kinetic dipole induced by non-statistical velocities,
such as vrg, while the subtraction of vg, vg and viyw would generate a Doppler shift
discussed for instance in [67]. In the Cosmic Rulers formalism used in Section 7.4, the
peculiar velocities of the emitters are not included in the KD, but in the redshift-space-
distorsion terms D1, D2 and rsd which appear in Eq. (7.78). In terms of the source
functions, the kinetic dipole reads

7 . dgk x /7 o,dipole
W = 470" [ G Vi (B)C) AF7 (0. ). 0.4)

where we have introduced

odipole o rli i H' 1 1
Aédp 1 (f) — /0' dT] W(L}eff (bLJO?H _ @ — 3) EGmomcsa . (95)
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The magnitude of the kinetic dipole depends on the realization of the Gaussian random
field 521(;1(\/]313 om» Which is drawn from a Gaussian distribution with zero mean and covariance

given by
dk

k
In this chapter, we prefer to characterize the anisotropies by using directly Eq. (9.2),
because it is more intuitive to connect the KD to the peculiar velocity we want to estimate.

CED(f, ) = 4n P(k)AY TP (APl f7) (9.6)

9.3 Frequency dependence of the anisotropies

The monopole of the angular power spectrum of the AGWB depends on the frequency,
because of the energy spectrum of the individual binaries defined in Eq. (7.44). The
scaling of the monopole with the frequency at low frequencies is f2/3, because all the
binaries emit in the inspiral stage and the frequency dependence can be factor out because
of the coherence of the waves. As shown in the right panel of Figure 7.1, when the
frequency increases, a fraction of the binaries start emitting GWs during the merger and
ringdown, thus the scaling with the frequency cannot be written in a simple analytical
form. Furthermore, the observed frequency at which some binaries end their inspiral stage,
depends on the redshift and on the masses of the compact objects in the system, therefore
it is not possible to factorize the energy density of the AGWB into a frequency-dependent
and a redshift-dependent contributions. To see more explicitly this, we recall that the
monopole of the AGWB depends on the integral

dFE
dfedG;};; (m1,m2, X1, X2, 2, f) (9.7)

Qacwn(f) ~ f / M, dMs p(my, ms)

where fo = (1 + z)f. When all the binaries are in the inspiral,
S~ TR (9:8)

while at higher frequencies we have a non-factorizable integral over the frequency. The
interesting thing to notice is that at high frequencies the shape in frequency of the AGWB
is sensitive to the distribution in mass and redshift of the sources, because the scaling
with the frequency is generated by the superposition of binaries at different stages of the
evolution with different intrinsic parameters and which emit GWs at different redshifts.
The important consequence of this fact is that the evolution bias, defined in Eq. (7.68), and
the window function, defined in Eq. (7.75), depends on the frequency and so anisotropies
exhibit a non-trivial scaling in f. The physical interpretation of this result is that the
weight of the sources that contribute to the background at redshift z could be different
at two different frequencies, because at the two frequencies the number of objects in the
inspiral, merger and ringdown stage of the evolution could be different. In Figure 9.1, we
plot the effective window function and the evolution bias for the intensity of the AGWB
generated by BBH of stellar masses at CE+ET. When f < 80 Hz, no huge differences could
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Figure 9.1: Plot of the evolution bias (left) and of the window function (right) of the intensity of the AGWB
generated by the superposition of BBH of stellar mass.

be appreciated in the window function and in the effective bias, because the majority of
the BBH emit in the inspiral stage. This non-trivial dependence on the frequencies implies
that the intrinsic, the shot noise and the kinetic dipole scale in a different way, because
they depend on different combinations of the window function and evolution bias. In
Figure 9.3 we plot the three contributions to the dipole of the AGWB as a function of the
frequency. We will show how this frequency-dependence could be used to disentangle these
three terms in Section 9.5.

9.4 Measurement of the dipole with the standard technique

The standard approach used to evaluate the detectability of the anisotropies of the AGWB
is analogous to the one discussed in Section 6.4.2. For instance, if we suppose to consider
the auto- and the cross-correlation of the AGWB with a galaxy survey, the amount of
information that can be extracted by the intrinsic and kinetic anisotropies is quantified by
Egs. (6.23), (6.24),

Zmax
SNR? =Y s, 'Cy, (9.9)
/=1

where fpax identifies the maximum multipole at which we have a non-negligible contribu-
tion to the SNR. The vector Cy in this case is

- CAGWBKD | ~AGWB,int
Cp= < ¢ ngAGWZB ~ (9.10)
7
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The components of the covariance matrix in this case are

Son _2611 (C?GWB,KD L CAGWBInL | CAGWBSN Ne)2 |
Se12 :263-1 (Cé%GWB,KD + Cé&GWB,int + C?GWB,SN +Ng) (CgXAGWB,int + CengGWB,SN) ’
509 :%#H [(CgXAGWB,int n ngAGWB,SN>2

+ <C?GWB,KD | CAGWBInt | GAGWBSN | Ng) <Cg,KD ooty Cg,SN)] _

(9.11)

The angular power spectrum of the noise Ny, has been computed with schNell for the
network CE+ET for five years of observations. A suitable survey that can be combined
with the AGWB is SKAO2, which will be described in Appendix I. In Figure 9.2 we have
depicted the cumulative SNR of the various contributions to the anisotropies as a function
of the maximum multipole considered. We have also plotted the various contribution to
the SNR up to fhax = 200 as a function of the monopole amplitude of the AGWB. Note
that when instrumental noise is considered, different choices of £;,.x above a certain value
do not change the SNR, since the instrumental noise automatically keeps into account
for the angular resolution of the detector. We have computed the SNR in three different
scenarios: with instrumental noise only, with SN only, and with SN plus instrumental
noise. From the picture it is clear that with the standard estimator of the intrinsic and
kinetic anisotropies, the SNR of the angular power spectra is always smaller than one,
because the shot noise and the instrumental noise are always orders of magnitude larger
than the interesting signals. In the next sections, we will illustrate a technique based on
the frequency dependence of the anisotropies to clean measurements of the intrinsic and
the kinetic dipole from the shot noise contaminations.

9.5 Component separation in the noiseless case

In Section 9.3 we have shown that at high frequencies, when it is not possible to factorize
the redshift and the frequency dependence in the integral to compute the AGWB, the
anisotropies scale in a non-trivial way. In Figure 9.3 we have plotted the shot noise, the
kinetic and the intrinsic dipoles of the AGWB at different frequencies. In the left panel,
we show the total magnitude of the three contributions, making clear that the shot noise
dominates the other two terms of at least one order of magnitude. In the right plot, we
show the three contributions, normalized w.r.t. their values at 1Hz, in order to enlight
the fact that at large frequencies the three scalings could be very different. In this section,
we show how the different frequency scaling could be used to discriminate between the
three contributions in the case in which there is no instrumental noise at the GW detector
considered.

To do component separation between the contributions to the anisotropies we use
Internal Linear Combination (ILC) [327, 138], or any other kind of component separation
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Figure 9.2: Plot of the contributions to the cumulative SNR as a function of the mazimum multipole, with SN
only (upper left), with instrumental noise only (upper right), with instrumental noise plus SN (lower left). The
blue line corresponds to the kinematic dipole, the orange one to the intrisic dipole, the green one to the intrinsic
anisotropies and the red one to the total. When instrumental noise is considered, we have computed the cumulative
SNR assuming the mazximum monopole amplitude for the AGWB. Lower right: plot of the cumulative SNR for
Imax = 200 as a function of the monopole amplitude of the AGWB, considering both instrumental noise and SN.
We have considered lmax = 200, because, when we compute the SNR with instrumental noise, we automatically
take into account the angular resolution of the detector, therefore higher multipoles give negligible contribution to
the SNR. All the SNRs have been computed for the auto-correlation of the AGWB and for the cross-correlation
between the AGWB with the galary survey SKAO2. The SNR computed here does not include the auto-correlation
of the galazy survey, because we want to quantify the amount of extra-information added by considering also the
AGWB in the analysis.
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Figure 9.3: Left: plot of the intrinsic, SN, KD, and total contribution to the £ = 1 term of the angular power
spectrum of the AGWB at different frequencies. Right: plot of the intrinsic, SN, KD contributions to the auto-
correlation spectra of the AGWB normalized w.r.t. their values at 1 Hz.

technique. We write the observed dipole in the vector form
70b it KD SN
di™ =& + &P + &N (9.12)

where the vector symbol identifies the array of frequencies at the detector, while ¢ the
spatial direction in the sky. The kinetic dipole at a pivot frequency fpiy is connected to
the velocity of the observer through the Kaiser-Rocket factor,

diP(f) = R(f)vo,i - (9.13)
It is possible then to write the total signal by using
Ci‘iobs _ ﬁvo,i + dzmt + d:-SN ) (914)

The main idea of ILC is to combine the data at different frequency to build an estimator
for v,; with the minimum covarince possible. If we assume a knowledge of the frequency
scaling of the three contributions to the angular power spectrum of the AGWB, it is
possible to introduce a vector @ in such a way that the estimator for our peculiar velocity
is

Do = @' dP™. (9.15)

We assume that our estimator is unbiased,
(D04) = Vo = W R =1, (9.16)

and that is covariance is minimized by a smart choice of the weights

9 <(@O,i . uo,i)2> —0. (9.17)

o
We notice that our strategy is similar to the one adopted in Sections 1.3.2 and 8.3 to eval-
uate the best unbiased estimator of the anisotropies of SGWB in presence of instrumental
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noise. Also in this case, to minimize the differential equation with a constraint we use a
Lagrange multiplier. The Lagrangian function is

L(@, ) = <(@07i - vo,i)2> —A (wTﬁ - 1) = T Cw — X (wTﬁ - 1) : (9.18)
where C' is the covariance matrix of the total dipole, where its («, #) entry is defined as,

Cag = cov A (fa), ™ (f3)] = CF(far f3) + CT (fas f2) (9.19)

By minimizing the Lagrangian function w.r.t. the two parameters we get

T _ =T _ 1\p3T/v—1 — 2
{wf oo {3” i, {ﬁ; T (9:20)

The estimator of the kinetic dipole is

5T —1 Jobs

The associated error to this estimate is

1
= 5 o V2N =T O - —— =
Obpy = <(vo,Z voﬂ) >— wt Cw = ool = . (9.22)

In Figure 9.4, we plot one realization of the total map, Eq. (9.12) (left), the kinetic dipole
map (middle), and of the reconstructed kinetic dipole map, Eq. (9.21). The maps have
been evaluated at the pivot frequency f, = 30Hz and we have used the value of the LG
velocity v,g = 600km/s. The pictorial representation of our result makes clear that,
although the initial map does not allow to reconstruct the kinetic dipole, because of the
contamination of the shot noise and of the intrinsic anisotropies, the reconstructed signal,
which exploits the frequency dependence, is very good. In a more quantitative way, the
SNR of the reconstruction of the dipole in all the directions is

SNR = \/Z Vo,i COVI_LIC i Voj A 10. (9.23)

1,

The key assumption we have done here is a perfect knowledge of the Kaiser-Rocket factor
R(f) and the scaling of the theoretical angular power spectra of the SN and of the intrinsic
anisotropies. This simplification is justified by the fact that the several uncertainties in
the astrophysical models which describe the population of the emitters will be reduced by
the large number of sources that will be detected by the network ET+CE [286].
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Figure 9.4: Upper Left: AGWB density contrast map at fo = 30Hz; Upper Right : input velocity map 7 - Up;
Bottom: reconstructed velocity map f - TSSt.

9.6 Component separation in presence of instrumental noise

The anisotropies of the AGWB are obtained by the superposition of the intrinsic, the kine-
matic and the shot noise fluctuations in the energy spectrum. In analogy with Eq. (8.19),
the covariance of the data d4(f) measured at interferometers is proportional to

(@A) () = 5007 = 1) Nanf) + Dacwn( s ()
i ) (9.24)
+Qacwn() [ 4B )3 Sl ).

with ¢ € {int, KD,SN}. In this case, we have neglected the circular polarization, since in
this chapter we focus just on the intensity and we assume that there is no contamination
in the AGWB maps from different Stokes parameters. In order to relax the notation, we
write the AGWB as a map at a pivot frequency f,, times a scaling function which describes
the scaling with the frequency,

Qiaws(®, f) = E5(HQacws(fp)dhaws (7, fp) - (9.25)

In this section we assume that the scaling functions £(f), defined by

e Qews(F)iaws(, f)
&) = Qacws(fp)05qws (s fp) (9-26)
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are known and we try to use differences in EXP, 5N and £ to separate the three contri-

butions to the AGWB anisotropies. We define an estimator quadratic in the data,
U = 3 [ 4f da(HEas(i, Hdi(F) - W) (9.27)
A,B

and we require that it is unbiased,

(08P = OBy (n, fy). (9.28)

In this case, the expectation value of the estimator is

(8°) =% [ aghestanted) [Z () [ i Blplin £)%ren i, fy) + Nas(£)| ~b(a).
(9.29)

Since the shot noise and the intrinsic map are realizations of Gaussian random fields, they
cannot be subtracted a priori, thus we can only subtract the PSD of the noise,

b(7) =Tyeg Y / df EABéﬁ’f)NAB(f) : (9.30)
A,B

At the same time, we impose that the contribution to the average of the estimator propor-
tional to the kinetic dipole is unbiased,

T Y [ A5 Eantin DESHBlp(in, £) =50~ ). (9.31)
A,B

The expectation value of our estimator is therefore

(50 0)) = Bl fy)+ [ ar ZEEOL) S oy [ i Bt 95w 1)
c#KD
(9.32)
Over infinite realizations of the intrinsic and kinetic anisotropies (which are uncorrelated
with the kinetic dipole), the bias is zero. However, in a single realization of the system,
they introduce an error in the reconstruction of the dipole which can be quantified by

= (((QFP ) - AP @) ((QEP () - AP @)))
=Tj}g / dfdf'dmdm’ Tr (E(n, f)BXP(m, f)) Tr (E(#, f1)BXP (1, 1))

Z Cc(fv fl; ma ml)

22 ED(NERD(F)
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where the trace is computed w.r.t. the indices of the detectors in the newtork, while cs
stands for “component separation” and BXP (7, f) = BA g(n, f) SIE(D( f). The covariance
matrix in the last row is the covariance of the maps of the intrinsic and the shot noise and
is related to the angular power spectrum by

Ce(f, [y, i) =Y (20 + V)Py(rn - i )CE(f, f) - (9.34)
l

This contribution represents the difficulty of detecting the kinetic dipole in presence of
foregrounds. Another, independent, error is induced by the fact that the estimator is
quadratic in the data and the four-point function of the data does not vanish. This source
of noise is quantified by the following covariance matrix,

CEP (7, )—ZTSBg/df > Eap(h, f)Ecp(i/, f)

A,B,C,D

[Vap(F)Npe()

T / dindiit S Bl (i, )Bhp (i, )%aws (0 H%ws (7, F)]

c,c’

(9.35)
Note that in the noise dominated regime this contribution reduces to
CKD (4, ) = 2 Treg / df S Eap(i, f)Ecn(@, f) NAD<f>NBo<f> C (9.36)
A,B,C,D

The total error on the estimator is therefore
CKD(A n') = C ( n') + CKD( RN (9.37)

Also in this case, we introduce the Lagrangian function

L = CEP (7, m) + A Tseg/dn Z/df SESp(n, ))ES(F)BSp(@, f) —1| . (9.38)

and we choose the weights F by minimizing it w.r.t. the weights and the Lagrange multi-

plier,
1) o
—L=—-L=0. 9.39
SEG (1, f) A (9:39)

The condition on the function derivative w.r.t. E gives

> Eep(in, f)Nap(f)Nes(f') + A Ba (i, £)E(f)

C,.D

Tse A A A A~ 7f m
+ ngf’dmdm’ BEP (i, f)Tr [E(7, f')BXP (1!, Z gKD SKD(f’i =0,
c£ZKD P

(9.40)
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where the trace is taken wr.t. the indices of the detectors in the network. At first order in
C., the Lagrange multiplier is equal to

A :Tsleg J dfT(2f;ffz,ﬁ) +Tseg/ ardf / i ng?ﬂ;)g(fnnn)f;) 5;2%; ’
(9.41)
where we have defined
T(f;f,m) =T [N“H())BEP (A, )N~ (F)B P (i, £)] (9.42)
The weights are then equal to
Bap(f fi) =L 25ac(/)BEB (A, )SH(f) (0.43)

Ty JAfT(f 0, 0)

The final expression of the covariance reduces to

GKD(a gy - L 2GR / afds / iy LTG0 Ot
Tovs [ AfT(f;7,7) [[af"T(frsa,n)]" EFPER
(9.44)
where we have replace Tyee with Tips, because we want the estimate of the error over the
whole duration of the experiment and not in a single time segment. Note that the error
induced by the component separation does not depend on Tip. This is due to the fact
that the error due to the component separation depends on the realization of the shot
noise and of the intrinsic anisotropies, which do not depend on time, therefore in different
time segments our knowledge on the different contributions to the overall anisotropies
does not improve. However, the different frequency dependence of the kinetic, intrinsic
and shot noise anisotropies can be used to dinstinguish between the different components.
This can be seen as the fact that in the covariance given in Eq. 9.44, the numerator is a
convolution of two integrals over the frequencies, weighted by the frequency dependence
of the covariance matrices of the intrinsic and shot noise anisotropies. When Slf(D( f) is

much different from SSN and Szi,nt, the double integral is suppressed, by the incoherent
superposition of the various terms, w.r.t. the denominator, proportional just to EIIfD(f).
This is consistent with the efficient component separation in the noiseless case, discussed
in Section 9.5. From the map of the kinetic dipole we can extract the estimator of the
velocity by using

b= iy [ A SN ). (9.45)

R(fp)

where we have used the relation between the kinetic dipole, the velocity and the Kaiser-
Rocket factor given by Eq. (9.13). The covariance associated to the reconstruction of the

velocity is

CY = cov [0, 9] = /dﬁ A1, CP (R, 7). (9.46)

v
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In analogy with Eq. (9.23), we have provided an estimate of the SNR of the dipole by using
SNR? = 51 cov14,. (9.47)

The result is plotted in Figure 9.5 as a function of the monopole amplitude of the AGWB
at f = 25 Hz. We can see that for values of the monopole of the AGWB within the upper
bound of LIGO/Virgo, the estimator is able to reduce the instrumental noise and to give
an SNR larger than one. In the figure we have also compared the SNR computed with
this multi-frequency analysis to the standard one evaluated in Section 9.4, showing that
in the limit of large monopoles/low instrumental noise, the technique we have used could
increment the detectability by an order of magnitude.
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Figure 9.5: Upper: plot of the SNR of the kinematic dipole as a function of the monopole amplitude of the AGWB
by considering SN and SN plus instrumental noise (Ngrycg). The horizontal lines show the SNR equal to 1,
2 and 3 respectively. Lower: Plot of the ratio of the SNR obtained by using the multi-frequency and the SNR

computed by looking at a single frequency.
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Chapter 10

Conclusions

Summary

The work presented in this Thesis represents an extensive research about the anisotropies
of stochastic backgrounds of cosmological and astrophysical origin. The increases in the
sensitivity of current GW detectors, such as Advanced LIGO, Advanced Virgo and KA-
GRA [328], or the prospects of having more sensitive third-generation interferometers, like
ET [13], CE [14], LISA [15], Taiji [16], BBO [17] and DECIGO [18|, make clear the im-
portance of being prepared from a theoretical point of view to the enormous amount of
GW data available in the next decades. Furthermore, the recent detection of a SGWB
by the IPTA collaboration [9, 10, 11, 12] made concrete the possibility of observing this
kind of stochastic signals and to explore their features in the near future. Although a clear
detection of the monopole and of its scaling with the frequency are the main targets of
SGWB observations, it is reasonable to expect that as a second step the anisotropies will
become the main objective of this research field. This is analogous to what happens in
the CMB case, since its detection by Penzias and Wilson [25] until measurements of the
angular power spectrum by Planck [26].

In Chapter 1 we reviewed the propagation of GWs in vacuum and in curved spacetimes,
describing the shortwave approximation and the structure of the energy-momentum tensor
of the gravitational field. Part of the chapter is devoted to a formal definition of stochastic
signals, to a description of the statistical properties of SGWBs and to the strategies for
their detection. In particular, we have illustrated the matched filtering technique used at
GW interferometers, computing the PLS curves for ET, CE, LISA and BBO.

In Chapter 2 we overviewed the ACDM model, which is the main pillar of modern
Cosmology. We summarized the geometrical properties of the Universe and of its particle
content, at the homogeneous and isotropic level and by taking into account the small
cosmological perturbations. More specifically, we have derived the set of Einstein and
Boltzmann equations which control the evolution of the scalar and tensor perturbations of
the metric ®, ¥ and H;;, which are responsible for the anisotropies of the CGWB.

In Chapter 3 we derived the Boltzmann equation for the distribution function of the
cosmological gravitons. The solution of the Boltzmann equation shows that the anisotropies
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are imprinted by the inhomogeneities encountered by gravitons along their geodesics and
by fluctuations in the spectrum of the CGWB at its production. In this chapter we defined
rigorously the production time of the CGWB and we introduced the three main sources of
primordial GWs considered in this Thesis: inflation, PBH and PT.

In Chapter 4 we performed the first robust computation of the initial conditions on the
anisotropies of an inflationary CGWB. In this calculation, we used an original approach
in which which we did not evaluate the initial conditions by looking at the Einstein and
Boltzmann equations, but we computed directly the energy-momentum tensor of the GWs
in terms of the gravitational field h;;. This new result leads to NAD initial conditions for the
inflationary waves, which increase the angular power spectrum by an order of magnitude
w.r.t. the adiabatic case. In this chapter we presented also the computation of the initial
conditions in the case of PBH, stressing the importance of primordial non-Gaussianity to
enhance the angular power spectrum.

In Chapter 5 we gave the first numerical prediction of the angular power spectrum
of the CGWB, showing the importante of the SW, ISW and of the initial conditions.
We furnished also a physical interpretation of the features of the spectra in terms of the
scaling with the tensor tilt of the monopole and of the properties of the transfer functions
of the perturbations of the metric. In addition, we illustrated that the angular power
spectrum is sensitive to the fractional energy density of relativistic and decoupled species
at the production of the background. Since cosmological backgrounds were produced at
temperatures larger than 10'2 GeV, fgec(7in) could be a crucial observable to probe Physics
beyond the Standard Model.

In Chapter 6 we computed the angular power spectrum of the cross-correlation between
the CMB and CGWB. We elucidated the features of the cross-correlation by mean of the
projection effects of photons and gravitons which come from two close (but not identical)
last-scattering surfaces. We found that at low multipoles the correlation between these two
signals is close to one, mainly because at large angular scales photons and gravitons share
the geodesics and are sensitive to the same perturbations of the metric. We stressed the
importance of this interrelation between the CMB and the CGWB by showing how from the
observed CMB map it is possible to build a precise constrained realization of the CGWB,
which could be used in the future to test systematics or foreground contaminations in the
data. In this chapter, we estimated also the detectability of the auto- and cross-correlation
spectra with future detectors, by computing the SNR for ET+CE, LISA and BBO. We
forecasted also the sensitivity of the network ET+CE to the fraction of relativistic and
decoupled species introduced in Chapter 5, on fyr, and on isocurvature perturbations,
finding that tight constraints could be put in the cosmic variance limit or in the case in
which the sensitivity of ET is increased by three orders of magnitude. Even though a
so large suppression of the instrumental noise of ET is unrealistic, BBO and DECIGO
are expected to improve the sensitivity by orders of magnitude. Furthermore, in different
frequency bands not constrained by LVK, the amplitudes of CGWBs could be larger than
10710 — 1077, giving rise to anisotropies detectable with SNRs large enough to do a precise
parameter estimation.

In Chapter 7 we reviewed the AGWB produced by the coalescences of BBH, BNS and
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BHNS. We listed the population of the astrophysical sources, describing the PDF of the
intrinsic parameters and the number density of the objects in the sky. We computed the
monopole for the three different kind of emitters, obtaining results consistent with the LVK
bounds. We described then the computation of the intrinsic anisotropies of the AGWB by
using the Cosmic Rulers formalism, plotting the angular power spectrum of the AGWB
emitted by BBH.

In Chapter 8 we illustrated the first prediction of the circular polarization of the AGWB.
In spite of the fact that the monopole of the AGWB is expected to be unpolarized in GR,
because of the isotropic distribution of the inclination angle of the binaries, we presented
the counterintuitive result that when the shot noise fluctuations in the number of sources is
taken into account, a net amount of circular polarization is generated, because the average
of the inclination angle of the binaries differs from zero. The angular power spectrum of the
circular polarization of the shot noise is constant in the multipole space and it scales with
the frequency as the square of the monopole, CEN( f) ~ f4/3. Because of the low number
of sources that contribute to the background, the shot noise fluctuation is very large and
it could be detected with SNR larger than 2 in one year of observations by the network
ET+CE. The circular polarization of the AGWB could be at the same time an interesting
observable and a foreground for the detection of cosmological signals, like the polarized
backgrounds produced during axion inflation. We showed that it is possible to disentangle
a cosmological signal by exploiting the different frequency and angular dependence of the
shot noise and of the cosmological backgrounds.

In Chapter 9 we gave an extensive description of the dipole of the AGWB sourced by
BBH. We characterized the three contributions to the dipole, given by the cosmological
perturbations (intrinsic anisotropies), by the shot noise, and by our peculiar motion w.r.t.
the rest frame of the sources (kinetic dipole). In this dissertation, we illustrated that at
high frequencies the dipole of the AGWB depends on the frequency in a different way
compared to the monopole, because of the different contributions coming by binaries in
different stages of their evolution. We paid a lot of attention on this frequency depen-
dence, exploiting it to do the first component separation analysis in the context of GW
anisotropies. More precisely, we used the different scaling with the frequency of the intrin-
sic, the kinetic and the shot noise anisotropies to reconstruct our peculiar velocity with
high precision, even if the shot noise is orders of magnitude larger than the kinetic and the
intrinsic terms.

The work conducted in this Thesis highlights the importance of the study of the
anisotropies of SGWBs, which is crucial from the theoretical and observational point of
view. Chapter 3, 4 and 5 emphasize the importance of a theoretical description of the
Universe at early times, because its geometry, particle content and the initial conditions at
early times could strongly affect the angular power spectrum of SGWBs. Chapter 6 points
up the possibility of doing multimessenger cosmology with impressive results, because of
the large correlation between the CMB and CGWB. Chapter 8 and 9 elucidate the nature
of the anisotropies of the AGWB, which could be used to separate the astrophysical and
cosmological components and to improve our knowledge of the Universe at late times.
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Appendix A

Decomposition of the perturbations

in GR

A.1 Gauge transformations in GR

We consider a gauge transformation of the form of Eq. (1.3), which maps the coordinate
x* to new ones z*’ by using the infinitesimal four-vector £#. According to [329], a generic
tensor Y transforms under this map as

Y'(2') =Y (z) + £Y (2), (A1)

where the Lie derivative of a tensor with covariant and contravariant indices along the
vector field £ is defined by

LV = DA\YIEN + Y] D, — YDy, (A.2)
with D) the covariant derivative introduced in Eq. (1.22),
DY} =0,Y) + FZLOYVJ — FZVYU“ . (A.3)

If the tensor Y can be decomposed into a dominant contribution Y and a small fluctuation
0Y, the gauge transformations of the two terms at first order in & are

Y'(2") =Y'(2')+6Y'(2') =Y (2) + 6Y (z) + &Y () — {Y

A.2 Decomposition of the FLRW metric

As discussed in Chapter 2, the Cosmological Principle states that the Universe is mainly
homogeneous and isotropic, thus the dominant contribution to the metric is given by the
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FLRW line element given in Eq. (2.1). By adopting the conformal time introduced in
Eq. (2.3) and assuming a flat spacetime, the FLRW line element is

ds* = a*(n) [—d772 + 5ijdacidxj} . (A.5)
This line element corresponds to the background metric
goo(n) = —a*(n),  Goi=0,  Gij = a*(n)di;. (A.6)

However, tiny inhomogeneities and anisotropies are present in the Universe, therefore small
perturbations of the metric should be considered,

G (1, %) = G () + 0G0 (1, %) . (A7)

In [235, 236], it has been realized that it is convenient to decompose the metric perturba-
tions into irreducible representations of the group of spatial rotations in the background
spacetime. The (0,0) component is a scalar under SO(3), thus we can set

dgoo(n, x) = —2a*(n)A(n,x) . (A.8)

The (0,4) component transforms as a spatial vector, thence it can be decomposed, according
to the Helmoltz’s theorem, into an curl-free and longitudinal part plus a divergence-free
and transverse term,

690i(n, %) = —a?(n) |%:B(n,x) + B (1,%)| . (A.9)
By definition, for the solenoidal field the divergence vanishes, 8" Bi-(n,x) = 0. The (i, j)
component of the metric transforms as a 3 x 3 symmetric tensor, therefore it can be

decomposed into two scalar fields, D and F', a solenoidal vector field, Fil, and a transverse-
traceless tensor H;j,

893 (n,x) = a?(n) < 6 [1 +2D(n,x)] +  9;0; — 15¢jv2 F(n,%) + 8 F3 (n,x) + Hij(n, %)
3
(A.10)

A.3 Gauge transformations of the metric perturbations

Following Eq. (A.4), the gauge transformation of the perturbations of the metric is

59,;1/(77,7)(,) = 5guv(77a x) + Sﬁguu(n, X). (A.11)

Since the covariant derivative of the metric vanishes, the previous equation becomes
09, (', X') = 890 (0, %) + Dy&u(n, x) + Dby (1, %) - (A.12)
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In a similar fashion of what has been done for the perturbations of the metric, we decompose
the vector field which characterizes the gauge transformations into two scalars and one
solenoidal vector,

¢ =(a 0B+pB,) (A.13)
with ;81 = 0. The covariant derivative of £* is
Do” =00€° +T0,&” = 90&” + TH&" = 0p€” + HE® = Opor + Hav,
Doé' =008 +T§),&" = 0o&" +T{;&7 = 0B’ + 000" B+ HO' B+ HPB
D;€ =0;¢° +T9 67 = 0,¢° + T9.&F = 9,0+ HO;B + HBL 5,
D¢ =0;8" + 1,69 = 0,6 + 150" = 0,0'8 + 9; 8 + Hdlax,
where to compute the affine connection we have used the terms of order zero in the per-

turbations which appear in Eq. (2.79). The transformation! of the (0,0) perturbation of
the metric is then

8g00(z") = dgo0(x) + 2gor(2) D& () = dgo0(z) + 2G00(2) Do’ () — A’ = A+ o + Har.
(A.15)

(A.14)

For the (0,7) part we have
590:(x) = 6g0i(2) + GoaDi (@) + ginDo& () = dg0i(z) + GooDi&%(x) + Gi;Doé’ (z) . (A.16)

Since at linear order in the perturbations the gauge transformations of irrotational and
solenoidal vector are decoupled [236], we disentangle also the gauge transformations of the
perturbations of the (0,%) perturbation of the metric,

—0;B' = — 0;B — 0;a — HOiB + 0;003 + HO;B — B'= B+a— 983,
—B}' =—Bj" ~HBLi+00BLi + HBLi = Bi"' = B — doBLi.
For the (i, 7) component the computation is analogue,
89;(x') =0gij(x) + gix(2) D" + gia(2) i = 6gij () + Gir (2) DjE" + gju(2) Dic* =
:5gij<ﬂf) + Dj&‘ + ,szj .

(A.17)

(A.18)

Also in this case we separate the scalar, one of the two proportional to d;; and the other
to 0;0; — %&j, vector and tensor contributions to dg;;, finding

1 1
28;;D" =25, D + 26;; <7—[a + 3V2B> —D'=D+Ha+ gvz/j,

1 1 1
(aiaj — 35ijv2> F = (a,-aj — 35,-jv2) F+2 (ajai — 35ijv2> B—F =F+28,
OuFyy =0uFjy + 0By = Fi' = F- + BLa,
A.19

ITo relax the notation, we use the four-vector z as argument of the perturbations and we do not write
explicitly n, x.
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A.4 Gauge transformations of the perturbations of the energy-
momentum tensor

Eq. (2.91) provides the expression for the energy-momentum tensor of a fluid in terms of
its pressure, energy density and anisotropic stress,

Ty = (p+ P)upuy + P gy + Ty - (A.20)
The velocity satisfies the conditions u*u, = —1 and, if we define vl = ul, we get
BV g — 0 )? 0 o _ 1 5 1
W g = =1 = (uly)) = 2ufy —24ufy = —— s "= —(1-4).  (A2D)
The covariant and the contravariant velocities are then
ut = % (1-A v u,=a(—(1+A4) v). (A.22)

The energy momentum tensor is made by a homogeneous and isotropic contribution, T},
whose components are

Too(n) = a*(m)p(n),  Toi(n) =0,  Ty(n) = a®*(n)dyP(n) . (A.23)

Note that the anisotropic stress is present just at first order in the perturbations and, by
exploiting the conservation of the energy-momentum tensor, it can be recasted in the form
m;j, With vanishing temporal components. The perturbations of the energy-momentum
tensor are therefore 6p, 6P, v* and m;j and their gauge transformations can be computed
by using

0T, (2") = 0T} () + LeTp () - (A.24)

The covariant derivatives of the unperturbed energy-momentum tensor are
DoToo =00Too — 2T Tox = BoToo — 2Ty Too = a*Bop,
DoTij =00Ti; — TOT; =TT = 00Ty — T3T5 — TR = 80Ty — 2HT;; = a?6;;00P
DoToi =00To; + T5,Top + T Tip = 0,
D Too =0;Too — 2Ty Tho = —2I00Tpo = 0,
DyTij =0kTyj — T Ty — T Toi = 0,
D;Toi =0;Toi + T4 To, + 16,1y = a’0ijH (p+ P) .

(A.25)
The energy-momentum tensor at first order is
§Too =a® [p(1 + 24) + 6p]
6Ty; = —a* |(p+ P) v+ P (0,8 + B , (A.26)

1 _
51—%]’ :(I2 5ij 0P + CL2 |:(1 + QD)(SH + <818] — 36UV2> F+ G(ZFJ% + Hij P+ T -

174



The perturbation of the (0,0) component is then equal to
8T4o = 0Too + DaTool™ + 2Ta0Do&™ = 6T + DoToo€” + 2700 Do’ (A.27)
which corresponds to
5p' +2pA" = §p+ 2pA + dop o + 2pdpa + 2pHa — §p = dp + Dopar . (A.28)
The perturbation of the (i, j) component is
0T]; =0Ty + DATy & + TniDie + TayDik™ = 6T;5 + DoTiie” + TriDi" + Ty Dig" =

:5Tij + a25ij 80]5a +a’P [28¢8j,8 + 81‘5J_j + 83‘5J_i + 27‘[5”‘&] .

(A.29)

From this relation it is straightforward to get
/

/ _ (A.30)
§P' =6P + dyPor.

The perturbation of the (0,7) component is
8T}; =0Toi + DaT0i€™ + TaoDi€™ + TaiDo&™ = 6Tv; + DjT0i& + TooDi&” + T Dol =
=0Ty +a* (p+ P)H (0:8 + BLs)

+a® [p (0o + HO B+ HPBL:) + P (00 L + 000;8 + HOB+ HBLi)] -
(A.31)

From this relation we find
v = v; — O (A.32)
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Appendix B

Brill-Hartle Average

In Section 1.1.2 and 1.1.3 we have faced the problem of connecting the macroscopic descrip-
tion of the dynamics of the large-scale background to the microphysics involving directly
the metric perturbations with small wavelengths. A similar problem appears in electro-
magnetism [330], when one would try to determine the electric field in a dielectric medium
generated by the superposition of all the single electric charges present. In both cases, it is
possible to focus separately on the large- and small-scale features of the system, therefore
the most rational choice would be to simplify the complexity of the problem by doing a sta-
tistical treatment by averaging over the small scales the equations, avoiding cumbersome
computations that keep into account for the microphysics. In analogy with EM, to perform
the average it is necessary to rigorously define a scheme to smooth out the microscopic
variations of the fields.

In this appendix, we will describe the averaging scheme introduced by Brill and Har-
tle [98] (BH average), developed also in [35, 36] and, more recently, in [331, 332, 333, 334,
335]. Considering a generic tensor T}, (x), we defined the Brill-Hartle average by using

(T () = / dy f(z, ) B (2, 9) B (2,9) Ty5(9) (B.1)

with f(x,y) a smooth weighting function which falls to zero when 1/¢ < |Z — ] < 1/k,
where ¢ and k have been defined in Sec. 1.1.2 and represent the scales over which the
background and the GWs vary. The quantity Bﬁ‘ is the bi-vector of geodesic parallel
displacement used in [336, 37| and it is the nonlocal generalization of an ordinay tensor
field. In our convention, Bﬁ transforms as a covariant vector w.r.t. z for the index p and
as contravariant vector w.r.t. y for the index &. In this appendix, we will explicitly show
that the BH average satifies the following rules [35, 36]:

1. it is possible to neglect the average of terms of the form D,SJ,, where S, is an

object quadratic in ’y,(,gw), because they are suppressed w.r.t. the unaveraged terms

by a factor k/q,

(D,S"

t ) e < DpSh

o (B.2)
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2. it is possible to “integrate by parts” averages,

<pp7£Gw)oDU ﬁSW)> __ <,Y£GW) opppa,yf(”cj;W)> : (B.3)

3. covariant derivatives inside the averages commute when they act on the GWs.

To prove the first point, we make use of the Gauss theorem on curved manifolds,

<D,,S;jy>:/‘/d4nyﬁBEDﬁS§B:/EdZﬁfBg‘BngB—/Vd‘lyDﬁ [fB;}Bﬂ 75
(B.4)

The boundary term is zero, because the smoothing function f vanishes at spatial infinity,
while the second terms contain derivatives of tensors and bi-tensors that vary just on large-
scales, therefore they are negligible compared to derivatives of S, which are proportional
to the GWs of high frequency,

k
(D,Sh,) ~ Dpsgy5 < D,S1, . (B.5)

The second property is a corollary of the first rule, since we have shown in our proof for rule
1. that the boundary terms of the average of objects quadratic in the GWs is negligible.
In a very trivial way, by exploiting the first two rules, it is also possible to show that the
covariant derivates commute when the small scales are smoothed out.
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Appendix C

Detectability of the CGWB
anisotropies

C.1 Polarization basis

Given a direction of observation n and a coordinate system {Z,y, 2} arbitrarily oriented,
it is possible to define an orthonormal basis {n, 4,0} according to

b=nx, (C.1)

where 4 and 0 stay in the & — § plane when 7 || 2. By introducing the spherical coordinates
in the {Z, g, 2} basis, it is possible to write

n= (sin@cos¢ sinfsin¢g cos 0) ,
U= (sinqﬁ, — cos ¢, 0) , (C.2)
0= (cosﬁcos ¢, cosfsing, —sin 9) .

We define then the +, X polarization tensors by using

. UjUj — ViV . UiVj + U5 V;
eij’+(n) = % eij7><(n) = % (C3)
This basis is related to the chiral basis L, R by
R eii(N) —ie;; x (N R eiitr(n)+ieji«(n
eiij(n) = z],-l—( )\/5 IJ7><( ) eiij(n) = zy,+( )\/§ z;,x( ) . (004)

Since the overall amplitude of a stochastic background is independent on the basis used,
we can related the amplitudes in the two bases through

ha (71, feij+ (1) + hx (7, feijx () = ho(n, fei,L(R) + hr(n, fegr(R) (C.5)
which gives the relations

V2 ’ V2 '

179



C.2 Detector tensor for ground-based interferometers

We consider a detector network whose interferometers are labelled by A and each of them
has two arms oriented along the directions x4, — x4,1 with w equal to 2 or 3. In our
discussion, we assume here that the arms of the interferometers have the same length L.
The observable in this case is the time for light to travel from x4 to x4, and to come
back!, looking for gravitational signatures in the time delay between the two measurements.
When a GW is crossing the detector, the metric can be written according to

ds® = —dt?* + da'da? [6;5 + hij (t,%)] (C.7)

The geodesics of the photons in the two arms going from x 4,1 to x4, can be written in
terms of an affine parameter A,

ra1w(N) =%xa1 +ALlaw, (C.8)
where we have defined . —x
lnw = FAw T 24T (C.9)

1XAw—Xa1]
By solving the equation of motion for massless particles we get

dztdz?

ds? = 0 — dt* = dx* + da'da? hij(t,x) = t1u(\) = AL + /
Flw

hij (t(/\%X()\)) ;

(C.10)
where I',, means that the second integral is evaluated along the trajectories given by Eqgs.
(C.8) from A = 0 to A = X\ Since h;j is a small perturbation, it is possible to write
the argument of the GWs in the previous expression at zero order in h;;, avoiding terms
quadratic in the tensor modes, which are subdominant,

L (> wl " _ - -
t1o(\) —)\L+2/ d) AL (t—L—l—)\L,XAJ—i-)\LlAJw) , (C.11)
0

where ¢ — L is the time at which photons start propagating from x4 ;. If we write the
SGWB in the plane wave expansion defined in Eq. (1.38), we get that the time delay to
Cross one arm is

+oo
TAlw—LJrLAMAl“/ d/\/dn/ deh (R, f) €55(R)

6727rzf/\L(1fn-lA71w)6727rif(ffoﬁ-xA,1) .
(C.12)

It is possible to perform the integration over A, finding
e—27rifL(1—ﬁ-lAA71w) 1

Tas =L LiiAl“Zil“/dA/+mdeh (5. f) 55 ()
w=L+L—"—"— n (M, f)efs(n =
o 2 —0 - T omifL(1 — - lag,) (C.13)

6727rif(t77L7ﬁ-xA71)

I This result can be easily generalized to the case of TDI 1.5 variables, in which more complicated paths
are considered.
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We can re-write the time delays as

400 ) . o )
Tpsw =L+ L / din / AF S hali, £) Ga (7 Eane) M (f1,Lap ) e 2mlELixan),

(C.14)
where we have defined
2 lA,lA 1w iJA 1
ga <ﬁ7l w) E’i,we? ﬁ 9
A 7 cul (C.15)
M (f 7, lAAylw) —e i fLA-Mlaw) gine (wa (1 -n- lAA,lw)> ,
with the normalization for the sinc function given by
sinc(z) = MY (C.16)
T
The geodesic of photons in a return flight is parametrized by
rawi(A) =xa1+ (1= A) Liag, (C.17)

and we can write at first order ¢ = {4+ X L. The time to return from x4, to x4, is therefore
equal to

oo ) ) S
Tawi=L+L / dir / A D halit, ) Ga (7 Ta) M (f s lan ) e 2m bR
I

2mifL(1—-lg 10)
e ! )

(C.18)

where [ Awl = - Alw- The total time for a round trip in the two arms is given by the
combination

ATp1 =Ta10 +Taw =
+o0 . e X
=L+ L [ di [ ar Y ol £)Ga (udas) e 2L
e ~

[M ( Fh, ZA,M) + M ( £, ZA,M) eQﬂfL@*“Aw} .
(C.19)

This expression is consistent? with [148, 149)].

2The exponential in their results depend on the quantity we call x4, 2 and not on x4 1.
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Appendix D

Computation of the source functions
of the CGWB

Eq. (3.32) describes the decomposition of the CGWB map at the present time in spherical
harmonics. In this appendix, we will derive analytic expressions for the coefficients of the
spherical harmonics decomposition for the scalar, tensor and initial contributions to the
anisotropies.

Scalar term

The scalar contribution to the angular power spectrum is given by the contributions to the
solution of the Boltzmann equation in Eq. (3.31) which depends just on ® and ¥,

58aws (1m0, ) / d*k { e — mo 3 5 (A
= =9 P(Min, k)€’ #(1in=110) +/ dn [V (7,k) + ®'(7,k etkn(i—mo) L
4 — ngwb(q) (27‘(‘)5 (7] ) i Ui [ <T, ) (77 )]
(D.1)

In order to find the coefficient of the expansion in spherical harmonics it is useful to write
the exponential in terms of spherical harmonics and spherical Bessel functions,

e*r = am >N il Golkr) Y, (k) Yo (7) =, (D.2)

therefore we have

4 = ngwn(q) 4 = ngwn(q)

00 L 3 .
—ar >0 30 0 [ 00 Vi (DAL (ko) [ AR ()Y ()
L

L=0 M=—

3 ~
~am(=i) [ G55 €00 Vi (A (o). -
D.3
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where we have used the transformation property of the spherical Bessel function under
parity, je(z) = (=1)%jo(—2), the definitions of the scalar source function, Eq. (3.34), and
of the transfer functions of the scalar perturbations of the metric, Eq. (3.35), and the
normalization of the spherical harmonics,

/ ARY7, () Y1ar(R) = S00mar - (D.4)

Tensor term

The computation of the coefficients of the spherical harmonics expansion associated to the
tensor contribution is more complicated, since it involves a less trivial integration over the
direction of observation n. According to Eq. (3.31), the tensor contribution can be written
as

3baws (0, ) 1 d3k /no o .
CGWBARD A — R, d z g k) ¢ w(fi—no) . D5
conm i =3 [ Gy || w0 o)

The coeflicient of the expansion in spherical harmonics is compute by using

in

daw em,1(q) /d Y7 (h )5CGWB(770aQ)
4 — ngub(q) o g (@)

:_1/(13k/dny (R )n'n]/dﬁﬂf(ﬁ K)etkr(—mo)
2 ) (2r) em At A

In order to perform the integration over the solid angle, it is convenient to express H;;
in terms of its polarization tensors e;; ) in a basis in which the polarization has a simple
form. We call {Z, g, 2} the canonical basis in which the direction of observation is expressed
according to Eq. (C.2). We introduce then the basis {#, §, k} orthonormal to the vector k,
following Appendix C.1. This new basis is expressed in the canonical basis by using

(D.6)

k= (sin 0 cos ¢ sinbpsingr cos Qk) ,
# = (singg, —cosgy, 0), (D.7)
§= (cos 0y cos ¢, cosbsing,, —sin Ok) .
Note that the direction of observation in the canonical basis is just given by
n= (sin@cosgb sinfsing cos 0) , (D.8)
while in the {#, 3, k} basis is

Ry = (sinf, cos¢, sinb,sing, cosb,) , (D.9)

where 1 = cosf,. Egs. (C.3), (C.4) show that the polarization tensors in the L, R basis
are

€ij,r =€ij+2 = 5 |(rirj — sisj) +i(risj +rj8i)],
(D.10)

— N =

eij,L =eij—2 = 5|(rirj — sisj) — i(risj +158:)].
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In this basis, the contraction between 7, and the polarization tensors which appear in the
solution of the Boltzmann equation is simple,

i ey, (k) = ; {[(sin @, cos ¢,)? — (sinf, sin¢,)?] +i2 (sin 6, cos ¢,) (sinf,sing,)} =
:% sin? 0, e'2%n

sz Aieij,L(lzz) :% {[(sin 6, cos ¢u)? — (sin 6, sin ¢M)2} —i2 (sinf, cos¢,) (sinb,sing,)} =
1 sin? @, e 271 |

(D.11)

By recalling the functional form of the tensor transfer function introduced in Eq. (3.35),
we have

1., 1 . >

S, Hig(n, k) = (1= p)Ta(n, k) [ 59 HL(6) + 7% Hp(k)] - (D.12)
where we have assumed that the transfer function for the two polarization states of the
tensor perturbations are identical. The only change in Eq. (D.15) due to the change of basis
from 7 to f, is given by the transformation of the spherical harmonics, which transforms
according to the Wigner D-matrix,

* ~ Y4 7 * ~
Vi) = > Dy (k) Ve, ()- (D.13)
The Wigner matrices can be computed in terms of the spin-weighted spherical harmonics,

4m s * (7
s (1 Vi () (D.14)

D(k) =

Eq. (D.15) becomes now

Saw,em,7(q) 1 d3k . \/7
e M — _SY Y
4 — ngwb(q) 2 / (2m)3 20+1 o () Yo (72,2)

/dﬁ etku(ii—m0) 7 sz(ﬁ’k)

1 [ Bk & \/T . o
=—- —1)° * 5 pikp(fi—no) (=
4/(27r)3 Se;é 20110 Vi (k) /dne Ty (1, k)

[ Q¥ )1 = ) [0 100 + 7 100
(D.15)

The spherical harmonics can be written in terms of the Legendre polynomials according to

Vialin) = (2L )

} Pom(cost,)e”™ow . (D.16)
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It is possible therefore to split the integral over 7, can be splitted in two integrals over ¢,
and 60,. The integration over the anomaly angle gives a condition of the form

2 )
dg ™ = 21 8,40, (D.17)
0

which corresponds to a term proportional to d2—,, 0 and d2, o for the contributions propor-
tional to Hy, and Hp, respectively. The integral over 6, is done by exploiting the definition
of the associated Legendre polynomials introduced in Eq. (D.16),

Pojm () =(=1)I™(1 - xz)?'w ,
(0 — |m])! ! (D.18)

mpflml(x) )

Py (@) =(= 1)
where the Legendre polynomials are defined by the differential equation

% = x2>d7z;y) — U+ 1)Pu(). (D.19)

In order to compute the integral over 6,, we use

1
/+ %Pz(ﬂ)eik“("’m) = Jelk(n —mo)] - (D.20)

1
(=)*

The integration by parts of the integral w.r.t. 6, gives

+1 g, d2p du . dP,

— H ikn(n—no) (1 _ 222 7 _ A1 Giku(n—no) (1 — 2y [9, 22 _ Pyl =

I = pa=mo) (] = 1 2 1 =
/_1 4 ° (1=4) du? /_1 4 © (1= p )[ . du “e+1) Z]

Hdp 2 d dP dP

— AH ikpm—no) =2 [ Y (2 _

/1 4° { ik(n —no) [Mdu((l 'u)d,u)—'_(l 'u)d,u]
— U0+ 1)1 = )P f=

L dy . 2 2000 + 1
:/ —“elk“("*m){Jriik( H L+ 1Py + (04 1)Py — - e+ )ng—i—

1 4 n—"1o) k2(n —mo)? ik(n — o)
:/_:1 ?MPM(Z + 12— —1) =
. ;(—i)fme(u D+ 2)(0—1).
(D.21)
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By plugging these results in Eq. (D.15) we get

daw,em,7(q) / 3k L
1) LAY ()2 ek
4 — ngwn(q) 2m)3 Z £+/\ Y7 ()27 (03 28R + 0, —261) 5 (1) %

Jelk(no — n)] (£ —|AD!
/m dnTH(n,k)m(f—1)£(€+1)(€+2)[52,>\+( AR -

L ek = m) 1 [+ 2)
_/( )\Zj;2§>\ i Qk)/m dnk!(n, k) k2(no —n)2 4\ (¢ —2)I
(D.22)
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Appendix E

Einstein tensor at second and third
order in the perturbations

E.1 Energy-momentum tensor of the GWs at third order

The energy-momentum tensor of the CGWB produced by the quantum fluctuations of the
metric during inflation has been computed by using the expression provided by [35, 36, 37]
in the shortwave approximation, Eq. (1.29). We would like to check the consistency of
this expression with the definition of stress-energy tensor of the gravitational field given
by [101],

1
GW — h
T (@) = — o= Gl (@) (E.1)

G,(AQV) is part of the Einstein tensor which is quadratic in the GWs of the CGWB, i.e. the
small-scale tensor perturbations of the metric h;; introduced in Eq. (3.3). In our case, the
Einstein tensor has to be quadratic in h;j, but it could also contains terms linear in the
perturbations of the metric ®, ¥ and H;j, because we would like to compute the large-

scale perturbations of an object proportional to <h;~jhij’ > The Einstein tensor at third-

order can therefore be computed with xPand [337], an algorithm to perturb homogeneous
cosmologies. The computation of the Einstein tensor at order zero and one in the large-
scale perturbation of the metric gives

0 (2 L ij 1 L i Lo ik 3 ki
a2Gy? zghﬂ’hgj + Hh7hi; + 1700, — §hjv2hij + O Okhi — SO hY Ohij

a2G3® :i (—(I)h” B+ 20K B — 2K R
— 120RhV?hj 46U R0y, — 9UOFhT Ophy+
— 2HYRE By — SHYRK9;0;hiy, + 3HY 0;1™ 9 hyy + 40 HM 0,0y hij+
+ 8hI H* N2 hyy — AHY 9;higd'hE — 2HY 9h0'hE + 6Hijakhjlakh§) :
(E.2)
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In these expressions we have neglected the friction terms Hh;; < h;j and spatial deriva-
tives of the potentials, 0, ®h;; < ®Oyhi;, because we want to compute the energy density
of the CGWB in the shortwave approximation, when ¢gn > 1 and ¢ > k. As proved in
Appendix B, these expressions can be simplified by recalling that in the shortwave approx-
imation it is possible to neglect contributions of the form of D,S%,, with S§, quadratic in
hij. It is possible to show that, neglecting for simplicity the tensor perturbations, that

200 _ Ly Lo ooy L) 360
a*Go W = W'l ShIED + SO — MO 4 28O,
0(3 1 ij ij
@G)) = (—2BhY b, + 4wn R,
_ 1250 4 Lgm
2

—AHIAY + aH PR + ag* B — 21D — HIF] - 3HBY))
(E.3)

where the negligible terms have been defined in Appendices E.2, E.3. This expressions
coincides with the energy density of the CGWB found in Eq. (4.22), obtained from the
definition of the energy-momentum tensor given in Eq. (1.29).

E.2 Equation of motion of GWs in a perturbed Universe

The GWs of small frequencies, denoted by h;;, propagate through the large-scale pertur-
bations of the Universe, identified with ®, ¥ and H;;, therefore by the computation of the
Einstein tensor at second order in the perturbations it is possible to understand how the
geodesics of the GWs are affected by the presence of the perturbations. The perturbed
equation of motion of the GWs is defined by

i — i (TT) _

where TT identifies the transverse-traceless part of the Einstein tensor. The computation

with xPand of this contribution gives

s+ hij (2H — @ + ') + hyj (AHY +20") — V2h; (1 + 20 + 20) + 2HM 0,0,y = 0.
(E.5)

E.3 Negligible terms in the Brill-Hartle average in the Pois-
son gauge

Following Appendix B, in the shortwave approximations it is possible to neglect terms of
the form

D,S?

0, (E.6)

with S%, quadratic in the GW degrees of freedom of the metric. These degrees of freedom
have been defined in Eq. 4.19 in terms of h;; and of the metric perturbations in the
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Poisson gauge. Note that the covariant derivative introduced here has to be computed
w.r.t. the metric containing only the large-scale perturbations ®, ¥, and not w.r.t. h;.
It is possible to build some negligible quantities starting from total derivative of time
covariant derivatives of objects quadratic in the GWs,

T =Dy (YW 1Doy™) =
S {h”’h;j(l +4W) + hhY (1 +4F) — hYhj; [H(1 +40) + &' — 8W'] +2 (V" — HI') h@'fhij} ,

Skr = {( + 4\1/) [0khY Ochij + W9V ?hj| — 3R hi; [H(1 — 2@ + 20) — ¥'] — 67{\1:’/#%”} ,

(E.7)
The previous terms can be recasted in a four-divergence,

g = _ D# (,}/GWIJDM,YSW) —
— R (1 - 20 + 4W) — 4RI R + (1 + 69)Fh T Oy + hIED = (E8)
— h9'h;(1 = 2@ + 49) + (1 4+ 69)0"h O)hy; ,

where we have used the fact that SZ»(jl) = 0 and that ¥’ is negligible, because the evolution

of the large-scale perturbations is zero. Other negligible quantities can be built from total
derivatives of covariant derivatives with spatial indices,

AE;)) EDP (’yGka’Dj’in,iW) = h”“&)l@jhik ,

7GW1kDp > _ _% (alhikalhjk - hik/h;k> :

Dp GWDl’inWk) = @-hkl@’hf + hklajalhf,

=2,
(9 (E.9)
=Dr (511) By b} ) = 0;hi0'hY

Epp( B D'RE ) = Ot/

1

PR =D' (D' ) = &' hOhsi + bV i
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Appendix F

Computation of the transfer
functions of the metric perturbations

F.1 Transfer function of scalar perturbations

The transfer functions of scalar perturbations have analytic solutions in the case in which
the perturbations re-enter the horizon far from the equality epoch. We compute the evo-
lution of the scalar perturbations in the regimes k& < keq and k > keq, where the scale of
equality has been defined in Eq. (5.21). For the scalar perturbations, we do not consider
in this appendix the presence of neutrinos in the computation of the transfer function, be-
cause the solutions would not be analytic. The correct transfer functions, which includes
also the presence of neutrinos, have been depicted in Figure 5.1.

F.1.1 Super-horizon perturbations during the radiation epoch

We compute the dynamics of the scalar perturbations of wavelength larger the causal hori-
zon during the whole duration of the radiation dominated epoch. We divide the discussion
in super-horizon dynamics, in which £ <« H and in sub-horizon dynamics, for which k > H.

Super-horizon dynamics

By looking at the system of Boltzmann equations, Eq. (2.107), we see that the velocity of
CDM is suppressed by the expansion of the Universe,

1
Ué+,HUC:7iI€(I)*>’Ué+/HUC:O—)’UNa. (F.1)

It is therefore possible to neglect for these scale the effect of v, in the Einstein and Boltz-
mann equations. The equations for the distribution function of photons is

o +HEOI =0 =) =1, (F.2)
which gives a result also for the CDM density,
6, 4 ikve = 3V — 6, =30 — §' =30, —= . = 30,0, (F.3)
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where in the last step we have used the fact that the initial conditions satisfy exactly
d¢(Min, k) = Or0(Min, k)/3. In absence of neutrinos, which provide a quadrupole moment,
we have ® = ¥ and the Einstein longitudinal scalar part of the Einstein equation, see
Eq. (2.108), for super-horizon perturbation becomes

i3
3H(V + HY) = — 4rGa® 0. <1 + 3p_r> . (F.4)
Pec
To solve this equation, we choose a convenient parametrization for the time variable,

D, d dy d ! d d
4P W v _45,C (F.5)
Qeq  Pr dn dndy a Geq dy dy

Y

In this way the equation assumes the simpler form

LR NV 50(1 + i) . (F.6)
Yy

3H?y—
ydy 2 241 3y

In order to express 0. as a function of ¥, we derive the equation w.r.t. y, finding

d6(y+1), dv d
S AN B e m)} 3 =
dy[3y+4 (ydy+ +dy
6(y+1) { dv  d%v 6 dw dw
W )R } ( & xp) 38— F.
sy+d Lay " Vagl T ayraz\Vay TY) Py (F.7)
6(y + 1)y de [ (3y + 4)? 6 dy
2T IYEY L oy +1)(3y + 4 } & 6w
syra ape TP F DG+ ey e g, T
The equation we have to solve is then
d>¥ 21y + 54y + 32 d¥ 1
+ — ¥ =0, F.8
dy*  2y(By+4)(y+1)dy  yy+1)(3y+4) (F-8)
which has as solution
1
k) = {0 (16\/1 Fy+ 98+ 22— 8y — 16)@(%, k). (F.9)

When y < 1, i.e., long before zeq, ¥(n, k) = ¥(nin, k), while for y > 1, we get ¥(n,k) =
%\I/(nin, k). In the absence of neutrinos, ® and ¥ experience a transition from their initial
value, which reduces their amplitudes by a factor 9/10.

Sub-horizon dynamics

After the transition of the potentials around the equality epoch, the potentials are frozen
until they are super-horizon, because of the solution given by Eq. (F.9). We discuss now
what happens to the metric perturbations when k£ > #H in the matter-dominated epoch.
In this stages, the equation for the CDM velocity is

v+ Hoe = k® — (av.)’ = ka®, (F.10)
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which admits the solution
ok [T o
o) = vl ) + 5 [ iRk, (F.11)
M

where we have used the expression of the conformal time as a function of the scale factor
in the matter-dominated era computed in Eq. (2.13). By using the Einstein equation

H@::_;%2<&¢+3Z%>, (F.12)

it is possible to find the perturbation of the CDM density,

6 U(ne ,k)ng T N k2n?
5%@——W<(2q+/dw%m@ . )

By using the Boltzmann equation for CDM,
oL+ kv, = 3W | (F.14)

it is possible to get an integro-differential equation for the dynamics of ¥ in absence of
neutrinos,

18+ K22 ([ 5 . v(14, k)02 k*n? 4+ 18 k*n? + 18
18+ K /(mﬁwm%%FO7)n _ K g K+ 18
n . k 6 3n

U=0. (F.15)

We can derive with respect to the conformal time this expression and we obtain a second-
order differential equation for 1,

,'74
EW+#W:0. (F.16)

This equation admits a solution which decreases with n and another one which is constant,
" =1 = 0, thus we get the final solution
9

‘I’(% k) = ‘I’(W, k) = Toq)(nina k) (F17)

F.1.2 Sub-horizon perturbations during the radiation epoch

When k > keq the dynamics of the perturbations is very different. When these modes are
super-horizon, the dynamics is identical to the case k < k¢q during radiation domination.
Around the horizon-crossing time, n,... = 1/k, the perturbations however start oscillating.
To see explicitly, we solve analytically the system of Einstein and Boltzmann equations,
neglecting the impact of CDM, since its contribution is subdominant during the radiation
dominated epoch. The Einstein equations give

kQ\Ij = _67"[2 <®r,0 + ?)]:-[@rJ) — ®r,0 =—-——V- 7@7“,1 . (F18)
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By plugging this expression in the Boltzmann equation for ©,.,

O+ kO, =1, (F.19)
we get
kz"qf—ﬁ\y%—@ @’ +kO,1 -V =0. (F.20)
3 6 ]{i r,l — k‘ 1 r,1 .
This equation can be combined with the Boltzmann equation for ©,.1,
k k
0,1+ @ro 3<I> (F.21)
finding
k k2 2
©;.1 + @H Ty(1-2T) =o. (F.22)
3 6
By combining Egs. (F.20), (F.22) we get
k:n 1
S U+ -0 F.23
S < I ) (F-22)
It is easy to get then the equation of motion for the scalar perturbations of the metric,
4 k?
U+~ 3\11 =0. (F.24)
n

The solution of this equation is the spherical bessel function of order one, which can be
expressed in terms of trigonometric functions as

kn kn kn
sm———cos
U(n k) =3—L VB3 VBy(n, k). (F.25)
kn
(%)

The dynamics of the perturbations for these perturbations when 7 > neq is not important,
since these modes are suppressed by the damping which occurred during the radiation
epoch.

F.2 Transfer function of tensor perturbations

In the absence of a source of tensor perturbations, the equation of motion of the tensor
perturbations is given by the tensor, transverse-traceless part of the Einstein equations,

HY(n,k) + 2H(n)Hl;(n, k) + K*Hi;(n,k) = 0. (F.26)

In this Thesis, we assume that the two polarizations propagates in an identical way, con-
sistently with GR, therefore we write

Th(n, k) + 2H () Ty (n, k) + k*Tr(n, k) = 0. (F.27)

196



When k < H, the equation of motion reduces to

dInT7(n, k) dIna(n) dn
Ty (n, k)+2H ()T (n, k) =0 — HAD2 — 9 — Tx(n, k) = A+B .
(F.28)

thus the tensor perturbations are constant for super-horizon scales, because the solution
which evolves in time is suppressed by the expansion of the Universe. In the case k < keq,
the transfer function of the tensor perturbations can be therefore computed during the
matter-dominated epoch,

4
Ty (0, k) + L Tha (1, k) + K Tia (1, k) = 0. (F.29)
The solution of this equation is simply given in terms of the spherical Bessel function of
order one,
3j1(k
Tl b < hug) = 200 (.30)

For k > keq, the computation of the transfer function of the tensor perturbations should
keep into account for the transition between the radiation- and the matter-dominated eras.
In the radiation dominated epoch, the equation of motion is

2
Tir(n.k) + L T (0, k) + KT (.k) = 0, (F.31)

therefore the transfer function is just
Ta(n < Neqs k> keq) = jo(kn) . (F.32)
In order to match the solution in the matter- and radiation- dominated epoch we get

TH(T/ < Tleqs k> keq) :JO(/W]) )

T (1 > Neqs k> keq) Z% [A(k)j1(kn) + B(k)y1(kn)]
_ ji(kn)

TH(TL k < keq) - k??’] )

(F.33)

where j, and y, are the spherical Bessel function of the first and the second kind, while
the coefficients A and B comes from the matching of the solution during the radiation
dominated era with the one evaluated during the matter dominated era at the equality,

3 cos(2kneq) N sin(2kneq)

A(k) = ,
®) 2keq 2kneq (K7eq)? (F.34)
Blk)=—1+ 1 cos(2kmeq)  sin(2kneq) '
B (Kfeq)® (kneq)? 2Keq

197




198



Appendix G

Table of integrals

The integral of two Bessel functions with different arguments, multiplied by a generic
polynomial, has been given in [338] in the form

v+p—A+1
(=)
2>‘,3V_>‘+1F<7V+‘u2+’\+1)F(y+1) @)
F<V+M—/\+1 v—p—A+1 a2>

[ 5 dutaa) g, (60) =

1.7
2 I 2 7V+ )/82

with 0 < a < 8, Re(A\) > —1, Re(v + ¢ — A+ 1) > 0 and F the hypergeometric series.
When the argument of the two Bessel is the same, the integral has also been computed
in [338] and it is equal to

AID(A)D (”ﬂ‘f—“l)

—vtptA+l A+ —pA+1
G A G R Gy

/i:f Jy(ox)J,(ax) = ) (G.2)

with Re(v 4+ p+1) > 0 and Re(A\) > 0. Whenv =p=/¢+1/2, a =1 and X\ = 3 — ng, the
integral becomes

(G.3)

dr _ 1 TB—nl (352
/$3ns Jii1ya() = 23-ns T2 (42na) T (2£+gfns) .
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Appendix H

Estimator of the angular power
spectrum

H.1 Error on the angular power spectrum

We consider 2(2¢+ 1) Gaussian independent random variables, Z¢,, Y¢m, one for each value
of m at a fixed £. The angular power spectra we are interested in are
1
§<$€my2m/ + xzmyf’m’> = 5€€’5mm’ CEXY ) (Hl)
with z, y that could be dgw, ¢m and asy,. Note that, if we include the noise in the analysis,
the observed maps are

85 = Tom + Ny - (H.2)
In this thesis, we assume that the noise is a Gaussian random variable of zero mean and that
the covariance of the map can be written as an angular power spectrum! The expectation
value and the covariance of the noise are defined as

(njm) =0,

X 'Y _ At XY
(Mo Mpry) =NG

(H.3)

In our discussion, we assume that the noise is uncorrelated w.r.t. the signal we want to
measure, although this could not be the most general case?. The statistical estimator of
the the angular power spectrum CKXY is the “Pseudo-Cy”, obtained by averaging over all
the directions in the sky of the square of the maps at a given multipole, minus® the bias
induced by instrumental noise,

. 1 U X Y o gXxgY

CEXYE%_i_l S Zim Zm—g bm Sbm _ XY (H.4)

m=—

IThis is not always true for GW interferometers.

2Think for example at the case in which the signal is a cosmological GW background and the noise/-
foreground is the astrophysical GW background.

3This definition implies that it is possible to characterize in a very precise way the covariance of the
noise.
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It is immediate to see that, since the signal and the noise are uncorrelated, the estimator
we have defined is unbiased,

(CXYy = XY (H.5)

In the case in which both surveys are full-sky, the covariance matrix of the estimator of
the angular power spectra is diagonal in multipole space. On the contrary, one should take
into account for the mode coupling of the spectra due to the break of statistical isotropy
in the experiments. As a first approximation, this mode coupling could be included in
the factor fqy in the likelihood and, consequently, in the SNR. The covariance at a given
multipole is given by

Q:XX—XX Q:XX—XY Q:XX—YY
(4 (4 (4
Q:Z = QtXX—XY Q:g(Y—XY Q:XY—YY (HG)
Q:?'XfYY Q:g(YfYY Q:E/YfYY

where the covariance matrix of two angular power spectra is given by
e = <<cg - é;) (c,f ~ O§)> , (H.7)

with o and S that could be equal to XX, XY, YY. To compute Qﬁ?_ﬁ we exploit the
definition of the “Pseudo-C,” given in Eq. (H.4) and the Wick theorem for Gaussian
random variables with zero mean, see e.g. Eq. (Al) of [339], and a procedure analogue
to the one used in [340]. We note that €, contains four different kind of contributions:
the covariance of the same auto-correlation spectrum, the covariance of two different auto-
correlation spectra, the covariance of the auto-correlation and the cross-correlation and the
covariance of two cross-correlation. To compute it in a general way we write the covariance

fora = AB and 8 = CD, with A, B, C, D that could be X or Y,

- A A C AC ~NAB AC A C
Q:Zé ﬂ:<<CZB—CgB> (CZD—Ce D>>: <C£BCZ D>—CZBC€D:

1 1 * * * *

:Zm Z <<Szm52m + Stl}msll?m> (Sim’szlm’ + Sim’ ng'>>
m,m/’
— (G + N{P) (CFP + NEP) =
1

b* d* A A C C
:7(26 n 1)2 <S?msfm82m’sfm’> — (Cg B + Nf B) (Ce D + NZ D) s
m

(H.8)

’
,m

where the last term has been obtained by considering the possible combinations of the
second terms in the r.h.s. of Eq. (H.4). In the above computation we have simplified the
complex-conjugate terms of the a, b, ¢ and d maps, because they would produce the same

202



result to the final map. By using the Wick theorem as in [340, 339], we get

a—f _ 1 a * b * c * d*
¢, (20 1)2 Z/ <(a€m + NG ) (O, + 1) (Comr + s ) (A + nem/)>

= (GI'P + NP (CFP + NEP) =

1
~GrE1)e Z{(Cé“BJrNeAB) (CFP +NFP)

H.9
T by (CAC + NAC) (CPP 4 NEP) (EL9)
+ Syt (CPP + NZ P) (PO + NFO) |
— (G + N{P) (CFP + NEP) =
= (G + NAC) (OFP + NPP) + (G + NAP) (CFC + NPO)]
It is straightforward to show then that
XX-XX _ 2 XX 2
< 20+ 1 (G +NE)
1
€Y MYV (O NEX) (@ N
%Sr 1 [ ] (H.10)
XX-YY _ XY XY
¢ ~5r 1 (CXY 4+ N}Y)?
Q:XX XY _ 2 (CXX+NXX) (CéXY—FNéXY) )

H.2 Likelihood of the angular power spectrum

The likelihood for the Gaussian random variables g, and yy,, is

L (xzm,yzm‘CeXXva(Y ) H \/m [ ; 3 (wm yem) 2 <§Znn>] ’

(H.11)
where the covariance matrix of the data is given by
_(CXX 4 NXX XY 4 NXY
Y= (Céxy FNXY O CYY 4 NYY (H.12)

In the case of full-sky measurements and isotropic noise, the likelihood for the angular
power spectra, obtained by using the quadratic estimator in the maps defined in Eq. (H.4),
is a Wishart distribution [275]. At high multipoles, the central limit theorem ensures
that a Gaussian distribution in the power spectra is a good approximation of the true
distribution. However, since the GW experiments are limited by instrumental noise to
large angular scales, we cannot use the Gaussian approximation for the likelihood, thus we
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use the same likelihood of [1]|, which is a Wishart distribution obtained starting from two
Gaussian random variables,

o (€O e e o) = ey |2 9 o)
7 Cl |Cel
where we have defined the following determinants,
Dl = (X + NF¥) (EF + NY) + (6 + N (0 + )
_9 (CZ(’Y _|_N£XY) (éﬁxy +N£XY) ’
(H.14)

1Co| = (CXX 4+ NEX) (CFY + N)Y) = (CXY + N¥Y)?
1Gol = (X 4+ NXY) (@Y + N7Y) = (@ + )

Although the likelihood is not Gaussian, it is always possible to quantify the detectability
of the angular power spectra by computing the signal-to-noise ratio (SNR), defined by

CéXX 1/2
SNR= |Y (CFY Y oyYye,t [ oY , (H.15)
¢ oy

where the covariance matrix is the one defined in Eq. (H.6). In the limit in which we
consider just the auto- or the cross-correlation of one of the two signals, marginalizing
w.r.t. the other spectra, the SNRs are equal to

- 1/2 2 1/2
CXX 20+1  (CFY)
SNRauto = ‘f_] = [ ‘ ’
I v (20+ 1) (CXY)?
cross — Zm Z (CXY —I—NXY)2 + (CXX —I—NXX) (CYY —I—NYY)
AR e \“e ¢ ¢ ¢ ¢ £
(H.16)

204

1/2



Appendix I

SKAO2

The parametrization of the futuristic SKAO “phase two” (SKAO2) is described in [341],
dN
dQ.dz

c1 =6.55, ¢ =1.93, ¢c3 =6.12,
Q(z) =0.282% —1.182% + 1.762% + 1.367z,
b9(z) =0.082° — 5.472% + 16.42% — 19.622 + 7.352 + 0.22¢89:2%" ~169-2:°~102.5:2+15.5:+0.24
(I.1)
There are basically two reasons why we have chosen SKAO2. The first one is that this

survey has an high sky coverage, fS};AO ~ 72%. In addition, the SKAO2 window function

peaks in a similar redshift range of the window function of the AGWB W. This means
that the cross-correlation is very high and this increases the SNR.

=1001(5) z2(5¢) exp [—e5(S,.) 2] deg™2,
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