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ABSTRACT

In humans, extrastriate visual areas are strongly activated by symmetry. However, perfect symmetry is rare in
natural visual images. Recent findings showed that when parts of a symmetric shape are presented at different
points in time the process relies on a perceptual memory buffer. Does this temporal integration need a retinotopic
reference frame? For the first time we tested integration of parts both in the temporal and spatial domain, using a
non-retinotopic frame of reference. In Experiment 1, an irregular polygonal shape (either symmetric or asym-
metric) was partly occluded by a rectangle for 500 ms (T1). The rectangle moved to the opposite side to reveal
the other half of the shape, whilst occluding the previously visible half (T2). The reference frame for the object
was static: the two parts stimulated retinotopically corresponding receptive fields (revealed over time). A
symmetry-specific ERP response from ~300 ms after T2 was observed. In Experiment 2 dynamic occlusion was
combined with an additional step at T2: the new half-shape and occluder were rotated by 90°. Therefore, there
was a moving frame of reference and the retinal correspondence between the two parts was disrupted. A weaker
but significant symmetry-specific response was recorded. This result extends previous findings: global symmetry
representation can be achieved in extrastriate areas non-retinotopically, through integration in both temporal

and spatial domain.

1. Introduction

Visual perception relies on inputs from the retina, and shape infor-
mation is integrated in the visual system to form coherent representa-
tions of the visual world. One source of information is the presence of
regular (non-accidental) patterns in the environment that are associated
with objects. The visual system is tuned to symmetry, both in humans
(Barlow & Reeves, 1979; Carmody et al., 1977; Julész, 1981; Locher &
Wagemans, 1993; Markovi¢ & Gvozdenovi, 2001; Wagemans et al.,
1991; Wenderoth, 1994) and many other animals (Benard et al., 2006;
Delius & Nowak, 1982; Grammer et al., 2003). In the Gestalt tradition,
symmetry plays a fundamental role in perceptual organisation and
figure-ground segmentation (Bertamini, 2010; Feldman, 2007; Machil-
sen et al., 2009; Mojica & Peterson, 2014; Treder & van der Helm, 2007).
By definition, symmetry is characterized by rigid transformations
(Jenkins, 1983; Wagemans et al., 1991, 1993). Models of symmetry
perception involve computations that detect pairwise correlations across
receptive fields (Dakin & Herbert, 1998; Dakin & Watt, 1994; Dakin &
Hess, 1997; Garner, 1974; Jenkins, 1983; Osorio, 1996; van der Helm &
Leeuwenberg, 1996; Wagemans et al., 1991, 1993; Zhu, 2014).

Neuroimaging and neurophysiology research provides important
insights into the temporal and spatial dynamics of symmetry perception
(Bertamini et al., 2018; Bertamini & Makin, 2014; Cattaneo, 2017). A
symmetry-sensitive network has been found in the extrastriate regions —
V3, V4 and Lateral Occipital Cortex, LOC (Chen et al., 2007; Keefe et al.,
2018; Kohler et al., 2016; Sasaki et al., 2005; Tyler et al., 2005; Van Meel
et al., 2019), with LOC playing a causal role in symmetry detection
(Bona et al., 2014, 2015). Importantly, areas V1 and V2 do not show any
symmetry-specific activation (Sasaki et al., 2005; Tyler et al., 2005; Van
Meel et al., 2019). Electrophysiological (EEG) research has demon-
strated an event-related potential (ERP) called the Sustained Posterior
Negativity (SPN) (Hofel & Jacobsen, 2007; Makin et al., 2012, 2016;
Martinovic et al., 2018; Norcia et al., 2002; Wright et al., 2018). The SPN
is recorded over posterior electrodes and it is likely to be generated by
the extrastriate symmetry network (Makin et al., 2012, 2016). This
component is a relative measure (i.e. a difference wave), it has an onset
latency of approx. 250-300 ms, and is sustained until stimulus offset
(Bertamini et al., 2019). The SPN amplitude reflects the perceptual
goodness of the stimulus: the more salient is the regularity the larger the
amplitude (Makin et al., 2013, 2016, 2019; Palumbo et al., 2015).
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Fig. 1. Results taken from Rampone et al., (2019; Experiment 1). (A) Grand average ERPs averaged across electrodes P9 PO7 P10 POS8. From 0 ms (t1) to 500 ms the
first half of a polygon shape was visible. At 500 ms (t2) the occluder moved and revealed the hidden half, whilst covering the previously visible part. After this, a
symmetry — asymmetry ERP was observed after ~ 300 ms. The polygon shape could be either symmetric or asymmetric; the occluder could move either left — right
or right — left. In the figure, an example of a symmetric shape with occluder moving right — left is reported. (B) Zoomed plot of the Grand average ERP shown as a
difference wave (Symmetry — Asymmetry; solid purple) (C) Topographic difference maps (Symmetry — Asymmetry) from the time-window 300-500 ms and
500-1000 ms from T2. Red dots indicate electrodes analysed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

Most of the studies on the neural basis of symmetry perception use
presentations with fully visible symmetry and long durations. However,
in a dynamic and ever-changing natural environment, projection of
objects onto the retina is constantly altered by both object and viewer’s
motion. One challenge for the visual system is that occlusions are
ubiquitous in our environment and they remove significant shape in-
formation (Kourtzi & Kanwisher, 2001). To create a coherent repre-
sentation, briefly-presented incoming information must be retained in a
temporary perceptual buffer (non-retinotopic Sensory Memory, nrSM;
Ogmen & Herzog, 2016) for a few hundred milliseconds, where it is
integrated with new information (Agaoglu et al., 2012; Clarke et al.,
2016; Ogmen & Herzog, 2016; Orlov & Zohary, 2018; Palmer et al.,
2006; Scharnowski et al., 2007). This global object-based integration
does not require a match in retinotopic coordinates (Ogmen & Herzog,
2016) and its output converges in extrastriate visual region and LOC
(Kuai et al., 2017; Orlov & Zohary, 2018; Reichert et al., 2014; Yin et al.,
2002).

Recently we demonstrated that the symmetry-network computes
integration of parts during dynamic occlusion (Rampone et al., 2019). A
complex polygon (either symmetric or asymmetric) was shown behind
an occluder, so that only half was visible (always asymmetric; Fig. 1A).
After a 500 ms interval, the occluder changed position and revealed a
second half. No symmetry was ever in the image and it could only be
detected by integrating the two parts (Fig. 1B). An SPN was generated,
confirming a response within the symmetry-network (Fig. 1C-E). In
Rampone et al. (2019) the object appeared static behind the occluder
(dynamic occluder, static shape). In this case, elements of the shape
remained within a static reference frame, which guides the attribution of
stimulus features according to group identity (Lauffs et al., 2019). One
could argue that the preserved retinotopic correspondences within the
static reference frame allowed symmetry perception. On the contrary, if
shapes were displaced (e.g., moving to a different location at t2) the
reference frame would change; integration should be thus achieved
across both the temporal and spatial dimension. Such condition tests
whether the visual system can extract global symmetry non-
retinotopically.

We tested integration of symmetry in dynamic occlusion with a static
(Experiment 1) and a moving frame of reference (Experiment 2). The

symmetry axis was always set at 45° (Fig. 2) and the occluder position
changed. When the shape remained static, the parts stimulated reti-
notopically matching locations (only temporal integration required). In
Experiment 2, the reference frame rotated by 90° at t2 (at same time as
the occluder moved; see Fig. 4), so the parts stimulated unrelated reti-
notopic locations (spatiotemporal integration required). The results
demonstrate the flexibility of the symmetry-sensitive network, which
activity is not subordinate to rigid early computations but can reflect
global interactions of spatial correlations.

2. Experiment 1

Here we tested temporal integration of two asymmetric halves of a
polygon shape into a global representation of its symmetry. A rectangle
bar acted as a dynamic occluder covering one half of the shape for 500
ms, and then the other half for 1000 ms. No symmetric configuration
was visible on any given frame (more precisely, what was symmetrical,
such as the occluder, was the same in all frames). Participants decided
whether the perceived static whole was symmetric or asymmetric.

2.1. Method

2.1.1. Participants

Twenty-eight participants took part in the experiment (mean age =
32.2, SD = 15, range = 54; 8 males; 5 left-handed). Sample size was
selected a priori for consistency with Rampone et al. (2019). Participants
had normal or corrected-to-normal vision. Some received course credit
upon completion of the study. The study was approved by the University
of Liverpool Ethics Committee (reference: 2122). The experiment was
conducted in accordance with the Declaration of Helsinki (although the
study was not pre-registered, which is required by point 35 of the 2008
revision).

2.1.2. Apparatus

EEG activity was recorded using a BioSemi Active-Two amplifier in
an electrically shielded and darkened room. EEG data were sampled
continuously at 512 Hz from 64-scalp electrodes embedded in an elas-
ticised cap arranged according to the standard international 10-20
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system. Electrode offset was maintained within the —25 + 25 pV range
for all electrodes. To detect blinks and eye movements, vertical bipolar
electrodes (VEOG) were positioned above and below the right eye.
Horizontal bipolar electrodes (HEOG) were positioned on the outer
canthi of both eyes. Stimuli and experiment were programmed using
PsychoPy software (Peirce, 2007) and presented on a CRT monitor (60
Hz; resolution: 1280 x 1024). Participants were positioned 140 cm from
the monitor with their head stabilised in a chin rest.

2.1.3. Stimuli

Stimuli consisted of complex polygons (bottom part grey (RGB
[-0.4, —0.4, —0.4], CIEXYZ [0.29, 0.30, 0.33]', luminance 15.5 cd/
m?2); top part red (RGB [—0.3, —0.4, —0.4], CIEXYZ [0.31, 0.31, 0.33],
luminance 15.8 cd/m2)). The occluder was a white bar (RGB [0.8, 0.8,
0.8], CIEXYZ [0.86, 0.90, 0.98], luminance 178 cd/m2), with red top
(RGB [1, 0.9, 0.9], CIEXYZ [0.92, 0.96, 1.04] luminance 166 cd/m?).
The stimuli were presented on a grey background (RGB [-0.3, -0.3, -0.3],
CIEXYZ [0.33, 0.35, 0.38], luminance 42.6 cd/mz) (Peirce, 2007). All
shapes were generated afresh on each trial. No participant ever saw the
same pattern twice.

Polygons were generated by creating one half first, with a random-
walk algorithm (16 inward and outward turns). The second half was
either generated independently (asymmetry condition) or it was
mirrored (symmetry condition). Each turn was spaced approx. 0.5°
longitudinally and had a maximum and minimum transverse displace-
ment of approx. £+ 0.9°. Top and bottom vertices were connected with
straight lines to form a closed polygon (height approx. 7.7°). The red-
coloured part measured approx. 2° (4 turns). The occluder was a rect-
angle (approx. 5.6 X 11.3°). One side of the occluder was aligned with

1 Note that due to COVID19 situation we could not access the labs for
measuring CIE coordinates precisely. The ones provided are estimations, which
assume sRGB space for the conversion and a D65 white point.
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Fig. 2. Example of the stimuli and experi-
mental procedure. In the top row the shapes
(dark-grey polygons) match to form bilateral
symmetry; the shapes on the bottom row do
not match. No single frame of the display
ever contained the full symmetric shape. The
tops of occluder and polygon were red to
help participants in keeping track of the
reference frame. The procedure was same as
Rampone et al. (2019; described in Fig. 1A).
All stimuli were generated afresh, and a new
stimulus was presented on each trial. (For
interpretation of the references to colour in
this figure legend, the reader is referred to
the web version of this article.)

SYMMETRY

ASYMMETRY

the polygon to give the impression of occlusion. The configuration had
an inclination of 45° from the midline.

2.1.4. Procedure

Prior to the start of the experiment, participants completed a practice
block to give them the opportunity to familiarise with the task. In the
practice block a response feedback (i.e. sound for incorrect responses)
was provided; this was not present in the experimental block. A practice
block consisted of 16 trials; participants were given the possibility to
repeat as many blocks as they wished until confidence with the task was
reached. Participants were required to maintain fixation during the
whole trial and refrain from blinking when stimuli were displayed.
Breaks were provided during the experiment to allow participants to
rest.

The sequence of events is described in Fig. 2. A short interval (500
ms) with only the fixation dot on screen, was followed by the baseline
period (1500 ms) in which the occluder was shown (no polygon). The
occluder could be either at the left or right side of the central fixation
(counterbalanced across trials). After baseline, the stimulus appeared
(t1). Only half of the stimulus was visible on the side not occupied by the
occluder. At this point, participants could not predict whether the
stimulus was symmetry or asymmetry. The first half remained visible for
500 ms (t;). The occluder was displaced and the second half of the
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pattern revealed. This remained on the screen for 1000 ms (tg)z. Stim-
ulus recognition was supposed to happen at this time-window. A
response message then appeared superimposed to the stimulus (i.e.,
“Symmetry Asymmetry” or “Asymmetry Symmetry”, counterbalanced
across trials). Participants entered a response, by pressing either the ‘A’
or ‘L’ key of the computer keyboard with their left or right index fingers.
They were explicitly informed that responses needed to be as accurate as
possible, whilst response speed was not measured. This minimized
motor responses artifacts during the stimulus presentation period. The
experiment consisted of a total of 336 trials (84 X 4 sub-conditions).

2.1.5. Data analysis

EEG data was processed using the EEGLAB v2019.1 toolbox in
MATLAB (Delorme & Makeig, 2004) and the same criteria as in Ram-
pone et al., (2019). Data was imported using Cz as reference and then
re-referenced to a scalp average (using pop_reref). Filtering operations
used pop_eegfiltnew, high-pass filter 0.1 Hz and low-pass filter 25 Hz.
Data were then down-sampled to 128 Hz (pop_ resample), segmented into
—1 to 2 s epochs (pop_epoch) and set to baseline (-200 ms; pop_rmbase).
Independent Components Analysis (ICA) was used (pop_runica) to
remove oculomotor and other gross artefacts. ICA components were
removed manually through visual inspection. On average 9.7 (SD = 3.4)
of 64 independent components were removed from each participant
(min = 4, max = 17). If bad channels were identified, pop_interp() was
used for spherical interpolation. Moreover, trials where participants
entered incorrect response were marked in the dataset for exclusion.
Finally, trials where amplitude exceeded +/- 100 pV at any electrode
were excluded (pop_eegthresh). In some cases, epoch rejection was per-
formed with additional visual inspection in EEGLAB. Data were then
re-referenced to scalp average and set to baseline. Individual averages
for each condition were generated for final Grand-average ERP analysis.
Criteria for inclusion were behavioural performance and EEG data
quality. All participants made > 70% of correct responses, so none was
excluded on this basis. Because of the large number of trials, we could
include datasets with up to 50% of total trials rejection (corresponding
to > 80 trials per condition). No participant was excluded in Experiment
1. After data cleaning, the average number of trials included was 116.75
(SD = 25) for Symmetry and 115.07 (SD = 24) for Asymmetry.

For the ERP analysis, we used a cluster of posterior electrodes (left
hemisphere: P9, PO7; right hemisphere: P10, PO8; same as Rampone
et al., 2019). PO7/PO8 best represent the topographical distribution of
the SPN (Martinovic et al., 2018; Wright et al., 2018; Makin et al., 2016,
2012). The amplitude of the Symmetry — Asymmetry difference was
recorded starting from 300 ms after onset of the second half (t, = 500
ms). We split the SPN in two timewindows: eSPN, 800-1000 ms
(300-500 ms from t5); ISPN, 1000-1500 ms timewindow (500-1000 ms
from tp). This choice was made a priori based on the observations from
Rampone et al. (2019) and other works (Makin et al., 2016; Wright et al.,
2017). These authors have suggested that the earlier SPN peaks ~ 400
ms.

The ERPs data were normally distributed (Shapiro-Wilk tests p >
.05). These were analysed with repeated measure ANOVA and t-test; the
Greenhouse-Geisser test correction factor was used when the assump-
tion of sphericity was violated (Mauchly’s test, p > .05). Behavioural

2 The terminology used in the description reflects the percept of (dynamic)
occlusion. There is no actual physical occlusion in these stimuli. Hence, events
within a trial may be described as follows. An irregular polygon was shown next
to a rectangle. In the second interval, a rectangle was presented at the location
of the first polygon, and a second irregular polygon was shown where the
rectangle was before. In half of the trials the two polygons were one the
reflection of the other, and in the other half the two polygons were unrelated.
We assume, in line with literature, that objects may exist at the amodal level
(Michotte et al., 1964; Thielen et al., 2019). Similarly, when we refer to
movement of the occluder, the motion is implied by a change of location.
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accuracy data were not normally distributed (Shapiro-Wilk test p < .05).
For Asymmetry and Symmetry Proportion incorrect responses were:
Asymmetry median 12.5%; Symmetry median 8.6%. All materials for re-
running the experiments and re-analyzing the results are available on
Open Science Framework (https://osf.io/c7bdg/). The data from this
study also appear in the Complete Liverpool SPN Catalogue (Project 28;
https://osf.io/2sncj/) along with other data from the University of
Liverpool. The study was not preregistered, but all hypotheses and an-
alyses were planned priori (based on analyses and results of Rampone
et al., 2019).

2.2. Results

Fig. 3A shows the Grand Average ERP (electrodes P9 PO7 - left; P10
PO8 - right) for symmetry and asymmetry. Onset of the first polygon is
marked as t1. In the t1-t2 timeframe (500 ms) no difference between the
two waves is present; here stimuli are all asymmetric. After approx. 300
ms from t2 the SPN component emerges. This response remained sus-
tained until the end of the epoch.

We calculated the SPN as a difference wave between symmetry and
asymmetry (Fig. 3B). A 2X2 ANOVA was conducted to assess differences
in SPN across timewindows and hemispheres. A main effect of time-
window was obtained (F;,27) = 4.77, p = .04, n;‘; =0.01) and no effect of
hemisphere or interaction (F < 1, p > 0.3). Amplitude in the eSPN
(300-500 ms from ty) measured —0.83 pV (SD = 0.81) and was signif-
icantly below zero (t(27) = -5.40, p < .001, dz = -1.02). Amplitude in the
ISPN (500-1000 ms from ty) was —0.50 pV (SD = 1.16) and was
significantly below zero (t(27) = -2.28p = .01, dz = -0.43). In the earlier
timewindow 25/28 (=0.89) participants showed a lower amplitude in
the symmetry condition; this was reduced to 18/28 (=0.64) in the late
SPN. Fig. 3B shows the difference wave (solid black) along with 95%
confidence intervals (C.Is; thick dashed lines) and individual-subject
responses (thin dashed lines). Individual amplitude distributions, sepa-
rately for each hemisphere and timewindow, are plotted in Fig. 3D. In
Fig. 3C the difference amplitude is shown in topographic maps.

2.3. Discussion of Experiment 1

Experiment 1 replicated the results of Rampone et al (2019). Two
parts can be temporally integrated within a fixed retinotopic reference
frame to form a symmetry percept. There was an SPN, and its amplitude
was larger in the earlier part of the component. This strengthens the
conclusion that the extrastriate symmetry-network responds to sym-
metry as a property of an integrated whole.

Can the extrastriate network integrate the matching parts even when
retinotopic correspondence is disrupted? This question was addressed in
Experiment 2, where a moving reference frame was used.

3. Experiment 2

Stimuli and sequence of events were same as in Experiment 1, with
an additional step at t2: both occluder and shape rotated by 90°.
Therefore, not only the occluder moved from one side to the other, but
the whole stimulus’ reference frame was rotated. Because of this rotation,
the two parts did not match in the retinal image (Fig. 4). Detection of
spatial correspondence between parts must happen at object-level (non-
retinotopic).

3.1. Method

Thirty participants took part in the Experiment 2 (mean age = 29.6,
SD = 12.3, range = 38; 6 males; 4 left-handed). Data from two partici-
pants were rejected because of problems during EEG recording (i.e.,
trigger information missing in the data) and high level of noise (trials
rejection > 50% of total trials), leading to a total of twenty-eight par-
ticipants. Stimuli and apparatus where same as Experiment 1. The
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Fig. 3. (A) Grand average ERPs averaged
across electrodes P9 PO7 P10 POS8. A SPN is
observed after ~ 300 ms from T2. (B) The

Early TW SPN (difference wave: Symmetry — Asym-
300- 500 metry; solid black) is shown along with 95%
(fromT2) confidence intervals (C.I; thick dashed black
lines) and individual-subject responses (thin

dashed black lines). The blue and orange

regions indicate the time-windows used for

the analysis. (C) Topographic difference

\ maps (Symmetry — Asymmetry) from the
IE?)E)‘% -I';\(I)VOO time-window 300-500 ms and 500-1000 ms
(from T2) from T2. Red dots indicate electrodes ana-

lysed. (D) Stripcharts (i.e. one- dimensional
scatter-dot plots) showing distributions of
difference amplitudes for the two-time win-
dows; dark-coloured dots represent re-
sponses at the left hemisphere; light-coloured
triangles represent responses at right hemi-
sphere. Mean difference amplitude is super-
imposed (black dot), and error bars indicate
95% C.I. (For interpretation of the references
to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 4. Example of stimuli and procedure in Experiment 2. The sequence of events was the same as in Experiment 1, with an additional step at t2: both occluder and
shape rotated by 90° and at the same time the occluder translated. The lighter central image is displayed for illustration purposes but was not present in the
experiment. Only the first half of the practice included a brief presentation (6 ms) of this stage to help familiarisation with the rotating frame of reference.

critical difference is that at t2 there were two changes: the occluder was
presented at the opposite side of fixation (as in Experiment 1) and the
whole stimulus (occluder + polygon) was presented at an orientation of
45° from vertical. This gave the impression that, while the occluder
changed position over the object, both stimuli rotated by 90° (see Fig. 4).
Note that, because of the rotation, the second half was superimposed to
the same retinal location as the previous half. Participants familiarised
with the task during two practice blocks (16 trials each). The first block
included the presentation of a vertical stimulus, between initial and final
orientations (-45° > 0 > 45°). This facilitated the perception of rotation.
The second block of the practice was identical to the experiment, with
two presentations: occluder and polygon (t1-t2); occluder and polygon

rotated (t2-end of epoch).

After the EEG data processing, an average of 123.2 (SD = 16.1;
symmetry) and 123.7 (SD = 18.4; asymmetry) trials were considered for
analysis (average independent components removed after ICA = 8.9, SD
= 2.6). ERP data were normally distributed (SW p > .05), whilst
behavioural data were not. Behavioural performance was > 75% for all
participants. Proportion incorrect responses was below chance for both
symmetry (median = 9.5) and asymmetry (median = 14.3).

3.2. Results

Fig. 5A shows the Grand Average ERPs. A symmetry response was
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Fig. 5. Experiment 2 Results (A) Grand average ERP waves averaged across electrodes P9 PO7 P10 PO8. (B) Grand average ERP shown as a difference wave
(Symmetry — Asymmetry; solid black) with 95% C.I (thick dashed) and individual responses (thin dashed) (C) Topographic difference maps (Symmetry — Asymmetry)
from 300 to 500 ms and 500-1000 ms from t2 (D) Stripcharts showing distributions of individual amplitudes at the two-time windows analysed; dark dots and light
triangles represent left and right hemisphere, respectively. Mean difference amplitude is superimposed (black dot), and error bars indicate 95% C.I.

triggered approx. 300 ms after t2, although this was smaller in ampli-
tude and shorter in latency compared to Exp 1. The 2 (timewindow) X 2
(hemisphere) ANOVA was conducted on the difference wave. A main
effect of timewindow was obtained (F(;,27) = 12.25, p = .002, 2=
0.03); no effect of hemisphere or interaction (F < 0.3, p > 0.5).
Amplitude in the eSPN (300-500 ms from t3) measured —0.49 pV (SD =
1.08) and was significantly below zero (tp7) = -2.43, p = .02, dz =
-0.46). Amplitude in the 1ISPN (500-1000 ms from ty) was 0.02 uV (SD =
1.20; t(27) = -0.10, p = .92, dz = -0.02). In the earlier timewindow 17/28
(=0.6) participants showed lower amplitude in the symmetry condition;
this was reduced to 14/28 (=0.5) in the later part of the SPN. Fig. 5B
shows the difference wave, with 95% confidence intervals and
individual-subject responses. This is plotted in Fig. 5D as stripcharts of
the individual amplitude distributions. Fig. 5C shows topographic maps
of the difference amplitude.

3.3. Discussion Experiment 2

In this experiment a rotating reference frame meant that the two
shape-halves appeared at different overlapping locations. Participants
performed the task above chance (>80% proportion correct) and a
response to symmetry was elicited from the extrastriate network (SPN),
although this was smaller in amplitude and not sustained. This result
shows that a global representation of symmetry can be achieved through

integration of parts both in the temporal and spatial domain.

4. General discussion

A symmetry-sensitive network is in extrastriate areas, regions that
are sensitive to shape and objectness. Most research has focused on re-
sponses to symmetry in the visual image, with some exceptions looking
at perspective normalisation (Makin et al., 2015; Keefe et al., 2018) and
dynamic occlusion (Rampone et al., 2019). The latter study showed that
when (irregular) parts of a symmetric shape are shown at different
points in time, the visual system can retain information and integrate it
with newer information. The output of this integration was evidenced by
an ERP component known as Sustained Posterior Negativity (SPN)
(Makin et al., 2016; Rampone & Makin, 2020). In Rampone et al (2019)
stimuli were presented within a static reference frame. Such condition left
open the question of whether this temporal integration can be achieved
at more global level. The current study challenged the
symmetry-sensitive network by adding a rotating reference frame
(occluder + polygon). A global representation of symmetry could be
achieved only through spatiotemporal integration in a non-retinotopic
reference frame.

Experiment 1 used a static reference frame. Participants saw a rect-
angle covering half of a polygon shape (t1) and then moving to reveal
the other part (t2). The two parts could produce either a symmetric or



G. Rampone et al.

asymmetric object. We found an SPN-like response starting approx. 300
ms from t2. Experiment 2 used a moving reference frame: both shape and
occluder rotated by 90° at t2 (in addition to the displacement of the
occluder). This disrupted the correspondence in retinotopic coordinates
between the two parts. Moreover, the rotation caused spatial overlap:
the two halves stimulated part of the same receptive fields. A symmetry-
response was confirmed after t2, albeit with smaller amplitude and
shorter latency than in Experiment 1. This demonstrates the two halves
were integrated, and a symmetry representation was elicited in the
extrastriate network.

This finding is consistent with behavioural literature showing that
object recognition in dynamic occlusion is achieved non-retinotopically.
For example, in anorthoscopic vision (i.e. a stimulus moving behind a
narrow slit) information about the moving object overlaps temporally
on a narrow retinotopic locus. Stimulus fragments are stored in a sensory
buffer (non-retinotopic Sensory Memory, nrSM; Ogmen & Herzog, 2016)
so that the information is not erased by new inputs to the same receptive
fields. Motion mechanisms provide the reference frame used to compute
non-retinotopically features of moving targets (Aydin et al., 2008;
Clarke et al., 2016; Noory et al., 2015; Ogmen et al., 2010). In our
Experiment 2, the second half was superimposed to the location previ-
ously occupied by the first half. This means the visual system could not
use information from a retinotopic map. The output of the symmetry
computation was indexed by a SPN-like response over extrastriate areas,
in line with literature showing spatiotemporal integration at the level of
LOC (Kuai et al., 2017; Orlov & Zohary, 2018; Reichert et al., 2014; Yin
et al., 2002).

It is important to consider possible confounds in the results observed:
the SPN-like component in t2 may not reflect symmetry-related activity.
The task employed in this study might rather involve change detection
processes. For example, the information in t1 might be retained in SM,
flipped to mirror reversal and then matched to the information in t2.
This process would probably be more computationally demanding than
integrating corresponding parts according to the motion of stimuli
(Ogmen & Herzog, 2016). However, it is a possibility we cannot exclude.
Change detection, between two sequentially presented stimuli, yields
centro-parietal positivity at approx. 300 ms from onset of the (changed)
stimulus (falling into the class of P300 potentials; Koivisto & Revonsuo,
2003; Niedeggen et al., 2001). In 2-AFC tasks, participants may tend to
perceive the most salient stimulus as the target (i.e. symmetry, in this
case) and the other condition as target absent (i.e. asymmetry). Makin
et al., (2012) addressed this question and observed that the SPN was
generated irrespective of whether symmetry or asymmetry were the
target. We would thus exclude that our result reflected a target-change
(or target-same) detection. Moreover, the latency and topography of the
component reported here corresponded to our predictions and was
localised in a cluster of electrodes around PO7, PO8 (which consistently
show largest symmetry-related activity, e.g. Bertamini et al., 2018;
Makin et al., 2012, 2016). Finally, in Rampone et al (2019)’s Experiment
4 and 5 the integration of symmetric parts was compromised by either
lack of sense-of-objectness or task demands, respectively. Even when
symmetry was task relevant (Experiment 4), no symmetry — asymmetry
ERP difference was measured. This would be unexpected if the compo-
nent reflected a target-change detection. Orientation-normalisation pro-
cesses might also affect ERP responses at parietal level (Heil, 2002; Quan
et al., 2017). However, it is unlikely that the component observed here
reflected a rotation-related negativity, because all stimuli (both sym-
metric and asymmetric) underwent the same rotational transformations.

The SPN had shorter latency in Experiment 2 than in Experiment 1
(ending approx. 500 ms from t2). Previous studies have shown that the
early part of the SPN component (peaking at 400 ms from onset) more
reliably indexes the perceptual representation of stimulus regularity
(Makin et al., 2016; Rampone et al., 2019; Wright, Makin, & Bertamini,
2017). The second part of the component (from 500 ms to end of epoch)
is more variable and possibly subject to re-entrant processes or
deployment of spatial attention.
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The increasing computational demands of Experiment 2 may explain
reduced amplitude and shorter latency of the SPN. We know that the
SPN amplitude is highly sensitive to the salience of the regularity (Makin
et al., 2016, 2019; Palumbo et al., 2015). Moreover, we have learned
that effortful processes (e.g. temporal integration, Rampone et al., 2019;
perspective normalisation, Keefe et al., 2018; Makin et al., 2015) draw
on neural resources and do not happen automatically (see also Supple-
mentary Material showing no response to symmetry in trials where
incorrect responses were entered). It is thus not surprising that such a
challenging task affects the ERP response to symmetry. Alternatively,
lower amplitude in Experiment 2 may be due to participants not sensing
the two halves as belonging to the same (rotated) object. Rampone et al
(2019) showed that a sense of objectness is important for the
integration-SPN to be generated. Possibly, a stimulus designed to convey
a stronger sense of motion/rotation may have elicited a stronger sym-
metry response. However, note that the practice block in Experiment 2
included an additional step at t2 (see Fig. 4), which was specifically
designed to train participant and facilitate the perception of a 90°
rotation.

Our findings are in line with behavioural studies demonstrating
global processes for symmetry representation (Niimi et al., 2005, 2008;
Sharman & Gheorghiu, 2017, 2018, 2019; Tyler, 1995). On the contrary,
classic models of symmetry perception emphasise early responses to
pairwise correlations in the image (Poirier & Wilson, 2010; Dakin &
Herbert, 1998; Dakin & Watt, 1994; Dakin & Hess, 1997; Osorio, 1996;
Jenkins, 1983; Wagemans et al., 1991; Wagemans et al., 1993; van der
Helm & Leeuwenberg, 1996; Garner, 1974; Zhu, 2014). It is necessary
for models to be updated so that they can rely not only on information
present at the retinotopic level. In turn, these changes will provide
greater ecological validity.

Our results highlight the flexibility of mechanisms for symmetry
perception. We conclude that extrastriate representation of symmetry is
achieved from integration of temporally and spatially fragmented
information.
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