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Abstract. Tilting modules arose from representation theory of algebras and are known to fur-
nish equivalences between categories of modules. We single out some weaker properties which
still guarantee the existence of equivalences between abelian full subcategories of modules
given by representable functors and their derived functors. For example, in this general frame-
work and under suitable assumptions, we are able to prove a Gabriel-Popescu type theorem.

1991 Mathematics Subject Classi®cation: 16D90; 16E30.

1 Introduction

Tilting modules are a substantial tool in the representation theory of algebras. Their
de®nition has its origin in the works of Gel 0fand and Ponomarev, Brenner and Butler,
Happel and Ringel (see [2] for a good reference); since then there have been general-
izations in several directions.

One of these is the study of tilting modules for arbitrary rings (Menini and Orsatti,
Colpi, D'Este, Tonolo and Trlifaj, Colby and Fuller; see [4] for references) or even
tilting objects for Grothendieck categories (Colpi [4] and the ®rst author [12]). In
particular the papers [7] and [5], together with [3], explained the links between tilting
modules and equivalences and established a general form of the ``Tilting Theorem''.

Many authors have tried to dualize the theory, but the results are not completely
satisfactory, mainly because it is di½cult to attain the ``correct'' de®nition of a co-
tilting module [1]. The second author [16] tried to single out some properties which
could lead to a ``Cotilting Theorem'' in some class of modules as well as to a duality
theory. During a conference held at Ohio University in 1999, Kent Fuller suggested
the idea of dualizing those results. This interplay between tilting and cotilting theory
quickly gave rise to this paper. Of course some ideas can be found in [16], but the ``co-
variant'' setting has many speci®c features, in particular a good equivalence theory.

The authors received support from the Italian ``Progetto Murst: Teoria degli anelli, moduli e

gruppi abeliani: metodi omologici, topologici e categoriali ''.



Section 2 deals with the general setting, mainly establishing notations: we ®x a
bimodule SPR and consider the functors H � HomR�P;ÿ� and T � ÿnS P. In Sec-
tion 3 we introduce the main idea of using the right derived functors of TH and the
left derived functors of HT : under some hypotheses, these functors are well behaved
on the classes Gen�PR� and Cogen�P�S �.

In Section 4 we give the de®nition of a weakly tilting bimodule and show that these
bimodules de®ne a counter equivalence (in the sense of [3]) between suitable classes of
R-modules, the static modules, and S-modules, the costatic modules: these classes are
abelian full subcategories of Mod-R and Mod-S respectively. On these classes we are
able to de®ne torsion theories in such a way that. the functors H and T de®ne an equivalence between the torsion class in the static

modules and the torsion-free class in the costatic modules;. the ®rst right derived functor H�1� of H and the ®rst left derived functor T�1� of T

de®ne an equivalence between the torsion-free class in the static modules and the
torsion class in the costatic modules.

Two examples are given.
In Section 5 we look at weakly tilting bimodules under additional assumptions and

prove several results, among which a generalization to this setting of the Gabriel-
Popescu theorem for a projective generator.

Finally Section 6 deals with the relationship between weakly tilting modules and
tilting torsion theories; we are able to frame tilting torsion theories [7] in our more
general context, providing a counter equivalence where Colpi and Trlifaj only studied
an equivalence.

Notations and conventions. We denote by R and S associative rings with 1. Module
morphisms are written on the opposite side to the scalars. We also denote by Mod-R
the category of right R-modules.

When C is a subclass of (objects in) a category, we consider it also as a full sub-
category. Every class or subcategory is closed under isomorphic objects. All functors
we consider are additive and all diagrams we draw are commutative.

2 Generalities

Let SPR be a bimodule and consider the functors

H � HomR�P;ÿ�: Mod-R!Mod-S; T � ÿnS P: Mod-S !Mod-R:

Then T is a left adjoint to H; we denote by s: 1Mod-S ! HT and by r: TH !
1Mod-R, respectively, the unit and the counit of this adjunction. It is clear that
im T JGen�PR�, the class of PR-generated modules.

Fix an injective cogenerator WR of Mod-R and set P�S � H�W�. Then im H J
Cogen�P�S �, the class of P�S -cogenerated modules. It is immediate to see that the class
Cogen�P�S � does not depend on the chosen injective cogenerator.
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Proposition 2.1. The class Gen�PR� is the smallest subclass of Mod-R containing im T

and closed under quotients; the class Cogen�P�S � is the smallest subclass of Mod-S
containing im H and closed under subobjects. r

In view of this proposition, it is natural to consider subcategories of Mod-R and of
Mod-S: since we will be using homological arguments, we choose to work in closed
subclasses, i.e., closed under submodules, epimorphic images and arbitrary direct
sums. The smallest such class containing Gen�PR� is Subgen�PR�, which consists of all
submodules of modules in Gen�PR�. Similarly, the smallest closed subclass of Mod-S
containing Cogen�P�� can be identi®ed with Mod-S=AnnS�P�, where AnnS�P� is the
annihilator of SP.

Any closed subclass of Mod-R is a Grothendieck category. If the class is closed
also under arbitrary products, then it has enough projective objects; it is easy to see
that such classes can be identi®ed with Mod-R=I , for a suitable two-sided ideal I of R.

Remark 2.2. If we ®x a closed class G in Mod-R such that Gen�PR�JG, then G is a
hereditary pretorsion class (see [15, Chapter VI]), so it de®nes a left exact preradical
tG. Then all injective cogenerators of G are of the form tGW , where WR is an injective
cogenerator of Mod-R (see the following lemma). Hence it is clear that HomR�P;W�
is canonically isomorphic to HomR�P; tGW�. In conclusion the module P�S is the
same whether we work in Mod-R or in the class G.

Lemma 2.3. Let G be a closed subcategory of Mod-R and let tG be the left exact pre-

radical associated to G. Then a module U A G is an injective cogenerator of G if and

only if U G tGW, for some injective cogenerator WR of Mod-R.

Proof. One direction is clear; for the converse, assume U is an injective cogenerator
of G and take E�U�, the injective envelope of U in Mod-R. Let X be the direct sum
of one copy of each simple module which is not in G; then E�U�lE�X� is an in-
jective cogenerator of Mod-R and it is immediate to see that tG�E�U�lE�X ��GU .

r

In what follows we will ®x a closed subclass G of Mod-R containing Gen�PR�.
We could also develop the theory by ®xing an ideal I of S contained in AnnS�P�,

but we will not do so. Indeed, in the particular case when S � End�PR� the only
choice for I is I � 0; this is by far the most interesting case. Notice, however, that we
do not impose the condition S � End�PR�, unless this is explicitly stated.

We want also to consider the derived functors of H and T ; in particular we set
H�i� � Ext i

G�P;ÿ�, i.e., the left derived functor computed in G, and T�i� � TorS
i �ÿ;P�.

Thus im H�i�JMod-S and im T�i�J Subgen�PR�: given N A Mod-S, take an exact
sequence 0! K ! F ! N ! 0, where F is projective in Mod-S. Then, from the
long sequence

� � � ! 0! T�n�1�N ! T�n�K ! 0! � � � ! 0

! T�1�N ! TK ! TF ! TN ! 0;
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we get the claim, by induction. This should be a clear reason why we choose closed
subclasses.

Remark 2.4. A well-known formula says that

Ext i
S�ÿ;P��GHomR�T�i��ÿ�;W�; i V 0:

This formula follows from [14, Theorem 11.40], by setting F � HomR�ÿ;W� and
G � ÿnS P, since W is injective. Moreover, the fact that W is a cogenerator yields
that ker T�i� � ker Ext i

S�ÿ;P��, iV 0.

3 Derived functors

The functor TH has, in general, no exactness property; however, it admits right
derived functors, which turn out to be useful.

Let M A G and consider an injective resolution

0 ÿ! �M ÿ!e � E0 ÿ!d0
E1 ÿ!d1 � � �

to which we can apply the functor TH, getting the complex

0 �����!TH�dÿ1�
TH�E0� �����!TH�d0�

TH�E1� �����!TH�d1� � � �
and so we can de®ne the n-th right derived functor �TH��n� � Rn�TH� (nV 0) by

�TH��n��M� � ker TH�dn�
im TH�dnÿ1� :

Then, for all exact sequences 0! L!M ! N ! 0, we get the long exact sequence

0! �TH��0�L! �TH��0�M ! �TH��0�N !

! �TH��1�L ! �TH��1�M ! �TH��1�N ! � � �

! �TH��nÿ1�N ! �TH��n�L! �TH��n�M ! �TH��n�N ! � � �

and, moreover, there exists a natural transformation of functors

a: TH ! �TH��0�:

Note that, by de®nition, aM is an isomorphism, whenever M is injective.

Lemma 3.1. If Cogen�P��J ker T�1�, then aM is monic, for every M A G.

Proof. Consider an exact sequence 0!M ! E ! C ! 0, where E is injective. If we
apply the functor H, we get the exact sequence 0! HM ! HE ! HC. Then the
cokernel K of HM ! HE belongs to Cogen�P��J ker T�1�.
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Apply T to the exact sequence 0! HM ! HE ! K ! 0. Then we can write the
diagram with exact rows

0 ���! THM ���! THE???y ???yG

0 ���! �TH��0�M ���! �TH��0�E

and the thesis follows. r

Proposition 3.2. Assume Cogen�P��J ker T�1�; then aM is an isomorphism, for all
M A ker H�1�.

Proof. Proceed as in the proof of Lemma 3.1, and note that K � HC; then we can
write the diagram with exact rows

0 ���! THM ���! THE ���! THC ���! 0

aM

???y aE

???y�G � aC

???y�monic�

0 ���! �TH��0�M ���! �TH��0�E ���! �TH��0�C

and, by the ``®ve lemma'', the proof is complete. r

Proposition 3.3. Assume Cogen�P��J ker T�1�. Then:

(1) there exists a natural transformation b: �TH��0� ! T�1�H�1�;

(2) bM is epic, for all M A G;

(3) there exists a natural transformation r�0�: �TH��0� ! 1G;

(4) r�0�a � r, the counit of the adjunction.

Proof. (1) Take an exact sequence 0!M !f E !g C ! 0, with ER injective. Then
apply H and split the resulting sequence as follows:

0 ÿ! HM ÿ!Hf
HE ÿ!p K ÿ! 0;

0 ÿ! K ÿ!q HC ÿ!q H�1�M ÿ! 0;

where K � coker Hf and qp � Hg. We use q to denote any connecting morphism.
By hypothesis, T�1�K � 0 � T�1�HC. Thus, applying T to the ®rst sequence, we get

the exact sequence

0 ��! THM ��!THf
THE ��!Tp

TK ��! 0

and, applying T to the second one, we can draw the following diagram:
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��� 0 ����! �TH��0�M ����!�TH��0�f �TH��0�E ����!�TH��0�g

j
j
#

bM

????y�Tp�aÿ1
E

0 ����! T�1�H�1�M ����!q
TK ����!Tq

�TH��0�C ����!q �TH��1�M ����! 0x????aC

THC ����!Tq
TH�1�M ����! 0

where �Tp�aÿ1
E is epic and aC is monic. A diagram chasing shows that, for any

x A �TH��0�M, there exists a unique y A T�1�H�1�M such that

qy � �Tp�aÿ1
E ��TH��0�f �x

and so we can de®ne bMx � y.
(2) The morphism bM is surjective, as another diagram chasing shows.
(3) A direct proof can be given using the de®nition of �TH��0�. However, it is

simpler to resort to the formal theory of derived functors: there exists a natural
transformation r: TH ! 1G, so there is another one r�0�: �TH��0� ! �1G��0� � 1G.

(4) By calculation. r

Theorem 3.4. Assume Cogen�P��J ker T�1�. Then, for all M A G, there exists an exact

sequence

0ÿ!THM ÿ!aM �TH��0�M ÿ!bM
T�1�H�1�M ÿ! 0:

Proof. It is su½cient to prove that ker bM � im aM . We can put together two of the
previous diagrams, getting the following one, which has exact rows:

0 �����! THM �����!THg
THE????yaM

????yaE

0 �����! �TH��0�M �����!�TH��0�f �TH��0�E????ybM

????y�Tp�aÿ1
E

0 �����! T�1�H�1�M �����!q
TK

and the proof follows by diagram chasing. r
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Proposition 3.5. Assume Cogen�P��J ker T�1�. Then:

(1) on the subcategory ker H�1�, the functors �TH��0� and TH are isomorphic;

(2) on the subcategory ker H, the functors �TH��0� and T�1�H�1� are isomorphic;

(3) on the subcategory ker H�2�, the functors �TH��1� and TH�1� are isomorphic;

(4) for nV 2, the functors �TH��n� are zero on 7
iV2 ker H�i�.

Proof. Statement (1) has already been proved for objects. The statement for mor-
phism is an easy calculation.

(2) Let M A ker H; take, as usual, an exact sequence 0!M ! E ! C ! 0 with E
injective. Then, applying H, we get the exact sequence 0! HE ! HC ! H�1�M ! 0
(since H�1�E � 0). Applying now T and recalling that HC A Cogen�P��, we get the
diagram with exact rows

0 ���! T�1�H�1�M ���! THE ���! THC
j
j

#

???yaE

???yaC

0 ���! �TH��0�M ���! �TH��0�E ���! �TH��0�C

where aE is an isomorphism and aC is monic. Hence there exists a unique iso-
morphism T�1�H�1�M ! �TH��0�M making the diagram commute. This uniqueness
and easy calculations prove also the statement for morphisms.

(3) Let M A ker H�2�; then C A ker H�1�, so aC is an isomorphism. Then we can
redraw diagram ���:

0 ����! �TH��0�M ����!�TH��0�f �TH��0�E ����!�TH��0�g????ybM

????y�Tp�aÿ1
E

0 ����! T�1�H�1�M ����!q
TK ����!Tq

�TH��0�C ����!q �TH��1�M ����! 0

aÿ1
C

????y j
j
#

THC ����!Tq
TH�1�M ����! 0

and the existence and naturality of the isomorphism denoted by the broken arrow are
guaranteed.

(4) If M A 7
nV2 ker H�n�, then C A 7

nV1 ker H�n�. In particular �TH��1�C G
TH�1�C � 0. We can use dimension shifting, since �TH��n�C G �TH��n�1�M, for all
nV 1. r
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By dimension shifting we can prove the following extension of statement (3) of
Proposition 3.5.

Proposition 3.6. Assume Cogen�P��J ker T�1� and let nV 1. Then, on the subcategory

ker H�n�1�, the functors �TH��n� and TH�n� are isomorphic.

The same arguments as before can be used, with easy modi®cations, for the left derived
functors �HT��n� of HT (nV 0), making the hypothesis that Gen�PR�J ker H�1�.

We can summarize the results in the following theorems.

Theorem 3.7. Assume Gen�PR�J ker H�1�. Then:

(1) there exists a natural transformation d: �HT��0� ! HT;

(2) dN is epic, for all N A Mod-S;

(3) dN is an isomorphism, for all N A ker T�1�, in particular when N is projective;

(4) there exists a natural transformation g: H�1�T�1� ! �HT��0� and gN is monic, for all

N A Mod-S;

(5) there exists a natural transformation s�0�: 1Mod-S ! �HT��0� and ds�0� � s, the

unit of the adjunction;

(6) on the subcategory ker T�1�, the functors �HT��0� and HT are isomorphic;

(7) on the subcategory ker T, the functors �HT��0� and H�1�T�1� are isomorphic;

(8) on the subcategory ker T�2�, the functors �HT��1� and HT�1� are isomorphic;

(9) for nV 2, the functors �HT��n� are zero on the subcategory 7
iV2 ker T�i�.

Theorem 3.8. Assume Gen�PR�J ker H�1�. Then, for all N A Mod-S, there exists an

exact sequence

0 ÿ! H�1�T�1�N ÿ!
gN �HT��0�N ÿ!

dN
HTN ÿ! 0:

4 Weakly tilting bimodules

We denote by pdGMR the projective dimension of MR in G, i.e., the smallest integer
i V 0 such that Ext i

G�M;ÿ� � 0 (if such an integer exists). Analogously, idGMR

denotes the injective dimension of MR in G, i.e., the smallest integer i V 0 such that
Ext i

G�ÿ;M� � 0 (if such an integer exists). The weak dimension of a module is simi-
larly de®ned using the vanishing of the Tor functors. We omit the subscript if
G �Mod-R.

It follows from the formula in Remark 2.4 that the injective dimension of P�S is the
same as the weak dimension of SP, so that id P�S U pd SP.

One of the many characterizations of tilting modules is the following (see [7,
Proposition 1.3]): a module PR is tilting if and only if

E. Gregorio, A. Tonolo596



(a) PR is ®nitely generated and

(b) Gen�PR� � ker Ext1
R�P;ÿ�.

If PR is a tilting module, S � End�PR�, WR is an injective cogenerator of G and
P�S � HomR�P;W�, then Cogen�P�S � � ker Ext1

S�ÿ;P�� � ker TorS
1 �ÿ;P�; moreover

pd PR U 1 and id P�S U 1 [5, Theorem 1.5].

Remark 4.1. In their paper [7], Colpi and Trlifaj call tilting a module PR such that
Gen�PR� � ker H�1� and classical tilting a tilting module which is ®nitely generated.
We prefer to call generalized tilting what they call a tilting module and reserve the
unadorned term for the ®nitely generated tilting modules.

This leads us to set the following de®nition.

De®nition 4.2. A bimodule SPR is a weakly G-tilting bimodule if, setting P�S �
HomR�P;W�, where WR is an injective cogenerator of G, we have:

(WT1) Gen�PR�J ker Ext1
G�P;ÿ� and pdG PR U 1;

(WT2) Cogen�P�S �J ker TorS
1 �ÿ;P� and id P�S U 1.

We say that PR is a weakly G-tilting module if, setting S � End�PR�, the bimodule

SPR is weakly tilting.
When G � Subgen�PR�, we speak of weakly self-tilting (bi)modules and, when

G �Mod-R, we speak of weakly tilting (bi)modules.

Every tilting module is a weakly tilting module. If G 0 is a closed class in Mod-R,
Gen�PR�JG 0JG and SPR is a weakly G-tilting bimodule, then it is also a weakly
G 0-tilting bimodule.

Remark 4.3. The condition pdG PR U 1 implies that ker H�1� is closed under quo-
tients; therefore the condition Gen�PR�J ker H�1� can be reduced to every direct sum
of copies of PR belongs to ker H�1�, i.e.,

Ext1
R�P;P�k�� � 0; for any cardinal k:

Analogously, in presence of id P�S U 1, the condition Cogen�P�S �J ker T�1� can be
reduced to every product of copies of P�S belongs to ker T�1�, i.e.,

Ext1
S��P��k;P�� � 0; for any cardinal k:

We now give two examples of weakly G-tilting bimodules, one of which is faithfully
balanced. Next we give a way to produce weakly tilting bimodules.

Example 4.4. Let p be a prime number and consider R � S � Z (ring of integers); let
P � Z� py� be the PruÈfer p-group. Then Z�py�� � HomZ�Z�py�;Q=Z� � Jp, the
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ring of p-adic integers, considered as an abelian group. Since the global dimension
of Z is 1, we have that pd Z� py�U 1 and id Z�py��U 1. Moreover Gen�Z� py��
consists of divisible groups and so Gen�Z� py��J ker Ext1�Z�py�;ÿ�. Finally
Cogen�Z�py��� consists of torsion-free groups and so Cogen�Z�py���J
ker Ext1�ÿ;Z� py��� since Z�py�� � Jp is a cotorsion group (see [9, Section 9.54]).

Thus ZZ�py�Z is a weakly tilting bimodule, which is not tilting.
Note that Gen�Z�py��0 ker Ext1

Z�Z� py�;ÿ�, so this module is not tilting even in
generalized sense [7].

Example 4.5. The same P � Z�py� works if we consider it as a Jp-Jp-bimodule, for
again the global dimension is 1 and the class Gen�P� consists of injective Jp-modules.
The class Cogen�P�� consists of torsion-free modules and it is true that Ext1

Jp
�M; Jp�

� 0, for all torsion-free Jp-modules M, by [8, Chapter XII, 1.17]. Thus Z�py�Jp
is a

weakly tilting module, in particular a weakly self-tilting module. Note that, since this
module is not ®nitely generated, it is not a �-module (for a complete account of the
connections between �-modules and tilting objects, see [4]).

Proposition 4.6. Let SPR be a weakly G-tilting bimodule and consider Q � P�k�, a direct
sum of copies of P as an S-R-bimodule. Then SQR is a weakly G-tilting bimodule.

Proof. The classes Gen�PR� and Gen�QR� coincide; moreover, for all R-modules M,
Ext1

R�Q;M� � Ext1
R�P;M�k, as S-modules. The projective dimension of PR and of

QR are the same.
We have then Q� � HomR�Q;W�GHomR�P;W�k as S-modules, so Cogen�Q�S�

� Cogen�P�S � and id Q�S � id P�S . Finally, for all S-modules N, TorS
1 �N;Q� �

TorS
1 �N;P��k� as R-modules. r

From now on SPR will be a weakly G-tilting bimodule.
For any module M A G, there is the diagram with exact row

(S1)

M

rM

x???r
�0�
M

0 ���! THM ���!aM �TH��0�M ���!bM
T�1�H�1�M ���! 0

��������
��!

(see Theorem 3.4) and, for any module N A Mod-S, there is the diagram with exact
row

(S2)

N

s�0�N

???y sN

0 ���! H�1�T�1�N ���!gN �HT��0�N ���!dN
HTN ���! 0

����������!
by Theorem 3.8.
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The following de®nition is due to Nauman [13]. We choose to slightly change the
terminology, for reasons which will be apparent after the following proposition.

De®nition 4.7. A module MR is called P-0-static if rM is an isomorphism; a module
NS is called P-0-costatic if sN is an isomorphism.

The next proposition is on the line of [16, Section 2].

Proposition 4.8. A module MR is P-0-static if and only if aM and r
�0�
M are isomorphisms;

a module NS is P-0-costatic if and only if dN and s�0�N are isomorphisms.

Proof. One direction is obvious. Assume that rM is an isomorphism. Then M A
Gen�PR�J ker H�1� and so aM is an isomorphism by Proposition 3.2.

The proof for N is similar, using Theorem 3.7. r

Remark 4.9. If MR is P-0-static, then H�1�M � 0; if NS is P-0-costatic then T�1�N � 0.

We want now to de®ne the concept of staticity with respect to the derived functors; if
we look at diagram S1, we see that in general it is not possible to de®ne a natural
transformation T�1�H�1� ! 1G or 1G ! T�1�H�1�. However, if r

�0�
M is an isomorphism,

then we can compose bM with �r�0�M �ÿ1. It turns out that another condition is im-
portant, namely that also the ®rst derived of r is an isomorphism. Since r�1�:
�TH��1� ! �1G��1� � 0, this means that we want to consider modules MR such that

0 � �TH��1�M GTH�1�M. Of course, we can make similar considerations for S-
modules. Note that these conditions hold for P-0-static and P-0-costatic modules (see
Remark 4.9).

De®nition 4.10. A module MR is called P-1-static if bM and r
�0�
M are isomorphisms and

TH�1�M � 0; a module NS is called P-1-costatic if gN and s�0�N are isomorphisms
and HT�1�N � 0.

A module MR is called P-static if r
�0�
M is an isomorphism and TH�1�M � 0; a

module NS is called P-costatic if s�0�N is an isomorphism and HT�1�N � 0.
When SPR is clear from the context, we omit it and speak of (i-)static and (i-)costatic

modules (i � 0; 1). We denote by

. Sti�SPR� and Costi�SPR� the classes of P-i-static and P-i-costatic modules
(i � 0; 1);

. St�SPR� and Cost�SPR� the classes of P-static and P-costatic modules;

. ~rM � bM�r�0�M �ÿ1, which is de®ned for M A St�SPR�;. ~sN � �s�0�N�ÿ1gN , which is de®ned for N A Cost�SPR�.
For example, when PR is a tilting module and S � End�PR�, then (see Theorem 5.1
and Proposition 5.4)
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(a) St�SPR� �Mod-R and Cost�SPR� �Mod-S;

(b) St0�SPR� � Gen�PR� � ker H�1� and Cost0�SPR� � Cogen�P�S � � ker T�1�;

(c) St1�SPR� � ker H and Cost1�SPR� � ker T .

We want to show that the functors H, H�1�, T and T�1� work between the categories
of static and costatic modules.

Remark 4.11. Note ®rst that, by the adjunction, HrMsHM and rTNTsN are identity
morphisms, for all modules MR and NS. Therefore,

Hr
�0�
M HaMdHMs�0�HM � 1HM ;

r
�0�
TNaTNTdNTs�0�N � 1TN :

In particular, Hr
�0�
M and r

�0�
TN are split epi, whereas s�0�HM and Ts�0�N are split mono.

Proposition 4.12. For all modules MR, dHM is an isomorphism and HaM is

monic. Moreover, if ker r
�0�
M A ker H, then HaM and s�0�HM are isomorphisms and

T�1�H�1�M A ker H.

Proof. Write the exact sequence (S2) for HM:

0 ��! H�1�T�1�HM ��! �TH��0�HM ��!dHM
HTHM ��! 0:

Since T�1�HM � 0, it follows that dHM is an isomorphism. The fact that HaM is
monic is obvious.

The hypothesis ker r
�0�
M A ker H implies that Hr

�0�
M is also monic. Hence HaM must

be epic (see Remark 4.11), hence an isomorphism. Finally also s�0�HM is an iso-
morphism. To end the proof, apply H to the sequence

0 ÿ! THM ÿ!aM �TH��0�M ÿ! T�1�H�1�M ÿ! 0

and recall that HaM is epic. Hence HT�1�H�1�M � 0. r

We have the analogous result for S-modules.

Proposition 4.13. For all modules NS, aTN is an isomorphism and TdN is epic.

Moreover, if coker s�0�N A ker T, then TdN and r
�0�
TN are isomorphisms and

H�1�T�1�N A ker T.

Note that the conditions ``ker r
�0�
M A ker H'' and ``coker s�0�N A ker T '' are automati-

cally satis®ed if MR is static and NS is costatic.
The two propositions above have a counterpart for the derived functors.
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Proposition 4.14. For all modules MR, H�1�bM is an isomorphism and s�0�H�1�M is

monic. If TH�1�M � 0, then gH�1�M is an isomorphism and

H�1�r�0�M �H�1�bM�ÿ1gÿ1
H�1�Ms�0�H�1�M � 1H�1�M :

If TH�1�M � 0 and H�1�r�0�M is monic, then H�1�r�0�M and s�0�H�1�M are isomorphisms.

Proof. Apply H�1� to the sequence 0! THM ! �TH��0�M ! T�1�H�1�M ! 0 to get
that H�1�bM is an isomorphism, since H�1�THM � 0. Take now an exact sequence

0!M !f E !g C ! 0, with ER injective. Apply to it the functor H to obtain the
exact sequence

HE ÿ! HC ÿ! H�1�M ÿ! 0:

Apply now �HT��0�, which is right exact: recalling the isomorphisms of Theorem 3.7,
we get the diagram with exact rows

HE ���!Hg
HC ���!q H�1�M ���! 0???ysHE

???ysHC

???ys�0�H �1�M

HTHE ���!HTHg
HTHC ���!q 0

HT�0�M ���! 0???yHrE

???yHrC

HE ���!Hg
HC

and, by Remark 4.11, the compositions of the vertical arrows on the left are identities.
Take now x A H�1�M such that x A ker s�0�H�1�M ; then x � qy, for some y A HC.

Hence q 0sHCy � 0, so that sHCy � �HTHg�z. Therefore

x � q�HrC�sHCy � q�HrC��HTHg�z � q�Hg��HrE�z � 0:

and s�0�H�1�M is monic.
Assume now that TH�1�M � 0. The exact sequence (S2) for H�1�M is

0 ���! H�1�T�1�H�1�M ���!g
H�1�M

HT�0�H�1�M ���! HTH�1�M � 0 ���! 0:

Consider now the diagram with exact rows

0 ���! T�1�H�1�M ���! TK ���! THC ���! 0x???bM

x??? 
0 ���! �TH��0�M ���! THE ���! THC ���! 0???yr

�0�
M

???yrE

???yrC

0 ���! M ���!f E ���!g C ���! 0
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where K � coker Hf . If we apply to it the functor H and �HT��0� to the sequence
HC ! H�1�M ! 0, we get

HC �����!q1
H�1�M �����! 0????ys�0�HC

????ys�0�H�1�M

�HT��0�HC �����!�HT��0�q1 �HT��0�H�1�M �����! 0????ydHC

x????g
H�1�M

HTHC �����!q2
H�1�T�1�H�1�M �����! 0

x????H�1�bM

HTHC �����!q3
H�1��TH��0�M �����! 0????yHrC

????yH�1�r�0�
M

HC �����!q1
H�1�M �����! 0

and the requested identity follows by computation and the fact that q1 is epic.
Assume now also that H�1�r�0�M is monic. Then it is an isomorphism and the claims

follow from the above identity. r

A similar result holds for S-modules.

Proposition 4.15. For all modules NS, T�1�gN is an isomorphism and r
�0�
T�1�N is epic. If

HT�1�N � 0, then bT�1�N is an isomorphism and

r
�0�
T�1�Nbÿ1

T�1�N�T�1�gN�ÿ1
T�1�s�0�N � 1T�1�N :

If HT�1�N � 0 and T�1�s�0�N is epic, then T�1�s�0�N and r
�0�
T�1�N are isomorphisms. r

We are ready to show that the functors H and H�1� send static modules to costatic
ones; analogously, T and T�1� send costatic modules to static ones.

Theorem 4.16. Let MR A St�SPR� and NS A Cost�SPR�. Then:

(a) HM and H�1�M belong to Cost�SPR�;
(b) TN and T�1�N belong to St�SPR�.

Proof. Apply Propositions 4.12, 4.14, 4.13 and 4.15. r
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The following result is now an easy consequence of the adjunction between H and T .

Proposition 4.17. The functors H and T induce an equivalence between St0�SPR� and

Cost0�SPR�.

Also the functors H�1� and T�1� are well-behaved, when suitably restricted.

Proposition 4.18. The functor H�1� sends modules in St�SPR� into modules in

Cost1�SPR�; the functor T�1� sends modules in Cost�SPR� into modules in St1�SPR�.
Moreover, H�1� is a left adjoint to T �1� when the domains of the functors are restricted
to St�SPR� and Cost�SPR�. In particular H�1� and T �1� induce an equivalence between

St1�SPR� and Cost1�SPR�.

Proof. Let M A St�SPR�; then we have the exact sequence

0 �! THM �!rM
M �!~rM

T�1�H�1�M �! 0

(see De®nition 4.10) and applying H we get that H�1�~rM is an isomorphism, whose
inverse is ~sH�1�M , by Proposition 4.14. The proof is similar for N A Cost�SPR�, using
Proposition 4.15.

The fact that H�1� is a left adjoint of T�1� follows by easy calculations. r

We want to examine now some properties of the classes St�SPR� and Cost�SPR�. We
give the proofs for the second one.

Lemma 4.19. Let X be a submodule of M A St�SPR�; then �TH��1��M=X� � 0, r
�0�
X is

monic and r
�0�
M=X

is epic. If moreover X is a quotient of a module in St�SPR�, then

M=X A St�SPR�.
Let Y be a submodule of N A Cost�SPR�; then �HT��1��Y� � 0, s�0�Y is monic and

s�0�N=Y is epic. If moreover N=Y is a submodule of a module in Cost�SPR�, then
Y A Cost�SPR�.

Proof. We can consider the diagram with exact rows

0 ���! Y ���! N ���! N=Y ���! 0???y ???yG

???y
��� ���! �HT��0�Y ���! �HT��0�N ���! �HT��0��N=Y� ���! 0

where ��� � 0! �HT��1�Y ! �HT��1�N ! �HT��1��N=Y � and the vertical arrows

are the suitable instances of s�0�. Recalling that �HT��1�N � 0, we have the thesis. If

moreover N=Y can be embedded into some object in Cost�SPR�, then s�0�N=Y is also
monic and �HT��1��N=Y � � 0, so that s�0�Y is an isomorphism. r
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Theorem 4.20. The subcategories St�SPR� and Cost�SPR� are closed under kernels,

cokernels, images, direct summands and extensions. In particular they are abelian
categories.

Proof. Let f : N1 ! N2 be a morphism in Cost�SPR�; set X � ker f , Y � im f and
Z � coker f ; then we have the exact sequences

0! X ! N1 ! Y ! 0 and 0! Y ! N2 ! Z ! 0:

By Lemma 4.19, X A Cost�SPR� and �HT��1�Y � 0. Then we have the diagram with
exact rows

0 ���! X ���! N1 ���! Y ���! 0???yG

???yG

???y
0 � �HT��1�Y ���! �HT��0�X ���! �HT��0�N1 ���! �HT��0�Y ���! 0

and so Y A Cost�SPR�. Analogously, we have the diagram with exact rows

0 ���! Y ���! N2 ���! Z ���! 0???yG

???yG

???y
0 ���! �HT��1�Z ���! �HT��0�Y ���! �HT��0�N2 ���! �HT��0�Z ���! 0

and so Z � coker f A Cost�SPR�.
The fact that Cost�SPR� is closed under direct summands follows by applying twice

Lemma 4.19. Closure under extensions is another easy consequence of the ``®ve
lemma''. A similar proof can be used for St�SPR�. r

We are now able to state the main theorem, which is a generalization of the cele-
brated Brenner and Butler theorem, known also as the ``Tilting theorem''. We write
F : ATB : G to denote that F is a left adjoint to the functor G.

Theorem 4.21. Let SPR be a weakly G-tilting bimodule.

(1) The functors H, H�1�, T and T�1� induce adjunctions

T : Cost�SPR�T St�SPR� : H and

H�1�: St�SPR�TCost�SPR� : T�1�:

(2) The functors H and T induce an equivalence between St0�SPR� and Cost0�SPR�,
while the functors H�1� and T�1� induce an equivalence between St1�SPR� and

Cost1�SPR�.
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(3) For every module M A St�SPR�, there exists an exact sequence

0! THM !M ! T�1�H�1�M ! 0

where THM A St0�SPR� and T�1�H�1�M A St1�SPR�.
(4) For every module N A Cost�SPR�, there exists an exact sequence

0! H�1�T�1�N ! N ! HTN ! 0

where HTN A Cost0�SPR� and H�1�T�1�N A Cost1�SPR�.
(5) The categories St�SPR� and Cost�SPR� are abelian categories; the pair �St0�SPR�,

St1�SPR�� is a torsion theory in St�SPR� and the pair �Cost1�SPR�;Cost0�SPR�� is a

torsion theory in Cost�SPR�.
(6) The following equalities hold:

St0�SPR� � Gen�PR�X St�SPR� � ker H�1�X St�SPR�

St1�SPR� � ker H X St�SPR�

Cost0�SPR� � Cogen�P�S �XCost�SPR� � ker T�1�XCost�SPR�

Cost1�SPR� � ker T XCost�SPR�

Proof. We have to prove only (5) and (6). The fact that St�SPR� is an abelian category
follows from Theorem 4.20. We now see that, for M A St�SPR�,

M A St0�SPR� if and only if HomR�M;M 0� � 0, for all M 0 A St1�SPR�:

Indeed, if M A St0�SPR�, M 0 A St1�SPR� and f : M !M 0, then HM 0 � 0, so 0 �
rM 0THf � f rM and so f � 0, since rM is an isomorphism. The converse follows

from the fact that T�1�H�1�M A St1�SPR�, so ~rM � 0 and rM is epic.
In the same way we prove that

M A St1�SPR� if and only if HomR�M 0;M� � 0, for all M 0 A St0�SPR�:

The equalities in (6) are proved as follows. If M A St0�SPR�, then M A Gen�PR�, so
that

St0�SPR�JGen�PR�X St�SPR�J ker H�1�X St�SPR�:

If M A ker H�1�X St�SPR�, then the exact sequence 0! THM !M ! T�1�H�1�M !
0 says that M is 0-static.

The same exact sequence says that M A ker H X St�SPR� implies M A St1�SPR�; if
M A St1�SPR�, then HM GHT�1�H�1�M � 0, since H�1�M A Cost�SPR�. r
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The theorem just proved shows that we can do every computation in a smallest class
G 0, namely the closure of Subgen�PR� under extensions in G.

Example 4.22. Let us compute the classes in the case of Example 4.5. The class G can
be taken to be Subgen�Z� py��, which is closed under extensions in Mod-Jp, because
it consists of all torsion modules, i.e., of all torsion p-groups. As usual we denote by
M objects in Subgen�Z� py�� and by N objects in Mod-Jp. We also denote by dX and
tX respectively the divisible part and the torsion part of any Jp-module. See [10,
Chapter 5] and [9, Section 9.54] for the proofs and for unexplained terms.

(1) HM GH�dM� and TN GT�N=tN�;
(2) H�1�M GH�1��M=dM� and T�1�N GT�1��tN�G tN;

(3) for a torsion module M, H�1�M is the cotorsion hull of M;

(4) for any Jp-module N, T�1�N � tN;

(5) by Matlis' equivalence, M A St0�Z� py�� if and only if M A Gen�Z� py��;
(6) T�1�H�1�M GM if and only if M is reduced and torsion, so that St1�Z� py��

coincides with the reduced p-groups [9, Lemma 9.55.1];

(7) Cost0�Z�py�� coincides with the class of completions of free Jp-modules with
respect to the p-adic topology;

(8) Cost1�Z�py�� is the class of bounded torsion p-groups.

Notice that, in this case, St�Z�py�� � Subgen�Z�py��.

5 Special cases

We could ask whether natural closure properties of the classes St�P� and Cost�P� hold.

Theorem 5.1. Let SPR be a weakly G-tilting bimodule. The following conditions are
equivalent:

(a) Cost�SPR� �Mod-S;

(b) Cost�SPR� contains all projective modules;

(c) Cost0�SPR� contains all projective modules.

Proof. (a)) (b) and (b)) (c) are obvious.
(c)) (a) Take N A Mod-S and an exact sequence 0! K ! F ! N ! 0, where F

is projective; then consider the diagram with exact rows

0 ���! K ���! F ���! N ���! 0???ys�0�K

???ys�0�F

???ys�0�N

0 ���! �HT��1�N ���! �HT��0�K ���! �HT��0�F ���! �HT��0�N ���! 0
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where the s�0�F is an isomorphism; then s�0�N is epic. Since N is arbitrary, also s�0�K is
epic, so they are both isomorphisms and �HT��1�N � 0. r

Lemma 5.2. If S � End�PR�, then PR is 0-static and SS is 0-costatic.

Proof. Since �HT��0�S GHTS GS and HT�1�S � 0, SS is 0-costatic. Therefore
PR � TS is 0-static. r

Theorem 5.3. Let PR be a weakly G-tilting module and set S � End�PR�. Then the

following conditions are equivalent:

(a) Cost�SPR� �Mod-S;

(b) Cost�SPR� is closed under direct sums;

(c) PR is self-small.

Proof. (a)) (b) is obvious.
(b)) (c) For every cardinal k, S�k� A Cost�SPR�, hence S�k� A Cost0�SPR�. There-

fore

HomR�P;P�k��GHT�S�k��GS�k�GHomR�P;P��k�;

which is precisely the de®nition for self-smallness.
(c)) (a) It su½ces to show that all free S-modules belong to Cost�SPR�; the same

chain of morphisms as before proves this. r

We could ask in what cases the class St�SPR� is big; for example, when is St�SPR� �
G? In this case Theorem 4.21.6 implies that Gen�PR� � ker H�1�, so that PR is a gen-
eralized tilting module in the sense of [7, De®nition 1.1].

Theorem 5.4. Let SPR be a weakly G-tilting bimodule. The following conditions are

equivalent:

(a) St�SPR� � G;

(b) every injective R-module belongs to St0�SPR�;
(c) every injective R-module belongs to St�SPR�.

Proof. (a)) (b) If ER is injective, then r
�0�
E is an isomorphism.

(c)) (a) Embed MR in an injective module ER; then we have the diagram with
exact rows

0 ���! �TH��0�M ���! �TH��0�E ���! �TH��0��E=M� ���! �TH��1�M ���! 0???yr
�0�
M

G

???yr
�0�
E

???yr
�0�
E=M

0 ���! M ���! E ���! E=M ���! 0
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and so r
�0�
M is monic. Since M is arbitrary, also r

�0�
E=M

is monic, so that r
�0�
M is an iso-

morphism and �TH��1�M � 0. r

The case in which St�SPR� � G is very important in view of what follows.
To simplify the notation, set L � �HT��0� and l � s�0�. Proposition 5.5 says that

we can consider L as a functor L : Mod-S ! Cost�SPR�, provided St�SPR� � G.

Proposition 5.5. Assume St�SPR� � G. Then, for every N A Mod-S, LN � �HT��0�N
A Cost�SPR�.

Proof. Consider the exact sequence (S2) for N:

0 �! H�1�T�1�N �!gN �HT��0�N �!dN
HTN �! 0:

We need only to show that H�1�T�1�N and HTN are in Cost�SPR�. Indeed, by
hypothesis, TN;T�1�N A St�SPR�, so Theorem 4.21 proves the claim. r

Lemma 5.6. Assume St�SPR� � G. Then lLN �LlN .

Proof. Assume ®rst that N is projective; then �HT��0�N � HTN and we can consider
lN � sN . Again, HTN A ker T�1� and so HTN A Cost0�SPR� and we can consider
lLN � sHTN .

We claim that sHTN � HTsN . Indeed, HTN A Cost0�SPR� implies that sHTN is an
isomorphism, so that HrTN is also an isomorphism. But rTN is a morphism in
St0�SPR� and so, by the equivalence, rTN is an isomorphism and TsN � rÿ1

TN .
Let now NS be arbitrary and take an epimorphism g : F ! N, with FS projective.

Then the following diagrams

F ���!f N ���! 0???ylF

???ylN

LF ���!Lf
LN ���! 0

LF ���!Lf
LN ���! 0???yLlF

???yLlN

L2F ���!L2f
L2N ���! 0

LF ���!Lf
LN ���! 0???ylLF

???ylLN

L2F ���!L2f
L2N ���! 0

have exact rows, since L is right exact. Hence

lLNLf �L2f lLF �LlNLf

and so lLN �LlN . r
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The hypothesis that St�SPR� � G allows us to say that Cost�SPR� is a re¯ective sub-
category of Mod-S, i.e., the inclusion functor has a left adjoint (see [15, Chapter X]).

Theorem 5.7. Assume St�SPR� � G. Then L : Mod-S ! Cost�SPR� is a left adjoint to

the inclusion functor.

Proof. Let N A Mod-S and L A Cost�SPR�. The required bijections

HomS�LN;L� ! HomS�N;L� and HomS�N;L� ! HomS�LN;L�

are de®ned by sending f A HomS�LN;L� to f lN and g A HomS�N;L� to lÿ1
L Lg.

Proposition 5.6 is the key point in showing that these are indeed bijections, inverse of
one another. r

Corollary 5.8. Assume St�SPR� � G. Then LF is projective in Cost�SPR�, for any

projective module FS. Hence the category Cost�SPR� has a projective generator.

Proof. Epimorphisms in Cost�SPR� are surjective. r

Proposition 5.9. Assume St�SPR� � G. The subcategory Cost�SPR� is a Giraud sub-

category of Mod-S if and only if HT�1� � 0.

Proof. Since we already know that Cost�SPR� is re¯ective, we just look at when L
preserves kernels and this is clearly equivalent to saying that �HT��0� is exact. r

In the paper [12], it was introduced the notion of tilting equivalence between Gro-
thendieck categories.

De®nition 5.10 ([12, De®nition 1.1]). If C1 and C2 are Grothendieck categories, a
tilting equivalence between C1 and C2 consists of:

(1) a torsion theory �Ti ;Fi� in Ci �i � 1; 2�, such that every object of C1 is a sub-
object of an object in T1 and every object of C2 is a quotient of an object in F2;

(2) an equivalence F : T1 !F2, with inverse G : F1 !T2.

It is readily shown that F and G can be extended to the whole categories, in such a
way that G is a left adjoint to F.

When St�SPR� � G and HT�1� � 0, we have a tilting equivalence, where C1 � G,
C2 � Cost�SPR�, T1 � St0�SPR� � Gen�PR�, F1 � St1�SPR�, T2 � Cost1�SPR�, F2 �
Cost0�SPR�, F � H and G � T . In fact every injective object in G belongs to
St0�SPR� and every projective object in Cost�SPR� belongs to Cost0�SPR�. The fact
that Cost�SPR� is a Giraud subcategory of Mod-S suggests to use the Gabriel-
Popescu theorem.
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De®nition 5.11. We say that a bimodule SPR is a GP-tilting bimodule if

(1) SPR is weakly G-tilting;

(2) St�SPR� � G;

(3) HT�1� � 0.

We want to see that any GP-tilting bimodule arises in a tilting equivalence context.
Let A be a Grothendieck category with a projective generator. Then, ®xing a

projective generator U of A, we have a Gabriel-Popescu representation of A, in the
sense that we can de®ne (see [15, Chapter X]):

(1) the functor h � HomA�U ;ÿ� : A!Mod-S, where S is the endomorphism ring
of U;

(2) the left adjoint t of h, which is exact;

(3) a hereditary torsion theory �X;Y� on Mod-S, where X � ker t;

(4) the Giraud subcategory Mod-�S;Y� of Y-closed modules and the functor
L : Mod-S !Mod-�S;Y�, left adjoint to the inclusion i;

(5) equivalence functors h 0 : A!Mod-�S;Y� and t 0 : Mod-�S;Y� !A such that
ih 0 � h and t 0L � t.

Note that, in this case, also i is exact, since h is.
In the following theorem we will mention a projective generator U of a Gro-

thendieck category A and refer to the previous notation.

Theorem 5.12. Let G be a closed subcategory of Mod-R and A a Grothendieck cate-

gory with a projective generator U. Assume we are given a tilting equivalence between

G and A, given by the functors F : T1 !F2 and G : F2 !T1. We set PR � GtS.
Then P is in a natural way an S-R-bimodule and:

(1) hF is isomorphic to HomR�P;ÿ� and Gt is isomorphic to ÿnS P;

(2) SPR is GP-tilting;

(3) Cost�SPR� �Mod-�S;Y�.

Proof. It is not restrictive to assume that h 0 and t 0 are the identity. Since
End�SS� � S, it is clear that SPR is a bimodule. Thus

iFM GHomS�S; iFM�GHomS�LS;FM�GHomR�P;M�

by the adjunctions. It follows also that GLGÿnS P.
We list some statements which follow from Theorem 3.7 in [12].

(1) T1 � ker F �1� � im G and F1 � ker F � im G�1�;

(2) T2 � ker G � im F �1� and F2 � ker G�1� � im F ;
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(3) F �1� is a left adjoint to G�1�;

(4) GF �1� � 0, F �1�G � 0, FG�1� � 0 and G�1�F � 0;

(5) for every M A C1 � G, there exists an exact sequence

0! GFM !M ! G�1�F �1�M ! 0;

(6) F �1� and G�1� induce an equivalence between F1 and T2.

Let us prove that SPR is weakly G-tilting. Now T1 � ker F �1�, so that T1 � ker H�1�,
by the exactness of i. Moreover T1 JGen�PR�, since, for all M A T1, M GGFM G
GLiFM � THM. On the other hand, T1 � im G, so PR A T1 yields, ®nally T1 �
Gen�PR�. By usual arguments (see [4, Proposition 2.2]), it follows that pdG PR U 1.

Since G�1� is left exact, it is clear that G�2� � 0, so T�2� � 0 and, from Remark 2.4,
id P�S U 1. To show that Cogen�P�S�J ker T�1�, it is su½cient to prove that T�1�H � 0.
But T�1�H � G�1�LiF GG�1�F � 0.

In the same way, HT�1� � iFG�1�L � 0. Hence we need only to see that

St�SPR� � G or, equivalently, that GFM;G�1�F �1�M A St�SPR�. First of all TH�1� �
GLiF �1�GGF �1� � 0. Now rGFM is clearly an isomorphism and similarly G�1�F �1�M
GT�1�H�1�G�1�F �1�M. Hence GFM A St0�SPR� and G�1�F �1�M A St1�SPR�.

It remains to show that Cost�SPR� �Mod-�S;Y�. For any module N A F2 �
ker G�1� � ker T�1�, we have

�HT��0�N GHTN G iFGLN GLN;

hence, taking any N A Mod-S and an exact sequence 0! K ! Q! N ! 0, with Q

projective, we have that K ;Q A F2 and the diagram with exact rows

0 ���! LK ���! LQ ���! LN ���! 0???yG

???yG

0 ���! �HT��0�K ���! �HT��0�Q ���! �HT��0�N ���! 0

and so there exists a unique isomorphism LN ! �HT��0�N, making the diagram
commute. Hence �HT��0� is isomorphic to L and the claim follows. r

Another possible line of interest is the study of ``big'' weakly tilting modules, in the
sense that they induce a counter equivalence between signi®cant subcategories.

A subcategory G 0 of G is called ®nitely closed if it is closed under submodules,
quotients and ®nite direct sums; it is called generating if every object in G is an epi-
morphic image of a direct sum of objects in G 0.

De®nition 5.13. A weakly G-tilting bimodule SPR is said fc-tilting if there exist ®nitely
closed and generating subcategories G 0 and S 0 of G and Mod-S, respectively, such
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that the functors H, H�1�, T and T�1� induce a counter equivalence between G 0 and
S 0, where the torsion theory on G 0 and S 0 are

�St0�SPR�XG 0; St1�SPR�XG 0� and �Cost1�SPR�XS 0;Cost0�SPR�XS 0�

respectively. For the de®nition of counter equivalence, we refer to [3].

For example, the bimodule Jp
Z�py�Jp

is fc-tilting, since we can take as G 0 the class of
artinian modules and as S 0 the class of noetherian modules.

It is worth noting that such a counter equivalence need not be extendable to a
counter equivalence between the whole categories; indeed our example shows this,
since the torsion class in G 0 contains all ®nitely cogenerated modules and the torsion-
free class in S 0 contains all free modules, so that an extension to the whole categories
should be given by a tilting object in Subgen�Z�py�� (see [12]) and this class contains
no tilting object.

On the other hand, any equivalence between ®nitely closed subcategories can be
extended.

Proposition 5.14. Let G 0 and S 0 be ®nitely closed and generating subcategories of G
and Mod-S, respectively and let F : G 0TS 0 : G be an equivalence. Then there exists a

progenerator P A G 0 such that S � End�PR�, F GHomR�P;ÿ� and G GÿnS P. In

particular G and Mod-S are equivalent.

Proof. Since S 0 is ®nitely closed and generating, it contains the module SS. Take
PR � G�SS�: then S � End�PR� and, as usual F GHomR�P;ÿ�. Now PR must be ®-
nitely generated and quasi-projective and it must generate its submodules. By Fuller's
theorem [11], it is a quasiprogenerator and so it de®nes an equivalence between G and
Mod-S. r

6 Tilting torsion theories

The following lemma uses a technique borrowed from [6, Proposition 2.8].

Lemma 6.1. Let SL be a module admitting an exact sequence in S-Mod of the form

0! L 0 ! L 00 ! L! 0

where L 0 and L 00 are ®nitely presented and L 00 is ¯at. Then the functor Tor1
S�ÿ;L�

commutes with direct products.

Proof. Let Nl be a family in Mod-S. Then we can build the following diagram where,
by the ¯atness of L 00, the rows are exact:
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0 ���! Tor1
S�
Q

Nl;L� ���! �QNl�nS L 0 ���!???y ???y
0 ���! Q

Tor1
S�Nl;L� ���! Q�Nl nS L 0� ���!

���! �QNl�nS L 00 ���! �QNl�nS L ���! 0???y ???y���! Q�Nl nS L 00� ���! Q�Nl nS L� ���! 0

and, by the fact that L 0 and L 00 are ®nitely presented, the three rightmost vertical
arrows are isomorphisms (see [17, 12.9]); hence also the leftmost vertical arrow is an
isomorphism. r

Remark 6.2. Colpi and Trlifaj de®ned the concept of a tilting torsion theory [7, De®-
nition 2.1] as a torsion theory in Mod-R in which the torsion class is generated by a
generalized tilting module. For such a torsion class T there always exists a general-
ized tilting module PR such that, setting S � End�PR�,
(1) T � Gen�PR� � ker H�1�;

(2) rM : THM !M is an isomorphism, for all M A Gen�PR�;
(3) there exists an exact sequence 0! R! P 0 ! P 00 ! 0, where P 0 and P 00 are

direct summands of ®nite powers of PR.

Indeed, this is the content of Corollary 2.18 in [7]. In this case the functors H and
T induce an equivalence between Gen�PR� and im H. Let us call such a module an
e-tilting module (``e'' for equivalence).

The following theorem extends the above mentioned result by Colpi and Trlifaj by
providing a counter equivalence between more explicit categories; for example,
im H � Cost0�SPR�.
Theorem 6.3. Let PR be an e-tilting module; then PR is weakly tilting and, setting

S � End�PR�, St�SPR� �Mod-R.

Proof. Applying HomR�ÿ;P� to the exact sequence 0! R! P 0 ! P 00 ! 0 of Re-
mark 6.2(3) gives the exact sequence 0! HomR�P 00;P� ! HomR�P 0;P� ! SP! 0
in S-Mod; now HomR�P 00;P� and HomR�P 0;P� are ®nitely generated projective left
S-modules, hence ®nitely presented and ¯at. By Lemma 6.1, T�1� commutes with di-
rect products. Therefore, from T�1�P� � 0 it follows that every power of P� belongs
to ker T�1�. Moreover the projective dimension of SP is U1, so, a fortiori, id P�S U 1.

To end the proof, we see from Remark 6.2(2) that every injective module MR is in
St0�SPR�. Therefore, from Theorem 5.4, we get St�SPR� �Mod-R. r

Corollary 6.4. If T is a tilting torsion class in Mod-R, then there exists a weakly tilting

module PR such that T � Gen�PR�.
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We can now give a wide class of examples of weakly tilting bimodules SPR such that
St�SPR� �Mod-R. Indeed, if R is any right noetherian and right hereditary ring and
E�R� is the injective hull of RR, the module PR � E�R�lE�R�=R is an e-tilting
module by [7, Corollary 2.18].
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References

[1] Angeleri HuÈgel, L.: Finitely cotilting modules. Comm. Algebra, to appear
[2] Assem, I.: Tilting theoryÐan introduction. Topics in algebra, Part 1. Banach Center

Publ. 26, Part 1. PWN, Warsaw 1990
[3] Colby, R. R., and Fuller, K. R.: Tilting and torsion theory counter equivalences. Comm.

Algebra 23 (1995), 4833±4849
[4] Colpi, R.: Tilting in Grothendieck categories. Forum Math. 11 (1999), 735±759
[5] Colpi, R., D'Este, G., and Tonolo, A.: Quasi-tilting modules and counter equivalences.

J. Algebra 191 (1997), 461±494
[6] Colpi, R., Tonolo, A., and Trlifaj, J.: Partial cotilting modules and lattices induced by

them. Comm. Algebra 25 (1997), 3225±3237
[7] Colpi, R., and Trlifaj, J.: Tilting modules and tilting torsion theories. J. Algebra 178

(1995), 614±634
[8] Eklof, P. C., and Mekler, A. H.: Almost free modules: Set-theoretic methods. North-

Holland Publishing Co., Amsterdam 1990
[9] Fuchs, L.: In®nite abelian groups. Vol. I. Academic Press, New York 1970

[10] Fuchs, L., and Salce, L.: Modules over valuation domains. Marcel Dekker Inc., New
York 1985

[11] Fuller, K. R.: Density and equivalence. J. Algebra 29 (1974), 528±550
[12] Gregorio, E.: Tilting equivalences for Grothendieck categories. J. Algebra, to appear
[13] Nauman, S. K.: Static modules and stable Cli¨ord theory. J. Algebra 128 (1990), 497±509
[14] Rotman, J. J.: An introduction to homological algebra. Academic Press Inc. [Harcourt

Brace Jovanovich Publishers], New York 1979
[15] StenstroÈm, B.: Rings of quotients. Grundlehren der mathematischen Wissenschaften 217.

Springer, 1975
[16] Tonolo, A.: Generalizing Morita duality: a homological approach. J. Algebra, to appear
[17] Wisbauer, R.: Foundations of module and ring theory. Gordon and Breach, Reading 1991

Received July 27, 1999; revised April and May 2000

E. Gregorio, Dipartimento Scienti®co e Tecnologico, UniversitaÁ di Verona, Strada le Grazie ±
Ca' Vignal 15, 37134 Verona, Italy

gregorio@sci.univr.it

A. Tonolo, Dipartimento di Matematica Pura e Applicata, UniversitaÁ di Padova, via Belzoni
7, 35131 Padova, Italy

tonolo@math.unipd.it

E. Gregorio, A. Tonolo614


