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Abstract: Structure-from-Motion (SfM) photogrammetry is increasingly employed in geomorpho-

logical applications for change detection, but repeatability and reproducibility of this methodology

are still insufficiently documented. This work aims to evaluate the influence of different survey

acquisition and processing conditions, including the camera used for image collection, the number

of Ground Control Points (GCPs) employed during Bundle Adjustment, GCP coordinate precision

and Unmanned Aerial Vehicle flight mode. The investigation was carried out over three fluvial

study areas characterized by distinct morphology, performing multiple flights consecutively and

assessing possible differences among the resulting 3D models. We evaluated both residuals on check

points and discrepancies between dense point clouds. Analyzing these metrics, we noticed high

repeatability (Root Mean Square of signed cloud-to-cloud distances less than 2.1 cm) for surveys

carried out under the same conditions. By varying the camera used, instead, contrasting results were

obtained that appear to depend on the study site characteristics. In particular, lower reproducibility

was highlighted for the surveys involving an area characterized by flat topography and homogeneous

texturing. Moreover, this study confirms the importance of the number of GCPs entering in the

processing workflow, with different impact depending on the camera used for the survey.

Keywords: SfM; point cloud; precision; repeatability; reproducibility; UAV; multi-temporal surveys

1. Introduction

Every measurement process, with any technology, is always affected by errors, which,
if not properly considered, lead to inevitable biased or wrong evaluations of the phe-
nomenon under study. This problem is particularly relevant in the context of Change De-
tection (CD), which aims at recognizing differences in the state of an object over time [1,2],
allowing to quantify, e.g., the effects of natural or anthropogenic events on the environment
morphology. Initially based only on 2D images, in the last decades, CD has been witnessing
a revolution thanks to the increasing availability of very high resolution (VHR) 3D data,
provided by efficient remote sensing techniques, such as photogrammetry, Light Detection
and Ranging (LiDAR) or Interferometric Synthetic Aperture Radar (InSAR). Among them,
Structure-from-Motion (SfM) photogrammetry coupled with the use of Unmanned Aerial
Vehicles (also known as Uncrewed Aerial Vehicles—UAVs) proved to be one of the most
efficient, cost-effective technologies to generate high-quality surface reconstruction of a
variety of environments [3,4].

Born from the combination of photogrammetric principles and computer vision al-
gorithms, SfM is extensively employed for geomorphological applications, ranging from
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landslide [5,6] and glacier monitoring [7,8] to river channel morphology inspection [9,10]
or archaeology 3D reconstructions [11,12], just to name a few. The growing use of this
technique is due to several factors, including cost-effectiveness, high temporal frequency
of the surveys, ease of use and automation of data processing [13]. Generating a 3D model
of an area to capture its state at a certain time is often considered a simple task, that ap-
parently requires only off-the-shelf instruments (i.e., commercial drones, consumer-grade
cameras and fully automated photogrammetric software) and little training. However,
to reliably detect and quantify temporal surface changes avoiding false positives [14], a
deep knowledge of the data processing steps and of the uncertainties affecting the model
is mandatory. To this end, several papers in the literature compared the SfM results with
other VHR acquisition techniques, such as terrestrial or airborne laser scanning [3,15],
or evaluated SfM accuracy on a discrete set of points, whose coordinates are measured
through Global Navigation Satellite System (GNSS) [16,17]. These experiments showed
centimeter to decimeter discrepancies of the SfM technique versus the compared tech-
nologies, depending on survey parameters (e.g., flight design, camera characteristics and
georeferencing strategies). Moreover, some works highlighted also a dependency on the
photogrammetic software used in image processing [10,18,19]. Comparing SfM results
with regard to other (possibly more accurate) surveying techniques can provide an estimate
of measurement accuracy and potential systematic errors, but it is not able to capture
precision and repeatability [20]. The latter are fundamental aspects to quantify digital
elevation model (DEM) uncertainties, which significantly affect surface change detection.

Two main approaches can be employed to estimate the precision of SfM photogram-
metry. In recent years, the numerical method proposed in [21] has found extensive spread
in geomorphology. It is based on Monte Carlo simulations to generate precision maps, i.e.,
repeated bundle adjustments are performed to evaluate the spatial variability of precision,
which is influenced by photogrammetric and georeferencing conditions. This valuable tool
enables the analytical assessment of error distribution for a specific survey, thus allowing
to estimate the confidence intervals for detecting surface changes. However, the afore-
mentioned simulation procedure could potentially neglect some influencing factors [20],
leading to optimistic results [22]. The alternative approach is represented by the compari-
son of repeated surveys of the same area, performed under the same conditions during
periods when no surface changes occur [20,23]. Although time-consuming, this methodol-
ogy can give a comprehensive insight into the features that affect the spatial variation of
precision provided by SfM photogrammetry.

Leveraging on repeated UAV surveys, in this work, we perform an extensive evalua-
tion of SfM repeatability, defined as the variation that can be expected when surveying the
same area under similar conditions (i.e., same camera, flight path, illumination conditions)
within a short time interval [20,24]. Moreover, we investigate SfM reproducibility, meaning
measurement variation under different conditions, by performing image acquisitions with
different cameras and UAVs. In the literature, several researches demonstrate the role of
GCPs on accuracy and precision of DEMs derived from SfM photogrammetry [16,23,25].
In this study, the influence of GCPs is analyzed on the one hand using different number
of GCPs, and, on the other hand, exploiting 3D ground coordinates characterized by dif-
ferent precision. Finally, different field sites are considered, in order to evaluate how the
topographic characteristics of monitored surfaces can influence the survey precision.

2. Materials and Methods

2.1. Study Areas

Three reaches (Figure 1a,b) located in Friuli Venezia Giulia region (North-east Italy)
were selected as study areas due to their different geomorphological characteristics.

The first site (Palar—P) comprises 0.50 ha of the Palar Torrent (Figure 1c—46°18′31.15′′N,
13°3′11.03′′E) and it is mainly characterised by gentle slope bed (0.5%) with homoge-
neous small granulometry (Figure 1d). The second area (Vegliato—V) covers 0.41 ha
of the Vegliato Torrent (Figure 1e—46°17′15.50′′N, 13°8′47.95′′E). This site shows more
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heterogeneous morphologies due to the presence of torrent control works (i.e., three
check dams), river banks and fluvial terraces (Figure 1f) and the reach has a slope of
16%. The third study site (Moscardo—M) is located within the Moscardo catchment
(Figure 1g—46°33′50.53′′N, 13°0′43.60′′E) and has an extension of 0.12 ha with a slope of
12%. This last one presents high heterogeneity in terms of roughness pattern and granulom-
etry, with size ranging from sand to gigantic boulders, as shown in Figure 1h. This is mainly
due to debris-flow events which reach very frequently the study area [26]. These particular
events influence the reach morphology and cause the presence of different sediment size,
from clay particles to boulders (diameter > 1 m).
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Figure 1. (a,b) Geographic location of the study areas, (c,d) Palar study area and a detail of the grain

size in the riverbed, (e,f) Vegliato area and a portion of the fluvial terraces, (g,h) Moscardo site and a

detail of the heterogeneous granulomerty in the channel reach.



Remote Sens. 2021, 13, 2572 4 of 20

2.2. Data Acquisition

Image data collection over the three study areas was carried out with two different
cameras, whose characteristics are reported in Table 1.

Table 1. Characteristics of the cameras employed for the surveys.

Sensor Model Company
Resolution Sensor Dimension Focal Length Image Resolution

[MP] [mm] [mm] [px]

α5000 SONY 20.0 15.4 × 23.2 20 5456 × 3632
X5S DJI 20.8 17.3 × 13 25 5280 × 3956

Two different UAVs were used, each allowing different flight modes: (i) DJI Ma-
trice210v2 quadcopter, which enables planned flight mode; and (ii) Neutech Airvision
NT-4C octorotor (manual flight). The X5S camera is natively installed on the DJI Ma-
trice210v2 quadcopter, while the Sony camera was attached to the gimbal holder using a
dedicated aluminum bar specifically crafted. The same Sony camera was attached to the
NT-4C octorotor using a two axis gimbal. The installations were made assuring the camera
stability along with an elastic suppression of vibrations.

Nadir images were collected with an optimal overlap of 80% in flight direction and an
overlap between adjacent flight-lines of 70%. All UAV surveys performed in the same day
were conducted consecutively with an interval of at most 5 min, in order to guarantee the
same illumination conditions. Features characterizing each survey are reported in Table 2.

Table 2. Details of data acquisition. Study site: P = Palar; V = Vegliato; M = Moscardo. Camera: S = Sony α5000; X = X5S.

Drone: MT = Matrice, NT4 = NT-4C. Flight mode: Mnl = Manual, Pln = Planned. The last four columns report the number

of acquired images (Images), the number of Ground Control Points (GCPs) used in the Bundle Adjustment process, the

number of Control Points (CPs) considered for results evaluation purposes and the design Ground Sampling Distance

(GSD), respectively.

Study Site Camera Dataset Date Drone
Flight Flight Altitude

Images GCPs CPs
GSD

Mode [m a.g.l.] [mm/px]

P

S P_S1 13 June 2020 NT4 Mnl 25 167 15 17 7
S P_S2 13 June 2020 NT4 Mnl 25 150 15 17 7

X P_X1 13 June 2020 MT Pln 25 161 15 17 5
X P_X2 13 June 2020 MT Pln 25 169 15 17 5

V

S V_S1_2019 16 December 2019 NT4 Mnl 35 217 15 15 10
S V_S2_2019 16 December 2019 NT4 Mnl 35 167 15 15 10

S V_S1 17 December 2020 MT Pln 35 281 15 16 10
S V_S2 17 December 2020 MT Pln 35 285 15 16 10

X V_X1 17 December 2020 MT Pln 35 191 15 16 8
X V_X2 17 December 2020 MT Pln 35 191 15 16 8

M

S M_S1 10 June 2019 NT4 Mnl 25 155 14 12 7
S M_S2 10 June 2019 NT4 Mnl 25 142 14 12 7

X M_X1 12 June 2020 MT Pln 25 197 15 14 5
X M_X2 12 June 2020 MT Pln 25 199 15 14 5

In all study areas, Ground Control Points (GCPs) and Check Points (CPs) were mea-
sured with a geodetic class GNSS receiver (GS07, Leica, Heerbrugg, Switzerland) set to
collect GPS (C/A, L2C, Z track on P2 codes, L1 and L2 phases), Glonass (C/A, P2 codes,
L1C and L2P phases) and Galileo (E1, E5b codes and L1, L7 phases) signal observables.
This ensured good satellite geometry conditions, in terms of low Dilution of Precision
(DOP) parameters, also in the presence of significant sky obstructions. The GCP surveys
were carried out in stop&go Post-Processed Kinematic (PPK) mode, paying attention to
avoid complete losses of lock of the signal while moving around in the field, in order to
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guarantee an uninterrupted kinematic session linking the various GCPs. Point positions
were also collected in Network Real-Time Kinematic (NRTK) mode for comparison and as
a real time prediction of the achieved accuracy, while acquiring raw observations of codes
and phases of visible satellites for post-processing purposes.

For every GCP the occupation time lasted from 45 to 150 s, with the antenna pole kept
stable by an adjustable bipod, in order to obtain a 3D estimated precision better than 1 cm.
The selected reference system for the datasets was RDN2008/UTM zone 33 (EPSG:6708).
Both GCPs and CPs were uniformly distributed inside the study areas to prevent and
mitigate systematic errors in the photogrammetric model [27].

2.3. Data Processing

In order to generate a 3D model for each survey, the Structure-from-Motion algorithm
implemented in the Metashape software (v 1.6.4 build 10928, Agisoft LLC, St. Petersburg,
Russia) was applied to process each set of collected images, simultaneously estimating
exterior orientation parameters and camera calibration. In fact, no information related to
interior parameters were available, and self-calibration was performed to compute, for
each survey, focal length f , principal point position (cx, cy), affinity (b1), non-orthogonality
(b2), radial (k1, k2, k3, k4) and tangential distortion parameters (p1, p2). The estimated SfM
solution was then refined (and georeferenced) exploiting the surveyed GCPs, that were
used as constraints in the final bundle adjustment step. The number of GCPs employed for
each image set is shown in Table 2. GNSS raw data were processed in PPK mode using the
Leica GeoOffice software (LGO v 8.4, Leica Geosystems, Switzerland) referring measures to
a nearby Continuously Operating Reference Station (CORS), ZUOF, for the Moscardo site
and to a virtual reference station inside the study area for the Vegliato and Palar cases. The
reference station data were provided in RINEX format from the GNSS networks services
operating in the Friuli Venezia Giulia Region (FVG Marussi, INOGS FredNet and HxGN
SmartNet). In this way, the final GCP coordinates were estimated based primarily on the
PPK solutions, obtaining GCP positions with accuracy and precision of approximately 10
mm, significantly more reliable than those obtained in NRTK. We therefore used this value
to set the “marker accuracy” parameter in Metashape, in order to assign proper weights to
the GCP observations in the bundle adjustment [25].

A dense point cloud was then generated via the Multi-View Stereo algorithm of
Metashape, exploiting the half-resolution version of the original images and applying
mild filtering to remove noisy points. Furthermore, vegetation and wet surfaces were
manually removed from the obtained dense point cloud to avoid biased results in the
final comparisons.

For each study site, distances between point clouds generated from different image
sets were computed using the M3C2 distance plugin (Multiscale Model to Model Cloud
Comparison) [28] available in the Cloud Compare software (v. 2.9.1, GPL software, re-
trieved from http://www.cloudcompare.org, (accessed on 19 January 2021)). For each
pair of compared clouds, the resulted CoD (Cloud of Difference) was rasterized at 0.02 m
grid resolution for statistical analysis and visualisation purposes. Surveys performed
on the same day over the same study area were conducted consecutively within short
time intervals; therefore, no surface changes occurred during data collection. Distances
highlighted by the cloud-to-cloud comparisons can thus be ascribed to differences arising
during the photogrammetric pipeline (including image collection). Figure 2 illustrates the
analyses carried out for each study area.

http://www.cloudcompare.org
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Figure 2. Comparisons performed for the three study areas between consecutive surveys to test survey repeatability (1),

different cameras (2), various number of GCPs employed in the bundle adjustment (3), different 3D coordinate precision of

GCPs (4) and two flight modes (5). The comparisons are labelled according to the names of the used datasets. The dataset

characteristics are reported in Table 2.

As already mentioned in Section 1, survey repeatability was tested comparing the
results provided by two data acquisitions performed consecutively with the same camera.
Moreover, for the Palar and Vegliato areas, the SfM reproducibility was assessed based
on repeated data collection with two distinct cameras (within short time interval) and
analyzing the differences between the derived point clouds (Figure 2—block 2).

The effects of GCPs on the precision of the final model were instead evaluated choosing
the Palar area as study case. In fact, due to its flat topography and homogeneous texture,
this site potentially represents the most challenging scenario for SfM reconstruction, where
the benefits provided by the use of GCPs could be more relevant. In particular, one
image set acquired with the α5000 Sony camera and one collected with the Zenmuse X5S
were considered and processed from scratch using two subsets of GCPs in the bundle
adjustment (3 and 8 GCPs, respectively). The resulting point clouds (P_S1_3_GCP and
P_S1_8_GCP for the Sony camera; P_X2_3_GCP and P_X2_8_GCP for the X5S camera) were
compared with the corresponding reference ones (P_S1 and P_X2, respectively) obtained
with 15 GCPs (Figure 2—block 3). The photogrammetric model can be influenced not only
by the number of GCPs introduced as constraints in the bundle adjustment, but also by the
GCP coordinate precision. To test this aspect, we synthetically generated two more cases
for the P_X2 dataset, in which the GNSS coordinates of the 15 GCPs were perturbed by
adding random Gaussian noise of zero mean and standard deviation σ. In the first one
(P_X2_PE1), σxy = 1 cm and σz = 2 cm were employed for the planimetric and altimetric
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components, respectively, while in the latter (P_X2_PE2) σxy = 2 cm and σz = 4 cm were
selected (Figure 2—block 4).

Finally, the impact of UAV flight mode was analyzed for the Vegliato study area com-
paring two CoDs resulting from the surveys conducted in 2019 and 2020 (Figure 2—block 5).
The models and the corresponding CoDs were derived from datasets acquired with the
same camera (Sony) and at the same flight altitude (35 m agl). However, the 2019 surveys
(dubbed V_S1_2019 and V_S2_2019) were performed with the NT-4C octorotor in manual
flight mode, whereas the images acquired in 2020 were captured using the planned flight
mode provided by the DJI Matrice210v2 quadcopter. We highlight that, for this test, only
an indirect analysis on the CoDs was possible. In fact, a direct comparison between models
deriving from different flight modes was impractical due to surface changes that occurred
between the 2019 and 2020 data collections.

3. Results

Hereinafter, the results for each dataset and the comparisons among the obtained
models are reported in detail. Table 3 summarizes the computed camera parameter values,
that were estimated via self-calibration as previously described. It is possible to notice the
variability of the focal length f estimated for consecutive surveys performed with the same
camera, that reaches 74 pixels (1.7%) for the X5S datasets over the Palar area. We reported
also the mean GSD computed for each image set after the SfM process. This can differ
from the nominal value (Table 2) for two main reasons. Image acquisitions with the NT-4C
octorotor, in fact, were performed in manual flight mode, which made it difficult to meet
the design flight altitude. For the planned flights, instead, a constant altitude (above see
level) had to be set in the UAV control unit, preventing the design flight altitude (above
ground level) from being respected for the whole surveyed area.

The model accuracy was investigated analyzing at first the residuals on the CPs
(i.e., the differences between GNSS-measured coordinates and photogrammetric ones), that
give an indication also on possible georeferencing errors. In Table 4 , the mean value µ

and standard deviation σ for CP residuals are reported for each dataset, showing both the
signed residuals for the three components (X, Y, Z) and the total 3D error. For the latter,
the statistics are expressed also as a function of the average GSD. In the following sections,
we will discuss in detail the results on CP residuals reported in Table 4.

As further figure of merit, we evaluated the distances between dense point clouds
(CoDs) for precision assessment. Figures 3–5 illustrate the M3C2 distance between pairs of
models for the three study areas, while Table 5 shows the corresponding statistics.

The outcomes are detailed in the following describing separately (i) survey repeata-
bility and the use of different cameras, (ii) different number of GCPs and varying GCP
coordinate precision, and (iii) different flight modes.
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Table 3. Estimated camera parameter values for all datasets. In the last column the actual mean GSD is reported, computed after the image orientation stage.

Study Site Dataset
f cx cy b1 b2 k1 k2 k3 k4 p1 p2 Reprj. GSD

[px] [px] [px] [–] [–] [·10−2] [·10−2] [·10−2] [·10−2] [·10−3] [·10−3] err. [px] [mm/px]

P

P_S1 4780.6 −24.0 2.7 −0.28 −0.23 −15.2 11.4 5.1 −3.6 −0.8 0.7 0.66 9
P_S1_8_GCP 4791.4 −24.0 2.5 −0.28 −0.19 −15.2 11.6 5.1 −3.6 −0.8 0.7 0.67 9
P_S1_3_GCP 4791.2 −24.0 2.5 −0.28 −0.19 −15.2 11.6 5.1 −3.6 −0.8 0.7 0.67 9

P_S2 4818.8 −24.2 0.3 −0.28 0.83 −15.5 11.7 5.6 −3.7 −0.2 1.2 0.72 10

P_X1 4459.0 46.7 18.9 −6.66 0.3 0.6 −4.5 12.9 −10.9 2.3 1.0 0.85 5
P_X2 4385.1 50.4 18.9 −6.93 0.44 0.5 −3.9 10.9 −9.1 2.2 0.9 0.82 5

P_X2_8_GCP 4378.1 49.8 18.9 −7.31 0.46 0.6 −4.5 12.4 −10.3 2.2 0.9 0.76 5
P_X2_3_GCP 4383.5 49.6 18.8 −7.42 0.46 0.8 −4.5 12.6 −10.5 2.2 0.9 0.76 5

P_X2_PE1 4396.9 49.3 18.7 −7.42 0.48 0.6 −4.5 12.7 −10.6 2.2 0.9 0.76 5
P_X2_PE2 4400.5 49.2 18.6 −7.42 0.48 0.6 −4.6 12.8 −10.7 2.2 0.9 0.76 5

V

V_S1_2019 4814.8 −12.6 3.9 −0.28 1.08 −15.8 13.3 1.6 0.1 −0.7 1.1 0.70 7
V_S2_2019 4809.9 −11.2 3.4 −0.28 0.27 −15.4 11.4 7.1 −5.7 −0.4 1.5 0.69 8

V_S1 4801.7 −25.6 7.3 −0.28 −0.33 −15.4 11.3 6.8 −5.3 −0.6 1.1 0.69 7
V_S2 4781.6 −33.7 −19.8 −0.28 0.83 −15.2 11.0 7.0 −5.5 −0.6 1.1 0.69 7

V_X1 4526.2 43.8 4.6 −7.06 −0.17 −0.2 −0.2 2.1 −1.0 2.3 0.4 0.91 7
V_X2 4578.9 39.9 5.2 −7.72 0.47 −0.5 0.2 0.6 0.9 2.1 0.4 0.87 7

M

M_S1 4812.5 −25.0 4.9 −0.28 0.83 −15.5 13.2 1.3 0.1 −0.8 1.0 1.22 8
M_S2 4808.4 −26.2 12.7 −0.28 0.83 −15.7 13.7 0.5 0.1 −0.7 0.4 1.24 7

M_X1 4543.2 42.8 15.0 −5.52 −1.93 −0.03 −1.3 5.0 −4.3 2.2 0.9 0.92 6
M_X2 4541.2 43.1 14.4 −6.54 −1.47 −0.1 −0.3 1.1 0.3 2.2 0.8 0.88 6
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Table 4. Residuals on Check Points (in cm). Mean value µ and standard deviation σ are reported for each component

(X, Y, Z) and for the total 3D error. For the latter, mean and standard deviation are reported also as a function of the

average GSD.

Study Site Dataset
µX σX µY σY µZ σZ µ3D σ3D µ3D σ3D

[cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [GSD] [GSD]

P

P_S1 0.2 1.1 −0.5 1.5 0.0 1.3 2.1 0.8 2.4 1.0
P_S1_8_GCP 0.3 1.0 −0.6 1.4 −0.1 1.2 2.0 0.8 2.3 1.0
P_S1_3_GCP −0.2 0.6 −0.5 2.0 0.5 1.2 2.2 0.9 2.5 1.1

P_S2 0.4 1.2 −0.5 1.8 0.0 1.0 2.3 0.7 2.2 0.6

P_X1 0.0 2.3 −0.2 2.5 −0.3 2.8 4.0 1.5 7.1 2.7
P_X2 0.3 2.2 −0.1 2.6 0.4 2.8 4.0 1.8 7.7 3.5

P_X2_8_GCP −0.5 2.5 −0.2 2.0 −0.6 3.4 4.3 1.8 8.3 3.6
P_X2_3_GCP 0.5 2.3 −0.4 2.3 −5.0 6.6 7.3 5.0 14.1 9.8

P_X2_PE1 0.2 2.3 −0.1 2.4 0.1 3.0 4.0 1.7 7.8 3.3
P_X2_PE2 0.4 2.3 −0.3 2.3 0.2 2.9 4.0 1.6 7.7 3.2

V

V_S1_2019 −0.1 1.1 0.0 1.3 0.4 1.1 1.8 0.8 2.7 1.3
V_S2_2019 −0.6 2.0 −0.1 1.4 0.3 1.2 2.5 1.0 3.1 1.3

V_S1 −0.1 0.8 −0.1 0.6 −0.7 1.4 1.5 1.0 2.1 1.5
V_S2 0.0 0.8 −0.2 0.6 −0.2 0.9 1.2 0.6 1.8 0.9

V_X1 0.3 1.6 −0.2 0.9 0.1 1.7 2.0 1.6 2.7 2.1
V_X2 −0.1 1.0 −0.1 0.9 −0.9 1.8 2.1 0.9 2.9 1.3

M

M_S1 0.6 0.8 −0.3 0.6 0.2 1.5 1.8 0.5 2.2 0.6
M_S2 0.4 0.7 −0.4 0.7 0.9 1.6 1.9 0.9 2.8 1.3

M_X1 0.5 0.9 −0.3 0.5 −0.3 1.9 1.9 1.2 3.2 2.1
M_X2 0.4 0.8 −0.3 0.5 −0.1 1.8 1.7 1.1 2.8 1.8

Table 5. Summary statistics of M3C2 distance values for all the compared point clouds. Mean ± stan-

dard deviation and RMS are reported (in cm).

Study Site Reference Set Compared Set
µ ± σ RMS
[cm] [cm]

P

P_S1 P_S2 −0.1 ± 1.3 1.3
P_X2 P_X1 −0.6 ± 0.8 1.0
P_S1 P_X2 0.4 ± 2.6 2.6
P_S1 P_S1_3_GCP 0.3 ± 0.8 0.9
P_S1 P_S1_8_GCP −0.1 ± 0.3 0.3
P_X2 P_X2_3_GCP −6.0 ± 8.3 10.3
P_X2 P_X2_8_GCP −0.7 ± 1.0 1.2
P_X2 P_X2_PE1 −0.2 ± 0.5 0.6
P_X2 P_X2_PE2 −0.2 ± 0.8 0.8

V

V_S1_2019 V_S2_2019 0.5 ± 1.2 1.3
V_S1 V_S2 0.6 ± 0.7 1.0
V_X1 V_X2 −1.7 ± 1.3 2.1
V_S1 V_X2 0.2 ± 1.5 1.5

M
M_S1 M_S2 −0.6 ± 1.2 1.4
M_X1 M_X2 0.1 ± 0.5 0.5
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Figure 3. CoDs of Palar models obtained using different cameras, different number of GCPs and varying GCP coordinate

precision. (a) Study area. (b) GCPs (red) and CPs (green) positions. (c,f,i) CoDs derived from Sony and X5S point clouds,

exploiting all available GCPs in the bundle adjustment. Comparisons between the reference point cloud and those obtained

with 8 and 3 GCPs are reported in (d,e) for Sony image set and (g,h) for X5S camera. In (j,k) the effect of two levels of

perturbation error introduced in the GCP coordinates are shown for X5S camera. Distance values are pictured with a

red-to-blue gradient.
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surveys. (d) CoD derived from the comparison between M_S1 and M_S2. (f) CoD computed between X5S surveys (M_X1

vs M_X2). Distance values are pictured with a red-to-blue gradient.

3.1. Assessment of Survey Repeatability and Camera Influence

At first, replicas of the same survey (i.e., performed with the same camera under
similar conditions and processed with all available GCPs) are taken into account. As
shown by the summary values of Table 4 and further highlighted by the boxplots of the
CP residuals reported in Figure 6, for all three study areas datasets acquired with the
same equipment lead to equivalent accuracy. For example, for the Palar site the mean
3D error on CPs is 2.1 cm (σ = 0.8 cm) for P_S1 and 2.3 ± 0.7 mm for P_S2, respectively,
while for the Vegliato area we obtained an average 3D residual of 1.5 ± 1.0 cm for V_S1
and 1.2 ± 0.6 mm for V_S2. Similar behaviour can be appreciated also for the surveys
performed with the X5S camera. For instance, the mean absolute error on CPs for the
Moscardo area is 1.9 ± 1.2 cm for M_X1 and 1.7 ± 1.1 cm for M_X2. Analogous conclusion
can be drawn also considering the residuals expressed as a function of the average GSD:
the highest difference can be found between the surveys M_S1 and M_S2, characterized by
an average 3D residual on the CPs of 2.2 GSD and 2.8 GSD, respectively.

High coherence between repeated surveys is demonstrated also by the CoDs shown
in Figures 3c,f, 4d–f and 5d,f. From the comparisons among dense point clouds, only for
the Vegliato study area we notice a mean value of the M3C2 distance that exceeds 1 cm,
between V_X1 and V_X2 datasets (−1.7 ± 1.3 cm, see Table 5). In all other cases, repeating
the survey with the same camera and using well-distributed GCPs led to average signed
distances less than 1 cm and Root Mean Square (RMS) values less than 1.4 cm.

When comparing the results provided by different cameras over the same study area,
millimetre differences in terms of average CP residuals can be noticed, except for the Palar
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study area. In this case, indeed, for the X5S datasets mean and standard deviation are
twice the values computed for the Sony image sets. As can be seen from Table 4, the
errors grow from 2.1 ± 0.8 cm for P_S1 and 2.3 ± 0.7 cm for P_S2 to 4.0 ± 1.5 cm and
4.0 ± 1.8 cm for the X5S datasets. These discrepancies on CP errors can be noticed also
in Figure 6c,d, with the boxplots related to the P_X1 and P_X2 datasets reaching a mean
value of 4.0 cm for the 3D residuals, showing high variability both in the XY-plane as
well as in the altitude component. The lower accuracy that characterises these datasets is
revealed also by the average 3D error expressed as a function of the GSD, which reaches
7.7 times the GSD (in the other case studies it is between 2 and 3 times the GSD, see Table 4).
To further investigate these outcomes, we divided the CPs according to their location,
and computed error statistics for the three subareas considered (Figure 7). The southern
region shows greater CP residual values for the X5S datasets, with higher dispersion
especially in the Z direction. Analysing the distances between P_S1 and P_X2 point clouds
(Figure 3i), instead, it could be noticed that the P_X2 one exhibits a dome-like shape, with
positive distances with regard to the P_S1 in the central part of the study sites, and negative
values on the boundaries. The RMS for the computed distance is equal to 2.6 cm (Table 5),
which represents also the maximum RMS value among all the comparisons made between
datasets processed with proper GCP number. These considerations suggest lower accuracy
and precision for the P_X1 and P_X2 models.
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Figure 6. Comparison of CP residuals obtained from different surveys and study areas. (a–d) Palar,

(e–h) Vegliato 2020, (i–l) Moscardo. ‘S’ were surveys performed with the Sony camera, whereas ‘X’

referes to X5S datasets. The 3D total error is reported in grey, while pink, blue and green represents

residuals in the X, Y and Z direction, respectively. These results were obtained using all available

GCPs for each study area.
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Figure 7. Comparison of CPs residuals for Palar study area. Statistics are computed diving the

CPs according to their location (Figure 3b) into three areas: (a–d) North boundary (including check

points P02, P06, P05, P09 and P18), (e–h) Center (P08, P10, P12, P16, P14 and P21) and (i–l) South

boundary (P23, P24, P27, P29, P30 and P33). ‘S’ surveys were performed with the Sony camera,

whereas ‘X’ refers to X5S datasets. The 3D total error is reported in gray, while pink, blue and green

represents residuals in the X, Y and Z direction, respectively. These results were obtained using all

available GCPs.

3.2. Assessment of the Effect of the Number and Coordinate Precision of GCPs

As already mentioned in Section 2.2, the influence of the number of GCPs employed
in the bundle adjustment was tested in the Palar study site, evaluating the results retrieved
with 15, 8 and 3 GCPs. With respect to CP residuals (Figure 8), models generated from
the Sony camera dataset show similar behaviour regardless of the number of GCPs, with
an average 3D error of 2.1, 2.0 and 2.2 cm for the three cases (15, 8 and 3 GCPs), and a
standard deviation of less than 1 cm (see Table 4). Moreover, no significant differences
can be noticed in the CoD when comparing the point clouds obtained with 8 GCPs and
15 GCPs (Figure 3d). In fact, the corresponding M3C2 distance is equal to −0.1 ± 0.3 cm,
with a RMS of 0.3 cm (Table 5). Analysing the CoD computed from P_S1 and P_S1_3_GCP
(Figure 3e), a relative rotation between the two point clouds is slightly visible, which can
be due to inaccurate georeferencing of the P_S1_3_GCP model. However, there are still no
relevant distances (0.3 ± 0.8 cm on average, RMS is equal to 0.9 cm).



Remote Sens. 2021, 13, 2572 15 of 20

15 GCP 3 GCP

S
1

X
2

3D X Y Z 3D X Y Z

-20

-10

0

10

20

-20

-10

0

10

20

R
e
s
id

u
a
l 
[c

m
]

(a) (c)

(d) (f)

8 GCP

3D X Y Z

(b)

(e)

Figure 8. Comparison of CPs residuals for Palar study area using different cameras and different

number of GCPs (3, 8 and 15 GCPs). ‘S’ surveys were performed with the Sony camera (a–c), whereas

‘X’ refers to X5S datasets (d–f). The 3D total error is reported in grey, while pink, blue and green

represents residuals in the X, Y and Z direction, respectively.

Conversely, GCP density seems to significantly affect the results obtained from the X5S
datasets. In the case of 8 GCPs, a small increase in the error affecting all the components
can be noticed (from an average 3D residual of 4.0 cm with 15 GCPs to 4.3 cm with 8 GCPs),
whereas with only 3 GCPs (that in our case where also not properly distributed) the average
residual on the CPs reaches 7.3 ± 5.0 cm, with maximum differences between GNSS and
photogrammetric coordinates of 20 cm. Table 4 and Figure 8e also show a large increase
of the error in the Z direction, that reaches a mean value of −5.0 cm and a standard
deviation of 6.6 cm. The influence of the number of GCPs for the X5S datasets in further
highlighted by the comparison between dense point clouds. Figure 3h, in fact, clearly
displays decimetre differences (RMS is 10.3 cm) between P_X2 and P_X2_3_GCP, with the
model retrieved with only 3 GCPs showing a domed shape. Although to a lesser extent, this
behaviour is also visible in the P_X2_8_GCP point cloud. Of course, varying the location
and distribution of the 3 GCPs could have significantly changed the results and the error
distribution. However, the main goal of this test was to confirm that the minimum number
of constraints is usually not sufficient to produce a reliable model.

After having assessed the dependence of the results on the GCP number, it is inter-
esting to verify the influence of the precision of GCP measurements. As explained in
Section 2.2, the GNSS coordinates were perturbed adding two different level of Gaussian
noise. The consequences are not so relevant: in fact, the 3D residual on the CPs is constant
for the three cases (4.0 ± 1.5 cm for P_X2, 4.0 ± 1.6 cm for P_X2_PE1 and 4.0 ± 1.7 cm
for P_X2_PE2, see Table 4). Only for the case P_X2_PE2 (Z component perturbed with
σZ = 4 cm) minor distortions in the final model are evident in the form of a dome effect,
slightly visible in Figure 3k.
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A significant reduction of the model accuracy is instead produced by changing the
‘marker accuracy’ parameter in the bundle adjustment step. We evaluated the results
obtained when using the original GCP coordinates but setting this value to 6 cm, noticing
also in this case a final model affected by the doming effect. In this situation, the software
employs the GCPs as softer constraints, reducing their positive effect on the final bundle
adjustment solution.

3.3. Assessment of UAV Flight Mode Impact

To investigate the impact of manual and planned flights, in the Vegliato study area,
we compared the results obtained for the Sony datasets acquired with the NT-4C UAV in
2019 and with the DJI Matrice in 2020. The flight missions were performed at the same
altitude and using the same camera settings. Focusing on the CPs residuals, one can notice
slightly higher 3D error variability for the datasets acquired in manual mode (Figure 9),
with mean values of 1.8 ± 0.8 cm and 2.5 ± 1.0 cm (corresponding to 2.7 ± 1.3 GSD and
3.1 ± 1.3 GSD) for V_S1_2019 and V_S2_2019, respectively. The average 3D residual de-
creases to 1.5 ± 1.0 cm and 1.2 ± 0.6 cm (corresponding to 2.1 ± 1.5 GSD and 1.8 ± 0.9 GSD)
for the two image sets collected in planned mode, as shown in Table 4. An indirect compari-
son can be performed also analyzing the CoDs obtained from the two pairs of flights. In the
CoD computed from V_S1_2019 and V_S2_2019 models (Figure 4d) higher distances are
visible all over the study area, whereas for the planned flights (Figure 4e) major differences
between the two replicas are localised out of the GCP perimeter and downstream of the
check dams.
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Figure 9. Comparison of CPs residuals for Vegliato study area using manual (a,b) or programmed

(c,d) flight mode. Sony camera was employed for data acquisitions. The 3D total error is reported in

gray, while pink, blue and green represents residuals in the X, Y and Z direction, respectively.



Remote Sens. 2021, 13, 2572 17 of 20

To give further insights on how the flight mode can influence the result, in Figure 10
we show image locations for flights V_S2_2019 (manual flight, Figure 10a) and V_S2
(planned flight, Figure 10b). It is easy to notice the more regular image distribution that
characterizes the planned flight, which guarantees uniform overlap and sidelap. Although
the average tie-point multiplicity (i.e., the ratio between the total number of projections and
the number of tracks) is equivalent for both flight modes (3.94 for the manual and 3.80 for
the planned flight), the nonuniform coverage of the area of interest could justify the lower
accuracy (see CP residuals, Figure 9) and precision (see the corresponding CoDs, Figure 4d
for the manual flights and Figure 4e for the planned mode) that affects the models obtained
from manual flights.

(a) (b)

17m

Y

X

Figure 10. Image locations for flights (a) V_S2_2019 (manual flight) and (b)V_S2 (planned flight).

Please note the more regular image distribution that characterizes the planned flight.

4. Discussion

Performing repeated surveys under the same conditions can give an insight on SfM
precision. This turns out to be essential when estimating surface changes by means of
photogrammetric surveys, in order to avoid false positives or to overestimate changes.

Overall, results reported in Section 3.1 show very good survey repeatability, with
minor differences (RMS ≤ 2.1 cm) between the point clouds produced with images ac-
quired with the same camera under similar conditions. Moreover, CoDs do not show
spatial patterns that could be ascribed to systematic errors. Most of the analyzed surveys
performed on different study areas are characterized by similar accuracy, measured in
terms of CP residuals. To avoid biased comparisons due to the different GSD associated
to each image set, 3D errors were also expressed as a function of the GSD, resulting in a
mean 3D residual ranging from 1.8 to 3.1 times the GSD. The only exception is represented
by the surveys carried out with the X5S camera over the Palar site. In these cases, CP
errors are slightly higher, reaching an average value of 4.0 ± 1.8 cm for the P_X2 case, that
corresponds to 7.7 times the GSD.

This case study also highlights the dependence of the results on the camera used.
For the Palar surveys, in fact, models derived from the Sony datasets are more accurate,
despite the higher GSD that characterizes these image sets. A possible explanation for such
behaviour could be found in the different size of the sensors (357 mm2 for the Sony and
225 mm2 for the X5S camera, respectively), with the Sony camera producing sharper photos.
However, it should also be underlined that the differences between models produced with
the two cameras are not so significant for the other sites: the roughness that characterizes the
surveyed area can therefore, can play an important role in the final accuracy and precision.

In accordance with the outcomes that can be found in several papers [16,23,29,30],
the experiments reported in Section 3.2 clearly demonstrate that another factor that can
influence SfM accuracy and precision is the number of GCPs employed in the bundle
adjustment. A reliable model, indeed, can be obtained when processing the datasets with
proper GCP density and distribution, with GCPs placed also on the boundaries or even
outside the study reach [9,31,32]. For the cases previously discussed, using all available
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GCPs resulted in a density of 5 to 10 GCPs per 100 photos, that respects the suggestion given
in [16], according to which more than 3 GCPs per 100 photos should be considered to reach
high accuracy. When using a smaller number of GCPs (1.8 GCP per 100 photos in our tests)
the model retrieved by the SfM algorithm can reveal local distortions or georeferencing
inaccuracies, as shown by P_X2_3_GCP and P_S1_3_GCP, respectively (regardless of the
choice of the GCP location). Even for this test, the X5S dataset seems to be more affected
by the number of GCPs employed than the Sony images. In particular, the P_X2_3_GCP
model shows the well-known dome shape, frequently discussed in the literature [22,33].
The dome effect could have also been mitigated by adding oblique images (20–35◦ camera
angle) or two orthogonal strips [29,34].

We would like to underline that, even in the cases where CP residuals are high and
the model presents significant distortion (i.e., P_X2_3_GCP), the reprojection error does
not increase (0.76 pixel, see Table 3). As already assessed in other works [20,35], this is a
further proof that image-space error is not a reliable indicator of the model accuracy.

The uncertainty and inherent variability of the GNSS measurements, acquired with
the PPK technique, do not show a significant impact as demonstrated by the results of the
tests performed by perturbing the coordinate of the GCPs. This naturally applies as long
as the accuracy of the GCPs is better than or equal to the accuracy of the model.

Finally, regarding the influence of the flight mode, experimental evaluation shows
slightly higher accuracy for the model retrieved from planned flights with respect to manual
ones (using the same camera for image collection). The former mode, in fact, allows to
strictly respect design image overlap and to ensure a more homogeneous coverage of
the surveyed area (Figure 10), avoiding that some areas are covered by a few frames,
which could negatively affect tie-point visibility and the whole SfM process. Nevertheless,
commercial drones without a DEM support can only fly in planned mode at a specific
altitude above see level, that causes differences in GSD in steep slope areas.

5. Conclusions

Performing multiple UAV surveys under similar conditions within short time intervals
and over several study areas allowed to enhance our understanding of SfM precision. The
SfM technique showed high repeatability, whereas significant distances on the resulting 3D
model can be appreciated when different cameras are used to survey challenging scenarios
(i.e., flat surfaces with homogeneous texture). The SfM reproducibility can therefore be
a crucial factor that must be taken into account in change detection applications. When
high-precision point cloud data are required, we recommend to test model reproducibility
(and in particular the effect of adopting different cameras) over different scenarios, since
generalizing the results retrieved over a specific study area could be misleading. GCPs
remain essential to generate accurate models, and an independent set of CPs should always
be measured to objectively assess the quality of the obtained results.

Geomorphological studies and sediment dynamic analyses require periodic data
acquisitions for a considerable time; changing instrumentation (e.g., cameras and GNSS
receiver) and protocols (e.g., GCP density or flight mode) during a long evaluation period
is thus very likely and it could lead to inconsistent results in data comparison. The
method employed in this paper, based on repeated surveys, could be valuable to address
these issues.

In a future work, we will investigate how SfM accuracy and precision can affect the
volume estimate, computed from multi-temporal surveys over areas characterized by
surface changes.
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Abbreviations

The following abbreviations are used in this manuscript:

CD Change Detection

CoD Cloud of Difference

CORS Continuously Operating Reference Station

CP Check Point

DEM Digital Elevation Model

GSD Ground Sampling Distance

GCP Ground Control Point

GNSS Global Navigation Satellite System

InSAR Interferometric Synthetic Aperture Radar

LiDAR Light Detection and Ranging

M3C2 Multiscale Model to Model Cloud Comparison

NRTK Network Real-Time Kinematic

PPK Post-Processed Kinematic

SfM Structure-from-Motion

UAV Unmanned Aerial Vehicle (also known as Uncrewed Aerial Vehicle)

VHR Very High Resolution
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