
Sustainable Energy, Grids and Networks 32 (2022) 100853

n
f
r
i
r

✩

S

P

a
(

h
2

Contents lists available at ScienceDirect

Sustainable Energy, Grids and Networks

journal homepage: www.elsevier.com/locate/segan

Multi-objective control of isolated power systems under different
uncertainty approaches✩,✩✩,★

Spyridon Chapaloglou a,∗, Andreas Faanes b, Damiano Varagnolo b,d, Elisabetta Tedeschi a,c
a Department of Electric Power Engineering, Norwegian University of Science and Technology, O.S. Bragstads Plass 2 E, 7034 Trondheim, Norway
b Department of Engineering Cybernetics, Norwegian University of Science and Technology, O.S. Bragstads Plass 2 E, 7034 Trondheim, Norway
c Department of Industrial Engineering, University of Trento, Via Sommarive, 9, 38123 Povo, Italy
d Department of Information Engineering, University of Padova, Via 8 Febbraio, 2, 35122 Padova, Italy

a r t i c l e i n f o

Article history:
Received 25 October 2021
Received in revised form 26 May 2022
Accepted 7 July 2022
Available online 16 July 2022

Keywords:
Stochastic model predictive control
Scenario approach
Robust control
Isolated power systems
Energy storage systems
Convex optimization

a b s t r a c t

This paper proposes and compares a set of multi-objective supervisory controllers for an isolated power
system including a gas turbine operating in load following mode as a dominant source of generation,
a battery energy storage system, and stochastic renewable generation. It analyzes their capability to
coordinate the gas turbine and energy storage to provide isochronous speed control, achieving fast
frequency regulation for the local grid, while the gas turbine can still operate with minimum deviation
from its optimal loading and the storage system can follow a pre-scheduled reference state of charge
trajectory. In more detail, we consider and compare different control strategies to handle model and
disturbance uncertainties, including stochastic model predictive control under various parametrizations
of the scenario approach, and robust control under the H∞ paradigm. The various controllers are
compared against a benchmark, i.e., a deterministic predictive control strategy. Instead of point-to-
point comparisons for some arbitrary cases (i.e., worst-case or expected), empirical distributions of the
controller’s performance for the whole probability spectrum are derived, leading to more accurate and
representative comparisons. The analyzed performance indicators are nominal dynamic performance,
constraint violation probabilities, and expected system operation performance. The results indicate the
clear superiority of stochastic control over both robust and deterministic control in dealing with both
parametric and disturbance uncertainty. Moreover, choosing an appropriate parametrization is shown
to be essential to achieve both good nominal performance and lower violations probability, indicating
that the superiority of stochastic control comes with the drawback of needing user-defined tuning
from the designer.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Due to constantly stricter regulations towards increasing re-
ewable penetration, maintaining a stable and efficient operation
or isolated power systems has become challenging [1]. Based on
ecent advances in offshore technologies [2], more and more such
solated grids with high renewable penetration are about to be
ealized [3], and this highlights the need for efficient controls.
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The stochastic nature of renewable energy sources (RES) and
the low system inertia, induced by replacing traditional syn-
chronous machines with converter interfaced generators, makes
the operation of such grids vulnerable to large frequency varia-
tions [4–6]. A common and accepted way to mitigate such issues
is the integration of energy storage systems (ESS) such as bat-
tery energy storage systems (BESS) [4,7–12]. However, increasing
the number of controllable components in the grid complicates
the multi-input multi-output (MIMO) nature of these systems,
exacerbating the chances of encountering multiple contradic-
tory objectives, additional constraints due to safety, and optimal
operation requirements. On top of that, uncertainty poses an
additional level of difficulty for controlling such grids [13].

In [14,15] the fundamental methods to provide frequency
control in isolated power systems by controlling the generator
units, are explained in detail. Two main categories are identified,
one being the well-known traditional droop control and the other

the isochronous control. With the first, generators modify the
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Nomenclature

Indices

i = 1 . . .Nc/Nc Prediction/Control horizon index
ω = 1 . . .N Random scenario index
t = 0 . . . Tsim Simulation period time index
k = 1 . . .Nsim Discrete simulation step index

Power system variables

SoC State of Charge
Qb Battery charge capacity
Cb Battery energy capacity
Pb Battery power
Pℓ Load power
Pw Wind power
Pwt Wind turbine power
Pgt Gas turbine power
P̄b Battery power rating

Optimization variables and parameters

x States vector
u Control input vector
w Disturbance input vector
X States prediction vector
U Control input sequence vector
∆U Control input variation vector
W Disturbance prediction vector
Q Weight matrix for states deviation
R Weight matrix for control action devia-

tion
S State of charge prediction vector
P States constraints matrix
c States constraints constants vector
X ref

soc State of charge reference vector
L Weight matrix for state of charge devia-

tion
γ Constant term for control law

parametrization
Γ Constant terms vector for control law

parametrization
θ Proportional term for control law

parametrization
Θ Proportional terms matrix for control

law parametrization
ℓ Weight for state of charge deviation
µ Weight for standard deviation of state of

charge
λ Battery power to energy capacity ratio
Klqr LQR state feedback gain
S(s) Sensitivity transfer function
K (s) Controller transfer function
T (s) Complementary sensitivity transfer

function
Wp(s) Performance weight transfer function
Wu(s) Controller effort weight transfer func-

tion
Wd(s) Robustness weight transfer function

Abbreviations

DMPC Deterministic Model Predictive Control
2

SMPC Stochastic Model Predictive Control
NP No Parametrization
FP Full Parametrization
SF State Feedback parametrization

active power provision in correspondence to the system’s fre-
quency deviation and based on the set droop curve, whereas in
isochronous mode the rotational speed and thus the frequency
of a single or master unit are tightly regulated to their reference
values. It is noteworthy that even though droop control facilitates
the load sharing among several units, the frequency will not be
restored to its nominal value. To achieve that in the absence of
interconnection, frequency restoration will depend only on the
local generator capabilities and requires that one of them be in
isochronous mode. In other words, from a control perspective,
droop control corresponds to a proportional controller whereas
isochronous operation corresponds to controllers with integral
action. In further detail and from a system dynamics perspective,
droop control is the main source of damping, necessary for the
stability of the system and isochronous control the term encap-
sulating error accumulation effects and responsible for achieving
zero steady state deviation.

For the isochronous case, a frequency variation will be imme-
diately compensated by the generating unit, providing a service
equivalent to the secondary frequency restoration in large in-
terconnected systems. However, in contrast to the isochronous
operation of a generator for an isolated system, in large inter-
connected systems such a service is achieved by the system
operator, assigning different activation signals and participation
factors to all available generators participating in the FRR (Fre-
quency Restoration Reserve) market. Such services are typically
activated after the provision of primary control to stabilize the
system after a disturbance and on the scale of several seconds
to minutes. We also highlight that the actual speed of frequency
restoration will depend on the amount of power imbalance and
the operational limits of the involved units (ramp constraints and
technical maximum).

In [16] gas turbines dynamics are studied along with power
systems frequency dynamics, demonstrating the fast-acting be-
havior of such generators and the isochronous operation capabil-
ity (response time in the range of seconds). Such a practical case
study for an islanded plant (industrial isolated power system) is
also provided in [17].

Various types of advanced control methods for load frequency
control of isolated power systems have been proposed in litera-
ture. In [18] optimal PID controllers were designed to provide
load frequency control in microgrid clusters, in [19] a swarm-
optimized fuzzy logic was used for robust secondary frequency
control of islanded systems, in [20–22] the H∞ synthesis con-
cept was used to provide robust secondary frequency control in
islanded microgrids, in [23] an MPC controller was investigated
to provide load frequency control, in [1] a Grey Wolf Optimiza-
tion was used to provide frequency support by a BESS for an
island power system, in [24] a LQR stochastic based control
was proposed to provide secondary frequency regulation in an
independent microgrid, in [25,26] fractional order MPC and PID
were designed correspondingly to provide frequency control for
an islanded microgrids or for single area power systems, in [27]
an IMC-PID design was investigated for load frequency control.

In the aforementioned studies, the (isolated) power system is
modeled as a continuous time linear time-invariant dynamical
system and the control performance is typically assessed through
load step variations considering either average or worst cases
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disturbances. However, the actual empirical distributions are not
derived, possibly leading to biased/over-conservative or rather
optimistic conclusions. Nevertheless, all the proposed load fre-
quency controllers include an integral part that brings the steady
state error to zero in just a few seconds. Such action resembles
the isochronous operation provided by single generators when
speed and thus frequency are tightly regulated in stand-alone iso-
lated systems. The system’s response time highly depends on the
various time constants involved (primarily the inertia) and the
operational limits (power provision/absorption capability) of the
related units. Therefore, for low inertia isolated power systems,
response can be faster than large interconnected systems. We
note that when secondary level control is designed and assessed
(frequency restoration), primary control loops (i.e., droop) can be
included in the dynamics of the power system, by modifying the
system’s damping.

Different approaches can be found in literature for dealing
ith uncertainty in frequency control of isolated grids. In [7] a
tandard model predictive control (MPC) algorithm based on a
onvex QP problem is employed to control an isolated power
ystem containing critical and non-critical loads, diesel genera-
ors, BESS, and RES in the form of photovoltaics and wind power
eneration. The results demonstrates how MPC can effectively
anage several objectives, like preserving power balance in the
rid and reducing the fuel consumption of the diesel generators.
owever, this work integrates uncertainty in a simplistic way,
y using scenarios with different level of accuracy for the load
rofile predictions ranging from a perfect forecast and up to ap-
roximately 10% deviation. In [10] authors develop a scheduling
lgorithm for an isolated power system with high penetration of
ES which controls the energy production from fossil sources and
he power transactions with the main grid in order to maintain
ower balance and maximize the RES penetration. This yields an
lternative strategy to the MPC algorithm and shows good simu-
ation results with a time frame of a day with uncertain forecasts
f wind speeds and load profiles. In [28] a stochastic MPC (SMPC)
pproach that uses scenarios-based description of uncertainties
s employed to optimize the fossil energy production and power
ransactions in the real time market. Such scenarios are generated
rom a scenario tree designed explicitly to capture the additive
eature of uncertainty and avoid infeasibility. The authors of this
ork compare their algorithm to a so-called prescient optimal
ontrol strategy that assumes perfect knowledge of future real-
zations of the uncertainty, and a certainty equivalent MPC where
he uncertain parameters are substituted by average values iden-
ified from historical data. Results demonstrate the superiority of
he scenario based approach in decreasing costs. [29] performs
comparative study of what they call SMPC and scenario MPC

SCMPC). The difference between the two methods is that the
MPC method converts the probabilistic constraints into deter-
inistic ones using knowledge of the co-variance of the random
ariables and their propagation along the prediction horizon; the
CMPC approach computes scenarios and forms a scenario tree
rom the probability distribution of the uncertain variables, as
n [28]. The results show that SCMPC generates more realistic
cenarios than SMPC because it uses information gathered online
o adjust scenario predictions rather than exploiting knowledge
n second moments. This accuracy comes though at the cost
f increased computational requirements. In [30], the authors
evelop a scenario SMPC for hybrid vehicles with the goal of
mproving fuel efficiency while obeying constraints on the state
f charge (SoC) of the battery and the power exchanged with it.
owever, the SCMPC is modified to only generate scenarios that
re feasible and likely. The disturbance, i.e., the power requested
y the driver, is instead estimated via a Markov chain that pre-

icts the future driver inputs by learning the previous request

3

pattern in real time. Results from [30] show that their SCMPC
with learning may outperform classical MPC formulations, and
that in many simulations the SMPC performs almost as an MPC
with perfect knowledge of future realizations of the disturbances.
Other methods consider then a robust control design approach to
mitigate uncertain frequency variations [20]. For example, in [31]
the authors apply both an H∞ and µ synthesis approaches for
robust frequency control in islanded microgrids. Results show
that the two control algorithms may outperform an ‘‘optimally
tuned’’ PID controller in the presence of structured uncertainty in
the form of wind power generation, solar power generation and
uncertain load conditions.

The review above highlights the presence of a plethora of
different MPC based methods for either optimal scheduling in
isolated power systems or for frequency regulation under uncer-
tainty, either based on robust or stochastic control algorithms.
To the best of our knowledge there is though a lack of publicly
available studies that analyze how to integrate both tasks into the
same control strategy, and thus analyze how control strategies
may satisfy optimal schedule tracking while simultaneously en-
suring continuous, tight, and fast frequency regulation. The goals
of this paper are thus two:

1. propose a series of control formulations and parametriza-
tions (stochastic, robust and deterministic in primis) that
are all capable of coordinating a master gas turbine and
an energy storage to achieve fast frequency regulation for
the local grid, while the gas turbine can still operate with
minimum deviation from its optimal loading and the stor-
age system can follow a pre-scheduled reference state of
charge trajectory;

2. understand which one best handles uncertainties while
guaranteeing control performance, and their tradeoffs.

or this purpose, the paper is organized as follows: Section 2 in-
roduces the dynamic MIMO model of the isolated power system,
ection 3 describes the design of the controllers we compare,
nd Section 4 performs the in silico analyses that lead to the
ain messages given by the paper, i.e., the comparative analysis
f the proposed controllers. Lastly, Section 5 draws some final
onclusions.

. Power system modeling

We consider an isolated power system that includes a gas
urbine generator in isochronous mode, a wind turbine generator,
battery energy storage system (BESS), and an aggregated load.
he gas turbine is mainly responsible to stabilize the system by
rresting the frequency deviation after a disturbance and simul-
aneously cooperate with the BESS to restore it to its nominal
alue. The following subsections describe then each of these
lements in details, assuming the state of the system to be a six-
imensional vector where x1 and x2 are states related to the gas

turbine (governor and turbine subsystems respectively), x3 is the
power deviation coming form the battery storage system, x4 is the
grid’s frequency variation, and x5, x6 are the states describing the
internal dynamics of the batteries (relaxation and rate capacity
effects).

2.1. Modeling of the grid dynamics

Given the scope of this paper, we choose to model the dy-
namics of the isolated power system as a first order transfer
function from power balance to frequency deviation [14,15,32].
The transfer function, derived from the swing equation, is thus

M ·
d∆f (t)

= −D · ∆f (t) + ∆Pg (t) − ∆Pℓ(t) (1)

dt
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where M is the inertia constant (due to the generator’s rotating
mass), D is the damping constant (which encapsulates the com-
ined effects of primary control layer (droop) and load damping,
nd ∆Pg and ∆Pℓ the generated and consumed power deviations

with respect to the operating point, respectively.

2.2. Gas turbine dynamics

To capture the dynamics of both the turbine and its governor,
we model the dispatchable generation system as two first order
low pass filters connected in series, giving the equivalent system

[
ẋ1
ẋ2

]
=

[
−

1
Tg

0

1
Tt

−
1
Tt

][
x1
x2

]
+

[ 1
Tg

0

]
u1 (2)

where Tg is the governor time constant, Tt the turbine time
onstant, u1 = Pgt the power command to the gas turbine,
relatively to its steady state operating point u1|t=0 = ∆P∗

gt = 0.
The input to Eq. (2) is defined as u1|t = u1|t−1+∆u1|t , from which
we see that the part associated to the small signal dynamics of the
gas turbine is ∆u1.

2.3. Wind turbine dynamics

The electromechanical conversion on the wind turbine gen-
erator is modeled as a first order filter [14,15] from the input
(mechanical wind power) to the output (electric power injected
into the grid). More precisely, we assume

w1(s) =
∆Pw(s)
sTwt + 1

(3)

where Twt is the wind turbine generator time constant, ∆Pw(s)
s the uncertain wind power variation and w1(s) = ∆Pwt (s) is
he corresponding uncertain electric power injections from the
ind turbine generator. As for modeling the stochastic process
orresponding to the input, or in other words to implement the
isturbance model used in our case, we consider wind speed
cenarios from a wind speed generator that creates, starting from
n average wind speed given as parameter, a realistic set of
ind speed samples by means of a physics-driven model of the
ydrodynamic effects occurring locally around wind turbines and
otor blades. Such a wind speed samples generator makes use
f normal random variables and Kaimal distributions that better
apture the small time scale wind intermittency. More details can
e found in [33,34].

.4. Battery energy storage system dynamics

To model the dynamics of the power converter interfacing the
attery energy storage system (BESS) with the grid and capture
he internal dynamics of the battery cells during charging and
ischarging processes, we consider the system

ẋ3
ẋ5
ẋ6

⎤⎥⎦ =

⎡⎢⎢⎣
−

1
TB

0 0

0 −
cr
cW

cr
1−cW

0 cr
cW

−
cr

1−cW

⎤⎥⎥⎦
⎡⎢⎣x3
x5
x6

⎤⎥⎦ +

⎡⎢⎢⎣
1
TB

C−1
b

0

⎤⎥⎥⎦ u2 (4)

where SoC = x5 + x6 is the state of charge, u2 = Pb =

2|t=0 + ∆Pb the reference power to the BESS (since u2|t=0 =

P∗

b = 0 at the steady state), TB the time constant related to
he power conversion and cr , cw the coefficients related to the
inear modified KiBaM model, illustrated in Fig. 1 and which we
ssume as sufficiently detailed for our purposes [35–37]. Here it
ollows a detailed derivation of the proposed simplified battery
odel based on the modified KiBAM model. The battery charge
4

Fig. 1. Modified kinetic battery storage system model (KiBAM) — analogy to
coupled water tanks dynamics.

dynamics (rate capacity and charge relaxation effects) can be
approximated by an equivalent dynamic system of two inter-
connected water tanks with different volumes. If Qb is the total
charge of the battery at full capacity, Q1 and Q2 the total charge of
tank 1 and 2 and their widths cw and 1− cw correspondingly we
have that h1 =

q1
cw

and h2 =
q2

1−cw
, where q1 and q2 are normalized

variables defined as q1 =
Q1
Qb

and q2 =
Q2
Qb

and h1, h2 represent
the normalized water column heights (head) of each tank. Then,
considering that the flow across the valve is proportional to the
head difference between the two tanks, we can write

Q̇21 = c ′

r (h2 − h1) ⇒ q̇21 = cr (h2 − h1) . (5)

where c ′
r is the valve’s coefficient and cr =

c′r
Qb

. Remembering that
the output current is defined as Ib = Q̇b and based on the above
definitions we can write the tanks system equations as{ dQ1

dt = Q̇21 − Q̇b

dQ2
dt = −Q̇21

⇒

{
q̇1 = −

cr
cw

q1 +
cr

1−cw
q2 − IbQb

q̇2 =
cr
cw

q1 −
cr

1−cw
q2

. (6)

which can be compactly expressed as[
ẋ5
ẋ6

]
=

[
−

cr
cW

cr
1−cW

cr
cW

−
cr

1−cW

][
x5
x6

]
−

[
Q−1
b

0

]
Ib (7)

here x5 = q1 ∼ h1 and x6 = q2 ∼ h2. Then, under the
ssumption of constant (average) open circuit voltage V̄oc we can
xpress the battery power as Pb = V̄oc Ib and that the battery
nergy capacity can be written as Cb = QbV̄oc [36,37] we have

−1
b Ib = C−1

b Pb. (8)

inally, neglecting the charge/discharge efficiencies and consider-
ng a series-connected first-order delay for the power conversion
tage (see Fig. 1) we end up in Eq. (4) where battery power
P̄b ≤ Pb ≤ P̄b is the system input.

.5. Dynamics of the whole interconnected system

Combining subsystems Eqs. (1)–(4) as depicted in Fig. 2, letting
4 = ∆f , and renaming the uncertain power demand as w2 =

Pℓ, Eq. (1) can be rewritten as

˙4 = −
D
x4 +

1
(x2 + x3 + w1 − w2) . (9)
M M
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his means that the system’s model can be written in the state
pace form

˙ = Ax + Bu + Hw (10)

= CTx (11)

here xT = [x1, x2, x3, x4, x5, x6], uT
= [u1, u2] =

[
Pgt , Pb

]
,

T
= [w1, w2] = [∆Pwt , ∆Pℓ], and

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
1
Tg

0 0 0 0 0

1
Tt

−
1
Tt

0 0 0 0

0 0 −
1
TB

0 0 0

0 1
M

1
M −

D
M 0 0

0 0 0 0 −
cr
cW

cr
1−cW

0 0 0 0 cr
cW

−
cr

1−cW

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Tg

0

0 0

0 1
TB

0 0

0 −
1
Cb

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, CT

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

1 0

0 1

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0
1
M −

1
M

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

rom a block-scheme perspective, the overall system is thus
odeled as in Fig. 2.

. Control design

.1. Deterministic model predictive control

To achieve optimal operation and reduced fuel usage in iso-
ated power systems, supervisory power management is typically
sed to deliver the optimal scheduling set points to the local
ontrollers of the different subsystems, such as the BESS and the
as Turbines [8,38]. In this study we consider integrating the local
5

control objectives of these subsystems along with the frequency
regulation of the isolated power system. Local objectives mean
that the gas turbine can still operate with minimum deviation
from its optimal loading and provide primary grid stabilization
while the BESS can still follow a SoC reference trajectory coming
from a tertiary dispatch level, and at the same time work together
to restore and tightly regulate the system’s frequency. For this
purpose we propose using a Model Predictive multi-objective
multi-input multi-output (MIMO) control that, on top of the basic
requirements, aims at minimizing the control effort so to promote
reduced actuator wear, and cycling energy storage so to promote
longer battery lifetime. To integrate the several control objectives
considering the state space model developed Section 2 into a
MPC formulation we first use a recursive elimination approach
to express the states for the selected prediction horizon Np as

X = Aex0 + B0u0 + Be∆U + HeW (14)

here x0 is the initial condition, uT
0 =

[
∆P∗

gt , ∆P∗

b

]
is the initial

perating point of the subsystems and X , ∆U , W , Ae, B0, Be, and
e are defined in Appendix A. Hence, we define the following
ualitative control objectives:

• minimize the frequency deviation (to achieve fast regulation
purposes);

• minimize the amplitude of the control signal (to minimize
the fuel consumption associated to gas turbine usage);

• perform an optimal system operation (to follow the refer-
ence schedule);

• reduce BESS degradation (to minimize replacement costs).

We then translate the above qualitative targets into quantita-
ive ones as follows: first, penalize the states with the Q -norm
TQx, with Q diagonal and positive definite, so to promote small
requency deviations. Then penalize deviations from operating
he gas turbine at its maximum efficiency, and thus penalizing
u1 through the norm ∆uTR∆u to minimize the gas turbine

uel consumption. To follow the reference schedule, penalize
he deviations of the state of charge from the reference value
sing the affine plus quadratic cost ℓ

(
sTx − SoCref

)2. Penalizing
he BESS degradation can be then promoted in several ways.
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Typically, the degradation of a battery is modeled as caused
by two distinct effects [39], namely the calendar aging and the
cycling effect. Since the cycling degradation is dependent on
the number of cycles and the depth of the cycles, a common
approach is to discourage cycling by minimizing the standard
deviation of the state of charge for the prediction horizon as

µ

√
1
Np

∑Np
k=1

(
SoCk −

1
Np

∑Np
k=1 SoCk

)2
.

Then, by considering the augmented states X and control
ariables U for the prediction and control horizons (Np and Nc

respectively), and expressing the evolution of state of charge as
X soc = SX , we can formulate the objective function for the finite
horizon optimal control problem as

J = XTQX +
(
SX − X ref

soc
)T L

(
SX − X ref

soc
)
+

µ√
Np − 1

(
SX −

1
Np

∥SX∥1

)
2
+ ∆U TR∆U

(15)

in Eq. (15) is convex in X and ∆U by construction (since a
um of basic convex functions. The constraints associated to the
roblem of optimizing J shall then include the physical limits of
he components (like the allowable BESS SoC range, minimum
nd maximum governor opening, BESS power limits, and ramp
ates for the changes of the manipulated variables), and the max-
mum allowable deviations from the nominal frequency and SoC.
ummarizing, the constraints can be expressed mathematically as

· X + c ⪯ 0 (16)

min ⪯ U ⪯ Umax (17)

Umin ⪯ ∆U ⪯ ∆Umax (18)

here P and c contain information of the hard limits on the states
nd are presented in Appendix A. Here we note that in practice,
ifferent battery cell types and technologies would have different
-rate limitations, resulting in different and tighter bounds on
he allowed charge/discharge power. However, such limits can
e directly integrated in Eqs. (17) and (18) without affecting the
ormulation of the problem proposed in this paper. To simplify
ur analysis while preserving generality, and since the focus of
he paper is not on the comparison of different battery types and
echnologies, we chose to restrict charge/discharge power based
n the rated power, as commonly done. This is a simplifying
ssumption which eventually does not alter the methodology
roposed in this paper or the comparative analysis presented
ater, since all comparisons are performed under the same generic
attery model and same constraints. In this way we intend to
rovide upper theoretical bounds on the performance, while fur-
her case specific studies are needed depending on the selected
attery technology. As a complement, an additional sensitivity
nalysis focusing on the different factors that affect the resulting
harge/discharge rate is provided in Section 4.5. Eqs. (14)–(18)
efine then the deterministic model predictive controller (DMPC)

that will then be compared against the stochastic one defined in
the next subsection.

3.2. Stochastic model predictive control

One of the objectives of this manuscript is to investigate
which strategy best handles uncertainties while guaranteeing
control performance. To account for uncertainties in the control
design we then adopt the commonly used scenario approach
(SMPC) [28–30,40,41], where the cost Eq. (15) from the DMPC
scheme is replaced by an expectation over the possible out-

comes defined from the scenarios. The implementation of such

6

Fig. 3. Feedback mechanism of the open loop MPC policy.

cost function is done through the sample average approximation
(SAA) [42] as

E[J(u, w)] ≈
1
N

N∑
ω=1

J(uω, wω) (19)

Where N is the number of scenarios considered. As explained
in [41], different constraints are induced by Eqs. (16)–(18) for
each random realization of the uncertainty from the randomly
sampled uncertainty set. Those can be described as

P · Xω + c ⪯ 0, ω ∈ {1, . . . ,N} (20)

min ⪯ Uω ⪯ Umax, ω ∈ {1, . . . ,N} (21)

∆Umin ⪯ ∆Uω ⪯ ∆Umax, ω ∈ {1, . . . ,N} (22)

We highlight, that there is not specific requirement on the distri-
bution of the random variables, or the disturbance model used for
the scenario approach, as long as number of samples used is cho-
sen based on the main theorem [43] and the same risk criteria.
Another interesting feature related to the SMPC is the different
choices for the parametrization of the control input [41], an as-
pect which is also investigated in this study. In this paper we thus
employ different commonly reported controller parametrizations
for the SMPC formulation Eqs. (19)–(22), and compare their per-
formance in terms of handling uncertainties and system perfor-
mance. More specifically, we consider the following parametriza-
tions:

3.2.1. Open loop policy (no parametrization)
The direct open loop policy is also considered as a possible

choice for the controller, meaning that the direct output of the
solution of the numerical optimization problem Eqs. (19)–(22) is
applied to the plant, i.e.,

ui = γi. (23)

The non-parameterized control action (SMPC-NP) is also included
as a benchmark alternative to better understand and illustrate the
effects of the control action parametrization, relatively to a less
constrained open loop solution. Here we specify, that still under
this parametrization, the controller is of the standard rolling
horizon MPC type, which means that feedback of the system’s
response is given back to the controller in the form of the
constantly updated initial condition for each step’s optimization
problem [44,45]. In that way, no substantial error is accumulated
over time. This concept is illustrated in Fig. 3
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3.2.2. Affine disturbance feedback
The disturbance feedback full parametrization (SMPC-FP) ad-

justs the control action directly based on past values of distur-
bance realizations. By using this strategy, the disturbance his-
tory is fed into the controller while preserving the convexity
of Eq. (19). More in details, such full parametrization is defined
as

ui = γi +

i−1∑
j

θi,jw0+j. (24)

ith such a parametrization, we include constant terms γi and
erms θi,j proportional to past disturbance realizations wj, for
he specified control horizon. In this way the resulting optimiza-
ion problem is convex with respect to the control parameters
hich are iteratively updated on each MPC iteration. Note that,
y reorganizing this into a recursive eliminated vector form,
nd by integrating the number of states, control actions, and
isturbances, one obtains

= Γ + ΘW (25)

here U ,W , Γ , Θ are defined as in Appendix A.

.2.3. State feedback
Another commonly used controller parametrization for state

pace formulations is the state feedback parametrization (SMPC-
F ), defined as

i = γi − Klqrxi (26)

here Klqr is a fixed constant. In contrast with SMPC-FP, this
articular parametrization suffers from the fact that the feedback
ain parameter cannot be treated as an optimization variable,
ince this would result in a non-convex problem [41]. To avoid
his issue, Klqr may be chosen to be the infinite horizon optimal
ain (see [41] for more details).

.3. Robust control

To compare the stochastic control approach described in Sec-
ion 3.2 against a robust control design approach, we also design
mixed synthesis H∞ controller for the system Eqs. (10) and

11). More precisely we design the H∞ controller by applying
he principles of loop shaping, designing appropriate weights Wp
nd Wd for acceptable nominal performance and robust stability
or the lumped unstructured output multiplicative uncertainty,
nd finally solving a linear matrix inequality (LMI) optimization
roblem that minimizes the cost⎡⎢⎣ WpS

WuKS

WdT

⎤⎥⎦


∞

≤ γ ≤ 1 (27)

where Wp, Wu, and Wd are the disturbance-rejection perfor-
ance, controller effort and robustness weights respectively. Se-

ecting proper weights for Wp(s),Wd(s) allows then to upper
ound the sensitivity S(s) and complementary sensitivity T (s)
unctions, finding an overall satisfactory controller K (s). This pa-
er follows the basic guidelines from [46] on how to select
hese weights for robust disturbance rejection; after an iterative
rocedure we set

p(s) =

⎡⎢⎣
2
3 s+0.01

s+3.15∗10−6

2
3 s+0.01

s+3.15∗10−6

2
3 s+0.50

s+4.99∗10−6
0.32s+0.05

s+4.74∗10−6

⎤⎥⎦ (28)

(s) = 1 (29)
u

7

Fig. 4. Frequency response of the relative model error for random realization
of uncertainty and robustness weight Wd(s) covering the responses.

Wd(s) =

[ 0.32s+0.018
s+1.77

10s+3.33
s+33.34

s+1.00∗10−8

s+100
s+3.17
s+31.65

]
. (30)

rom Fig. 4, we notice how the robustness weight selected as

d(s) =
0.32s + 0.018

s + 1.77
(31)

bounds all realizations of the relative model error of the uncer-
tain plant, validating the required specification for a robust con-
troller design. Note that this type of robust control only considers
parametric uncertainty being integrated as output multiplicative.

4. Simulation results and analysis

To analyze the effect of the proposed multi-objective MIMO
control strategies, we compare the various control designs de-
scribed in Sections 3.1 to 3.3 in terms of their dynamic re-
sponse and capabilities of handling uncertainty. We note that
our proposed formulations adopt the simplified but generic bat-
tery model described in Eq. (4) where no particular technology-
dependent maximum C-rates are enforced besides the power
rating limits (Eqs. (17) and (18)). Since the focus of the study is
on the comparative analysis and not on the different technolo-
gies’ comparison, for the purpose of the analysis presented in
Sections 4.1 to 4.4 we therefore assume no further technology-
dependent battery power constraints, but we ensure the same
model and limits for all controllers, for a fair comparison. How-
ever, a detailed discussion on the various factors affecting the
battery charge/discharge rate and the resulting C-rate is given
in Section 4.5. In addition, we note that for the nominal case, the
controller assumes no mismatch to the plant model, as to have
a benchmark upper bound performance, for comparison with the
proposed controllers that assume no knowledge of the nominal
plant by considering both the uncertain plant parameters and the
unmodeled dynamics. The following key performance indices are
defined on the output signals to serve the relative comparison:

• Max frequency deviation:

Mf = ∥∆f (t)∥∞ (32)

• Average (expected) frequency deviation:

Af =
1

Nsim

Nsim∑
k=1

|∆f (k)| (33)

• Total fuel usage:

Tu1 =

Nsim∑
|∆Pgt (k)| (34)
k=1



S. Chapaloglou, A. Faanes, D. Varagnolo et al. Sustainable Energy, Grids and Networks 32 (2022) 100853

4

F
f
d
i
m
S
D
a
i
i
d

d
w
s
a
s
F
a
t
p
o
a
d
b
j
o
A
p
s
t
T
p
w
o
t

4

d
1
k
p
v
a
S
t
t
o

• Max SoC deviation:

Msoc =
SX − X ref

soc


∞

(35)

• Average (expected) SoC deviation:

Asoc =
1

Nsim

Nsim∑
k=1

⏐⏐(SX − X ref
soc

)
k

⏐⏐ (36)

• SoC standard deviation (storage cycling indicator):

STDsoc =

(
SX −

1
Nsim

∥SX∥1

)
2

√
Nsim − 1

(37)

where Nsim is the number of simulated time steps.

.1. Nominal dynamic performance

Initially, we compare the performance of designs DMPC, SMPC-
P, SMPC-SF, SMPC-NP, H∞ at the nominal conditions, that is
or the nominal set of plant parameters (see Table 1) and for a
eterministic knowledge of the disturbance signal (i.e., assum-
ng the uncertain wind power generation to be constant). This
eans that in this specific case the different versions of the
MPC controllers consider only one scenario implying that the
MPC, SMPC-FP, SMPC-NP formulations are in this case equiv-
lent. However, the design of the SMPC-SF is different since
t depends on the state feedback gain Klqr which is calculated
ndependently of the uncertainty realization, thus resulting in a
ifferent performance.
The comparison of the dynamic performance of the various

esigns is illustrated through Fig. 5. In particular, from Fig. 5(a)
e can observe the frequency response of the isolated power
ystem, from Fig. 5(b) the SoC regulation to the scheduled value,
nd from Fig. 5(c) the control effort required from the two sub-
ystems (BESS and gas turbine) to achieve the multiple objectives.
rom Fig. 5(a) it is clear that the DMPC/SMPC-FP/SMPC-NP design
chieves the fastest regulation with the smallest peak deviation,
he SMPC-SF design has the smallest damping and the largest
eak deviation while the H∞ design results in a slower but less
scillatory response. Then, from Fig. 5(b) we observe that H∞

chieves the best tracking of the reference value with negligible
ynamics, while DMPC/SMPC-FP/SMPC-NP once more performs
etter than SMPC-SF. However, the performance of H∞ can be
ustified by Fig. 5(c) where we can observe the unbalanced use
f gas turbine and battery power to achieve the multiple goals.
s it is observed, DMPC/SMPC-FP/SMPC-NP and SMPC-SF split the
ower usage between the two units whereas H∞ achieves the
ame goals by using almost exclusively the gas turbine in a way
hat avoids the power overshoot in contrast with the others.
his sub-optimal response is associated with the tuning of the
erformance weights, a difficulty which inherently associated
ith the mixed sensitivity design procedure, since the calculation
f the most appropriate weights is a notoriously challenging and
edious task.

.2. Mixed model and disturbance uncertainty

To further compare the performance of the controllers intro-
uced in Section 4.1 for the nominal conditions, we include a
0% uncertainty in the model parameters, so to capture imperfect
nowledge one may have when identifying the system plant
arameters. Dynamic simulations were performed for random
alues of the plant parameters and the corresponding responses
s in Fig. 5 where recorded for each design: DMPC, SMPC-FP,
MPC-SF, SMPC-NP. The dynamic responses of the system under
he various controllers are derived for random realizations of
he uncertain parameters and disturbances and compared. By
bserving Figs. 6 to 10 we see the following patterns:
8

Fig. 5. Response without disturbance and parametric uncertainty.

1. The response profiles of DMPC is very similar to the ones
of SMPC-FP, SMPC-NP since these controllers are somehow
equivalent in the absence of disturbance uncertainty.

2. Performance of the SMPC-SF are different relatively to the
other stochastic controllers, achieving in general less over-
shoot at the requested gas turbine power, at the cost of
slower frequency regulation and an overshot in the SoC
tracking.

3. The robust H∞ controller achieves the best SoC tracking at
the presence of small overshoot at the frequency regulation
and higher usage of gas turbine power. In addition the
gas turbine actuation depends significantly on the plant
parameters compared to the other controllers.
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Fig. 6. Response with disturbance and 10% parametric uncertainty for DMPC.

.3. Monte-Carlo simulations and constraint violation

To assess the ability of the stochastic controllers SMPC-FP,
MPC-SF, SMPC-NP in integrating all kinds of uncertainties under
he scenario approach, the various designs from Section 4.1 were
ompared under a Monte-Carlo simulation framework [23,47].
y performing numerous simulations and considering both para-
etric and disturbance uncertainty, the empirical distributions of

he constrain violations and of the indices Eqs. (32)–(37) were
alculated.
We note that from the scenario approach, the constraint sat-

sfaction is meant on a probabilistic sense, that is by using spe-
ific number of scenarios we can have theoretical guarantees
bound) on the maximum violation probability when the original
istribution is used. To demonstrate this effect, the SMPC-FP
esign was considered with different values of scenarios (small
9

Fig. 7. Response with disturbance and 10% parametric uncertainty for SMPC FP
750 scenarios.

number: 250, big number: 750) and corresponding guaranteed
violation probabilities. Increasing the number of scenarios gen-
erally results in a smaller violation probability, a fact which is
numerically validated through Fig. 11 where we observe that
for larger number of scenarios the constraint violation proba-
bility decreases. From the same figure it is also remarkable to
notice the superiority of stochastic control over the deterministic
version (DMPC) which is always associated with a higher proba-
bility of constraint violation. In addition, we can observe that the
combined effect of disturbance uncertainty and 10% parametric
uncertainty has a greater impact on the max frequency deviation
constraint Fig. 11(a) compared to the max SoC deviation con-
straint Fig. 11(b). From the latter we can see that even though
enough cases would imply the maximum allowable deviation,
none of them would cause an actual violation.
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Fig. 8. Response with disturbance and 10% parametric uncertainty for SMPC SF
50 scenarios.

Then, for the large number of scenarios (750) we compared
he max constraint violation probabilities for the different con-
rollers (deterministic, stochastic with different parametrizations,
nd robust). From Fig. 12 we observe that SMPC-FP and SMPC-
P achieve lower constraint violations for the max frequency
nd SoC deviations compared to DMPC whereas DMPC performs
etter for the max frequency constraint than SMPC-SF. This is an
nteresting result demonstrating (i) the incapability of state feed-
ack to adapt its control law based on disturbance information
nd (ii) the unexpectedly good performance of the determinis-
ic MPC, considering an expected behavior as the deterministic
quivalent. However, the trends seem to be different for the
ax SoC deviation, where SMPC-FP and SMPC-SF seem to per-

orm better than SMPC-NP and DMPC, meaning that the state
eedback parametrization has a better capability of handling the
10
Fig. 9. Response with disturbance and 10% parametric uncertainty for SMPC NP
750 scenarios.

parametric uncertainty related to the SoC variations relatively to
DMPC. Finally, from Figs. 12(a) and 12(b) we observe that the
robust design is associated with the highest violation probability
in max frequency deviations and the smallest in SoC deviation
respectively. This fact is in agreement with the fact that H∞

considers the parametric uncertainty, minimizing the impact on
the SoC deviation but does not considers disturbances that could
cause higher frequency variations.

4.4. Expected performance and operation

Finally, the different control designs were compared in terms
of their average constraint violation performance, the fuel usage
of the gas turbine and the battery cycling. In particular from
Fig. 13 we can observe the empirical cumulative distributions of
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Fig. 10. Response with disturbance and 10% parametric uncertainty for H∞ .

the average frequency deviation defined in Eq. (33) and the aver-
age SoC deviation as defined in Eq. (36). From Fig. 13(a) we can
see that SMPC-FP, SMPC-NP, DMPC significantly outperform the
SMPC-SF, H∞, with DMPC having a bit more violations compared
to the best stochastic designs. A similar trend is observed from
Fig. 13(b), from which we can see that the average performance of
the state feedback control is much worse compared to the other
stochastic controllers. From these figures we can also see once
more the pattern associated to robust control, where the average
frequency violations are even worse than the worst stochastic de-
sign while the average SoC deviations are much better compared
to the rest.

From Fig. 14 we can observe the effect of each controller
on the battery degradation levels. As expected, since the robust
control makes minimum use of the storage system, its degra-
dation is the smallest with significant difference from the rest,
11
Fig. 11. States empirical cumulative distribution functions with SMPC-FP
controller.

while for the other controllers we can see again that SMPC-FP,
SMPC-NP designs have a better degradation performance than
SMPC-SF, DMPC with SMPC-SF again being the worst. However,
interestingly the trends reverse for the total fuel usage defined
in Eq. (34), where from Fig. 15 we can see that the SMPC-SF
design is associated with the smallest total fuel usage probability
compared to the other designs and the H∞ is associated with the
largest one with a big difference. The other designs (stochastic
and deterministic) all have very similar behavior in terms of the
total units of fuel distributions.

4.5. Effect of BESS related parameters on the dynamic performance

From the analysis above it is clear that different control meth-
ods and parametrizations lead to different dynamic performance
of the system. However, it is not only these two factors that
affect the system’s behavior. Different weighting of the multiple
objectives of the MPC optimization problem or different battery
characteristics, such as its size, affect the resulting behaviors.
Under this perspective, it is worth mentioning that the resulting
behaviors shown in the previous sections where all derived for
the same weightings and BESS size. The latter was set equal to
unity (see Appendix A, Table 1) in order to consider a general case
and in accordance with a per unit representation of the power de-
viations associated with the system operation (see Appendix A).
Therefore, the proposed control methodology can be built upon
a generic idealized system to remain as general as possible, since
the target is not to provide case-specific results but a general
control design framework where the control design procedure
should be the same irrespectively of the battery capacity.



S. Chapaloglou, A. Faanes, D. Varagnolo et al. Sustainable Energy, Grids and Networks 32 (2022) 100853
Fig. 12. States empirical cumulative distribution functions SMPC FP vs SMPC SF
vs SMPC NP vs DMPC vs H∞ .

In particular, when referring to the SoC trajectories observed
in the previous sections, it is important to highlight their depen-
dence on 3 main parameters: (i) the SoC deviation weight ℓ, (ii)
the energy capacity value Cb and (iii) the maximum power to
energy ratio defined as λ =

P̄b
Cb
. Even though the BESS capacity

and the power rating are design parameters, whose selection is
beyond the scope of this study but requires detailed analyses
considering techno-economical perspectives, it is useful to study
the effect of those parameters under the proposed MPC frame-
work, for the nominal conditions. For this reason, we performed
three individual sensitivity analyses which are explained in detail
below. For all the following analyses we follow the same color
convention where red represents the SoC deviation, blue the BESS
power deviation and green the system’s frequency deviation.

4.5.1. Sensitivity analysis for the SoC weighting
First, the effect of the SoC deviation weight ℓ was studied. We

performed various simulations (load step disturbance) with in-
creasing values ℓ, giving more significance to large state of charge
deviations and thus better constraining the discharge/charge C-
rates of the battery. The results are illustrated in Fig. 16. From
Fig. 16(a) we observe that increasing ℓ not only leads to less
SoC variation but also to decreasing discharging/charging rates,
which can be of great importance when specific limits for the C-
rates of the battery have to be respected. For example, selecting
the maximum value of ℓ = 80 and considering the battery’s
discharging at the load step (approximately 2% in 5 s, red curve
in Fig. 16(a)) we can estimate a C-rate of around 0.1440, which
is much lower than the one for ℓ = 2. However, putting a lot
of weight to the SoC deviation comes at the cost of a higher
overshoot at the systems frequency response, as can be observed
12
Fig. 13. Average frequency and SOC deviation SMPC FP vs SMPC SF vs SMPC NP
vs DMPC vs H∞ .

Fig. 14. SoC standard deviation (BESS cycling indicator) SMPC FP vs SMPC SF vs
SMPC NP vs DMPC vs H∞ .

Fig. 15. Total units of fuel SMPC FP vs SMPC SF vs SMPC NP vs DMPC vs H∞ .
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Fig. 16. Sensitivity analysis results for varying ℓ. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)
Fig. 17. Sensitivity analysis results for varying Cb .
rom Fig. 16(b) (bold green line). From this analysis, we can
onclude that a value of ℓ = 20 would give a fair trade-off
etween the SoC deviation penalization and a realistic C-rate for
he battery charging/discharging process. For this reason, we kept
his value for the next analyses.

.5.2. Sensitivity analysis for the BESS capacity
Another very important factor affecting the resulting charge/

ischarge rates is the total available energy capacity of the bat-
ery system. It is expected that for larger capacities and same
ischarge levels, the C-rates will be decreasing. Again we per-
ormed various simulations (load step disturbance) where the
ESS per unit scaled capacity Cb is changing in multiples of the

nominal one (Cb = 1). In Figs. 17(a) and 17(b) we observe the
resulting trajectories of the SoC, the BESS power and the system’s
frequency response. We see that increasing the battery size, the
minimum value of SoC is increasing, leading to lower peak C-
rate and higher minimum frequency deviation, even though the
frequency response is a less dumped. In other words, increasing
the battery size, the system can tolerate higher discharge power
rates, resulting in lower C-rates for the battery and improved
frequency nadir.

4.5.3. Sensitivity analysis for the BESS power to energy ratio
Finally, the effect of the maximum power to energy ratio was

studied by varying the λ parameter from 1 to 0.1. This means
that a BESS with λ = 1 has 10 times higher power provision

capability than the one for λ = 0.1, for the given (same) energy

13
capacity. In other words, λ reflects the effect of further restrict-
ing the battery charge/discharge power P̄b, resembling different
technologies with different C-rate limits which are effectively
power constraints. Then, from Fig. 18(a) we observe that by
increasing λ we can effectively reduce the C-rate of the BESS not
only by reducing its minimum SoC deviation but also by slowing
down the BESS response, meaning that to reach its minimum SoC
deviation value, more time is required. It is remarkable in that
case, since the goalsẃeights were kept to the same values, that
the controller requested more power from the BESS for lower λ
values, resulting in almost identical system frequency response
(Fig. 18(b)). However, this is only available when the power rating
of the BESS is large enough (as in our case) not to saturate the
requested power.

5. Discussion and conclusions

This study proposed, analyzed and compared a set of multi-
objective MIMO supervisory controllers for isolated power sys-
tems composed of a gas turbine, a wind turbine and a battery
energy storage system. The proposed controllers are all based
on the concept of integrating optimal frequency regulation for
the isolated grid (isochronous operation) while at the same time
tracking scheduling commands for the energy storage system.
This was achieved though different model predictive controllers
accounting for different types of uncertainty and different con-
troller parametrizations. Overall, the goal has been of comparing
deterministic MPC approaches against stochastic MPC ones and
robust control.
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Fig. 18. Sensitivity analysis results for varying λ.
∆

The results showed that stochastic control is not always asso-
iated with smaller constraint violation probability compared to
he deterministic case. The occurrence of this event was, though,
trongly correlated on the controller parametrization. In particu-
ar, we found that an affine disturbance parametrization is almost
lways associated with lower violations probabilities and very
lose to the open loop optimal policy (i.e., no parametrization
f the controller). In addition, state feedback was found to be
orse not only in terms of nominal performance but also in terms
f constraint violation even when compared to the deterministic
PC. However a state feedback approach resulted in the smallest

uel consumption — at the cost though of slower regulation. Last
ut not least, the analyzed H∞ robust controller was found result-
ng in higher constraint violations and sub-optimal coordination
f the different subsystems, revealing the need for specialized
uning.

As for possible future work, higher parametric uncertainty
ould be considered for the comparison of the various proposed
ontrollers and check to what extend the comparison results
atch the one presented in this study. In addition, higher fidelity
imulation models could be used to further validate the results
f the comparative analysis, while different specific battery tech-
ologies could also be examined for application suitability, given
ctual C-rate restrictions. Finally, a controller with risk aver-
ion capabilities (i.e. by reducing the number of scenarios in the
cenario approach) could be designed and be included in the
omparison study.
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Appendix B

This paper presents a design methodology (proposed multi-
bjective controller) and a preliminary comparative analysis of
arious designs either with respect to the way uncertainty is
onsidered (deterministic vs. robust vs. stochastic) or for different
ontrol parametrizations for the scenario-based MPC (SMPC). The
cenario approach [40,41,43,48] gives the designer the unique ca-
ability to leverage risk of violating unseen constraints (from the
andomly sampled scenarios). That means that we can reduce the
umber of scenarios considered by accepting higher risk for the
ake of decreasing the controller’s computational complexity and
herefore the required calculation time. Under this perspective,
e performed an analysis investigating the required time for the
ptimization problem to be solved, for different number of sce-
arios. The results are given in Table 2. Such times are recorded
hen using our available computational resources, a 2010 Mac-
ook Pro with 2.4 GHz Intel Core 2 Duo processor, where just a
ingle core was used (not parallel computing). We also not that
he recorded execution times include several internal processes
f the Matlab-based modeling system for convex optimization
CVX) and interactions with the selected simulation environment
atlab-Simulink. CVX is loaded with numerous additional tasks
15
Table 1
Table of constants.
Parameter Symbol Value Units

Nominal plant

Governor time constant Tg,0 0.05 [8] [s]
Turbine time constant Tt,0 0.5 [8] [s]
Wind turbine time constant TWTG,0 0.04 [8] [s]
BESS time constant TB,0 0.1 [8] [s]
Battery capacity Cb,0 1 [p.u.]
Charging well width cW ,0 0.93 [36] [–]
Charging well conductance cr,0 2.24 · 10−5 [36] [–]
Load damping D0 1 [8]

[ p.u.
Hz

]
Inertia constant M0 3 [8]

[ p.u.s
Hz

]
Wind turbine power curve

Cut in speed Vci 13
[m

s

]
Cut off speed Vco 17

[m
s

]
Rated wind speed Vr 15.5

[m
s

]
Rated power Pr 0.2 [p.u.]

MPC constrains

Max power deviation umin −1 [p.u.]
Min power deviation umax 1 [p.u.]
Max power increment ∆umax 0.5 [p.u.]
Min power increment ∆umin −0.5 [p.u.]
Max frequency deviation ∆fmax 0.2 [p.u.]
Max SoC deviation ∆SoCmax 0.3 [p.u.]

Simulation parameters

Control horizon Nc 4 [–]
Prediction horizon Np 10 [–]
Discrete time step ∆t 1.5 [s]
Simulation length Tsim 60 [s]

Table 2
MPC optimization solution time.
variables # SMPC-FP SMPC-SF SMPC-NP

32 8 8

N Optimization solution time [s]

200 4.97 2.03 2.21
400 9.14 3.16 2.74
600 14.95 4.95 3.78
800 22.19 6.63 5.17
1000 29.12 8.58 6.80

other than solving the problem itself, such as interpreting the
high-level modeling language into numerical matrices, loading
searching and accessing those and many other staff that are not
open to the user.

In practice, increasing the number of scenarios we include
more constraints to the optimization problem, making its solution
harder. As we see from the table above, even for relatively low
number of scenarios, the required solution time can be signif-
icant, giving rise to potential real-time implementation issues.
The computational time to solve the optimization problem highly
depends on the availability of computational resources which,
from a system operator point of view, will not probably be a
deadlock, since advanced computing may already be there as it
is necessary for other tasks, too. While in the simulation en-
vironment there is always sufficient time for the optimization
problem to be solved before the next simulation iteration, in a
real time implementation non-sufficient time for the problem
solution would result in a significant delay which is ignored in
the simulations. Therefore, the results presented in this study can
be thought of as an upper bound of the controller’s performance
and further studies are required to investigate what the required
computational resources are and what parallelization techniques
should be considered before the real-time implementation of the
controllers proposed in this theoretical/numerical study.
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