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Abstract

Interest in the virtualization of human-robot interactions is increasing, yet the impact that collaborating with either virtual
or physical robots has on the human operator’s mental state is still insufficiently studied. In the present work, we aimed to fill
this gap by conducting a systematic assessment of a human-robot collaborative framework from a user-centric perspective.
Mental workload was measured in participants working in synergistic co-operation with a physical and a virtual collabora-
tive robot (cobot) under different levels of task demands. Performance and implicit and explicit workload were assessed
as a function of pupil size variation and self-reporting questionnaires. In the face of a similar self-reported mental demand
when maneuvering the virtual or physical cobot, operators showed shorter operation times and lower implicit workload
when interacting with the virtual cobot compared to its physical counterpart. Furthermore, the benefits of collaborating with
a virtual cobot most vividly manifested when the user had to position the robotic arm with higher precision. These results
shed light on the feasibility and importance of relying on multidimensional assessments in real-life work settings, including
implicit workload predictors such as pupillometric measures. From a broader perspective, our findings suggest that virtual
simulations have the potential to bring significant advantages for both the user's mental well-being and industrial production,
particularly for highly complex and demanding tasks.

Keywords Virtual reality - Human-robot interaction - Human-robot collaboration - Mental workload - Collaborative
robotic

1 Introduction

One of the core features of Industry 4.0 is the optimization
of manufacturing processes without neglecting the work-
er’s well-being (Kagermann 2015). In this context, many
different technologies have been proposed and introduced,
including collaborative robots (cobots). Unlike traditional
robots, cobots not only support operators in carrying out
a given task, but they literally share the task with them. In
other terms, although both traditional robots and cobots
can support the operator’s work, only cobots allow close
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fenceless cooperation. This distinctive feature of cobots has
opened new possibilities for assembly tasks in particular,
where human and machine can perform joint actions and
work synergistically on a common task in a shared space,
resulting in a powerful human-robot collaboration (HRC)
(e.g., Cherubini et al. 2016). Indeed, the benefits of HRCs
encompass time and space savings and support with repeti-
tive tasks or handling and positioning of heavy materials.
On the other hand, interacting with physical robotic arms
can be expensive (Peters et al. 2018) and even dangerous in
some cases (Oyekan et al. 2019). By tackling these issues,
virtual simulations provide a cost-effective and safe environ-
ment for industrial operators who are called to collaborate
with robots. The literature offers numerous examples of
usage scenarios of VR within the industrial domain, includ-
ing virtual prototyping (Berni and Borgianni 2020), train-
ing (Abidi et al. 2019; Prattico and Lamberti 2021; Roldan
et al. 2019), designing (Berg and Vance 2017; Fratczak et al.
2019; Krenn et al. 2021; Nee and Ong 2013), and teleopera-
tion (Linn et al. 2017; Wang et al. 2019).
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To support the actual implementation of physical and vir-
tual human—cobot systems into industrial environments, in-
depth user-centric investigations are needed. Billings (2018)
introduced the concept of human-centered automation to
indicate a system design in which humans and machines
collaborate cooperatively in order to reach stated objectives.
In this interplay, both humans and machines have strengths
to be valued and weaknesses to be bridged. With the aim
of improving overall system performance and maximizing
the benefit of the HRC, each synergistic HRC should meet
technical and ergonomic standards to optimize the opera-
tor's physical and mental workload (Nachreiner et al. 2006).
However, to date, human psychophysical aspects have been
regrettably marginalized. The majority of the papers dealing
with smart manufacturing have focused on the feasibility of
HRC systems and the efficacy of the related framework (e.g.,
Liu and Wang 2020), often neglecting the factors affecting
the final user (for a review, see Damiani et al. 2018). Indeed,
it is still unknown how HRC through a virtual simulation
impacts the user’s performance and cognitive workload and
how it differs from collaboration with a physical robotic arm.

To address this research gap, we explored how interaction
with a cobot in the physical or virtual environment affects
the user. More specifically, we investigated operators’ behav-
ioral performance and cognitive state in a pick-and-place
task executed in collaboration with a physical versus a vir-
tual cobot. Additionally, we compared high and low task
demand conditions. Data collected include operation times
and task error as performance measures, changes in pupil
size as a function of implicit workload, and self-reported
explicit workload. We have organized the remainder of
this paper as follows: Sect. 2 reviews the state of the art
related to the use of virtual cobots in Industry 4.0 and vari-
ous measures previously used for assessing HRCs. Section 3
addresses the reasoning and hypotheses related to the present
investigation. Section 4 describes the chosen methods of our
experiment and explains the experimental sample, technical
setup, experimental procedure, measurements, and statisti-
cal analysis. Section 5 presents the results of our investiga-
tion, and Sect. 6 contextualizes the findings into the research
panorama by clarifying their implications for the industrial
domain. Finally, we present the main conclusions of this
study, limitations, and potential future work in Sect. 7.

2 State of the art

2.1 Virtual robotics in Industry 4.0

This paragraph is meant to provide the reader with an
understanding of various use cases related to immersive

virtual HRC systems. When addressing VR applications
for industrial robotics, we identified three main areas,
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namely (i) Education and training, (ii) Design of user
interactions, and (iii) Telerobotics.

i. Education and training: Given that collaborative
robots are relatively uncommon, virtual simulations
for training staff can be helpful for familiarizing oper-
ators with robotic arms before they have to interact
with them during a work shift (Horma et al. 2019).
Prattico and Lamberti 2021) developed a VR-based
training system for a robotic arm. They showed that
participants trained with the simulated cobot reached
similar learning outcomes compared to those who
underwent standard training. Matsas and Vosniakos
(2017) presented a VR training system that simulates
HRC activities for the manufacturing area. Their
findings showed that most of the participants man-
aged to complete the HRC tasks without entering the
workspace (which was a potentially hazardous area)
and reported favorable scores on the friendliness and
understandability of the virtual interface. Participants
who took part in Abidi et al.’s (2019) study were mon-
itored in a product assembly task after having received
either a VR training or a traditional training session.
Those who had received the VR training made fewer
errors and took less time in actual product assembly
compared to those in the conventional training group.

ii. Design of user interactions: In the domain of HRC
systems, where the characteristics of flexibility, adapt-
ability, and safety are equally essential, reiterative
design and testing are crucial for promoting human-
centered solutions. Virtual simulations are a safe and
economical space for testing and validating collabora-
tive systems (Malik et al. 2020). Evidence of this is
presented by Krenn et al. (2021), who investigated the
understandability of different light- and motion-based
signals delivered by a cobot in VR to indicate to the
user when to take on the task. Virtual simulations of
robotic arms have also been employed to determine
the speed at which users felt safe when interacting
with a cobot (Fratczak et al. 2019; Hansen et al. 2018).
Additionally, human factor investigations have availed
of VR to understand which factors contribute to a pos-
itive HRC (Mara et al. 2021) and how users react to
more or less predictable robot movements (Oyekan
et al. 2019). Kaufeld and Nickel (2019) conducted a
virtual simulation study where human-robot interac-
tions (HRIs) were evaluated at different levels of robot
autonomy and in multi-modal signaling conditions.

iii. Telerobotics: A special mention is required for the
field of telerobotics, in which human agents remotely
guide robots through virtual interfaces. These human—
robot systems are particularly useful for operating in
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physical locations that are inaccessible or that involve
physical risks of the operator (e.g., space repair, Xiao
et al. 2020). Notably, with the advent of the COVID
pandemic, interest in remote control and VR has
turned into an urgent necessity even in the manufac-
turing field (Melluso et al. 2020). The spread of the
pandemic has emphasized the weaknesses of current
industrial systems and shed light on the importance of
teleoperation and remote control of production sites.
In this context, immersive VR devices are valuable
mediums as they can supply information in a natural,
interactive, and effective way, potentially promoting
a high sense of presence, which in this context is bet-
ter known as telepresence (Martin-Barrio et al. 2020;
Zhang 2018). Wang et al. (2019) demonstrated the
feasibility of remote HRCs via VR by designing a
virtual teleoperation system for controlling an indus-
trial cobot with satisfactory tracking accuracy. On an
applied level, the adoption of VR has been used to
enable remote maintenance service (Linn et al. 2017)
or to support shop-floor operators by speeding up the
programming and reconfiguration of a product line
(Damiani et al. 2018).

2.2 Comparative literature on virtual and physical
HRCs

Only a few studies have directly compared virtual and physi-
cal robotic systems, and even fewer have enabled direct
physical manipulation of the robot. For instance, Inoue et al.
(2005) assessed the psychological state of 13 users in co-
presence with physical and virtual robots in a VR CAVE
system. The results demonstrated that users self-reported
similar feelings regarding the reliability, pleasantness, and
friendliness of the robot’s motion for real and virtual robots.
In Li et al.’s (2019) study, preferences regarding distance
from robots and the effects of appearance familiarity were
compared between a virtual and physical robot in 80 partici-
pants. In both conditions, the robot gradually approached the
participant and stopped when the participant perceived it as
too close. Results suggested higher discomfort in the virtual
condition, where greater distances were maintained between
the user and the virtual robot, and no familiarity effects were
observed. Weistroffer et al. (2014) assessed performance,
physiological measures (heart rate and skin conductance)
and self-reported co-presence comfort in 6 participants
assembling a car door in a virtual and physical environment.
They showed an increase in skin conductance after work-
ing close to the robot only in the physical situation, and no
self-reported differences between the environments emerged.
Hsieh and Lu (2018) asked 6 participants to pick some plas-
tic balls delivered by a robotic arm and to sort them into
specific boxes, both in the real and in an immersive virtual

environment. In this context, where an actual HRI occurred,
but the human movements were independent of the robot,
different motion strategies were observed, but task comple-
tion time was similar between scenarios. Lipton et al. (2017)
asked 8 participants to execute a pick-and-place with assem-
bly task using a virtual interface, and another 7 participants
performed the same task by teleoperating the physical robot.
The virtual interface led to a higher number of correctly per-
formed tasks and enabled faster operations in the pick task.
In one of the few studies that allowed physical manipulation
of the robot, Whitney et al. (2018) measured 2 participants’
ability to complete 24 different tasks with both a virtual and
a physical robot. Even though the physical robot enabled
faster completion for most of the tasks, the virtual robot
enabled more accurate results during the most complex robot
positioning thanks to the lack of weight and inertia forces.

2.3 Metrics for the assessment of human factors
in HRCs

When assessing an HRC, concepts like usability (Bevana
et al. 1991), acceptance (Marangunic and Grani¢ 2015),
and mental workload (Meijman and Mulder 2013) are of
primary importance. In studies that addressed the effect of
collaborating with a robotic arm on the user, these concepts
have often been assessed through self-reporting and perfor-
mance metrics. For instance, to investigate user experience
with a robotic arm, Chowdhury et al. (2020) employed both
qualitative (observations and semi-structured interviews)
and quantitative (User Experience Questionnaire; Schrepp
2015) methods. Rossato et al. (2021) studied the subjective
experience of younger and older adults teaming up with a
cobot. More specifically, they used questionnaires to assess
technology acceptance (TAM; Davis 1989), usability (SUS;
Brooke 1996), user experience (Shirzad and Van der Loos
2016), and workload (NASA-TLX; Hart and Staveland
1988). Additionally, they measured the user’s performance
by coding the task execution time from the video recordings
of the tasks. Chacon et al. (2021) assessed the usability of
an HRC workspace. In particular, they measured efficiency
as the time to complete the task and effectiveness as the per-
centage of task fulfillment. An adapted version of the System
Usability Scale (Brooke 1996) was also employed to collect
self-reported measures. Hsieh and Lu (2018) measured the
task completion time of operators collaborating with either
a physical interface or one of three different virtual inter-
faces. Similarly, Weistroffer et al. (2014) assessed the per-
formance of users assembling a car door by recording the
task duration and the number of completed operations and
collision alarms activated. Kaufeld and Nickel (2019) evalu-
ated human mental workload related to HRIs in VR. They
collected performance data such as response times, error
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rates, and the number of missed trials and the perceived
mental workload through the NASA-TLX.

Besides performance and explicit workload measures, a
number of studies found empirical evidence in favor of uti-
lizing increased pupil diameter as an indicator of a higher
mental workload (Beatty 1982; Igbal et al. 2004; Van Orden
et al. 2001). Pupil variation is linked to the sympathetic
nervous system, which is involved in arousal and wakeful-
ness (Mathot et al. 2018). Therefore, how pupil size vari-
ations are modulated by operations with one or the other
interface can provide information about the level of implicit
workload within a joint operation (Mingardi et al. 2020). It is
worth noting that many variables other than the user’s cogni-
tive and emotional state (e.g., ambient lighting) can affect
this metric (Kramer 2020). However, preprocessing methods
and proper statistical analysis have been shown to overcome
possible confounding variables relatively well (Mathot et al.
2018). Despite the stable relationship between pupil size
and workload, research works applying pupillometry to the
industrial and work field are scarce. Eye movements were
employed as indicators of mental workload in a desktop-
based version of a combat management workstation aboard
naval vessels (de Greef et al. 2009); the authors proposed eye
parameters as a potential trigger for adaptive automation of
the system. Savur et al. (2019) presented two case studies
involving a robotic arm in a collaborative pick-and-place
task. Although the authors proposed a valuable framework
for collecting and synchronizing multiple physiological out-
puts with the user’s and the robot’s behavior (pupil dilata-
tion, EEG, GSR, PPQG), the data collected about the user's
cognitive state were not analyzed as a function of the task.
Van Acker et al. (2020) tested the feasibility of deploying
pupillometry in a work setting demanding operator mobility.
They tested participants performing two manual assembly
tasks with a different degree of complexity and found no
significant differences in the implicit workload as suggested
by pupil size variations, in contrast with substantial differ-
ences in the subjective workload. Therefore, they advocated
further testing of pupillometry measures in real-life work
settings to better understand their actual feasibility.

3 Our study

In this study, we report on a user-centric assessment of HRC
in which we systematically discuss users’ performance and
implicit and explicit workload measures. Participants were
asked to jointly perform a pick-and-place task with both a
physical cobot and its virtual equivalent. The task was exe-
cuted in conditions of either low or high cognitive load—that
is, the user was concurrently busy with an arithmetic task (dual
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task)—and both in a physical and virtual industrial environ-
ment. Therefore, the experiment followed a 2 X2 repeated
measures design over interface (physical and virtual) and task
load (single task, dual task). Performance and self-reported
data as well as eye-tracking data were collected and analyzed.
Furthermore, the level of participants’ expertise with VR
and users’ preferences for potentially working with virtual or
physical cobots were assessed. The hypotheses and research
questions are listed below.

3.1 Hypotheses and research questions
3.1.1 Task load manipulation

Engaging the user in a dual task is a well-known condition that
causes an increase in the load on cognitive resources (Navon
and Miller 1987). Therefore, as a methodological control,
we expect the task load manipulation to generate a higher
explicit and implicit workload in the dual—compared to the
single-task condition. More specifically, we predict a greater
pupil size increase and a higher perceived workload from the
NASA-TLX in the dual-task compared to the single-task con-
dition. Additionally, we predict longer operation times for the
pick-and-place task and more errors for the arithmetic task
in the dual-task condition, which would indicate behavioral
interference of the secondary task with the primary pick-and-
place operation.

3.1.2 Operator’s behavioral performance

The current literature on the impact of virtual vs. physical
cobot manipulation on a user’s performance is limited. How-
ever, the utility of virtual interfaces in industrial contexts can
be corroborated only to the extent that the performance of
users collaborating with a robot in VR does not decrease com-
pared to that of users working in the physical space. In this
respect, performance with the virtual interface is expected
to be comparable to performance with the physical interface
under both high and low workloads.

3.1.3 Operator’s cognitive state

Previous studies did not systematically address how direct
interactions with a physical or virtual cobot affect the user's
cognitive state. Therefore, we intend to fill this gap by explor-
ing whether collaborating with a physical or virtual cobot
affects the user’s workload under either the single- or dual-task
condition. With this aim, we analyzed pupil size variations
and responses to the NASA-TLX questionnaire as a function
of implicit and explicit workload.
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Fig. 1 a A participant perform- a
ing the task with the physical
cobot (e-Series URSe); b a
participant executing the task
with the virtual robotic arm

4 Methods
4.1 Sample

The experimental sample consisted of 26 participants, 8
women and 18 men (M, =26.65; SD,,. =5.29), who vol-
unteered to take part in the study and signed the informed
consent. None of the participants had current or past neuro-
logical or psychiatric problems. They all had normal or cor-
rected-to-normal visual acuity and reported having normal
color vision. The experimental protocol was approved by the
local ethics committee and the study was conducted accord-
ing to the principles of the Declaration of Helsinki. Three
participants were excluded for technical issues related to the
eye tracker device. Moreover, one participant was excluded
for having an error rate of more than 50% at the arithmetic
task and another for missing data in the arithmetic task. The
final sample comprised 21 participants, 5 women and 16
men (M,,.=26.95; SD,,. =2.52).

4.2 Technical setup

In the physical condition, participants were provided with
a pair of binocular eye-tracking glasses (Pupil Labs GmbH
©, Berlin, DE; weight 22.75 g) connected to an MSI laptop
(model GT63 Titan 8RF, processor Intel Core i17-6700HQ,
screen resolution 1920 x 1080, RAM 16 Gb). The software
Pupil Capture (Pupil Labs GmbH ©, Berlin, DE) enabled
system calibration and data recording (sampling fre-
quency: 120 Hz; calibration: 5-point). The software Pupil
Player (Pupil Labs GmbH ©, Berlin, DE) was utilized to

€H

export the eye-tracking data. Besides the eye data, the
eye-tracker device also enabled first-person video record-
ing through the embedded scene camera (480p, field of
view: 100° x 74°; sampling frequency: 120 Hz). The video
recordings were then used for conducting a video analysis
of the participants’ arm behavior. The arithmetic task was
managed through a program written and compiled in Vis-
ual Studio 2019 running on the same MSI laptop handling
the eye-tracking recording. The pick-and-place task was
performed jointly with an e-Series UR5e cobot (Fig. 1),
which was installed on a height-adjustable worktable and
was programmed in Polyscope (version 5.11) through its
teach pendant. All data were recorded and processed by
the same laptop and were thus synchronized based on the
same internal clock.

In the virtual condition, participants were provided with
an HTC Vive Pro Eye headset (resolution: 1440 x 1600
pixels per eye; refresh rate: 90 Hz; Field of view: 110°)
and its controllers. The same headset also comprises an
eye-tracking system (sampling frequency: 120 Hz; calibra-
tion: 5-point) which enables recording of eye parameters
throughout the tasks. The virtual environment (Fig. 1) was
programmed in Unity (version 2019.4.18f1) and faithfully
reproduced not only the cobot and its workstation but also
the surrounding environment (that is, windows, furniture,
door). Participants interacted with the virtual cobot by
means of physical action and by responding through the
HTC Vive controller. At the end of each experimental ses-
sion, all data (behavioral and eye data) were automatically
saved on an MSI laptop (Intel Core i7-6700HQ, screen
resolution 1920 x 1080).

@ Springer
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Fig.2 Pick-and-place task is

depicted in all its steps consti- a
tuting the pick phase (a) and ~ p e .
place phase (b)
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4.3 Measurements
4.3.1 Behavioral performance

In the pick-and-place task, the behavioral performance was
measured as operation time, that is to say, the time required
for the user to move the robotic arm to the desired loca-
tion to either grab or release the bolt. More specifically, the
operation time was computed from the time the user first
touched the robotic arm (start) until the moment when the
user released it (end) for both the pick (Fig. 2a) and the
place phases (Fig. 2b). In the physical condition, the opera-
tion times were computed by coding the video recordings
of the experimental trials' with the software BORIS (ver-
sion 7.10.5, Friard and Gamba 2016). More specifically, the
first frame showing the user’s hands touching the physical
cobot was coded as the beginning of the operation time, and
the frame showing the user’s hands releasing the cobot was
coded as the end of the operation time. The obtained “start”
and “end” timestamps were imported into the pupillometry

' A first-person view of the experimental trials was video recorded
with the PupilLabs world camera.
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data stream. In the virtual condition, the first movement
of the virtual robotic arm was automatically logged by the
Unity software as the timestamp of the button press (grip
button, Fig. 3) that co-occurred with the contact between
the controller and the virtual cobot. Likewise, the software
logged the end of the operation time as the timestamp of
the button press (pad button, Fig. 3). Overall, for both the
physical and virtual conditions, the operation times for
picking up and placing the bolt were considered indepen-
dently because of different levels of difficulty; the pick phase
required higher precision for positioning the cobot’s joints
in a suitable and accurate way, but in the place phase less
accuracy was required. In the arithmetic task, we computed
the percentage of wrong answers. This performance index
provided information on the degree of cognitive interference
that occurred in the dual-—compared to the single-task con-
dition both in the virtual and physical conditions.

4.3.2 Implicit workload (pupil size variation)

The pupil size variation was computed only during the mov-
ing robot phase (Fig. 2) and was considered as a proxy of
the experienced workload (Beatty 1982; Igbal et al. 2004;
Van Acker et al. 2020). In this study, we followed the
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Fig.3 Pick-and-place task is
depicted in all its steps consti-
tuting the pick phase (a) and

place phase (b)
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preprocessing methodology of Kret and Sjak-Shie (2019)
and accommodated the precautions of Mathot et al. (2018)
for the baseline correction. First, we selected time windows
within the moving robot parts of both the pick and the place
phases (Fig. 2) and handled them independently from each
other. Considering that different operation times resulted
in different lengths of the selected time series, we used
dynamic time warping (Berndt and Clifford 1994; Keogh
and Pazzani 2001) to standardize the length of each time
series. Thus, all pupil samples were constrained to fall within
a warping window of 30 data points. The average length of
the selected windows was about 1.5 s; therefore, each data
point of the warped window corresponded to 50 ms on aver-
age. After averaging over the left and right eye, we computed
the percentage of missing data in each trial and participant
and removed those for which more than 35% of the data
were missing (1 trial and O participants were removed). Data
were then filtered through a median filter, and the first 4
data points of each trial—which correspond to 200 ms on
average—were used to apply a subtractive baseline correc-
tion (Mathdt et al. 2018). By addressing the difference in
pupil size compared to a baseline period, we marginalized
absolute differences caused by external variables other than
those due to changes in the cognitive state. Unlike for the
processing of pupil response during the pick-and-place task,
in the arithmetic task we selected four time windows cor-
responding to each number presentation. Because their dura-
tion varied between 2.3 and 2.7 s, dynamic time warping was
applied in each of the windows to standardize their length
(Berndt and Clifford 1994; Keogh and Pazzani 2001). Then
the same procedure was followed for the processing of pupil
data in the arithmetic task.

4.3.3 Explicit workload (NASA-TLX)

After each task, participants were asked to fill in the NASA-
TLX questionnaire as a measure of perceived workload.
This scale has been used extensively in many areas, with
the industrial context being just one of them (e.g., Roldan
et al. 2019).

4.3.4 Individual factors

Participants were asked to self-report their level of previous
experience with VR technology by rating the frequency with
which they had used VR devices on a 5-point scale. The
aim was to control for the level of VR experience within the
sample. Additionally, we explored participants’ expectations
of working with the cobot compared to their experience with
it by asking their preferences before and after the experi-
ment. More specifically, before the experiment, we asked:
“If you had to collaboratively work with a cobot, which of
the following interfaces would you prefer?” and, after the
experiment, we asked, “With reference to the experience
you have just concluded, which of the following interfaces
did you prefer?” The possible answers were “Virtual cobot”
and “Physical cobot.”

4.4 Task and procedure

After signing informed consent, all participants filled out a
demographic questionnaire and answered questions about
their VR expertise and individual preference for virtual
vs. physical cobots. Then, they undertook six tasks com-
posed of 25 trials each. In particular, as shown in Fig. 3, a
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pick-and-place task, an arithmetic task and a dual task were
performed both in the virtual and physical environments
(counterbalanced order). Half of the participants started with
the virtual condition and the other half with the physical
condition. At the beginning of each task condition (virtual
and physical), all participants underwent a training session
and performed a few trials of the same tasks administered in
the subsequent experimental session. The task instructions
were presented in paper format in the physical condition,
and they were virtually delivered in text format in the virtual
environment. The experiment started only when the partici-
pant understood all the task rules. In both contexts, a 5-point
calibration of the eye-tracking systems was conducted before
starting the experiment. After each task, participants filled
in the NASA-TLX questionnaire and, only at the end of the
virtual experimental session, the MEC-SPQ was also admin-
istered. Additionally, between each task, it was possible to
take a break both in the virtual and physical environments,
after which the eye-tracking system was re-calibrated before
starting the next task. At the end of both the virtual and
physical experimental sessions, the final questionnaire on
the individual preference for virtual vs. physical cobots was
administered.

4.4.1 Pick-and-place task

For each trial of the pick-and-place task, a bolt and a box
were always placed in random positions on the worktable,
still keeping 50 cm of distance between them. Participants
were instructed to pick the bolt up from the worktable and
place it into the box by physically moving the robotic arm.
The activity was designed to distinguish clearly between
the pick and place phases. The pick phase required precise
maneuvering of the robotic arm to align its effector with the
bolt to be picked up. For the place phase, on the other hand,
less precision was needed because the box in which to place
the bolt was relatively large.

In the physical condition, participants first had to grasp
the robotic arm with their hands and physically move it close
to the bolt (moving robot part of the pick phase, Fig. 2).
Once the robot’s effector was in line with the bolt, partici-
pants initiated the grab bolt (Fig. 2) automation by gently
hitting the worktable with their hand and the robotic arm
automatically picked up the bolt (bolt grabbed, Fig. 2).
Afterward, they grasped the robotic arm, positioned it over
the box (moving robot part of the place phase, Fig. 2), and
hit the worktable again to enable the cobot to automatically
release the bolt in the chosen position (release bolt, Fig. 2).
We used the Wizard of Oz method (Hsieh and Lu 2018; for a
review, see Riek 2012) for initiating the grab bolt and release
bolt automations: when participants touched the worktable,
an experimenter standing behind the participants initiated
the grab/release bolt command from the teach pendant. This
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mechanism was hidden from the participants, who were led
to perceive the feature as related to their action of touching
the table.

In the virtual condition, on the other hand, participants
used the HTC VIVE controllers to perform the same VR
task. Specifically, they were instructed to approach the cobot
with their hand. When the controller physically collided with
the virtual cobot, participants could grasp it by keeping the
grip button pressed and move it to the desired position as in
the physical condition. To initiate the grab bolt and release
bolt automations, they pressed the pad button on the right
controller.

4.4.2 Arithmetic task

A series of numbers randomly ranging between 1 and 10
were aurally presented to the participants, who were asked
to mentally sum them and then report the result of the arith-
metic operations. Between each number, a time interval of
2.5 s+0.3 s of jitter elapsed, and each series comprised 4 or
5 numbers to avoid possible learning effects. In the virtual
condition, participants reported the result of each mental
operation by interacting with a virtual numeric keyboard
via controller. In the physical condition, they were asked to
report the sum’s result verbally. The response was systemati-
cally collected via the Visual Studio application described
in subparagraph 4.2.

4.4.3 Dual task

In the dual task, participants were instructed to perform the
pick-and-place task and the arithmetic task concurrently. In
each trial, the numbers of the arithmetic task were presented
for the whole pick-and-place task, and the result was then
reported only after the release bolt action (Fig. 2).

4.5 Statistical analysis
4.5.1 Behavioral performance

Performance data were analyzed using generalized linear
models (GLMs from the Ime4 package, Bates et al. 2014) in
RStudio (Team 2021). To analyze performance at the arith-
metic task and at the pick-and-place task, we computed a
GLM that included the factors task load (single task, dual
task) and interface (virtual, physical) with participant as a
random effect. Specifically, for the operation times at the
pick-and-place task, the pick and place phases were ana-
lyzed independently. The Bonferroni correction was always
applied when interpreting the post hoc contrasts within the
significant interactions.
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4.5.2 Implicit workload (pupil size variation)

To analyze pupil size variations, we used generalized addi-
tive mixed models (GAMMs; Hastie and Tibshirani 2017;
Wood 2017) and linear mixed-effects models (LMERs;
Bates et al. 2014). However, for greater conciseness of the
results, further specification on the GAMMSs’ chosen param-
eters and relative results is found in Appendix, and we here-
after report only on results obtained through the LMERs.
GAMMs are a good fit for our pupil data, as they are able
to model nonlinear patterns by using penalized regression
splines and estimate the shape of the regression line based
on the data (for an introduction, see van Rijj et al. 2019;
Wieling 2018). However, this methodology is still poorly
explored. Furthermore, the GAMMSs’ summary statistics do
not tell where the difference curves are different from zero,
nor the amplitude of the difference. Therefore, for higher
robustness of our results, we ran a chunk analysis over six
windows (each corresponding to 250 ms on average) to
determine significant differences in the time course through
the LMERs. The latter models involved task load (single
task, dual task), interface (virtual, physical), window (1, 2,
3,4, 5, 6), and their interactions with the participant as a
random effect. As for the operation time, the pick and the
place phases were analyzed independently.

In the single arithmetic task, we analyzed whether there
were significant differences in pupil size between the begin-
ning of the arithmetic task (start) and the following arithme-
tic sums (first, second, and third arithmetic operations). As
three or four arithmetic operations occurred randomly, only
the first three arithmetic operations were considered to pre-
vent the learning effect. We computed one LMER for each
interface condition (virtual and physical) with arithmetic
operation as a fixed factor (start, first sum, second sum, third
sum) and participant as a random effect. The Bonferroni
method was consistently applied in the post hoc contrasts
analysis (Bonferroni 1936).

4.5.3 Explicit workload (NASA-TLX)

The analysis of the NASA-TLX questionnaire score was
conducted through a GLM over task load (single task,
dual task), interface (virtual, physical), and items (mental
demand, physical demand, temporal demand, performance,
effort, frustration), with participant as random effect. Post
hoc contrasts were performed on each of the significant
interactions with the application of the Bonferroni correc-
tion for multiple comparisons (Bonferroni 1936).

4.5.4 Individual factors

For individual VR experience, we first standardized the
participants’ responses and then created two levels of VR

experience: participants with a scaled score below 0.5 were
assigned to the low VR experience level, and those with a
scaled score higher than 0.5 were assigned to the high VR
experience level. With regard to the individual preference for
a virtual or physical cobot as expressed before and after the
experiment, we reported the percentage of answers in favor
of the virtual or physical cobot.

5 Results
5.1 Performance measures
5.1.1 Operation time

Results yielded significant main effects only for interface,
both in the pick phase (X* (1, N=21)=1057.5, p<0.0001)
and in the place phase (X> (1, N=21)=1252.4, p<0.0001),
with a faster operation time for the virtual interface com-
pared to the physical interface, both in the pick and in the
place phases (Fig. 4). The task load manipulation, however,
did not yield any significant differences in operation times in
the pick or in the place phase. Descriptive statistics relative
to the operation time is found in Table 1.

5.1.2 Arithmetic task error

When analyzing the effects of task load and interface on
the arithmetic task error, none of the factors reached the
significance threshold.

5.2 Implicit workload (pupil size variation)
5.2.1 Pick-and-place task

When running the chunk analysis over the six time win-
dows, the results obtained by the LMERs were in line with
those obtained through the GAMMs (which are found in
Appendix) (Fig. 5). To analyze whether the effects changed
in the time course, we specifically focused on interactions
involving the window factor. Significant interactions were
observed between: task load and window only in the pick
phase (X* (5, N=21)=148.38, p <0.0001), interface and
window (pick: X? (5, N=21)=442.4, p <0.0001; place: X>
(5, N=21)=23.72, p<0.001), and task load, interface and
window (pick: X? (5, N=21)=80.51, p <0.0001; place: X>
(5, N=21)=34.88, p<0.0001). Post hoc contrasts that are
of interest for the present study are shown in Figs. 6 and 7.

5.2.2 Arithmetic task

The results of pupil size variations in the virtual condition
highlighted a significant effect of the arithmetic task (X* (3,
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Fig.4 Averaged operation time
with standard error at the pick
and place phases independently
according to the interface (vir-
tual, physical)

N
1

Operation time (sec)

Virtual

Table 1 Descriptive statistics of operation time at the pick-and-place
task

Pick mean (SD) Place mean (SD)
Task load Single task 1.89 (0.96) 1.67 (0.77)
Dual task 1.91 (1.00) 1.69 (0.81)
Interface Virtual 1.40 (0.73) 1.26 (0.56)
Physical 2.54 (0.87) 2.14 (0.75)

N=21)=2893.96, p <0.0001). Similar results were observed
in the physical condition, where there was a significant effect
of the arithmetic task (X> (3, N=21)=97.05, p <0.0001).
Post hoc contrasts run with Bonferroni correction are shown
in Fig. 8, and descriptive statistics are shown in Table 2.

5.3 Explicit workload (NASA-TLX questionnaire)

The results of the linear mixed model (LMM) demon-
strated significant effects of task load (X> (1, N=21)=45.6,
p<0.0001) and item (X* (5, N=21)=311.79, p <0.0001)
and interactions between task load and item (X* (3,
N=21)=42.04, p<0.0001) and between interface and
item (X* (5, N=21)=32.3, p<0.0001). Specifically, a
higher NASA-TLX score was reported in the dual-task con-
dition (M =10.9; SD=5.09) than in the single-task condi-
tion (M =8.79; SD=5.82). The post hoc contrasts on the
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Fig.5 Averaged operation time with standard error at the pick and
place phases independently according to the interface (virtual, physi-
cal)

interaction between task load and item revealed a higher
NASA-TLX score in the dual-task condition than in the sin-
gle-task condition in the following items: mental demand
(p=<0.0001; ST: M=7.85, SD=5.44; DT: M=13.00,
SD =4.80), physical demand (p <0.05; ST: M =5.85,
SD=4.54; DT: M=7.67, SD=4.38), and effort (p <0.001;
ST: M=9.57,SD=5.51; DT: M=13.6, SD=4.32). Moreo-
ver, post hoc contrasts over the interaction between interface
and items yield a higher NASA-TLX score in the physical
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Fig.6 Pupil size variations relative to the task load conditions in
the pick (a, ¢) and place (b, d) phases. Plots a and b depict the main
effect of task load. Plots ¢ and d display the effects of task load by

condition than in the virtual condition for the item per-
formance (p <0.01; virtual: M=14.5, SD=4.3; physical:
M=15.8, SD=4.15) and a higher score in the virtual con-
dition than in the physical condition for the item frustration
(p<0.05; virtual: M=6.70, SD =4.24; physical: M =5.65,
SD =4.35). NASA-TLX score differences for both task load
and interface are depicted in Fig. 9

5.4 Individual factors
5.4.1 VR experience

On a scale from 1 to 5, the median VR experience was 2,
with a standard deviation of 0.84. In our sample, 3 partici-
pants were considered to have high VR experience, as their
scaled rating was higher than 0.5, and 18 participants were
considered to have low VR experience, as their rating was
below 0.5.
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interface. All the plots are complemented by stars indicating the sig-
nificance level of the statistical test (*p <.05; **p <.01; ***p <.0001)

5.4.2 Individual preferences for a virtual or physical cobot

Finally, individual preferences for virtual or physical
cobots expressed before and after the experiment are shown
in Fig. 10. Before the experiment, 19.05% of participants
expressed a preference for virtual cobots, but after the exper-
iment, the percentage increased to 61.9%.

6 Discussion

Virtual simulations of industrial cobots have shown to
be promising tools for training (Pratticdo and Lamberti
2021), teleoperation (Wang et al. 2019), and design and
prototyping (Kaufeld and Nickel 2019). The increasing
interest in similar virtual interfaces derives from their
potential to reduce experiential differences between vir-
tual simulations and real operations and exclude risks
related to physical interactions with robots and materials
(Li et al. 2019). Despite its relevance for both the opera-
tor’s psychophysical well-being and industrial productiv-
ity, the assessment of the cognitive states of users work-
ing with either virtual or physical cobots has received
little emphasis.

@ Springer



Virtual Reality

a :
Pick phase
Interface Physical === Virtual
0.2

Kk Kk dekok *dkek dekk

/

©
-

o
o
L

Pupil Diameter variation (mm)

Time warped

Single-task

Ek L kdkk | kEk kkk | kkk

Dual-task ]

Dkkdk L kEkk hkk

0.2

0.14

0.0

Pupil Diameter variation (mm)

-0.14
Time warped

-0.1

Fig. 7 Pupil size variations relative to the interface conditions in the
pick (plots a and c¢) and place (plot b and d) phases. Plots a and b
depict the main effect of interface. Plots ¢ and d display the effects of

In this study, we thus faithfully reproduced a cobot in
VR and tested the impact of such a virtual simulation on
the user’s cognitive state compared to its physical counter-
part. As the core of this work, in addition to users’ perfor-
mance, we explored implicit and explicit workload measures
when operating with both interfaces and under high and low
demand. The purpose underlying this user-centric investiga-
tion was to systematically define which of the two interfaces
allows users to perform actions with the lowest cognitive
effort in both slightly (single-task) and highly (dual-task)
demanding working conditions. Ultimately, we also looked
at whether participants’ preferences for the physical or vir-
tual interface changed after using them for the duration of
the experimental session.

6.1 Task load manipulation

6.1.1 The arithmetic task load is reflected in pupil size
variations

Our task load manipulation relied on the dual-tasking meth-
odology. In addition to the primary pick-and-place task,
we introduced a secondary task where users were asked to
compute a series of arithmetic sums. The analysis of pupil

@ Springer

b
Place phase
Interface Physical === Virtual
£
~0.21 *kk L kw P
c i i
o
ket
& 0.11
> TR———
ko)
€ 0.0
Rl
[=}
=
& Time warped
d
Single-task Dual-task
—_ * ke ek ek ***:
€ :
E 021 ,‘
5 o1
8 i
T 0.1
o) s
© : 0.01
£ ;
a 0.01
E
& -0.14
Time warped

interface by task load in the pick phase and place phase. All the plots
are complemented by stars indicating the significance level of the sta-
tistical test (*p <.05; **p <.01; ***p <.0001)

size variations in the arithmetic task revealed a significant
increase in pupil size as participants were moving from the
start through the subsequent mental operations (first sum,
second sum, third sum, Fig. 8). In both the physical and
virtual conditions, the pupil diameter was stable from the
start to the first sum and then increased considerably in the
last two mental operations. This gradual increase in pupil
size was clearly observable with visual inspection of Fig. 8
in each experimental setting, suggesting that our arithmetic
task induced a gradual increase in the implicit workload in
both the virtual and physical conditions.

6.1.2 The dual task affected user’s implicit and explicit
workload

Regarding the explicit workload as self-reported through
the NASA-TLX questionnaire, participants indicated higher
mental demands, physical demands, and efforts when exe-
cuting the pick-and-place task along with the arithmetic task
compared to the single-task condition (Fig. 9). This result
supports our hypothesis that the task load manipulation
would affect the explicit workload. Additionally, implicit
workload and behavioral performance measures were col-
lected and analyzed independently in the pick and the place
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Table 2 Descriptive statistics of

o ; Start mean (SD) First sum mean (SD) Second sum Third sum mean (SD)
the absolute pupil size (mm) in mean (SD)
the arithmetic task
Virtual 3.06 (0.37) 3.06 (0.37) 3.10 (0.38) 3.12 (0.38)
Physical 2.82 (0.94) 2.83(0.92) 2.86 (0.93) 2.88 (0.93)

phases. In this respect, if the dual tasking demonstrated an
effect on the implicit workload, the users’ performances
did not differ between the single- and dual-task conditions,
failing to meet our expectations. Specifically, the operation
times were not significantly different between the single-
and dual-task conditions. Similarly, even though participants
committed 2.03% more errors on average in the dual arith-
metic task compared to the single one, this difference did
not reach the significance threshold. However, an increase
in implicit workload was shown by the pupil size varia-
tion within the pick action. In fact, a significantly higher
pupil size variation was evident in the dual-task condition
compared to the single-task condition beginning 620 ms on
average after the pick task began and continuing until the
end of the action (Fig. 6a). This task load effect was evi-
dent when participants were working jointly with both the
physical and virtual cobots: in both cases, the pupil size
associated with the dual-task condition demonstrated a con-
tinuous increase throughout the pick action in contrast to the
pupil size variation captured within the single task, which
was characterized by lower variation and a faster decrease
(Fig. 6¢). Differently, no stable differences in pupil diameter
variation between the single- and dual-task conditions were
observed within the place phase (Fig. 6b). In the latter case,
it is possible that the extreme simplicity of the place action
prevented pupil size variations between the single- and
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Fig.8 Pupil diameter in the physical and virtual conditions. The ver-
tical dashed lines divide the plots by windows (start, first sum, sec-
ond sum, third sum). Plots are complemented by stars indicating the

dual-task conditions. Moreover, unexpectedly, regarding
the pupil size variation within the place action performed
with the physical and virtual cobots (Fig. 6d), a higher pupil
size variation was observed in the single-task condition
compared to the dual-task condition only in the physical
condition. This effect might be related to different levels of
precision required by the two maneuvering actions (pick and
place) and/or to the temporality of the same actions. Indeed,
it is possible that in the dual-task condition, users employed
higher cognitive resources at the beginning of the task for
concurrently handling the arithmetic task and initiating the
pick action (Fig. 6¢), and they relieved their mental efforts
during the subsequent and more rough place action (Fig. 6d).
When participants were performing the same pick-and-place
task as a single task, their pupil sizes instead just gradually

increased throughout the task. Still, it is interesting to notice
how this reverse effect was visible only in the physical con-

dition but not in the virtual condition, where the dual tasking

affected the pupil size variation without any influence of
the temporality of the actions. Overall, in line with previous

studies on pupil size variations and workloads (Beatty 1982;
Igbal et al. 2004; Van Orden et al. 2001), the trend observed
when the task required precise maneuvering of the robotic
arm stands for a higher implicit workload in the dual-task
condition compared to the single-task condition.
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Fig. 10 Pre- and post-experiment preferences for working in collab-
oration with a physical or virtual robot as expressed by participants
before and after the experimental session

6.2 Operator’s behavioral performance

6.2.1 The virtual cobot enables faster operations than its
physical counterpart

The operators’ behavioral performances were evaluated in
terms of operation times, which we expected to be compara-
ble between the virtual and physical cobots. The literature on
users’ performances in HRIs referred mainly to situations in
which a direct manipulation of the robot by the hand of the
user were missing (Hsieh and Lu 2018; Lipton et al. 2017).
Differently, when direct HRIs were enabled, operators using
physical robots have been observed to be faster than virtual
interaction. However, this advantage did not hold for tasks
requiring complex robot positioning (Whitney et al. 2018).
Interestingly, we found a clear reduction in operation times
when participants were working with the virtual cobot rather
than the physical equivalent, regardless of the degree of
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complexity of the robotic arm positioning. Specifically, users
saved about 1 s on average in each of the pick-and-place
phases when cooperating with the virtual cobot (Fig. 4).
This advantage could be crucial for optimizing manufactur-
ing processes involving human—cobot operations that can
be performed remotely. Indeed, some considerations in this
regard are needed. The physical structure of the robotic arm
required participants to use their strength to drive the cobot
through the desired positions on their workstations. Differ-
ently, the virtual robotic system had no inertia forces, which
led users to perform the operations as freely as if they were
unbounded from the robotic arm. Therefore, performing
the same physical actions with and without the resistance
of the physical cobot largely affected operation times. This
peculiarity of VR technology, which allowed faster and safer
operations with the cobot, could be particularly beneficial
in the field of teleoperation but precludes scenarios where
humans and robots are actually collaborating physically.
Among the virtual systems applications that would allow
significant time savings in industry, the literature offered
valuable examples of VR integrations into the design and
testing of HRC systems (e.g., Fratczak et al. 2019; Hansen
et al. 2018; Krenn et al. 2021). In these contexts, the advan-
tages of reduced operation times in VR could significantly
speed up the HRC design and validation processes of those
aspects that do not involve the physicality of the robotic sys-
tem. Moreover, Wang et al. (2014) highlighted how reducing
robot programming time and providing collision-free solu-
tions are central issues in distributed manufacturing. For this
purpose, a virtual simulation such as the one we developed
in this work could optimize the manual configuration of a
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cobot before the preset tasks are autonomously run, enhanc-
ing the efficiency and safety of the programming opera-
tions. Finally, VR could also be a valuable tool for training
novices before they approach physical cobots (Abidi et al.
2019; Matsas and Vosniakos 2017; Prattico and Lamberti
2021; Roldan et al. 2019). Indeed, the agility and freedom
of movement within the virtual simulation could help less-
experienced operators become familiar with the task and
cobot management modalities through trial and error in a
safe, economical, and fast fashion. In this sense, operators
can learn the procedural aspects of a task in VR as a first
training step, making the learning process faster and safer,
before they perform the actual task with a physical robot.

6.3 Operator’s cognitive state in the virtual
and physical environments

6.3.1 Interacting with the virtual cobot reduces the implicit
workload

In the virtual environment, a significantly lower pupil vari-
ation was observed, suggesting a lower implicit workload.
This effect was observed throughout the whole pick-and-
place task, but it was particularly evident for highly accu-
rate movements (namely, the pick phase; Fig. 7a). A further
differentiation between the single- and dual-task conditions
was made on the low and high mental demands, respectively,
imposed on the operator. When participants were executing
the pick task as a single task, the pupil variation relative to
the virtual and physical cobots’ operations followed almost
the same pattern, with a slightly higher pupil size variation
in the physical condition compared to the virtual one. Dif-
ferently, under the dual-task condition, the fluctuations in
pupil size elicited by the pick operation with the physical
cobot underwent a much greater increase than those elicited
by the virtual simulation (Fig. 7¢). Regarding more gross
maneuvering of the cobot as in the place phase, the pupil
size variation still suggests the virtual cobot had an advan-
tage over the physical one in terms of implicit workload
(Fig. 7b). However, because the task load manipulation
did not impact the pupil size variations in the place phase
(Fig. 6b, d), the effects of the virtual and physical interfaces
on pupil size variation were not interpretable in their inter-
actions with the task load (Fig. 7d). Our data thus revealed
that a lower implicit workload was experienced in the virtual
environment than in the physical one, particularly when pre-
cise maneuvering of the robotic arm was required and when
the operator was imposed with a high mental demand. The
same trend applied for tasks requiring rough maneuvering
of the robotic arm, but the effect was less marked. Thus,
the higher the task complexity, the more the virtual simula-
tion revealed to be preferable, because it allowed the user
to save mental resources. Notably, the usefulness of virtual

simulations emerged when the tasks became more complex
in terms of both mental demand (dual vs. single task) and
the precision of the maneuvering (pick vs. place), whereby a
highly controlled visuomotor coordination was implied. This
finding may foster the introduction of virtual HRC systems,
particularly in highly complex or demanding work environ-
ments where a higher risk of accidents is involved, and the
usefulness of virtual simulations thus touches its peak. In
each HRC framework, whether dangerous or not, it is essen-
tial to ensure the user is able to maintain high vigilance and
awareness with the minimum workload for avoiding mental
and physical safety issues (Matsas et al. 2018). Therefore,
the lower implicit workload related to virtualization is a rel-
evant advantage in terms of users’ safety and well-being,
which especially applies to complex and potentially hazard-
ous HRCs.

6.3.2 Advantages of virtualization were not reflected
in the explicit workload

Interestingly, the trend for the implicit workload only par-
tially matched the trend for the explicit workload. Spe-
cifically, when operating the physical robot rather than the
virtual one, participants reported a generally higher NASA-
TLX score, which suggests higher perceived workloads.
However, regarding the single questionnaire’s dimensions,
users self-rated their own performances as better when using
the physical robot compared to the virtual one, whereas they
also reported higher frustrations when working with the vir-
tual robot compared to the physical one. This might be due
to the participants’ limited VR expertise: performing opera-
tions in VR for the first time might generate uncertainties,
likely leading participants to question the quality of their
performances and possibly feel frustrated. Future studies
might better examine this aspect and systematically meas-
ure whether the repeated use of such a virtual interface has
a positive influence on the perception of one’s performance
and on the feeling of frustration. However, it was interesting
to notice that the objective performance did not match the
subjective ratings. Indeed, both performance and pupil size
suggest an advantage of the virtual simulation over the phys-
ical cobot. Similar results were observed in a mixed-reality
framework by Kaufeld and Nickel (2019), who found that
the level of autonomy and information aids in their robotic
system affected users’ performances but not their mental
workload ratings on the NASA-TLX. The authors interpreted
this effect according to the compensatory control model and
assumed that users adjusted their task performance strategies
by shifting to simpler or less precise procedures (Hockey
1997). Similar dynamics likely occurred in our scenario,
where the performance worsening observed when partici-
pants were working with the physical cobot might have
reduced the human mental load and thus mitigated the level
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of perceived mental demand. One important implication of
such a finding is that questionnaire-based cognitive evalua-
tions might not be sufficient because what the human being
consciously perceives does not always accurately reflect
actual activation. It follows that when designing and testing
HRC:s, creators should employ multidimensional evaluations
involving subjective ratings and performance and implicit
indexes related to mental workload or stress for a global
understanding of the cognitive states of users engaged in
HRCs.

6.4 Individual factors

Before the experiment, only 19.05% of participants
expressed a preference for working with a virtual cobot
rather than with a physical one. Notably, preferences for
the virtual cobot increased to 61.9% after participants used
both cobot interfaces for the duration of the experimental
session. This is promising data, suggesting a likely positive
acceptance of virtual HRCs in the perspective of large-scale
implementations of virtual simulations in industry.

7 Conclusions, limitations, and future works

With this study, we contributed to the state of smart manu-
facturing by conducting a systematic user-centric assessment
of human performance and mental workload in virtual ver-
sus physical cobot operations and under different levels of
mental load. Our findings suggest that virtual simulations
of HRCs have the potential to create significant advantages
for both users’ mental well-being and industrial production,
particularly for highly complex or demanding tasks. Specifi-
cally, even though the tested users perceived similar work-
loads when maneuvering the virtual and physical cobots,
our virtual simulation entailed shorter operation times and
lower implicit workloads compared to the physical task.
These results apply to VR users with relatively low experi-
ence who did not have any knowledge of or experience with
robots. This thus suggests that even nonexperts can benefit
from the advantages of employing virtual simulations in
HRC frameworks.

Nonetheless, we acknowledge the following limitations.
First, two different eye-tracking systems were employed
in the two conditions. Although the PupilLabs device was
deployed in the physical condition, the Tobii eye-tracking
system integrated into the HTC Vive Pro Eye was deployed
in the virtual condition. Therefore, even though we applied
a proper baseline correction (Mathot et al. 2018), there
might still be slight differences in the proprietary algo-
rithms used by different systems to acquire eye-tracking
data. Second, on the applicability of our findings in the
field, it is important to mention that the effectiveness of a
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virtual simulation depends not only on the realism of the
virtual environment but also on the quality of the comput-
erized tools employed. For instance, technical features of
the head mounted display (HMD) such as the visual field
of view, resolution, and latency of the graphical interface
might influence the user’s performance with the virtual
cobot. Therefore, in view of a large-scale implementa-
tion of virtual devices into the industrial domain, highly
immersive and advanced virtual device adoption is fun-
damental. Third, even though we tried to leave out any
differences between the virtual and the physical pick and
place actions, some procedural differences between the
two task flows were still present. For instance, the arithme-
tic sums were reported verbally in the physical condition,
whereas they were reported on a virtual keyboard in the
virtual condition. Moreover, the pick and place actions
were initiated via controller buttons in VR, whereas they
were initiated by the user physically touching the work-
table in the physical condition. Finally, our conclusions
were gleaned from a pool of young users with relatively
little experience. Although this choice was motivated by
the desire to maintain a homogeneous sample, it comes at
the cost of possible low generalizability.

Considering that active industrial operators usually fall
within a much greater age range, further investigations might
increase the experimental sample and include both young
and senior users. In this way, it would be possible to under-
stand better whether the advantages of the virtual simulation
also extend to older people. Additionally, based on the find-
ing that even a scant knowledge of VR devices is sufficient
for revealing the advantages of virtual simulations, it would
be interesting to test whether these advantages increase as
the VR experience also grows. Another crucial point arises
when addressing the task complexity. The choice of such an
easy task, such as the pick-and-place one, was intentional to
allow a highly naturalistic investigation without constraining
the users’ actions and at the same time ensure good experi-
mental control. Future works might gradually increase the
task complexity and evaluate to what extent the virtual simu-
lation is still preferable over a physical cobot. A systematic
assessment of increasingly demanding tasks would also pro-
vide relevant knowledge on the applicability of pupil size
variation as an implicit workload index in different levels of
task complexity. If future research proves pupillometry to be
a reliable and flexible index of implicit workload—in either
virtual or physical environments or both—it would become
feasible for systems to auto-adjust the cobot’s behavior based
on human pupil responses. Therefore, a better understanding
of pupil changes according to HRC difficulty would have
relevant implications on the robotic automation domain.

Overall, this research has just started to shed light on the
potential of virtual simulations within HRC frameworks.
With the introduction of VR devices in the industry, the
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design, validation, training, and even active operations on
cobots can definitely take a turn for the better, with the
humans’ mental and physical health being the cradle of
faster and safer interactions between humans and robots.

Appendix
Analysis of pupil size variation through GAMMs

About the pick-and-place’s GAMMs, we used binary differ-
ence smooths and tested whether they significantly differed
from zero (Wieling 2018; Rij et al. 2019). We thus included
a smooth modeling the difference between the single-task
and dual-task original smooths (Task load), as well as for the
Virtual and Physical conditions’ smooths (Interface). As it
was demonstrated to significantly improve the model fit (van
Rjj et al. 2019), we included a random smooth of time for
each individual time series which we coded as Event (unique
combination of Participant and Trial) and we additionally
introduced random factors smooths for Participant and Trial
in order to lighten the computational demand (van Rjj et al.
2019). We then used the fREML smoothing parameter esti-
mation method (fast restricted maximum likelihood) and dis-
cretized covariates. The statistical analysis was performed
in RStudio (Team 2021) using the packages mgcv (Wood
2017) and itsadug (van Rij et al., 2017) for evaluation and
visualization of the GAMM models.

Results of pupil size variation through GAMMs

The summary statistics of the GAMMs fitting the pupil data
indicate that the following difference curves are significantly
different from zero in the Pick phase: Task load (F(3.52,
4.18)=30.30, p <0.0001), Interface (F(7.45, 8.53)=125.72,
p<0.0001), and Task load * Interface (F(5.11, 6.04)=16.24,
p<0.0001). Similarly, in the Place phase, the following
difference curves were find to differ from zero: Task load
(F(2,2)=11.10, p<0.0001), Interface (F(5.04, 5.98)=5.9,
p<0.0001) and Task load * Interface (F(2, 2)=287.87,
p <0.0001). When running the chunk analysis over the 6
time windows, all results obtained through the LMERs were
in line with those obtained through the GAMMs, except for
the effect of Task load on the pupil size variation registered
during the Place phase, which was only captured by the
GAMM model but not by the LMER.

Acknowledgements We thank Davide Gobbo for his support on the
development of the virtual environment. This study was carried out
within the scope of the project "use-inspired basic research," for which
the Department of General Psychology of the University of Padova has
been recognized as "Dipartimento di eccellenza" by the Italian Ministry
of University and Research.

Author contributions Federica Nenna and Luciano Gamberini took
part in conceptualization; Federica Nenna and Luciano Gamberini
involved in methodology; Federica Nenna and Davide Zanardi involved
in formal analysis and investigation; Federica Nenna and Valeria Orso
took part in writing—original draft preparation; Federica Nenna, Vale-
ria Orso, Luciano Gamberini involved in writing—review and editing;
Luciano Gamberini took part in resources; Luciano Gamberini took
part in supervision.

Funding Open access funding provided by Universita degli Studi di
Padova within the CRUI-CARE Agreement. This study was partially
supported by the European Union’s Horizon 2020 programme for
research, technological development, and demonstration under Grant
(ID: 826266; Co-Adapt project).

Data availability Data will be made available to interested researchers
under reasonable request.

Declarations

Conflict of interests The authors have no relevant financial or non-
financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abidi MH, Al-Ahmari A, Ahmad A, Ameen W, Alkhalefah H (2019)
Assessment of virtual reality-based manufacturing assembly train-
ing system. Int J Adv Manuf Technol 105(9):3743-3759

Bates D, Michler M, Bolker B, Walker S (2014) Fitting linear mixed-
effects models using Ime4. arXiv preprint arXiv:1406.5823.

Beatty J (1982) Task-evoked pupillary responses, processing load, and
the structure of processing resources. Psychol Bull 91(2):276

Berg LP, Vance JM (2017) Industry use of virtual reality in product
design and manufacturing: a survey. Virtual Reality 21(1):1-17

Berndt DJ, Clifford J (1994) Using dynamic time warping to find pat-
terns in time series. In: KDD workshop 10(16): 359-370

Berni A, Borgianni Y (2020) Applications of virtual reality in engi-
neering and product design: why, what, how, when and where.
Electronics 9(7):1064

Bevana N, Kirakowskib J, Maissela J (1991) What is usability.
In:Proceedings of the 4th International Conference on HCI.

Billings CE (2018) Aviation automation: the search for a human-cen-
tered approach. CRC Press.

Bonferroni C (1936) Teoria statistica delle classi e calcolo delle proba-
bilita. Pubbl Del R Ist Super Sci Econ Commer Firenze 8:3-62

Brooke J (1996) SUS-A quick and dirty usability scale. Usability Eval
Ind 189(194):4-7

@ Springer


http://creativecommons.org/licenses/by/4.0/

Virtual Reality

Chacén A, Ponsa P, Angulo C (2021) Usability study through a human-
robot collaborative workspace experience. Designs 5(2):35
Cherubini, A., Passama, R., Crosnier, A., Lasnier, A., Fraisse, P.
(2016). Collaborative manufacturing with physical human-robot
interaction. Robotics and Computer-Integrated Manufacturing,
40, 1-13.

Chowdhury A, Ahtinen A, Pieters R, Vaananen K (2020) User experi-
ence goals for designing industrial human-cobot collaboration:
a case study of franka panda robot. In: Proceedings of the 11th
Nordic Conference on Human-Computer Interaction: Shaping
Experiences, Shaping Society, pp 1-13

Damiani L, Demartini M, Guizzi G, Revetria R, Tonelli F (2018) Aug-
mented and virtual reality applications in industrial systems: a
qualitative review towards the industry 4.0 era. IFAC-PapersOn-
Line 51(11):624-630

Davis FD (1989) Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS Q 13:319-340

Fratczak P, Goh YM, Kinnell P, Soltoggio A, Justham L (2019) Under-
standing human behaviour in industrial human-robot interaction
by means of virtual reality. In: Proceedings of the Halfway to the
Future Symposium 2019. pp 1-7

Friard O, Gamba M (2016) BORIS: a free, versatile open-source event-
logging software for video/audio coding and live observations.
Methods Ecol Evol 7(11):1325-1330

de Greef T, Lafeber H, van Oostendorp H, Lindenberg, J (2009) Eye
movement as indicators of mental workload to trigger adaptive
automation. In: International Conference on Foundations of Aug-
mented Cognition, Springer, Berlin, Heidelberg, pp 219-228

Hansen LIN, Vinther N, Stranovsky L, Philipsen MP, Wu H, Moes-
lund TB (2018) Collaborative meat processing in virtual reality:
evaluating perceived safety and predictability of robot approach.
In: International Conference on Human Robot Interaction (HRI
2018). VAM-HRI

Hart SG, Staveland LE (1988) Development of NASA-TLX (Task Load
Index): results of empirical and theoretical research. In: Hancock
PA, Meshkati N (eds) Advances in psychology, vol 52. Elsevier,
Amsterdam, The Netherlands, pp 139-183

Hastie TJ, Tibshirani RJ (2017) Generalized additive models.
Routledge

Hockey GRJ (1997) Compensatory control in the regulation of human
performance under stress and high workload: a cognitive-energet-
ical framework. Biol Psychol 45(1-3):73-93

Hormaza LA, Mohammed WM, Ferrer BR, Bejarano R, Lastra JLM
(2019) On-line training and monitoring of robot tasks through
virtual reality. In: 2019 IEEE 17th International Conference on
Industrial Informatics (INDIN), 1: 841-846, IEEE

Hsieh SY, Lu JM (2018) Feasibility evaluation for immersive virtual
reality simulation of human-machine collaboration: a case study
of hand-over tasks. In: Congress of the International Ergonomics
Association, Springer, Cham, pp 364-369,

Inoue K, Nonaka S, Ujiie Y, Takubo T, Arai T (2005) Comparison
of human psychology for real and virtual mobile manipulators.
In: ROMAN 2005. IEEE International Workshop on Robot and
Human Interactive Communication, 2005. pp 73-78, IEEE.

Igbal ST, Zheng XS, Bailey BP (2004) Task-evoked pupillary response
to mental workload in human-computer interaction. In: CHI'04
extended abstracts on Human factors in computing systems, pp
1477-1480

Kagermann H (2015) Change through digitization—Value creation in
the age of Industry 4.0. In: Management of permanent change,
Springer Gabler, Wiesbaden, pp 23-45

Kaufeld M, Nickel P (2019) Level of robot autonomy and information
aids in human-robot interaction affect human mental workload—an
investigation in virtual reality. In: International Conference on
Human-Computer Interaction, Springer, Cham, pp 278-291

@ Springer

Keogh EJ, Pazzani MJ (2001) Derivative dynamic time warping. In:
Proceedings of the 2001 SIAM International Conference on Data
Mining. Society for Industrial and Applied Mathematics, pp 1-11

Kramer AF (2020) Physiological metrics of mental workload: a review
of recent progress. In: Multiple-task performance, pp 279-328

Krenn B, Reinboth T, Gross S, Busch C, Mara M, Meyer K, Layer-
Wagner T (2021) It's your turn!--a collaborative human-robot
pick-and-place scenario in a virtual industrial setting. arXiv pre-
print arXiv:2105.13838

Kret ME, Sjak-Shie EE (2019) Preprocessing pupil size data: guide-
lines and code. Behav Res Methods 51(3):1336-1342

Li R, van Almkerk M, van Waveren S, Carter E, Leite I (2019) Com-
paring human-robot proxemics between virtual reality and the
real world. In: 2019 14th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), IEEE, pp 431-439

Linn C, Bender S, Prosser J, Schmitt K, Werth D (2017) Virtual remote
inspection—a new concept for virtual reality enhanced real-time
maintenance. In: 2017 23rd International Conference on Virtual
System & Multimedia (VSMM), IEEE, pp 1-6

Lipton JI, Fay AJ, Rus D (2017) Baxter’s homunculus: Virtual reality
spaces for teleoperation in manufacturing. IEEE Robot Autom
Lett 3(1):179-186

Liu H, Wang L (2020) Remote human-robot collaboration: a cyber—
physical system application for hazard manufacturing environ-
ment. J Manuf Syst 54:24-34

Malik AA, Masood T, Bilberg A (2020) Virtual reality in manufac-
turing: immersive and collaborative artificial-reality in design of
human-robot workspace. Int J] Comput Integr Manuf 33(1):22-37

Mara M, Meyer K, Heiml M, Pichler H, Haring R, Krenn B, Layer-
Wagner T (2021) CoBot studio VR: a virtual reality game envi-
ronment for transdisciplinary research on interpretability and
trust in human-robot collaboration.

Marangunié¢ N, Grani¢ A (2015) Technology acceptance model:
a literature review from 1986 to 2013. Univ Access Inf Soc
14(1):81-95

Martin-Barrio A, Roldan JJ, Terrile S, del Cerro J, Barrientos A
(2020) Application of immersive technologies and natural lan-
guage to hyper-redundant robot teleoperation. Virtual Reality
24(3):541-555

Mathot S (2018) Pupillometry: psychology, physiology, and function.
J Cogn. https://doi.org/10.5334/joc.18

Mathét S, Fabius J, Van Heusden E, Van der Stigchel S (2018) Safe
and sensible preprocessing and baseline correction of pupil-size
data. Behav Res Methods 50(1):94-106

Matsas E, Vosniakos GC (2017) Design of a virtual reality training
system for human-robot collaboration in manufacturing tasks. Int
J Interact Des Manuf (IJIDeM) 11(2):139-153

Matsas E, Vosniakos GC, Batras D (2018) Prototyping proactive and
adaptive techniques for human-robot collaboration in manufactur-
ing using virtual reality. Robot Comput Integr Manuf 50:168—180

Meijman TF, Mulder G (2013) Psychological aspects of workload. In:
A handbook of work and organizational psychology, Psychology
Press, pp 15-44

Melluso N, Fareri S, Fantoni G, Bonaccorsi A, Chiarello F, Coli E,
Manafi S (2020) Lights and shadows of COVID-19, Technology
and Industry 4.0. arXiv preprint arXiv:2004.13457

Mingardi M, Pluchino P, Bacchin D, Rossato C, Gamberini L (2020)
Assessment of implicit and explicit measures of mental work-
load in working situations: implications for industry 40. Appl Sci
10(18):6416

Nachreiner F, Nickel P, Meyer I (2006) Human factors in process con-
trol systems: the design of human—machine interfaces. Saf Sci
44(1):5-26

Navon D, Miller J (1987) Role of outcome conflict in dual-task interfer-
ence. ] Exp Psychol Hum Percept Perform 13(3):435


https://doi.org/10.5334/joc.18

Virtual Reality

Nee AY, Ong SK (2013) Virtual and augmented reality applications in
manufacturing. IFAC Proc Vol 46(9):15-26

Oyekan JO, Hutabarat W, Tiwari A, Grech R, Aung MH, Mariani MP,
Dupuis C (2019) The effectiveness of virtual environments in
developing collaborative strategies between industrial robots and
humans. Robot Comput Integr Manuf 55:41-54

Peters C, Yang F, Saikia H, Li C, Skantze G (2018) Towards the use of
mixed reality for hri design via virtual robots. In: 1st International
Workshop on Virtual, Augmented, and Mixed Reality for HRI
(VAM-HRI), Cambridge, UK, March 23, 2020

Prattico FG, Lamberti F (2021) Towards the adoption of virtual reality
training systems for the self-tuition of industrial robot operators:
a case study at KUKA. Comput Ind 129:103446

Riek LD (2012) Wizard of oz studies in hri: a systematic review and
new reporting guidelines. ] Hum Robot Interact 1(1):119-136

Roldéan JJ, Crespo E, Martin-Barrio A, Pefia-Tapia E, Barrientos A
(2019) A training system for Industry 4.0 operators in complex
assemblies based on virtual reality and process mining. Robot
Comput Integr Manuf 59:305-316

Rossato C, Pluchino P, Cellini N, Jacucci G, Spagnolli A, Gamberini
L (2021) Facing with collaborative robots: the subjective experi-
ence in senior and younger workers. Cyberpsychol Behav Soc
Netw 24(5):349-356

Savur C, Kumar S, Sahin F (2019) A framework for monitoring human
physiological response during human robot collaborative task. In:
2019 IEEE International Conference on Systems, Man and Cyber-
netics (SMC), IEEE, pp 385-390

Schrepp M (2015) User experience questionnaire handbook: All you
need to know to apply the ueq successfully in your projects. URL
http://www.ueq.online.org

Shirzad N, Van der Loos HM (2016) Evaluating the user experience
of exercising reaching motions with a robot that predicts desired
movement difficulty. ] Mot Behav 48(1):31-46

Team (2021) RStudio: integrated development environment for R.
RStudio, PBC, Boston, MA URL http://www.rstudio.com/

Van Acker BB, Bombeke K, Durnez W, Parmentier DD, Mateus
JC, Biondi A, Vlerick P (2020) Mobile pupillometry in manual
assembly: a pilot study exploring the wearability and external
validity of a renowned mental workload lab measure. Int J Ind
Ergon 75:102891

Van Orden KF, Limbert W, Makeig S, Jung TP (2001) Eye activity
correlates of workload during a visuospatial memory task. Hum
Factors 43(1):111-121

van Rij J, Hendriks P, van Rijn H, Baayen RH, Wood SN (2019) Ana-
lyzing the time course of pupillometric data. Trends in Hear
23:2331216519832483

Wang L, Mohammed A, Onori M (2014) Remote robotic assembly
guided by 3D models linking to a real robot. CIRP Ann 63(1):1-4

Wang H, Zhang B, Zhang T, Jakacky A (2019) Tele-operating a col-
laborative robot for space repairs with virtual reality. In: 2019
IEEE 9th Annual International Conference on CYBER Technol-
ogy in Automation, Control, and Intelligent Systems (CYBER),
IEEE, pp 175-180

Weistroffer V, Paljic A, Fuchs P, Hugues O, Chodacki JP, Ligot P,
Morais A (2014) Assessing the acceptability of human-robot co-
presence on assembly lines: a comparison between actual situ-
ations and their virtual reality counterparts. In: The 23rd IEEE
International Symposium on Robot and Human Interactive Com-
munication, IEEE, pp 377-384

Whitney D, Rosen E, Ullman D, Phillips E, Tellex S (2018) Ros reality:
a virtual reality framework using consumer-grade hardware for
ros-enabled robots. In: 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) . IEEE, pp 1-9

Wieling M (2018) Analyzing dynamic phonetic data using generalized
additive mixed modeling: a tutorial focusing on articulatory differ-
ences between L1 and L2 speakers of English. J Phon 70:86-116

Wood SN (2017) Generalized additive models: an introduction with
R. CRC Press

Xiao J, Wang P, Lu H, Zhang H (2020) A three-dimensional mapping
and virtual reality-based human—robot interaction for collaborative
space exploration. Int J Adv Rob Syst 17(3):1729881420925293

Zhang J (2018) Natural human-robot interaction in virtual reality tel-
epresence systems. In: 2018 IEEE Conference on Virtual Reality
and 3D User Interfaces (VR), IEEE, pp 812-813

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer


http://www.ueq.online.org
http://www.rstudio.com/

	The virtualization of human–robot interactions: a user-centric workload assessment
	Abstract
	1 Introduction
	2 State of the art
	2.1 Virtual robotics in Industry 4.0
	2.2 Comparative literature on virtual and physical HRCs
	2.3 Metrics for the assessment of human factors in HRCs

	3 Our study
	3.1 Hypotheses and research questions
	3.1.1 Task load manipulation
	3.1.2 Operator’s behavioral performance
	3.1.3 Operator’s cognitive state


	4 Methods
	4.1 Sample
	4.2 Technical setup
	4.3 Measurements
	4.3.1 Behavioral performance
	4.3.2 Implicit workload (pupil size variation)
	4.3.3 Explicit workload (NASA-TLX)
	4.3.4 Individual factors

	4.4 Task and procedure
	4.4.1 Pick-and-place task
	4.4.2 Arithmetic task
	4.4.3 Dual task

	4.5 Statistical analysis
	4.5.1 Behavioral performance
	4.5.2 Implicit workload (pupil size variation)
	4.5.3 Explicit workload (NASA-TLX)
	4.5.4 Individual factors


	5 Results
	5.1 Performance measures
	5.1.1 Operation time
	5.1.2 Arithmetic task error

	5.2 Implicit workload (pupil size variation)
	5.2.1 Pick-and-place task
	5.2.2 Arithmetic task

	5.3 Explicit workload (NASA-TLX questionnaire)
	5.4 Individual factors
	5.4.1 VR experience
	5.4.2 Individual preferences for a virtual or physical cobot


	6 Discussion
	6.1 Task load manipulation
	6.1.1 The arithmetic task load is reflected in pupil size variations
	6.1.2 The dual task affected user’s implicit and explicit workload

	6.2 Operator’s behavioral performance
	6.2.1 The virtual cobot enables faster operations than its physical counterpart

	6.3 Operator’s cognitive state in the virtual and physical environments
	6.3.1 Interacting with the virtual cobot reduces the implicit workload
	6.3.2 Advantages of virtualization were not reflected in the explicit workload

	6.4 Individual factors

	7 Conclusions, limitations, and future works
	Acknowledgements 
	References




