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Detecting cortical circuits resonant 
to high-frequency oscillations in the 
human primary motor cortex:  
a tMS-tAcS study
Andrea Guerra1,6, Federico Ranieri2,6, Emma falato3, Gabriella Musumeci3, Alessandro Di 
Santo3, Francesco Asci4, Giovanni Di pino5, Antonio Suppa1,4, Alfredo Berardelli1,4 & 
Vincenzo Di Lazzaro3 ✉

Corticospinal volleys evoked by transcranial magnetic stimulation (TMS) over the primary motor cortex 
(M1) consist of high-frequency bursts (≈667 and ≈333 Hz). However, intracortical circuits producing 
such corticospinal high-frequency bursts are unknown. We here investigated whether neurons activated 
by single TMS pulses over M1 are resonant to high-frequency oscillations, using a combined transcranial 
alternating current stimulation (tACS)-TMS approach. We applied 667, 333 Hz or sham-tACS and, 
concurrently, we delivered six single-pulse TMS protocols using monophasic or biphasic pulses, different 
stimulation intensities, muscular states, types and orientations of coils. We recorded motor evoked 
potentials (MEPs) before, during and after tACS. 333 Hz tACS facilitated MEPs evoked by biphasic TMS 
through a figure-of-eight coil at active motor threshold (AMT), and by monophasic TMS with anterior-
to-posterior-induced current in the brain. 333 Hz tACS also facilitated MEPs evoked by monophasic TMS 
through a circular coil at AMT, an effect that weakly persisted after the stimulation. 667 Hz tACS had 
no effects. 333 Hz, but not 667 Hz, tACS may have reinforced the synchronization of specific neurons 
to high-frequency oscillations enhancing this activity, and facilitating MEPs. Our findings suggest 
that different bursting modes of corticospinal neurons are produced by separate circuits with different 
oscillatory properties.

Corticospinal neurons (CSNs) of the mammalian brain show a high frequency (≈667 Hz) burst of activity in 
response to transcranial electric (TES) and magnetic (TMS) stimulation. These stereotyped bursts of activity 
can be recorded from the surface of the high cervical cord and reflect the spiking of a large number of corticos-
pinal axons1–5. Recently, Maier et al.6 recorded the responses of single corticospinal axons together with volleys 
from the surface of the cervical cord after intracortical stimulation in monkey and showed that individual axons 
fi e repetitively at the high frequency revealed by surface recordings, thus demonstrating that bursts originate 
from the repetitive synchronous discharge of CSNs. They also found that while most of the corticospinal axons 
discharged at around 600 Hz, there were other axons responding at lower frequencies6. In humans, bursts of cor-
ticospinal activity with different frequencies can be recorded by cervical epidural electrodes after TMS over the 
motor cortex5. Th s descending bursting activity is influenced by the direction of the current fl wing across the 
central sulcus. The more commonly used posterior-to-anterior (PA)-induced current in the brain (perpendicular 
to the central sulcus) preferentially evokes the 667 Hz repetitive discharge. However, when the orientation of the 
induced current is reversed (anterior-to-posterior in the brain; AP) or when stimulation is performed using a 
biphasic TMS that combines sequentially both directions of stimulation (a PA induced current followed by an AP 
induced current), the output changes with less synchronized volleys with peak latencies later than those seen after 
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PA stimulation. The corticospinal output evoked by AP and biphasic stimulation is more variable but, in a few 
subjects, bursts of activity with a frequency that is half of that of the PA-evoked bursts (≈333 Hz) were recorded5. 
Thus, both animal and human data suggest that multiple cortical circuits can be activated by motor cortex stimu-
lation, producing different frequencies of discharge of CSNs (Fig. 1, see5 for a review). The physiological mecha-
nisms leading to a lower frequency bursting of CSNs after AP and biphasic stimulation (when compared with PA 
stimulation) are still unclear. However, modelling studies suggest that PA stimulation preferentially activates the 
CSNs monosynaptically, producing highly synchronized corticospinal activity and MEPs with shorter latencies, 
while AP stimulation could activate CSNs polysynaptically, producing less synchronized corticospinal activity 
and MEPs with longer latencies7. However, to record the lower frequency descending activity the intensity of the 
stimulus is critical. Indeed, at higher stimulus intensities the lower frequency bursting is no longer evident, and 
it is replaced by the 667 Hz activity.

Figure 1. Cortical circuits activated by motor cortex simulation. Panel a. Left  Post stimulus time histograms of 
individual axon responses after motor cortex (M1) intracortical stimulation in monkeys (modifi d from6). The 
peaks of the histograms reveal different patterns of discharge: 1. high-frequency (≈660 Hz) repetitive discharge 
with a D-wave (i.e. the earliest response originating from the direct activation of corticospinal axons) followed 
by several I-waves (i.e. longer latency responses originating from indirect activation of corticospinal cells 
through trans-synaptic inputs); 2. high-frequency repetitive discharge with only I-waves; 3. lower frequency 
discharge at ≈330 Hz (see the insert); 4. more temporally-dispersed responses. Right: Corticospinal volleys 
recorded at epidural level after different forms of magnetic stimulation in two human subjects. Monophasic 
lateromedial (LM) TMS evokes a high-frequency (≈660 Hz) repetitive discharge with a D-wave followed by 
several I-waves, monophasic posterior-to-anterior (PA) TMS preferentially evokes only I-waves, biphasic TMS 
evokes a lower frequency activity (≈330 Hz, see the insert for subject 2), monophasic anterior-to-posterior (AP) 
TMS evokes both lower frequency and temporally dispersed responses. Panel b. Diagrammatic representation 
of possible sites of activation of corticospinal neurons (CSNs) using different TMS techniques on M1. Two 
pyramidal tract neurons are represented. Monophasic PA TMS preferentially activates CSNs trans-synaptically 
evoking high-frequency I-waves; biphasic PA-AP TMS and monophasic AP TMS preferentially activate trans-
synaptically different CSNs, evoking lower frequency I-waves and temporally dispersed volleys; TMS with a 
circular coil centred over the vertex preferentially activates CSNs at the level of the axon hillock; monophasic 
LM TMS preferentially activate the corticospinal axons at some distance from the cell body.

https://doi.org/10.1038/s41598-020-64717-7


3Scientific RepoRtS |         (2020) 10:7695  | https://doi.org/10.1038/s41598-020-64717-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

To date, it is unknown whether the increase of the synchronization of motor cortex circuits at 667 Hz and/
or at the lower frequencies corresponding to the bursts evoked by AP or biphasic stimulation, would eventually 
result in an increase of the corticospinal output. Also, it is unclear whether corticospinal bursts at higher and 
lower frequencies are produced by independent oscillatory intracortical circuits with different characteristics, 
as suggested by modeling studies8, or rather refl ct the activity of a single neuronal generator able to discharge 
at harmonically-related frequencies (667 and 333 Hz). A possible approach to explore this issue is to take advan-
tage of the combined stimulation of the motor cortex with TMS and transcranial alternating current stimulation 
(tACS)9–16. tACS is able to cause coherent changes in the fi ing probability and thereby timing of neuronal popu-
lations, thus entraining brain activity17–19. Since this effect preferentially occurs when the stimulation frequency 
matches with the endogenous rhythm of the neurons being stimulated (‘resonance principle’20–22), tACS can be 
used to test the ability of brain areas, networks or neuronal elements to resonate at specific frequencies.

We here hypothesize that tACS at 667 Hz (the frequency that coincides with that of the most consistent and 
stereotyped activity evoked by TMS) and 333 Hz (the most consistent lower frequency observed in few human 
recordings) could differentially influence the response of motor cortex to TMS. Thus, we applied tACS over motor 
cortex at 667 and 333 Hz and, at the same time, we delivered TMS by using single monophasic or biphasic pulses, 
at different intensities, with different types of coils and coil handle orientations, so as to test as selectively as pos-
sible the excitability of circuits evoking the two bursting modes5. In order to test whether any significant effect 
was frequency-specific, we performed a control experiment using transcranial random noise stimulation (tRNS), 
a form of stimulation that includes a wide spectrum of frequencies23. The amplitude of motor evoked potentials 
(MEPs) produced by the different protocols of stimulation in hand muscles was the readout used to evaluate the 
effects of cortical circuit entrainment. Evaluation of amplitude of MEPs evoked by monophasic and biphasic 
stimulation can provide useful insights into the physiology of different sets of interneurons projecting to CSNs24. 
We posit that MEP amplitude increase might refl ct the strengthening of the activity of neural elements in M1 
due to the reinforced synchronization of intracortical circuits at high frequencies through tACS. Finally, in order 
to verify whether such putative effects only occur during tACS or, also outlast the stimulation, we also repeated 
the same recordings after tACS.

Methods
Participants. Thi ty healthy right-handed subjects (17 males; mean age ± SD: 26.6 ± 3.8 years) were enrolled 
in the study. None of the participants had any neurological or psychiatric disorders, and none were taking drugs 
known to modulate brain excitability. No participant had any contraindication to TMS or transcranial electrical 
stimulation, as indicated in the current international safety guidelines25,26. The study was conducted in accordance 
with the Declaration of Helsinki and approved by the Ethics Committee of University Campus Bio-Medico of 
Rome. All subjects gave their written informed consent for participating in the study.

tACS and tRNS. tACS and tRNS were performed by using two conductive rubber electrodes enclosed in 
sponges soaked in saline solution (size: 5 × 7 cm) through a BrainSTIM stimulator (EMS, Bologna, Italy). The 
stimulating electrodes were centered over the dominant (left) M1 and over the Pz point of the 10–20 EEG system 
respectively, similarly to our previous studies11–13,27,28. Electrodes were secured in place by using elastic bands. 
Impedance was kept at <10 kΩ, as measured by the stimulation device. tACS was delivered at two different fre-
quencies: 667 Hz and 333 Hz. In addition, sham stimulation was used as a control condition, consisting in 667 Hz 
tACS activated for only 7 seconds before applying TMS. Sinewave stimulation was delivered with no direct cur-
rent off et and a peak-to-peak amplitude of 1 mA with 3-second ramping-up and ramping-down periods. Th s 
intensity did not induce visual or skin sensations in any participant. Accordingly, no subject was able to distin-
guish among the different stimulation conditions. Other than in the sham condition, tACS was kept active for the 
whole duration of TMS protocols (i.e. 8–9 mins, see below). tRNS was delivered in a range unbalanced toward the 
high-frequencies (10–640 Hz), and the stimulation intensity was set at 1 mA.

TMS. TMS was carried out by means of a Magstim 2002 stimulator, delivering monophasic pulses, and a Magstim 
SuperRapid stimulator, delivering biphasic pulses (Magstim Co Ltd, Whitland, South West Wales, UK). We used a 
standard figu e-of-eight 70 mm coil (Magstim Co Ltd) (focal coil) or a large circular 90 mm coil (Magstim Co Ltd) 
(circular coil) according to the specifi  protocol used. MEPs were recorded from the right first dorsal interosseous 
(FDI) muscle of the hand. The ‘hotspot’ (i.e. optimal scalp position to elicit MEPs) of the FDI muscle was identifi d 
with the handle of the TMS coil pointing posteriorly and laterally or anteriorly and medially to the midsagittal 
line, depending on the protocol used (see below). Th s procedure was repeated twice: fi st, in order to center the 
stimulating electrode of tACS over the dominant (left) M1; second, after the electrodes had been positioned on the 
participant’s head, when the site was marked over the sponge in order to ensure reliable coil repositioning during the 
experiment. Resting motor threshold (rMT) and active motor threshold (AMT) were then determined according to 
the international guidelines29. RMT was defi ed as the minimum stimulation intensity able to elicit MEPs (at least 
50 μV in amplitude) in 50% of 10 consecutive stimuli. AMT was determined during a mild tonic contraction of the 
FDI muscle (approximately 20% of the maximal muscle strength) and defi ed as the minimum stimulation intensity 
eliciting MEPs of about 200 μV in amplitude in 50% of 10 consecutive stimuli.

Six different single-pulse TMS protocols were performed, according to the motor state of the participant, the 
magnetic pulse type, the coil shape and orientation used:

 (1) rMT-mono: monophasic TMS pulses delivered at rest through a focal coil with PA-induced current (poste-
rior-to-anterior handle orientation), at the intensity of 100% rMT;

 (2) 110 rMT-mono: monophasic TMS pulses delivered at rest through a focal coil with PA-induced current, at 
the intensity of 110% rMT;
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 (3) AMT-mono: monophasic TMS pulses delivered during tonic contraction of the FDI muscle (about 20% of 
maximal voluntary muscle contraction) through a focal coil with PA-induced current, at the intensity of 
100% AMT;

 (4) AMT-biph: biphasic TMS pulses delivered during voluntary muscular contraction through a focal coil with 
PA-AP-induced current, at the intensity of 100% AMT;

 (5) AMT-circ: monophasic TMS pulses delivered during voluntary muscular contraction through a circular 
coil with an anticlockwise current fl w, at the intensity of 100% AMT;

 (6) AMT-mono AP: monophasic TMS pulses delivered during voluntary muscular contraction through a focal 
coil with AP-induced current (anterior-to-posterior handle orientation), at the intensity of 100% AMT.

In protocols 1–4 and 6 the TMS coil was oriented so as to induce a current fl w approximately perpendicular 
to the central sulcus (PA for protocols 1–3, PA-AP for protocol 4, and AP for protocol 6), whereas in protocol 
5 the coil was centered over the vertex (Cz site of the 10–20 EEG system) with the handle pointing backwards. 
Protocols 1–3 preferentially activate the cortical circuits evoking CSN bursting at 667 Hz with trains of responses 
of longer duration at increasing stimulus intensities5,30. The use of three different levels of stimulation enhances 
the possibility to detect even subtle changes in the bursting activity. Protocol 4 and 6 preferentially evoke the 
333 Hz bursting activity, whereas protocol 5 activates the CSNs at the level of the axon hillock, with a less pro-
nounced activation of presynaptic inputs, thus providing more direct information on the level of excitability 
of these cells5,30. AMT-biph, AMT-circ and AMT-mono AP protocols were performed only during voluntary 
activity and at low intensity (AMT) because their selectivity for the circuit inducing lower frequency bursting 
(biphasic and AP stimulation) or for direct activation of CSNs (circular coil) has been demonstrated only at 
low stimulus intensities5,30 (Fig. 1). In protocols 3–6 the level of muscular contraction was visually monitored 
online by one of the researchers. In case the amount of contraction changed signifi antly during the course of the 
experiment, an auditory feedback was given to participants, so as to adjust their muscular activity and keep it con-
stant during the recordings. MEPs were recorded through a pair of surface electrodes in a belly/tendon montage. 
Electromyographic (EMG) signals were amplifi d (Digitimer D360 amplifie ; Digitimer Ltd, Welwyn Garden 
City, UK), digitized at 5 kHz (CED 1401 A/D converter; Cambridge Electronic Design Ltd, Cambridge, UK) and 
stored on a computer for off-li e analysis (Signal software, Cambridge Electronic Design).

Experimental design. Two main experiments have been performed in this study. In Experiment 1 (Fig. 2, 
panel a), fi een participants (9 males; mean age ± SD: 25.5 ± 4.4 years) underwent three randomized experi-
mental sessions, conducted at the same time of the day, at least one week apart: (i) 667 Hz tACS; (ii) 333 Hz tACS; 
(iii) sham tACS. Subjects were seated in a comfortable chair with their arms fully relaxed in a natural position 
and their hands resting on a table. After having positioned tACS electrodes over the scalp, rMT and AMT were 
determined for each TMS protocol. Then, 15 MEPs evoked by single-pulse TMS (4.5–5.5 seconds inter-stimulus 
interval) were recorded for each of the protocols 1–5 at three different time-points: before activating tACS (T0), 
during tACS (T1) and 5 minutes after having switched-off tACS (T2). The five different TMS protocols were tested 
consecutively, and their order was randomized at all the time-points. At T1, TMS was started ≈10 seconds after 
the activation of tACS. In Experiment 2 (Fig. 2, panel b), in a different group of fi een participants (8 males; mean 
age ± SD: 27.7 ± 2.7 years), we tested the effect of 667 Hz, 333 Hz and sham tACS (randomly delivered in different 
sessions) on MEPs evoked by single-pulse TMS with the coil handle oriented in the AP direction (protocol 6). 
Similar to Experiment 1, 15 MEPs were recorded at T0, T1 and T2.

Finally, in a control experiment, the same fi een participants of Experiment 1 underwent tRNS. MEPs evoked 
by single-pulse TMS were recorded for protocols 4 and 5 before, during and 5 minutes after tRNS.

Data and statistical analysis. Peak-to-peak MEP amplitudes were measured by means of a custom-
ized script on Matlab software (The MathWorks Inc) and then averaged for each condition. In protocols per-
formed at rest, trials displaying EMG activity >0.1 mV preceding TMS were discarded. Separate one-way 
repeated-measures (rm) ANOVAs with the factor ‘session’ (3 levels: 667 Hz tACS, 333 Hz tACS, sham tACS) were 
used to compare the rMT, AMTs (AMT-mono, AMT-biph and AMT-circ) and the amplitude of MEPs measured 
at T0 in the three experimental sessions. A three-way rmANOVA with ‘session’, ‘protocol’ (5 levels: rMT-mono, 
110 rMT-mono, AMT-mono, AMT-biph, AMT-circ) and ‘time-point’ (3 levels: T0, T1, T2) as factors was used to 
test possible effects of tACS stimulation on MEPs amplitude in Experiment 1. In order to check whether the level 
of voluntary muscular contraction influenced our results, a rmANOVA with ‘protocol’ (3 levels: AMT-mono, 
AMT-biph, AMT-circ) and ‘time-point’ as factors was conducted on the mean rectifi d EMG signal amplitude, 
measured in the 100 ms preceding TMS. A two-way rmANOVA with ‘session’ and ‘time-point’ as factors was 
adopted to test possible changes of MEPs amplitude in Experiment 2. Finally, two separate rmANOVAs with 
‘time-point’ as factor were used to verify possible effects of tRNS in the control experiment. Greenhouse-Geisser 
corrections were applied when a violation of sphericity was detected. The level of signifi ance was set at p ≤ 0.05. 
Tukey’s honest signifi ance test was subsequently applied for post-hoc comparisons. Unless otherwise stated, all 
the values are presented as mean ± standard error of means (SEM). Statistical analyses were performed using 
Statistica (StatSoft Inc).

The sample size was computed with desired power of 0.80 and alpha error of 0.05, assuming a 25% change 
in MEP amplitude from a baseline value of 1.0 ± 0.3 mV, based on previously published data on high-frequency 
tACS31. The minimal required sample size was calculated to be 12 subjects.
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Results
The RMT (F2,28 = 0.41, p = 0.67) and the AMTs (AMT-mono: F2,28 = 1.46, p = 0.25; AMT-biph: F2,28 = 0.18, 
p = 0.83; AMT-circ: F2,28 = 0.89, p = 0.42) were similar in the three different experimental sessions (Table 1). The 
amplitude of MEPs recorded at T0 was also comparable between sessions (rMT-mono: F2,28 = 0.82, p = 0.45; 110 
rMT-mono: F2,28 = 0.001, p = 0.99; AMT-mono: F2,28 = 1.22, p = 0.31; AMT-biph: F2,28 = 1.50, p = 0.24; AMT-circ: 
F2,28 = 0.74, p = 0.49).

The rmANOVA conducted on MEP amplitude in Experiment 1 disclosed a signifi ant ‘session’ × ‘protocol’ 
× ‘time-point’ interaction (F16,224 = 1.97, p = 0.016), suggesting that this measure was modified by tACS in one 
or more TMS protocols, during and/or after the stimulation. Also, a signifi ant effect of the factor ‘protocol’ 
(F4,56 = 22.07, p < 0.001) was present, indicating that MEP amplitude was different according to the TMS protocol 
applied. As expected, post-hoc analysis demonstrated a smaller MEP size for rMT-mono with respect to all the 
other protocols (p < 0.001 for all the comparisons). The factors ‘session’ (F2,28 = 0.52, p = 0.60) and ‘time-point’ 
(F2,28 = 2.89, p = 0.07), as well as the ‘session’ × ‘protocol’ (F8,112 = 0.61, p = 0.77), ‘session’ × ‘time-point’ 
(F4,56 = 0.94, p = 0.45) and ‘protocol’ × ‘time-point’ (F8,112 = 1.73, p = 0.10) interactions were not signifi ant. Then, 
three separate rmANOVAs with ‘protocol’ and ‘time-point’ as factors were conducted to identify which tACS 
frequency modulated MEPs. Both the 667 Hz tACS and the sham tACS left MEPs unchanged in all protocols, 
as demonstrated by the lack of a ‘protocol’ × ‘time-point’ interaction (667 Hz tACS: F8,112 = 1.01, p = 0.44; sham 
tACS: F8,112 = 1.35, p = 0.23) and the non-signifi ant factor ‘time-point’ (667 Hz tACS: F2,28 = 2.21, p = 0.13 sham 

Figure 2. Experimental design. Panel a. In Experiment 1, five different TMS protocols were applied in a 
randomized order before activating tACS (T0), during tACS (T1) and 5 minutes after the end of tACS (T2) 
over M1: 1) monophasic TMS pulses delivered at rest through a standard figu e-of-eight coil, at the intensity 
of 100% rMT; 2) monophasic TMS pulses delivered at rest through a standard figu e-of-eight coil, at the 
intensity of 110% rMT; 3) monophasic TMS pulses delivered during mild voluntary muscular contraction 
through a standard figu e-of-eight coil, at the intensity of 100% AMT; 4) biphasic TMS pulses delivered during 
mild voluntary muscular contraction through a standard figu e-of-eight coil, at the intensity of 100% AMT; 
5) monophasic TMS pulses delivered during mild voluntary muscular contraction through a circular coil, at 
the intensity of 100% AMT. Panel b. In Experiment 2, monophasic TMS pulses were delivered during mild 
voluntary muscular contraction through a standard figu e-of-eight coil with an anterior-to-posterior handle 
orientation at T0, T1 and T2. In both experiments, each participant underwent three randomized sessions 
in which tACS was delivered at 667 Hz or 333 Hz frequency, or the stimulation was sham. PA = posterior-to-
anterior; AP = anterior-to-posterior; AMT = active motor threshold; rMT = resting motor threshold.

AMT-mono (%) AMT-biph (%) AMT-circ (%) rMT-mono (%)

667 Hz 333 Hz Sham 667 Hz 333 Hz Sham 667 Hz 333 Hz Sham 667 Hz 333 Hz Sham

mean 35.5 36.7 33.7 49.0 50.4 49.2 34.5 37.9 35.7 54.8 53.5 53.3

SD 6.0 9.1 8.4 13.7 13.3 14.3 8.5 9.9 5.9 9.8 11.2 12.3

Table 1. Motor thresholds. Active motor thresholds (AMT-mono = AMT measured with monophasic TMS 
and figu e-of-eight coil, AMT-biph = AMT with biphasic TMS and figu e-of-eight coil, AMT-circ = AMT 
with monophasic TMS and circular coil) and resting motor threshold (rMT-mono = rMT measured with 
monophasic TMS and figu e-of-eight coil) for each experimental session (mean and standard deviation - SD - 
values).
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tACS: F2,28 = 0.62, p = 0.54). By contrast, when considering the 333 Hz tACS session, the rmANOVA disclosed 
a ‘protocol’ × ‘time-point’ interaction (F8,112 = 3.31, p = 0.002) and a signifi ant factor ‘time-point’ (F2,28 = 3.67, 
p = 0.04). Separate follow-up rmANOVAs with the factor ‘time-point’ suggested that 333 Hz tACS modu-
lated AMT-biph (F2,28 = 5.40, p = 0.01) and AMT-circ (F2,28 = 4.25, p = 0.02), but not AMT-mono (F2,28 = 1.96, 
p = 0.16), rMT-mono (F2,28 = 0.41, p = 0.66) and 110 rMT-mono (F2,28 = 1.72, p = 0.19). Post-hoc analysis indi-
cated that in 333 Hz AMT-biph, MEPs were signifi antly facilitated at T1 (T0 vs T1: p = 0.01) and returned to 
their baseline amplitude at T2 (T0 vs T2: p = 0.96; T1 vs T2: p = 0.03). Differently, in 333 Hz AMT-circ, MEP 
amplitude was higher both at T1 (p = 0.04) and, to a lesser extent, at T2 (p = 0.05) than at T0. MEPs facilitation 
was comparable at T1 and T2 (p = 0.99) (Fig. 3). Since the modulation we found with 333 Hz tACS was present 
in protocols implying voluntary muscular contraction during TMS, we verifi d that the amount of EMG activity 
preceding TMS was not significantly different in all the time-points and protocols tested. The rmANOVA demon-
strated no effect of the factors ‘time-point’ (F2,28 = 1.44, p = 0.25) and ‘protocol’ (F2,28 = 3.14, p = 0.06), and the 
lack of a ‘time-point’ × ‘protocol’ interaction (F4,56 = 0.19, p = 0.94), confi ming similar EMG values throughout 
the experiment.

The rmANOVA conducted on MEP amplitude in Experiment 2 disclosed a signifi ant ‘session’ × ‘time-point’ 
interaction (F4,56 = 2.99, p = 0.03), suggesting frequency- and time-dependent effects of tACS. The factor ‘session’ 
was not significant (F2,28 = 0.96, p = 0.39). Separate rmANOVAs with ‘time-point’ as factor were, then, conducted 
for each session. The analysis indicated that 333 Hz tACS modulated AMT-mono AP protocol (F2,28 = 7.12, 
p < 0.01), while 667 Hz (F1.4,19.2 = 0.09, p = 0.84) and sham tACS (F2,28 = 0.49, p = 0.61) left it unchanged. Post-hoc 
analyses demonstrated that MEPs amplitude increased at T1 (T0 vs T1: p < 0.01), but not at T2 (T0 vs T2: p = 0.7; 
T1 vs T2: p = 0.02) (Fig. 4).

Finally, the rmANOVAs performed on MEP amplitude in the control experiment resulted in a non-signifi ant 
factor ‘time-point’ both for AMT-biph (T0: 0.47 ± 0.20 mV, T1: 0.46 ± 0.24 mV, T2: 0.58 ± 0.31 mV; F2,28 = 1.83, 
p = 0.18) and AMT-circ (T0: 0.47 ± 0.21 mV, T1: 0.62 ± 0.37 mV, T2: 0.56 ± 0.42 mV; F2,28 = 1.22, p = 0.31), sug-
gesting no effects of tRNS on these TMS measures of M1 excitability.

The effects of 333 Hz tACS in representative subjects are illustrated in Fig. 5.

Figure 3. Effects of 667 Hz tACS (upper line), 333 Hz tACS (middle line) and sham tACS (lower line) on MEPs 
amplitude in the five different TMS paradigms tested. 333 Hz tACS facilitated MEPs in AMT-biph and AMT-
circ protocols. Note that the tACS-induced increase of MEPs amplitude in AMT-biph was present only during 
the stimulation (T1), while in AMT-circ this effect persisted at 5 minutes after tACS (T2). 667 Hz tACS and 
sham tACS did not induce any signifi ant effect on MEPs. Asterisks denote signifi ant differences in the post-
hoc analyses.
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Discussion
In this study, we systematically investigated the effect of tACS, delivered at two different high-frequencies (i.e., 
667 and 333 Hz), on the amplitude of MEPs elicited by distinct TMS protocols consisting of different current ori-
entations across the central sulcus, stimulation intensities and muscle contraction states (i.e., rest versus active). 
We used TMS protocols thought to preferentially target different sites/circuits within the motor cortex: a protocol 
(monophasic pulses, PA-induced current at three different intensities) which indirectly activates the CSNs evok-
ing the 667 Hz bursting; two protocols (biphasic pulses, PA-AP-induced current, at low intensity; monophasic 
pulses, AP-induced current, at low intensity) which indirectly activate the CSNs evoking the 333 Hz bursting; 
a protocol (monophasic pulses, anticlockwise current fl w, at low intensity) that preferentially activates more 
directly the CSNs. We demonstrated that the amplitude of MEPs evoked by low-intensity biphasic as well as 

Figure 4. Effects of 667 Hz, 333 Hz and sham tACS in the AMT-mono AP protocol. MEPs amplitude increased 
during 333 Hz tACS, whereas 667 Hz tACS and sham tACS did not exert any effect. Asterisks denote signifi ant 
differences in the post-hoc analyses.

Figure 5. Effects of 333 Hz tACS in representative subjects. The amplitude of MEPs evoked by biphasic TMS 
pulses delivered during voluntary muscular contraction through a standard figu e-of-eight coil at the intensity 
of 100% AMT (AMT-biph – upper line) and by monophasic TMS pulses delivered through a figu e-of-eight coil 
with the handle AP-oriented (AMT-mono AP – middle line) increased during 333 Hz tACS (T1). In contrast, 
the amplitude of MEPs evoked by monophasic TMS pulses delivered during voluntary muscular contraction 
through a circular coil at the intensity of 100% AMT (AMT-circ – lower line) increased both during and 
5 minutes after 333 Hz tACS over M1 (T2).
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monophasic AP-oriented TMS stimuli during 333 Hz tACS on the motor cortex is enhanced. tACS at 333 Hz also 
facilitated MEPs evoked by low intensity TMS delivered through a circular coil, an effect that weakly persisted 
5 minutes after the end of tACS. By contrast, 667 Hz tACS and sham tACS did not produce any signifi ant effect 
on amplitude of MEPs recorded both at rest and during mild voluntary contraction. Finally, our control experi-
ment showed that tRNS at 10–640 Hz is not able to modulate MEPs evoked by low-intensity biphasic PA-oriented 
TMS and monophasic TMS delivered through a circular coil.

Since motor thresholds were comparable between the three different sessions, we can exclude that different 
baseline levels of corticospinal excitability influenced our results. In addition, as we studied all the subjects at the 
same time of the day, we can assume that circadian fluctuations of M1 excitability did not impact on our data. 
All the TMS protocols were delivered in a random order before, during and after tACS. Also, differently from 
previous reports12,18,27,28,32, in our study tACS did not induce visual, skin or other sensations in any subject (60 
applications of 333/667 Hz tACS in total). Thus, none of the participants was able to distinguish among the three 
different sessions. In addition, the stimulation frequencies tested in our experiments have never been used so 
far, and are not currently included in the safety guidelines for TES26. The data on the absence of side effect may 
be, therefore, useful to expand the safe stimulation frequency range for tACS. Sham tACS did not produce any 
change of MEP amplitude, so making it unlikely that attentional or placebo effects biased our results. Finally, the 
ad-hoc analysis conducted on EMG data recorded immediately before TMS demonstrated comparable values at 
T0, T1 and T2, excluding the possibility that different amount of voluntary muscular contraction influenced MEP 
amplitude during and after 333 Hz tACS.

Our results show that the effect of tACS is frequency-specific, since MEPs were facilitated only when we 
applied tACS at 333 Hz, and circuit-specific since MEPs were facilitated only with three of the TMS protocols 
tested. MEPs were facilitated when using both a biphasic PA-AP and a monophasic AP current flow across the 
central sulcus. By contrast, MEPs were unchanged when monophasic pulses were delivered using a PA-induced 
current. Recordings of corticospinal volleys in humans showed that both PA-AP biphasic and AP monophasic 
TMS evoke a descending activity, often characterized by longer latency waves and lower frequency of discharge, 
corresponding at about 333 Hz5,33. Thus, we here hypothesize that tACS, delivered at this specific frequency 
band, increased the MEP amplitude by reinforcing the synchronization of a cortical circuit characterized by a 
physiological activity at ≈333 Hz. Also, we speculate that the specific AP orientation of the current induced in 
the brain is particularly important for the activation of such putative 333 Hz oscillatory intracortical network. 
The neuronal elements are entrained by tACS because the endogenous and exogenous polarizing mechanisms 
are additive17,18,22. The effects of tACS on TMS-evoked bursting at 333 Hz might be explained by an interaction 
between the two forms of stimulation. AP and biphasic TMS produce a CSN bursting with a component aligned 
at 333 Hz together with a less synchronized corticospinal activity5. While weak alternating current at 333 Hz 
enhances the tendency of the CSNs to oscillate at this frequency, thus, there is a cooperative effect that enhances 
the phase alignment and the bursting at this specific frequency. Th s phenomenon is known as intrinsic resonance 
and can be induced by very low intensities of stimulation17,20,34. Another fi ding of our study is that by using low 
intensity monophasic TMS with a circular coil, MEP amplitude again increased during 333 Hz tACS. At low 
intensity, this type of stimulation is thought to preferentially activate pyramidal neurons at the axon hillock5,30,35, 
but, probably because it stimulates a large area of the brain containing neurons oriented at different angles, it can 
also evoke small peaks of activity that do not match the peaks of the 667 Hz bursting35. Thus, the CSNs are likely 
activated both directly and pre-synaptically when a circular coil is used. Accordingly, MEPs facilitation during 
333 Hz tACS may suggest that this stimulation makes the resonant endogenous 333 Hz circuit more responsive 
to circular coil TMS. By using a circular coil, we also found that MEP enhancement weakly persisted for several 
minutes after the end of 333 Hz tACS. One possibility to explain this result is that the entrainment produced by 
tACS persisted after the stimulation ended. Th s is, however, rather unlikely since this long-lasting entrainment 
would have similarly increased MEPs elicited by biphasic TMS at T2, and that was not the case. In addition, 
none of the previous TMS-tACS studies have demonstrated after-effects of tACS on M1 excitability13,14,28,36, with 
the exception of Moliadze et al.31, who applied tACS in the ‘ripple frequency’ range. We, thus, hypothesize that 
high-frequency tACS may promote brain plasticity processes under specific experimental conditions. To this 
regard, the particular pattern of CSNs activation produced by the circular coil stimuli, implying simultaneous 
pre-synaptic (via cortico-cortical projections) and post-synaptic activation at the axon hillock level, would be 
more prone to demonstrate such after-effects.

It is interesting to note that Moliadze et al.31 observed facilitatory effects of high-frequency (140 Hz and 
250 Hz) tACS on M1 excitability using PA TMS at intensities signifi antly above RMT (i.e. eliciting ≈1 mV 
MEPs). The higher frequency used by Moliadze et al. is relatively close to the lower frequency used in the present 
study that, in contrast to 250 Hz tACS, produced no effect on PA-evoked MEPs. The differential effects of 250 
and 333 Hz on PA-evoked MEPs together with the differential effects of 333 Hz on PA- and AP-evoked MEPs 
reveal a strong frequency- and circuit-specific ty of different oscillatory neurostimulation patterns. Th s suggests 
that MEP changes induced by different frequencies might build on different mechanisms, such as the engag-
ing of some neuronal networks at their intrinsic frequency, or the selective engaging of subnetworks or func-
tionally connected networks, or the perturbation of intrinsic oscillatory activities. The hypothesis of multiple, 
frequency-related mechanisms is also supported by the fi dings of Moliadze et al.31, showing that even though 
both 140 and 250 Hz were facilitatory, there was a consistent difference in the effects in terms of amount and 
duration of facilitation. It should also be considered that the results of the present study are not entirely compara-
ble with those by Moliadze et al., who used a stimulus intensity higher than the 110% RMT intensity we applied 
in our study. A low TMS intensity is known to generate a short burst of high-frequency corticospinal activity, 
while higher intensities produce a more prolonged bursting activity due to the activation of additional intracor-
tical circuits5,30. Thus, the lack of effects observed with 333 Hz tACS on PA-evoked MEPs at 110% RMT in our 
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experiments may depend not only on the different frequency of tACS used but also on the different population of 
intracortical circuits activated by TMS.

The higher frequency (667 Hz) tACS did not modify MEPs amplitude. Although we cannot fully exclude 
detecting an effect by using signifi antly larger sample size (i.e. type II statistical error), we may assume that 
this effect, if any, would be weaker than that of the 333 Hz tACS. Th s might appear surprising because 667 Hz 
coincides with the frequency of the main bursting activity evoked by TMS. One possibility is that the circuit 
producing the high frequency bursting is composed of neurons with a high propensity to synchronize and tACS 
cannot further enhance synchronization (ceiling effect). However, even if this were the case, a facilitatory effect 
should be present at least at the lowest stimulus intensity that usually evokes a single descending wave5. Since 
the effects of tACS strongly depend on how the induced intracranial fi ld relates to neural structures22, another 
possibility is that the orientation of cortical neurons that form the network discharging at higher frequency make 
them less responsive to the induced electric fi ld. Different cortical neurons respond to different orientations 
of the induced current in the brain and this is relevant both for the excitatory and the inhibitory neurons37. A 
further possibility is that the mechanisms that produce the high-frequency bursting differ from those producing 
the lower-frequency ones. In vivo and in vitro recordings have identifi d cortical neurons capable of generating 
bursts of activity at more than 600 Hz. These neurons have been termed chattering cells38. Fast-spiking inhibitory 
interneurons producing a bursting activity at 600 Hz have been demonstrated in the somatosensory cortex using 
intracellular recordings39,40. In analogy, the high frequency bursting of the CSNs after PA-TMS might be produced 
by the activation of nearby chattering interneurons at 667 Hz, instead of being the effect of a network of oscillatory 
activity. If the high frequency bursting were produced by intrinsic membrane properties of cortical interneurons 
that respond with rapid fi ing to TMS and in turn activate CSNs, then the intensity of tACS used in present exper-
iments might not suffice to influence their response because much higher fields are needed to modulate silent 
neurons22,41. The phenomenon of stochastic resonance has instead a much lower threshold when the tACS mod-
ulation interacts with a network that is spontaneously oscillating at the same frequency22. Thus, it might be that 
the presence of two CSN bursting modes is due to the activity of two different mechanisms that produce them: 1) 
the repetitive fi ing of cortical interneurons with intrinsic oscillatory properties connected to CSNs produces the 
667 Hz bursting; 2) a more complex network with a native oscillatory frequency of 333 Hz probably connected to 
a different population of CSNs produces the bursting at this frequency (Fig. 6).

Finally, it is interesting to note that there was no effect of 667 Hz tACS on MEPs associated with 333 Hz corti-
cospinal bursting induced by TMS and no effect of 333 Hz tACS on MEPs associated with 667 Hz bursting. Th s 
suggests that the circuits may be independent and that the CSNs targeted by the two sources of inputs do not 
overlap. Th s is in agreement with the intra-axonal recordings of Maier et al.6 who showed different corticospinal 
axons discharging at different frequencies after intracortical electrical stimulation, suggesting that different CSNs 
respond at a different frequency to the same stimulus.

The main limitation of the study is that our hypotheses are based on indirect evidence of ‘resonance’. Indeed, 
due to technical limitations related to the presence of the electrical artifact, it is impossible to record the EEG 
activity during tACS and provide direct proof of 333 Hz activity increase during the stimulation.

Concluding, we here provide the first evidence that specific neuronal elements connected to the CSNs are 
resonant to 333 Hz tACS. We also show that elements making CSNs bursting at 667 Hz, are resonant neither to 
667 Hz nor to 333 Hz tACS. These fi dings suggest that there are at least two independent human motor cortex 
circuits evoking corticospinal activity at different frequencies. Using non-invasive brain stimulation techniques 

Figure 6. Hypothetical representation of the cortical microcircuits producing bursting activity of corticospinal 
cells at 667 and 333-Hz. Based on the results of this study, we speculate that the bursting of corticospinal cells 
is produced by two different mechanisms acting on different corticospinal cells. 1) Left: activation of chattering 
interneurons discharging at 667 Hz connected to the corticospinal cells. These elements are activated by 
monophasic magnetic stimulation with posterior-to-anterior (PA) current fl wing across the central sulcus. 
2) Right: activation of an oscillatory circuit with a native frequency of 333 Hz connected to the corticospinal 
cells. These elements are supposed to be activated by biphasic magnetic stimulation with posterior-to-anterior 
followed by anterior-to-posterior (PA-AP) current fl wing across the central sulcus and by monophasic 
magnetic stimulation with anterior-to-posterior (AP) current fl wing across the central sulcus. Th s oscillatory 
circuit is entrained by 333 Hz tACS.
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these circuits can be targeted selectively and their output can be modulated for the lower frequency band of activ-
ity. A better knowledge of the cortical circuits producing corticospinal outputs, and the development of protocols 
for selective evaluation and modulation of these circuits, might be useful to clarify the pathophysiological basis 
of motor disorders and, also, for the development of neuromodulation approaches aimed at restoring the physio-
logical corticospinal output in these conditions.
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