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Abstract: Biochar production and incorporation into soil is gaining momentum as a sustainable
strategy for climate change mitigation, supported by ever increasing reports of significant carbon
(C) sequestration in soil and reduction in greenhouse gas (GHG) emissions from the amended soils.
With the progression in biochar testing and use, there is also emerging evidence that biochar induces
C sequestration in soil, and that it may not be solely caused by its inherent chemical stability, but
also by the complex microbially driven processes and an increase in C use efficiency (CUE) through
soil microbial metabolism. This evidence contradicts the current paradigm that sees the microbial
CUE decrease during the degradation of recalcitrant material due to thermodynamic constraints, as
observed only in several short-term and pilot-scale trials. As the CUE in soil results from interactions
between several abiotic and biotic factors, in this paper we examine the link between the biochar
properties, soil physico-chemical properties and microbial physiology to explain the CUE increase
reported for biochar-amended soils. Based on the large body of physico-chemical literature, and on
the high functional diversity and metabolic flexibility of soil microbial communities, we hypothesize
that the long-term stabilization of biochar-borne C in the soil systems is not only controlled by its
inherent recalcitrance, but also by the cooperative actions of improved soil status and increased
microbial CUE. Given that the current knowledge on this specific aspect is still poor, in this feature
paper we summarize the state of knowledge and examine the potential impact of biochar on some
factors contributing to the whole-soil CUE. We conclude that, beside its inherent recalcitrance, biochar
weathering and oxidation in soil create physical and chemical conditions that can potentially increase
the microbial CUE. While these processes stabilize the microbial processed C in soil and increase soil
fertility, more data from long-term field trials are needed to model the relationship between the CUE
and the MRT of biochar-borne C. Based on our hypotheses and relying upon analysis of the available
literature, we also suggest possible research approaches that may contribute to filling the gaps in the
current knowledge on the topic.
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1. Biochar: Chemical Stability Influences the Carbon Use Efficiency (CUE) in Soil

Biochar is the product of thermochemical decomposition of biomass at temperatures
ranging from 300 to 1000 ◦C in the absence of oxygen, either by pyrolysis or gasification,
and can be used for extracting energy from biomass [1]. These processes decompose the
organic biopolymers into small gaseous molecules such as methane (CH4), hydrogen (H2),
carbon monoxide (CO), and carbon dioxide (CO2), condensable vapours (tars and oils),
and a solid phase as a by-product termed biochar. Biochar production is maximized by
pyrolysis at low temperatures (e.g., 300–450 ◦C) and slow heating rates and residence
times (hours), whereas gasification is maximized at high temperatures (≥800 ◦C) and rapid
heating rates (seconds), with the biochar production rates of slow and fast pyrolysis being
20–30% and 4–8%, respectively. Moreover, the biochar qualities resulting from pyrolysis and
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gasification are also different; for the aims of this paper, it is worthwhile to underline that
slow pyrolysis results in less recalcitrant biochar with high porosity as determined by the
Brunauer-Emmett-Teller (BET) method and coarse texture. Conversely, gasification results
in highly recalcitrant biochar with low BET values and finer texture. In fact, gasification
pyrolysis requires finely ground feed of specific biomasses with a narrow range of initial
moisture content, a precisely controlled temperature and effective cooling of the vapour
phase in order to achieve efficient recovery of the oily product. Therefore, it is a less
flexible process mainly aimed at energy production, producing highly inert biochar with a
sandy-dusty texture, whereas slow pyrolysis produces manipulable biochar which can be
incorporated into soil. For this reason, biochar from fast pyrolysis has been used less than
slow pyrolysis for the purposes of achieving agronomic and environmental goals such as
climate change mitigation [2].

Based on the potential long mean residence time (MRT) of biochar in soil, the so-called
charcoal vision [3] is nowadays considered as a strategy to offset a significant share of
anthropogenic C emissions through C sequestration in soil. In addition to its climate miti-
gation potential, incorporation of biochar into soil also brings significant improvement in
soil fertility as it enhances the cation exchange capacity (CEC), neutralizes acidic pH values,
changes the soil color and increases the soil thermal capacity, increases water retention, and
immobilizes inorganic and organic pollutants [4]. Concurrence of these factors explains
the frequently reported increases in crop yields [5–7], especially in highly degraded soils.
Owing to its soil-improving and beneficial effects, biochar has been admitted into the new
EU Regulation on Fertilizers (EU 1009/2019) under the product of pyrolysis component
material category (CMC). The ever-increasing mass of information about the positive effects
of biochar parallels to the historical evidence of the transformation of Amazonian dark
earth soils (Terra Preta dos Indios), which maintain significantly higher pH values and
fertility compared with the surrounding soils even after millennia or centuries from the
charcoal burial [8].

Biochar-induced positive effects on soils and related ecosystem services are related to
its stability. Initially, potential biochar stability in the environment was estimated through
the process parameters such as pyrolysis temperature and feedstock types, but such pa-
rameters are currently no longer considered valid. Conversely, chemical properties such as
O/C molar ratio [9], the H/Corg ratio value [10], and both the H/Corg and O/Corg ratio
values are nowadays considered better descriptors of biochar stability [11,12]. In fact, these
parameters reflect the labile C/recalcitrant C ratio value, and are well correlated to the
results of thermal/chemical oxidation resistance tests. The molecular structure of biochar
is predominantly aromatic, and its inherent stability depends upon this level molecular
arrangement. Aromatic substances can form either amorphous phases, in which the aro-
matic substances are randomly organized, or crystalline phases, in which the aromatic
structures form ordered condensed sheets, as observed in the pyrolysis and pyrogasification
processes, respectively. Because more aromatic and more condensed molecular structures
are supposed to be more resistant to chemical and biological degradation [2], the evaluation
of both aromaticity and degree of aromatic condensation, for example by Nuclear Magnetic
Resonance (NMR) spectroscopy, is increasingly used as a chemical indicator of biochar
stability [13]. Based on the microbial degradative mechanisms we describe in the following
paragraphs, in our opinion the quantification of benzene polycarboxylic acids (BPCA) and
molar H/C ratio, indicating the degree of molecular unsaturation and H deficiency [14], can
be reliable indicators of potential microbial attack on biochar C. The analysis of hydroxylic
and carbonylic functional groups, nonaromatic C branches, or N-containing functional
groups using Fourier transform infrared spectroscopy (FTIR) [15], or wet chemistry oxida-
tion assays [15,16], provides additional and complementary indications of biochar stability
towards potential microbial attack.

Biochar persistence in soil can be also evaluated by batch incubation and C mineral-
ization experiments, in which both biotic and abiotic degradations occur. As compared to
the chemical tests, that provide indirect stability indications, the biochar stability, assessed
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by soil incubation tests, is increasingly adopted to obtain direct evidence of persistence of
different biochar in soil. Significant correlations between biochar C stability, C mineral-
ization rate, the degree of aromaticity and molecular condensation of biochar have been
reported [10]. A meta-analysis of biochar incubation experiment reported that the MRT of
biochar, added at a rate of 3% and having an initial recalcitrant C proportion of 97%, has an
MRT in soil spanning from 100–1000 years [17].

Despite the large number of reports on the topic, in our opinion, the following question
is still open: is biochar chemical stability sufficient to forecast its persistence in microbiolog-
ically soils? This question led us to a twofold reflection on the microbial C use efficiency
(CUE) in biochar-amended soils: a chemical and a microbiological one. From the chemical
point of view, microorganisms have a nominal cellular C oxidation state close to the av-
erage sugar’s C oxidation state. For this reason, they mainly derive energy and produce
cell components from anabolic pathways fueled by more reduced C substrates. Classic
microbiological experiments have shown lower CUE of single isolates grown on substrates
with higher C oxidization degrees (e.g., mono- or bicarboxylic acids), and peak CUE values
for microorganisms grown on C substrates with an oxidation state (e.g., sugars) close to
that of microbial cells [18]. However, for the highly diverse and metabolically flexible soil
microbial communities, the relationship between the oxidation state of C substrates and
CUE may depend on more factors that the relative C oxidation states of substrates [19]. In
terms of microbial physiology, soil microbial communities have been hypothesized to be
characterized by the ‘metabolic infallibility’, i.e., soil microorganisms have the potential
capability to use any known substance as an energy source, even one of high molecular
complexity and recalcitrance, especially if limiting environmental conditions are alleviated.
Though this concept has been debated for decades [20], the microbial metabolic infallibility
principle has received confirmation from an increasing body of evidence [21]. This concept
is highly relevant for biochar-amended soils, as it implies that under suitable conditions
microorganisms can oxidize any substance which is theoretically capable of being oxi-
dized [22]. Since its earlier formulation of the metabolic infallibility concept, environmental
microbiologists have demonstrated that microbial degradation processes have two main
components, the genetic-based metabolic potential of microorganisms and the chemical
recalcitrance of the substrate molecules [20]. The aim of this review is to answer to this
question by critically binding the knowledge on the biochar properties to the main soil
properties, the fundamental microbial physiology and microbial ecology concepts.

Thermodynamically, soils are open systems that exchange energy and matter with
other natural systems, constituted by reactive solid phases and host to large and highly
diverse microbial communities characterized by the highest known diversity and metabolic
flexibility among the terrestrial ecosystems [23]. The result of soil microbial oxidative
activity is that biochar aging in soil turns its properties from inert hydrophobic and neutrally
charged matter to increasingly hydrophilic negatively charged solid phases [24], thus
increasing its potential interactions with soil microorganisms. We hypothesize that the
reported capacity of biochar in stimulating soil microbial activity could be ascribed to
the fact that microorganisms possess metabolic degradative potential because black C is
ubiquitous to terrestrial and aquatic environments due to natural or human-induced fire
and anthropogenic environmental enrichment with organic xenobiotics [25]. Nevertheless,
better understanding of the chemical and biochemical mechanisms requires the evaluation
of the changes in main soil properties induced by the biochar, treated in Section 3, the
alteration of the C:N:P stoichiometry, treated in details in Section 4, and the composition of
the soil microbial community, treated in Section 5.

2. Microbial CUE: Definition for Soil Systems and Changes in Biochar-Amended Soils

The simplest definition of carbon use efficiency (CUE) of microorganisms is the ratio
between microbial biomass C production and C taken up by microorganisms (1)

microbial CUE = µ/Cuptake (1)



Environments 2022, 9, 138 4 of 21

where µ is the microbial biomass growth and C uptake is the sum of C immobilized by
microbial growth, plus respired C. The CUE of soil microorganisms represents the efficiency
of microbial biomass production resulting from the mineralization of the soil organic matter
(SOM). Determination of the microbial CUE can be used to predict the energy flow among
trophic levels in different ecosystems, across different soil management and different
soil types [26] and represents an integrated parameter that can predict the microbial C
turnover in the biogeochemical cycle of the SOM [27]. This highly meaningful soil ecological
parameter can be determined with different methods, based on the measurement of soil
respiration and variations in the soil microbial biomass C pool. Early CUE estimations
were based on in vitro analysis of microbial biomass yields upon exposure to selected C
sources. This ‘black box’ approach mainly takes into account the specific C respiration
(qCO2) during the microbial growth (µ) phase (i.e., qCO2/µ), which is an expression of the
maintenance energy of microbial cells exposed to different C sources [28], not an expression
of the microbial CUE.

The CUE values, calculated with by the mass-based approach as in Equation (1), only
results in CUE values > 0, with values typically in the order of 0.60 [29,30]. Conversely,
theoretically the CUE can also have negative values if C assimilation is lower than the
respired C, or when microbial biomass declines due to mortality [31].

As mentioned above, incorporation of biochar also leads to changes in soil properties
that affect the CUE. However, from a literature search using SCOPUS as a database in
spite of the ca. 11,500 papers retrieved using ‘soil’ and ‘biochar’ as search criteria and
ca. 1300 paper matching ‘soil’ and ‘CUE’ as search criteria, only 12 papers matched the
keywords ‘soil’ and ‘biochar’ and ‘CUE’ as search criteria. This literature search highlights
the current poor knowledge on the CUE as a key process that controls the biochar C stability
in soil.

In structured, open, and highly biodiverse systems like soils, the CUE is not only a
function of C availability, but also of the microbial community composition [32]. Moreover,
CUE measurements integrate several biotic and abiotic factors such as SOM quality and
solubility in the soil solution, availability of other macronutrients than C, soil temperature
and moisture levels [33,34]. This only to make mention the major factors, the effects of
which will be discussed in detail below. For soil microorganisms, this means that the SOM
quality is not the only factor that determines the maximal CUE. Rather, other environmental
properties altered by biochar amendment also influence microbial activity and proliferation.
In a greenhouse trial, the soil organic C (SOC) mineralization and the microbial community
of a soil amended with 20 and 40 t ha−1 of biochar Zhang et al. [35] showed the increase in
SOC and recalcitrant C, the reduction in SOC mineralization and the temperature sensitivity
(Q10) value [35], confirming previous reports on this topic [36]. Concerning the importance
of organic substrates quality, microbial CUE is higher when the C availability is limited but,
thermodynamically, decomposition of recalcitrant C should reduce the microbial CUE due
to the high metabolic costs of the oxidative catabolic steps [37].

Changes in quality and rates of organic substrates upon undergoing biochar aging
could induce changes in soil microbial communities, either as individuals or microbial
physiological groups, potentially altering the kinetics of C assimilation pathways [38,39]. In
enzyme-mediated uptake pathways, C uptake rates are expressed as a saturating function of
substrate concentration, well represented by a Michaelis–Menten model [40]. Theoretically,
C uptake for soil microorganisms energetically covers the metabolic costs of the substrate
uptake mechanisms [41] and the optimal substrate saturation should not vary. Under
these conditions, low C availability should decouple catabolic and anabolic pathways and
globally lead to low CUE of soil microbial communities [26]. At a microbial community
level, the CUE varies depending on major ecological constraints, namely C sources type
and bioavailability, relative abundance of different microbial physiological groups, soil
moisture level and temperature, and generally decreases with soil depth [42,43]. At an
individual level, the CUE values vary in different physiological states of microorganisms,
being lower during the C assimilation stage and higher during the exponential growth
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phase [44]. This is because, a short time after exposure to energy substrates, microorganisms
respire C and thus synthesize extracellular enzymes for SOM decomposition and cell
membrane transport proteins. Whereas, in the logarithmic growth phase, the assimilated C
is maximally allocated into a new biomass [40,45].

Moreover, in terms of metabolic flexibility, under nutrient-limiting conditions and/or
other environmental constraints, soil microorganisms may activate degradation but not
growth metabolic pathways. These cometabolic pathways involved in biochar modification
due to the release of nonspecific enzymes are capable of chemically modify recalcitrant
organics that, though not directly capable of supporting microbial proliferation, can be
oxidized or reduced in the presence of SOM-derived substrates providing metabolic en-
ergy [46]. For example, cometabolism has been demonstrated as a mechanism of trans-
formation of polycyclic aromatic hydrocarbons (PAHs) and other organic xenobiotics [47].
Based on the above considerations, we hypothesize that in the presence of biochar the
microbial physiological groups capable of utilizing biochar-borne recalcitrant substances
are positively selected, and their capability to use the biochar-derived substances and
native similar organic substances may explain the higher microbial CUE reported for
biochar-amended than nonamended soils.

3. Biochar-Induced Temperature and Moisture Effects on Soil CUE

Temperature and moisture are environmental factors that influence microbial CUE [48].
Incorporation of biochar into soil significantly changes soil color and water retention
properties. Reduced reflectance of biochar-amended soils increases soil temperature due
to changes of soil albedo [49]. By definition, the albedo values range from 0 to 1, and
the range is between 0.1–0.2 for dark soils and between 0.4–0.5 for light-colored soils [50],
with either geographical, daily and seasonal variations. Beside the incident radiation, soil
thermal capacity is also increased by soil moisture content, SOM content, and particle size
distribution [50]. The biochar-related increase in water retention has a cooperative effect
with albedo, especially in sandy soils that drain and dry out faster than clayey soils, as
the specific heat of water in moist soil is ca. 5 times higher than in dry soil [51]. With few
exceptions, long-term field trials show that biochar increases the water retention, and higher
water retention in dry periods may reduce the accumulation of osmolytes [52] that generally
increase the C:N ratio values of the microbial biomass and the apparent CUE values [53,54].
Microbial CUE is generally reduced upon an increase in soil temperature [26], mainly
due to the faster acceleration of microbial respiration processes than microbial growth
responses [48]. Although at the community level, microorganisms adapt to increased
temperatures in terms of species composition, the link between biochar-induced changes in
microbial community composition and thermal adaptation of microbial communities still
needs to be assessed, and reliable information can be obtained only from the analysis of
soils from long-term field trials.

Higher soil temperature can reduce the activation energy of SOM decomposition [34,55],
though SOM activation energy depends on its molecular complexity [56] and increases upon
the number of enzymatic steps required for substrate modification and decomposition [57].
Under different temperatures, changes of CUE values in the presence of molecular complex
substrates are generally less pronounced than those recorded during the decomposition of
low molecular weight organic compounds (LMWOCs) [58], and biochar generally has lower
temperature sensitivity than native SOM [57]. In this regard, higher mean temperature
and more constant moisture levels may facilitate microbial oxidative enzymes synthesis
and release, and in cooperation with the nonspecific enzymatic mechanisms, they may
reduce the activation energy for microbial respiration [59]. Overall, these mechanisms
can make microbial oxidation of biochar in soil less dependent on its inherent thermal
stability and more dependent on microbial enzymatic activity. However, to our knowledge,
no experiments aiming at determining the changes in the activation energy of SOM of
biochar-amended soils have been conducted.
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Biochar stability also depends on soil texture and its eventual association with soil
minerals, or minerals deliberately associated with biomass feedstocks for producing dif-
ferent biochar types [60]. Because microbial activity occurs in hot spots mainly present
in soil aggregates, the diffusion of biochar-borne substrates into the aggregates can pos-
sibly determine an ‘abiotic gate’ limiting their decomposition, at least shortly after soil
amendment [61]. Limitations in the use of insoluble pools of biochar-borne C by soil mi-
croorganisms, due to physical and chemical protection in soil aggregates, can be alleviated
when the decomposition process initiated by the synthesis of enzymes and sustained by
the subsequent formation of more hydrophilic and soluble C pools, increase the microbial
accessibility to organic substrates. Physico-chemical mechanisms occurring in soil such
as sorption, diffusion, and occlusion into aggregates exert additional control on biochar
stability in soil, because they increase the microbial energy investment in enzyme synthe-
sis for C acquisition. These mechanisms, that depend on the properties of the soil solid
phases and the soil structure complexity, along with surface hydrophobicity and molecular
recalcitrance of biochar, control the biochar C transfer from stable to more labile pools.
In our opinion, the biochar decomposition rate in soil is co-controlled by the diffusion of
LMWOCs from the biochar particles surface towards soil aggregates driven by moisture
(Figure 1), and from their sorption onto organic and inorganic soil solid phases [62].
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These considerations let us also to propose that physical aspects are important for
future formulation of biochar-based fertilizers, which are supposed to be more efficient for
crop nutrition [63] but may not contribute to the maintenance of a porous soil structure as
compared to organic amendments such as compost [64].

Overall, we support the idea that, by increasing soil thermal capacity and water retention,
biochar confers resilience to soils allowing more constant microbial activity, attenuating the
seasonal variations or eventual environmental drought stressful conditions, and enhancing the
C stabilization through the ‘Microbial Carbon Pump’ mechanism [65,66]. Such fluctuations
are particularly broad in agricultural soils, where biochar can be incorporated, because
microbial CUE also decreases with soil depth due to energetic limitations [43], for example
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due to unfavourable C:N and C:P ratios. Biochar incorporation in the deeper horizons for
an effective C storage may also increase the CUE in the long term owing to the release of
LMWOCs (Figure 1) and let microorganisms living deeper soil layers reach CUE values
similar to those of microorganisms of the surface horizons. To our knowledge, there is no
information on the effects of the biochar on the CUE in deeper soil horizons, and if proven,
such a change may become an additional factor stabilizing organic C in the subsoil.

4. Biochar Effects on C Availability, Nutrient Stoichiometry and CUE in Soil

Several studies have demonstrated that biochar amendment improves the soil habitat
for microorganisms, and that the positive effects on microbial activity are mainly related
to biochar and properties of soil [6,67,68]. These results provide a ground base for a
critical evaluation of the reported increase in microbial CUE in biochar-amended soils.
In a laboratory incubation experiment, the higher CUE of biochar-amended soils was
attributed to the biochar protection of hydrophilic SOM towards microbial mineralization,
whereas no such effect was observed for hydrophobic SOM [69]. Soil amendment with
aged biochar increased microbial CUE and significantly decreased the biomass turnover
time compared to the amendment with fresh biochar. However, such effects were observed
in a sandy, as opposed to in a clayey, soil [70,71]. This result could be explained by the fact
that clay soils better stabilize SOM than sandy soils [72]. A support to this hypothesis is a
study of the short-term effects of biochar by pyrolyzed maize straw pyrolysis at different
temperatures showed that biochar changed the microbial CUE, inducing the release of
more biochar-borne LMWOCs [73]. These results indicated that, while biochar stimulates
the mineralization of LMWOCs, it may reduce the decomposition of native SOM and
thus increase the potential C storage in soil (Figure 1). The two above-mentioned studies
confirmed that changes in pH value, availability of primary nutrients and SOM quality,
induced by fresh or aged biochar, were all covariates that influenced microbial CUE in
biochar-amended soils [74].

However, though higher CUE is increasingly reported for biochar-amended than
unamended soils, considering only the C availability, higher microbial biomass or activity
in biochar-amended soils may not necessarily result in higher CUE.

4.1. Biochar Changes the Soil N and P Contents and the C:N:P Stoichiometry

A large number of studies have demonstrated that, though microbial metabolism
in soil is limited by C availability, microbial CUE can be also limited by the availability
of other nutrients, primarily N and P [75,76]. The soil C:N:P stoichiometric ratio only
significantly varies in different soil types or after major changes in soil use and management.
Additionally, the physiological effects of nutrient stoichiometry, as the main forces that drive
the biochar transformation and regulate SOM stability in soil, have received experimental
confirmation. In highly degraded soils, P availability is considered the primary limitation
on microbial growth [77]. In severely degraded soils, colimitation of microbial activity by
N and P have been also reported [78], and this may explain why in degraded soils the
potential of biochar to increase soil microbial biomass and stimulate microbial activity is
stronger than in more healthy soils.

Soil C:N:P stoichiometry affects microbial CUE in soil because, while C substrates are
oxidized for energy production in the catabolic pathways, N is needed for protein synthesis
and P is required for nucleotide synthesis and ribosome activity [77,79]. For these reasons,
nutrient stoichiometry is also considered in SOM turnover models e.g., [26,80]. Due to
the high condensation degree of C structures, biochar incorporation into soil increases
the C:N:P ratio of amended soils. However, the literature data show that the biochar
amendment of soils increases total concentration and availability of N, P and K in the
long-term [5,81]. Biochar enriches in phosphate P during carbonization [82] or retains P
on its surface due to the presence of sorption sites [83,84]. Higher P availability in biochar-
amended soils may be a major factor in improving microbial CUE because the microbial
biomass C:P ratio varies more than the biomass C:N ratio. The C:N:P stoichiometry in
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soils also influences the nutrient availability in soil as soil microorganisms tend to regulate
the SOM stoichiometry by releasing nutrients absorbed in excess [85]. Therefore, C:N:P
stoichiometry is a main parameter conditioning the activity of soil microorganisms during
the SOM decomposition and nutrient mineralization, and significant variations of soil
stoichiometry can induce changes in soil microbial diversity and soil microbial activity,
because it can make one of the nutrients limiting [86,87]. For these reasons, P availability
influences microbial CUE, and the use of decomposition models indicates that the CUE
should decrease upon an increase in the C:P ratio of the SOM [88]. However, a decrease in
microbial CUE concerns forest litter, which typically has C:P ratios in the order of 1000 on
a mass basis [89], whereas in biochar-amended soils the C:P ratio values are in the order
of 100, i.e., in the typical stoichiometric range of the microbial biomass C:P ratio [88].
Moreover, soils amended with biochar increase the abundance of P-solubilizing bacteria
in a forest soil [90], and only in soils where biochar reduces P availability may it impair
microbial activity of amended soils [91]. Accordingly, CUE in biochar-amended soils may
have an opposite trend as compared to that of native SOM, as for the latter the C:N ratio
moves below the N immobilization–mineralization threshold as C becomes increasingly
recalcitrant upon decomposition, thus limiting microbial activity. Differently, biochar aging
in soil increases C lability and the C:N ratio may not decrease, leading to a faster microbial
growth and increase in the CUE to a plateau level, with timing and increments depending
on the biochar quality, soil type and soil use and management (Figure 2).
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Overall, we hypothesize that the few reports on high CUE in biochar-amended
soils could be due to the reaching of a C:N:P ratio that favors metabolically efficient
microbial communities.

4.2. Determination of Soil Microbial Biomass Homeostatic C:N:P Ratios in Biochar-Amended Soils

To date, studies of biochar-amended soils have seldom focused on the release of
nutrient limitations to microorganisms, which is crucial to understand the adaptation
of microbial metabolism in soil. Relying on the concept that microorganisms have an
homeostatic C:N:P composition, altered availabilities of N and P, induced by biochar
amendment in soil, have the potential to favour microbial communities that can initially
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cope with the stoichiometrically altered substrates [80]. Such changes could be estimated
by the measurement of nutrient assimilation efficiency by soil microbial communities [92]
or maximum microbial growth efficiency [93]. Such estimations can be complicated in soil
because it is a structured environment and biochar movement can cause the creation of
hot spots of nutrients, or transfer nutrients along the soil profile and also between distinct
microbial populations. Decomposition studies showed that SOM residues with high
C:N ratio (e.g., conifers wood) indicate that microbial CUE decreases upon an increasing
in the C:N ratio, something which normally leads to N immobilization [94]. Limited
use of insoluble pools of biochar-borne C by soil microorganisms due to physical and
chemical protection into soil aggregates, as discussed in Section 3, can be overcome when
the decomposition process is initiated by the synthesis of enzymes and the subsequent
formation of more hydrophilic and soluble C pools that can be used by microorganisms.

5. Microbial Community Composition and CUE in Biochar-Amended Soils

While at a single-species level CUE depends on cellular metabolism and on the pro-
duction of cell structures and storage compounds, at the community level variation in CUE
is related to the soil microbial communities composition, changes of dominant microbial
species and relative abundance of microbial groups, exemplified by the fungi:bacteria
biomass ratio. Differently from natural organic polymers that are mineralized after depoly-
merization and solubilization processes [95], biochar-C can be used by soil microorganisms
after oxidative and hydrolytic reactions that should be theoretically restricted to a sub-
set microbial physiological group capable of performing the highly demanding reactions
(Figure 1). Such decomposer microorganisms, characterized by low CUE values, should
be adapted to low substrate concentrations and be slow growing [95]. Based on these
assumptions, initial steps of biochar use should be characterized by a drop of CUE related
to biochar recalcitrance and to the relative abundance of degradative keystone microbial
species (Figure 2).

Biochar incorporation into soil significantly increased both Gram-negative and Gram-
positive bacteria and decreased the fungi:bacteria ratio [70]. Fungi, which have higher C
molar ratio than bacteria, could be mainly involved in the ‘char dominated phase’ because
theoretically they have a higher C-demand and slower growth rate than bacteria [96].
Moreover, an increase in fungal activity during early biochar decomposition may justify
a high CUE due to their large C:N and C:P ratios, which imply larger C demands [97].
However, different fungal phylogenetic groups have different C:N:P ratio values [98]. In
particular, the C:N:P ratio for free living fungi varies broadly with lower C:P and N:P ratios
found in Ascomycota as compared to Basidiomycota fungi, whereas lower C:N ratios and
higher N:P ratios were found in mycorrhizae than in saprotrophic fungi [98]. Interestingly,
fungal C:N:P: ratios were correlated with environmental parameters such as moisture and
temperature, and all parameters varied by biochar amendment of soil (cfr. Section 2). A field
experiment showed that after 3 years biochar amendment in an alkaline soil cultivated with
soybean, Ascomycota significantly decreased and Mortierellomycota significantly increased,
whereas no significant changes in the bacterial community was observed [99]. Overall,
changes in bacterial and fungal communities were associated with soil properties such as
SOC and TN [99].

Bacteria also exhibit highly flexible metabolism under various environmental condi-
tions e.g., [100], and may contribute to biochar oxidation.

Later, when a significant share of biochar has been weathered, the CUE values of the
soil microbial community should approach a plateau level (Figure 2). While the length of
the char-dominated phase mainly depends on the biochar type, soil properties and environ-
mental conditions, the new CUE level should mainly depend on the microbial community
composition. Changes in soil microbial community structure have been reported [101,102],
but the effect of biochar on total microbial diversity and functional gene abundance and
expression are still controversial. Changes in the soil microbial community after biochar
amendment were observed, and an increase in the abundance of soil microbial communities
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in a dose-related relationship has been reported [103]. An increase in fungal abundance
after biochar application in an alkaline soil was observed, highlighting that the effect of
biochar is related to different types of biochar and soil properties [99]. The addition of
biochar (10–15% w:w) induced modification of the microbial community structure, and a
significant increase in the richness and diversity index of total microbes [64]. Differently,
no significant effect on microbial community structures and extracellular enzyme activities
was observed in a short-term experiment, in which the biochar application (22 t ha−1) was
compared with manure amendment [104]. This result could be attributed to the relatively
low application rate of biochar or to site-specific environmental conditions.

Current information on microbial groups potentially active in biochar-amended soils
is inconclusive. Future studies based on stable isotope probes may clarify the main biosyn-
thetic pathways and improve the models applicable to microbial communities of biochar-
amended soils, especially considering long-term trials. For example, laboratory incubation
studies, based on pulsed additions of large amounts of LMWOCs, may allow us to quan-
tify the maintenance energy and growth respiration of specific substrates released during
biochar aging. These substrates could be representative of in situ microbial metabolism
activated by LMWOCs release, and also analyze the influence of environmental factors
such as soil temperature and moisture level.

5.1. Polycyclic Aromatic Hydrocarbon Degraders: The Chemical Gate Operators

Specialized polycyclic aromatic hydrocarbon (PAH) degraders may be among the first
microbial groups attacking the biochar C. In a pot experiment, the biochar amendment in-
creased the PAH-ring hydroxylating dioxygenase (PAH-RHD) genes coding for the enzyme
involved in the initial step of the microbial degradation of PAHs [105]. In the same soils,
the increase in K, P and N availability in biochar-amended soil was also highlighted [105].
These results from short-term laboratory or greenhouse scale experiments are in agreement
with evidence from the Amazonian dark earth (ADE), anthropogenic dark soil horizons
formed by the deposit of organic materials that date back from ca 8000 years before the
Columbus age [106]. Such deposits turned infertile Oxisols into highly fertile hotspots,
mainly due to the stabilization of organic matter as a result of incompletely combusted
biomass, similar to the biochar [107]. An ADE soil had similar bacterial community compo-
sitions, as well as a significantly greater species richness than a pristine forest soil [108]. The
relative abundance and diversity of the biphenyl dioxygenase (bph) gene involved in aro-
matic hydrocarbon degradation in an ADE and a nonanthropogenic-adjacent soil, and of the
bacterial genera harbouring the bph genessuch as Streptomyces, Sphingomonas, Rhodococcus,
Mycobacterium, Conexibacter and Burkholderia with known aromatic hydrocarbon degra-
dation capacity, were more abundant and diverse in the ADE than non-ADE soil [109].
The bph and thp genes-coding dioxygenase and aromatic ring-hydroxylating dioxygenases
have been identified in genomic and plasmidic DNA of aromatic hydrocarbon-degrading
bacteria also detected ADE soils [110]. Overall, evidence from short- and long-term studies
demonstrates that biochar oxidation is energetically permissible, but that it likely occurs in
microbial communities hosting physiological groups of microorganisms that use catabolic
pathways to obtain energy. The PAH-degrading microorganisms could constitute one of the
operational groups responsible for the metabolic infallibility of soil microbial communities.

5.2. Enzyme Activity: The Toolbox

Changes in enzyme activity profile from biopolymer hydrolase to condensed C oxi-
dase allow us to hypothesize that, in biochar-amended soils, the respiration rate should
be lower than thermal oxidation. Activation energy for the mineralization of recalcitrant
biochar matter by microbial communities, which is greater than the electromotive force of
the cell oxidative metabolism, is lowered due to the multiple enzymatic steps needed to
transform the organic C into CO2 [111]. In fact, the relation between temperature depen-
dency for chemical and microbial oxidation of SOM was studied, and the release of specific
oxidative enzymes was considered as a factor that makes the microbial decomposition
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capacity relatively independent of the SOM recalcitrance [112]. This hypothesis should be
tested in different soils, especially from long-term trials, because under natural conditions
the temperature sensitivity of microbial respiration is far higher than chemical oxidiza-
tion, and other main soil factors (e.g., C:N ratio, pH value, salinity) influence microbial
activity, not only SOM chemical oxidability. If proven operating, this mechanism could
explain the higher CO2 release generally reported for biochar-amended soils compared to
nonamended soils.

An alternative hypothesis that may explain higher abundance of dioxygenase, phenol
oxidase enzyme activities and relevant encoding genes could be the need to mitigate the
impact of toxic compounds. In fact, increased expression of genes and enzyme activities
involved in the degradation of PAH has been reported for contaminated soils [113]. In
this light, other well-characterized genes involved in the oxidation and detoxification of
recalcitrant C compounds, such as the naphthalene dioxygenase genes (nahA), may be
involved in the biochar modification, as such genes are ubiquitous in soil. In particular,
the larger abundance of nahA genes in the rhizosphere, i.e., in the soil portion modified
by the plant roots, may explain the faster biochar C turnover in soils under permanent
grass, which can be considered as an entirely rhizospheric soil. A rapid increase in the
relative abundance of dioxygenase genes in PAH polluted soils amended with biochar has
been frequently reported e.g., [101,114,115], although no effects have been also reported
e.g., [116,117]. While biochar used in agriculture may contain low levels PAHs, amendment
generally does not induce soil toxicity to microorganisms [118]. In addition to oxidase,
hydrolytic enzymes also play fundamental role in CUE because catalyze reactions necessary
for soil organic C decomposition and mineralization of N, P and S [119]. Recent research
has shown that also the profile of the hydrolytic enzyme activity changes in long-term
biochar-amended soils [81]. Soil enzymatic activity is an integral component of the whole
CUE as it regulates the nutrient availability to soil microorganisms [120], and such changes
in substrate utilization can potentially affect the enzymatic stoichiometry, and in turn the
biogeochemical cycle of nutrients in soil [80,121]. According to the economic theory of soil
enzymatic activity [40,122], microorganisms synthesize and release extracellular enzymes
to decompose SOM into LMWOCs [123]. The release of LMWOCs in biochar-amended soils
can also be enhanced by the increase in arylesterase enzyme activity that cleaves carboxylic
branches from aromatic compounds. This change is important because it was estimated
that LMWOCs microbial uptake and mineralization accounts for a significant share (up to
30%) of soil CO2 emission from soil [124]. Thus, the LMWOCs pool should be included
in models of SOC dynamics. Shifts in soil enzyme activities have been reported from
both short-term laboratory/greenhouse experiments [125] and long-term field trials [126].
Because it can be considered as the last enzymic step prior to utilization of LMWOCs as
energy sources by microorganisms actively degrading biochar. The ratios of oxidative and
carboxyl esterase to hydrolytic enzyme activity as proxies for SOM were proposed [127].
Here, we propose the following enzyme activity ratio as a proxy for describing the potential
biochar degradability in soil, as a potential C source to soil microorganisms (Equation (2)),
with the highest value indicating faster potential microbial C turnover and microbial CUE
in biochar-amended soils.

Biochar C use = f [(oxidase + carboxyl-esterase)/hydrolase] (2)

As mentioned above, microbial CUE is assumed to be lower during the use of recalci-
trant substrates due to the high metabolic energy investment in enzymes and cell uptake
systems, but in the soil environment the CUE may non increase owing to the accumulation
of extracellular oxidase and hydrolase enzymes. This hypothesis converges with those
deriving from the degradation of fresh biomass polymers, as the available C molecular
can be used to offset a significant part of the energy dissipation due to the initial substrate
recalcitrance (Figure 2). This change in CUE can be realized by adaptation of microbial
groups capable of using biochar-derived C substrates after the first oxidative reactions that
enrich the condensed C in carbonyl, carboxyl- and phenolic functional groups, open the
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aromatic rings and cleave the lateral branches, releasing LMWOCs (Figure 2). Release of
oxidase and hydrolase enzymes coupled with higher mean temperature, moisture, and
N and P availability, can improve C acquisition and maintain the C:N:P stoichiometric
balance of adapted microbial consortia. In these conditions, microbial taxa with high CUE
reduce energy investments for enzyme synthesis, especially for catalysing the first steps
of biochar degradation. Possibly, the greater CUE in biochar-amended soils is reached
after the biochar-borne C structure modification releases sufficient LMWOCs, and less
degradative enzymes need to be produced per unit of biomass formed [128]. This CUE
adaptation stage at microbial community level may be responsible for the C storage in
biochar-amended soils due to sorption of SOM of microbial origin [129], and microbial
colonization of biochar habitats.

In amended soils the chemical modification of biochar induces modification of the com-
munity metabolism and the stimulation of a potential metabolic mechanisms controlling
microbial nutrition and microbial energy (Figure 3).
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The above hypothesized CUE adaptation based on the utilization of low molecular
weight carbonyl- and acyl- compounds requires the oxidation and modification of the poly-
and branched aromatic molecules, formed during the biomass pyrolysis. This preliminary
step can be conducted by various bacterial and fungal groups peroxidases releasing extra-
cellular peroxidases, phenol oxidases and laccases enzymes [130,131]. It is important to
underline that, independently on the involved microbial species, the mentioned oxidative
enzymes are those involved in the degradation of lignin and other biopolymers. The
convergence of molecular structure during the biochar oxidation and SOM decomposition
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will result in an optimization of the enzymatic efforts of soil microorganisms which will
benefit from additional C sources from the same enzyme activities (Figure 2).

5.3. P and N Mineralizing Microorganisms: The Helpers

The above discussed importance of nutrient stoichiometry should be reflected in
changes of microbial physiological groups involved in N and P turnover. In particular,
the release of abundant oxidized LMWOCs from biochar decomposition should influence
the diversity and relative abundance of functional genes coding for the enzymes involved
in the N and P cycles, but evidence on the relevant microbial groups is recent and still
conflicting. In a short-term field trial an increased total soil organic C, the decrease in
extractable nitrate pool and the reduction in gross rates of organic N transformation were
reported, whereas the increase in ammonia-oxidizer bacterial and archaeal populations
that paralleled a two-fold increase in the gross nitrification rate were observed [132]. Soil
urease activity paralleled to the increased abundance of the PAH-degrading bacteria in
biochar-amended soils was reported [101]. No or variable effects of biochar addition on
ammonia-oxidizing Archaea and ammonia oxidizer and nitrite-reducing bacteria were
reported [133,134]. The bacterial community involved in the Dissimilatory Nitrate Reduc-
tion to Ammonium (DNRA) was found not significantly affected by amendment with
biochar of neutral and alkaline soils [135], whereas biochar amendment was reported that
it could increase both potential nitrification and denitrification activity in acidic soils as
the biochar alkalinity could create a favorable environment for the activity of nitrifying
and denitrifying communities [136]. In a pot experiment biochar amendment of an acidic
soil stimulated both nitrification and denitrification processes, reduced N2O emissions
which paralleled the increased nosZ gene expression, indicating an increased tendency of
reduction in N2O to N2 [121]. Differently, biochar addition reduced the relative abundance
of ammonia oxidizers and the nitrification potential of soil [137]. The addition of leaf and
woodchip biochar showed the increase in the abundance of P-solubilizing bacteria and
the diversity of soil bacterial community in the forest soil [90]. These inconsistent results
could be due to differences in plant species, biochar characteristics, soil types and biochar
application periods [138,139]. Biochar plus chemical fertilizers increased the abundance of
bacteria in the rhizosphere [140]. It is important to underline that most of the studies on
changes in diversity and abundance N cycling microbial populations in biochar-amended
soils have been conducted in short-term microcosm experiments e.g., [141–146].

5.4. Sulfur Reducing Bacteria: The Stone Guest?

When compared to N, P and K, little information on total S and sulphate in biochar-
amended soils is currently available. Sulfur is essential for plant growth in lower amounts
as compared to N, P and K, and an increase due to biochar dose may release large amounts
of sulfates, triggering sulfate-reducing bacteria. Such bacteria are known to degrade
aromatic hydrocarbons with various degree of condensation and molecular complexity,
and under optimal conditions they can mineralize completely aromatic C up to CO2.
Sulfate-reducing bacteria have been detected in hydrocarbon-contaminated environments,
and their degradative activities result in release LMWOCs (e.g., acetate, propionate) which
are mineralized by the same bacteria or other bacterial groups [147]. Microbial acetogenic
activity of sulfate-reducing bacteria was enhanced by biochar added to a wastewater
treatment sludge [148]. Higher emissions of acetylene, propene, and C4 aldehydes from
long-term biochar-amended soils as compared to nonamended soils were observed, but no
information on the source of such LMWOCs was investigated [126]. Therefore, the potential
role of sulfate reducing bacteria in biochar-amended soils remains obscure. Sulfate-reducing
microorganisms can occur in association with fermentative, syntrophic microorganisms,
such as methanogenic bacteria with other metabolic pathways involving Fe (III)−, Mn
(IV)−, NO3

−-N reduction [149]. Archaea can also degrade aromatic hydrocarbons into
acetate followed by acetate syntrophic conversion into CH4 and CO2 [150]. Soil amended
with biochar could increase the number of sulfur-mobilizing bacteria, which may explain
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the enhancement of sulfur cycle functions [151]. The combined use of ferrous sulfate
and biochar significantly reduced emissions of NH3, N2O, CO2, and CH4 and increased
of the richness of bacterial communities during composting of pig manure and straw
mixture more than single ferrous sulfate and biochar [152]. Biochar acting as an electron
shuttle in the microbial reduction in Fe (III) in ferrihydrite has been reported [153]. In our
opinion, the biochar-mediated S and Fe transformations and the involved microbial groups,
deserve higher attention in future studies to better understand the biochar influence on
nutrients biogeochemistry with the complex mechanisms illustrated in Figure 4, not only
on microbial CUE.
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Summarizing, in biochar-amended soils after the char-dominated phase initiated
by specialized microbial physiological groups, two major and related features can be
anticipated: (i) an abundance of microbial species can process the biochar-borne LMWOCs
and (ii) microbial CUE of the soil tends to a new stable value, typical for each specific soil
(Figure 2). Duration of the different processes, depicted in Figure 2, will depend on the
biochar type, pedoclimatic conditions, and soil management, but in our opinion reaching
new equilibria may require decades. The increased CUE values reported shortly after fresh
additions of biochar to soil may result from the use of labile C associated with biochar,
formed onto the biochar surface during the condensation of syngas during the cooling
phase of the biochar preparation.

6. Conclusions and Research Needs

We support the idea that biochar amendment can improve the fertility of degraded
and intensively cultivated soils and can lead to significant C sequestration. Nevertheless,
we hypothesize that, in the long term, stabilization of biochar C in soil is not solely due to
biochar’s inherent chemical stability, but also to the stabilization of microbial processed
C released by the oxidation and cleavage of biochar C. This process should be initiated
by soil microbial physiological groups possessing the suite of functional genes for biochar
oxidation. We hypothesize that microbial activation is facilitated by higher thermal capacity,
greater water retention, and larger C N and P availability induced by biochar addition.
Biochar porosity also increase the biological space and create favorable conditions for mi-
crobial activity, stabilization of extracellular oxidase and hydrolase enzymes and adaption
of microbial groups with relatively high CUE values. To test these hypotheses, we suggest
the following research objectives:

i. Determine the theoretical CUE of biochar-amended soils and under different environ-
mental conditions, soil types and management. Determination of the thermodynamic
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maxima of different biochar types can also allow the improved determination the
limiting or unlocking effects of increased nutrient availability;

ii. Models operating on finer time scales (days to seasons) should consider the effects
of changing SOM molecular composition, multi-element stoichiometric constraints,
and microbial community physiology. In addition, environmental drivers should
be implemented on data from long-term field trials to predict the CUE of biochar-
amended soils under different management. The effects of larger N and P availability
as driving forces, and changes in enzymatic activity, should be tested, particularly
in arable soils amended with biochar and under chemical fertilization, in order to
determine the stability and MRT of the biochar-borne C. An interesting technique that
could be tested to assess the extent of biochar stability in soil could be the reverse
stable isotope labelling [154];

iii. Perform hypothesis-driven metagenomic research to reveal presence, activity, and
evolution of microbial metabolic pathways in long-term biochar-amended soils. Com-
plementary proteomic and metabolomic studies may help to elucidate the hypothe-
sized pathway of release of LMWOCs from biochar, and better estimate the C partition
in CO2, microbial and SOM pools, also analyzing the changes of the 13C signature of
biochar and SOM;

iv. Adopt imaginative direct observation approaches to observe the surface of weathered
biochar, also extracted from amended soils, to describe the formation of the ‘charro-
sphere’ and its relations with biochar biodegradation and the release of LMWOCs
into the soil solution.
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