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Abstract

In this thesis we prove a generalization, for the self-dual twist V of the representation at-
tached to a modular forms f of even weight k > 2, of a recent result [MN19] of A. Matar and
J. Nekovar in the anticyclotomic Iwasawa Theory for elliptic curves. More precisely we give
a definition for the (p-part of the) Shafarevich-Tate groups X̃p∞(f/K) and X̃p∞(f/K∞)
of f over an imaginary quadratic field K satisfying the Heegner hypothesis and over its an-
ticyclotomic Zp-extension K∞ and we show that if the basic generalized Heegner cycle zf,K
is non-torsion and not divisible by p, then X̃p∞(f/K) = X̃p∞(f/K∞) = 0; moreover the
Pontryagin dual of the Bloch-Kato Selmer group of the representation A = V/T , where T
is the GQ-stable lattice inside V constructed by Nekovar in [Nek92], is free of rank 1 over
the Iwasawa algebra.

Sommario

In questa tesi dimostriamo una generalizzazione, per il twist autoduale V della rap-
presentazione associata ad una forma modulare f di peso k > 2, di un recente risultato
[MN19] di teoria di Iwasawa anticiclotomica per curve ellittiche di A. Matar and J. Neko-
var. Più precisamente diamo una definizione della (p-parte dei) gruppi di Shafarevich-Tate
X̃p∞(f/K) e X̃p∞(f/K∞) di f sopra un campo quadratico immaginario K che soddifi
l’ipotesi di Heegner e sopra la sua Zp-estensione anticiclotomica K∞ e mostriamo che se
il ciclo di Heegner generalizzato di base zf,K non è di torsione e non è divisibile per p, al-
lora X̃p∞(f/K) = X̃p∞(f/K∞) = 0; inoltre il duale di Pontryagin del gruppo di Selmer
di Bloch-Kato della rappresentazione A = V/T , dove T è il reticolo GQ-stabile dentro V
costruito da Nekovar in [Nek92], è libero di rango 1 sull’algebra di Iwasawa.
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Introduction

In his seminal series of papers [KL89; Kol90; Kol91], Kolyvagin introduced a new method in
order to bound the size of the Shafarevich-Tate group X(E/K) of an elliptic curve E/Q over
an imaginary quadratic field K of discriminant dK , provided that all the prime factors of the
conductor N of E split in K (assuming in other words the so called Heegner hypothesis) and that
the basic Heegner point yK ∈ E(K) has infinite order. This method involves the construction of
a so called (anticyclotomic) Euler system from the Heegner points yn ∈ E(K[n]): fixed a rational
prime number p, these are points of E defined for integers n such that (n, pNdK) = 1, coming
from CM points on X0(N) via a modular parametrization

φ : X0(N)→ E,

that always exists thanks to Wiles Modularity theorem. Each yn turns out to be rational over
the ring class field K[n] of conductor n and there is a sort of norm compatibility among them: if
ℓ is a prime factor of n inert in K and we write n = ℓ ·m, then

TrK[n]/K[m](yn) = aℓym,

where l + 1 − aℓ is the number of Fℓ-rational points of the reduction Ẽ/Fℓ of E at ℓ. For this
reason in the following we will restrict our attention to squarefree integers n such that any prime
ℓ | n is inert in K.

A special case of these results is the following theorem, that one can find in the expository
article [Gro91] of Gross.

Theorem (Kolyvagin). Assume that the curve E does not have complex multiplication and let p
be a prime number coprime with N and the discriminant of K (that is assumed to be ̸= −3,−4
by simplicity) and such that

Gal
(
Q(E[p])/Q

) ∼= GL2(Fp).
If p ∤ yK in E(K), then

(a) the group E(K) has rank 1,

(b) the p-primary subgroup X(E/K)[p∞] = 0.

In fact one proves that the p-primary part of the Selmer group Selp∞(E/K) is generated by
the image δyK via the Kummer map

δ : E(K)⊗Qp/Zp → Selp∞(E/K) ⊆ H1(K,E[p∞])

of the basic Heegner point.
In a recent paper [MN19] Matar and Nekovar showed, using an abstract Iwasawa theoreti-

cal method, that the vanishing of the Shafarevich-Tate group extends over the anticyclotomic
extension K∞ of K, i.e. the unique Zp-extension of K that is pro-dihedral over Q.

Vanishing of X̃p∞(f/K) and consequences for anticyclotomic Iwasawa Theory vii



Theorem ([MN19, Th. 4.8]). If p ̸= 2 is a prime number such that

(a) E(K)[p] = 0,

(b) p ∤ N · ap · (ap − 1) ·
∏
ℓ|N cTam,ℓ(E/Q),

(c) yK is non-torsion,

(d) rkZE(K) = 1 and X(E/K)[p∞] = 0,

then X(E/K∞)[p∞] = 0 and the Pontryagin dual of E(K∞)⊗Qp/Zp = Selp∞(E/K∞) is a free
module of rank 1 over the Iwasawa algebra Λ = ZpJGal(K∞/K)K.

Combining it with the classical result of Kolyvagin one has the following corollary

Corollary ([MN19, Th. 6.9]). Let p ̸= 2, assume that E[p] is an irreducible Fp[GQ]-module and
that

p ∤ N · ap · (ap − 1) ·
∏
ℓ|N

cTam,ℓ(E/Q).

If yK is non torsion and yK /∈ pE(K), then the group E(K) has rank 1 and

X(E/K)[p∞] = X(E/K∞)[p∞] = 0

and the Pontryagin dual of E(K∞)⊗Qp/Zp = Selp∞(E/K∞) is a free Λ-module of rank 1.

The goal of this thesis is to generalize these results to modular forms of weight k > 2. Indeed
several parts of the above picture already have a counterpart in the literature for modular forms.

The work of Kolyvagin in particular has been extended in huge generality: the notion of
Selmer group and of Euler system can be given in general for p-adic representations following the
axiomatizations of [Rub00] and [MR04]. Let K be a number field, if V is a p-adic representation
of GK (i.e. a finite dimensional vector space over a p-adic field K endowed with a continuous
K-linear action of GK) and T is a GK-stable lattice (finite free O-module such that V = T ⊗OK,
where O is the ring of integers of K), let A = V/T = T ⊗OK/O. A Selmer group for X = T, V,A
is a subset of the cohomology group H1(K,X) whose cohomology class satisfy a bounch of local
conditions; this means that the localization cv of a class c at any place v of K lie in a chosen
subgroup of H1(Kv, X). In the case where T = TpE is the p-adic Tate module of an elliptic
curve, there is a canonical choice of local conditions such that Selp∞(E/K) is a Selmer group for
the representation A in this sense.

Deligne [Del71] attached to a cusp-newform f ∈ Sk
(
Γ0(N)

)
of even weight k ≥ 2 a p-adic

representation Wp of GQ, that is a vector space over the completion K := Fp of the Hecke field
F of f (i.e. the number field generated over Q by the Hecke eigenvalues an of f) at a prime p | p
of the ring of its integers OF . We denote by O the ring of integers of K. In [Nek92] Nekovar
shows that under the condition that p ∤ 2Nφ(N)(k−2)!, where φ(N) denotes the Euler function,
there is a GQ-stable lattice T in the (k/2)-Tate twist V =Wp(k/2) of this representation, that is
analogous to the Tate-module of an elliptic curve: it is self-dual, in the sense that it is endowed
with an equivariant O-linear perfect pairing

[−,− ] : T × T → O(1)

that induces an isomorphism T ∼= T ∗(1) as GQ-representations; in the case of elliptic curves this
comes from the Weil pairing.
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Nekovar then constructs an Euler system for this representation, that is a higher weight
analogue of the Heegner point one: he defines a systematic supply of CM cycles ∆n, usually
referred as Heegner cycles on the Kuga-Sato variety Ẽk−2

Γ(N) of level Γ(N) and weight k, i.e. the
canonical desingularization [see BDP13, Appendix] of the (k−2)-fold selfproduct of the universal
generalized elliptic curve π̄Γ(N) : ĒΓ(N) → X(N) over the (closed) modular curve X(N) of level
Γ(N), and shows that they satisfy properties (as for instance a norm relation) similar to those
of the Heegner points. The images yn = ΦK[n](∆n) of these cycles via a suitably defined p-adic
étale Abel-Jacobi map

ΦK[n] : CHk/2(Ẽk−2
Γ(N)/K[n])0 ⊗O → H1

f (K[n], T )

define an Euler system, allowing Nekovar to use them as an input of the Kolyvagin method. Here
H1
f (K[n], T ) is the Bloch-Kato Selmer group for T , introduced by Bloch and Kato in [BK90] and

CHk/2(Ẽk−2
Γ(N)/K[n])0 is the group of homologically trivial cycles (up to rational equivalence) of

codimension k/2, defined over K[n], on the Kuga-Sato variety Ẽk−2
Γ(N) of weight k and level Γ(N).

In the following statement yK = coresK[1]/K(y1) ∈ H1
f (K,T ) is the basic Heegner cycle,

Λp(K) ⊆ H1
f (K,T ) is the image of the the Abel-Jacobi map ΦK and the (p-primary part of the)

Shafarevich-Tate group Xp∞(f/K) is defined to be the cokernel of

ΦK ⊗K/O : CHk/2(Ẽk−2
Γ(N)/K)0 ⊗K/O → H1

f (K,A).

This definition of the (p-part of the) Shafarevich-Tate group of f mimics the elliptic curve case,
where X(E/K)[p∞] sits in the short exact sequence

0 E(K)⊗Qp/Zp Selp∞(E/K) X(E/K)[p∞] 0δ .

In this framework we don’t know however if the Abel-Jacobi map is injective, in fact it is a
wide open problem whether the Chow group is finitely generated or not, and this led Nekovar to
consider the image Λp(K) of ΦK instead of directly using CHk/2(Ẽk−2

Γ(N)/K)0 in order to replace
the Mordell-Weil group of an elliptic curve. He obtained therefore the following result:

Theorem ([Nek92, Th. 13.3]). Let p ∤ 2Nφ(N)(k−2)! and yK is non-torsion in H1
f (K,T ), then

Λp(K)⊗K = K · yK and Xp∞(f/K) is finite.

Several authors later improved this result, in particular Besser [Bes97, Th. 1.2] showed that if
the prime p is unramified in F and the representation Wp has “big image”, then one can explicitly
bound as Kolyvagin did for ellipic curves, the exponent of the Shafarevich-Tate group in terms
of the basic Heegner point:

p2IpXp∞(f/K) = 0,

where Ip is the maximum integer M such that yK ∈ pM H1
f (K,T ). This is finite if yK is assumed

non torsion. As a corollary moreover we get that if yK /∈ pH1
f (K,T ), then Xp∞(f/K) = 0. In

more recent years [Mas19] gave moreover a structure theorem for Xp∞(f/K), generalizing the
analogous result of Kolyvagin for elliptic curves (or better an improvement of it by McCallum
[McC91]).

The Heegner cycles of Nekovar are not the unique class of cycles that one can use on order
to apply the Kolyvagin method: in [BDP13] Bertolini, Darmon and Prasanna introduced, for
reasons involving the study of special values of the p-adic Rankin L-series at critical points that
lie outside their range of classical interpolation, another class of cycles ∆φ indexed over isogenies,
that they call generalized Heegner cycles, over the product of the Kuga-Sato variety Ẽk−2

Γ1(N) and
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the (k− 2)-selfproduct of a fixed CM elliptic curve A defined over the Hilbert class field K[1] of
K. We denote this variety by Xk−2 and we call it generalized Kuga-Sato variety. Castella and
Hsieh [CH18] showed that a subclass of these cycles can be used in order to construct an Euler
system and to apply the Kolyvagin method as modified by Nekovar. If zf,K denotes the basic
generalized Heegner cycle, they prove:

Theorem ([CH18, Th. 7.7]). If zf,K is non torsion in H1
f (K,T ), then H1

f (K,T ) = F · zf,K .

These cycles are moreover better suited for Iwasawa Theory than the classical Heegner cycles
of Nekovar, passing to the Iwasawa theoretical side of the story in fact Longo and Vigni recently
proved the following structural result for the Pontryagin dual X∞ of the Selmer group H1

f (K∞, A)
of A over the anticyclotomic extension K∞ of K, building a so called anticyclotomic Λ-adic
Kolyvagin system starting from them:

Theorem ([LV19, Th. 1.1]). Suppose that (f,K, p) is an admissible triple in the sense of [LV19,
Def. 2.1] (but let us stress that these conditions contains in particular the “big image” property
for Wp, the p-ordinariety of f and we ask that p is split in K). Then there exists a finitely
generated torsion Λ-module M and a pseudo-isomorphism

X∞ ∼ Λ⊕M ⊕M,

where Λ = OJGal(K∞/K)K is the Iwasawa algebra over O attached to the extension K∞/K.

Contribution of the Thesis
From the latter theorem of Longo and Vigni we know that in particular, under reasonable assump-
tions on f and K and p, the Selmer group H1

f (K∞, A) has Λ-corank 1. The main contribution
of this thesis is to find, inspired by the work [MN19] of Nekovar and Matar, the arithmetic
conditions under which this group is also cofree.

The following is indeed the main theorem of this thesis:

Theorem (Th. 4.3.6). Under the assumptions of Section 4.1, suppose moreover that the basic
generalized Heegner cycle zf,K is non-torsion and that zf,K /∈ pH1

f (K,T ). Then X̃p∞(f/K) = 0
and

Λ̃p(K)⊗K/O = H1
f (K,A) = zf,K · K/O,

moreover X̃p∞(f/K∞) = 0 and H1
f (K∞, A) = Λ̃p(K∞)⊗K/O, the Pontryagin dual X∞ of the

latter group beeing free of rank 1 over Λ.

Remark. In Sec. 4.1 we make three technical assumptions. In Assumption 1 we make some
assumptions on the prime p, containing in particular the unramifiedness of p in F , the “big
image” property for Wp and the p-ordinarity of f : it corresponds to the admissibility assumption
of [LV19, Def. 2.1]. Assumption 2 is the triviality of the Tamagawa numbers for the representation
A: this implies that the Bloch-Kato Selmer group of A equals the unramified one. Finally
Assumption 3 is an assumption on the Hecke eigenvalue ap: it implies that, if α is the p-adic unit
root of charachteristic polynomial X2 − ip(ap)X + pk−1 = 0 (which exists since f is p-ordinary),
α−1 is invertible. We use this in order to show that some cohomology groups vanish, establishing
equality for the Greenberg and the strict Greenberg Selmer group of A [see Gre91].
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The proof of Th. 4.3.6 goes along the same lines of [MN19]: provided that one has a suitable
definition of the Shafarevich-Tate group for this purpose, one merges a vanishing result for
the Shafarevich-Tate group over K with an abstract Iwasawa theoretical one that extends this
vanishing over the anticyclotomic extension. In particular we choose to use a definition that
differs a bit from the one of Nekovar since we need to use generalized Heegner cycles, rather then
the classical one for the Iwasawa theoretical step. Indeed the generalized ones are cycles that lay
in the Chow group CHk−1(Xk−2/K[n])0 ⊗ Zp and they become cohomology classes taking their
image via an Abel-Jacobi map

Φ′
K[n] : CHk−1(Xk−2/K[n])⊗O → H1

f (K[n], T ),

hence, at least in principle, they may not lay into Λp(K[n]).
We define therefore (Def. 2.2.1) Λ̃p(K[n]) to be the image of Φ′

K[n], while the definition of
Λ̃p(K) and Λ̃p(K∞) is slightly more involved since Xk−2 is a variety defined not over Q as it was
the case for Ẽk−2

Γ(N), but just over the Hilbert class field K[1] of K. Thus

Φ′
F : CHk−1(Xk−2/F )⊗O → H1

f (F, T )

is naturally defined only if F is a number field containing K[1], but this is not the case for K
and the layers Kn of the anticyclotomic extension. However under our working hypothesis, the
restriction morphisms

res : H1(K,T )→ H1(K[1], T ), res : H1(Kn, T )→ H1(K[pn+1], T )

are isomorphisms, hence we put

Λ̃p(K) = res−1 Λ̃p(K[1])Gal(K[1]/K) ⊆ H1
f (K,T ),

Λ̃p(Kn) = res−1 Λ̃p(K[pn+1])Gal(K[pn+1]/Kn) ⊆ H1
f (Kn, T )

Λ̃p(K∞) = lim←−
n

Λ̃p(Kn) ⊆ H1
f (K∞, T ).

The p-part of the Shafarevich-Tate group for F = K,Kn,K∞ is then here defined by the induced
short exact sequence

0 Λ̃p(F )⊗K/O H1
f (F,A) X̃p∞(f/F ) 0 .

In Chapter 2 we show that with this new definition [Bes97, Th. 1.2] and in particular its vanishing
corollary holds again replacing the classical Heegner cycles with the generalized ones, since
from the generalized Heegner cycles zf,n one constructs classes P (n) by means of the Kolyvagin
derivative operators, as Besser does from the classical ones: we prove that they enjoy the same
formal properties and hence the argument of Besser’s proof verbatim applies in this case leading
to the following result:

Theorem (Th. 2.3.9). Let p be a non exceptional prime and zf,K be non torsion in H1(K,T ).
Then

p2IpX̃p∞(f/K) = 0,

where Ip is the smallest non negative integer such that zf,K is non-zero in H1
f (K,A[p

Ip+1]). In
particular, if Ip = 0, then X̃p∞(f/K) = 0 and Λ̃p(K)⊗K/O = H1

f (K,A) = zf,K · K/O.

Vanishing of X̃p∞(f/K) and consequences for anticyclotomic Iwasawa Theory xi



The abstract Iwasawa theoretical part is treated in Chapter 4, whose main technical step is
the followin theorem:

Theorem (Th. 4.3.1). Under the assumptions of Section 4.1, if the Pontryagin dual X of
H1
f (K,A) is a free O-module of rank 1, then the Pontryagin dual X∞ of H1

f (K∞, A) is a free
Λ-module of rank 1.

The proof of this result follows that of [MN19, Th. 3.4], proving that the Bloch-Kato Selmer
groups of A over the extensionsK,Kn,K∞ coincide with other kind of Selmer groups and with the
so called generalized Selmer groups, the cohomology objects of the Selmer complexes attached to
the representations involved. The theory of Selmer complexes, developped by Nekovar in [Nek06]
then endows these group of a rich structure: in particular we derive from that an exact control
theorem, i.e. an isomorphism

H1
f (Kn, A)

∼−→ H1
f (K∞, A)

Gal(K∞/Kn)

that is the main technical tool that allows us to derive Th. 4.3.1 from [LV19, Th. 1.1]. Th. 4.3.5
follows by abstract nonsense from this abstract version and Th. 2.3.9, provided that Λ̃p(K∞) ̸= 0:
a nontrivial element of it has been constructed by Longo and Vigni [LV19, Prop. 4.12].

Structure of the thesis
This thesis is subdivided in 4 chapters.

In Chapter 1 we introduce some well known preliminaries: in Section 1.1 we introduce the
notion of p-adic representations, their main features and their Selmer groups; in Section 1.2 we
introduce the notion of cycles and correspondences and the notion of pure motives; in Section
1.3 we introduce the representation and the motive attached to a modular form and the selfdual
lattice of [Nek92]; in Section 1.4 we resume the construction of the anticyclotomic Zp-extesion
K∞ of K and we discuss the notion of Selmer group over K∞.

In Chapter 2 we recall from [BDP13] and [CH18] the construction of generalized Heegner
cycles and their related Abel-Jacobi map and we use them in order to prove the analogue of
[Bes97, Th. 1.2].

In Chapter 3 we give a brief overview of the theory of Selmer complexes that is of interest
for us, in Section 3.4 we deduce the statements that one gets from this theory when the Selmer
complex comes from a single Galois representation.

Chapter 4 is the core of this thesis: in Section 4.1 we fix a framework for the main result,
in Section 4.2 we prove a comparison result between the various Selmer groups of A and the
generalized ones, we deduce an exact control theorem for the Bloch-Kato Selmer groups and we
prove that the rank 1 cofreeness extends over the anticyclotomic tower, finally in Section 4.3 we
combine together the cofreenes extension with the vanishing result Th. 2.3.9 and we prove our
main Theorem 4.3.5.
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Chapter 1

Selmer Groups and
Anticyclotomic Extension

1.1 Selmer Groups

In this section we introduce our basic object of study: p-adic Galois representations and their
Selmer groups, following mainly [Rub00] and [MR04]. Fix once and for all a rational prime p and
a finite extension K of Qp, denote by O its ring of integers, by p its maximal ideal and by κ its
residue field. Write vp for the non-archimedean valuation on K and π for a chosen uniformizer.
Fix moreover an algebraic closure Q̄ of Q, an embedding i∞ : Q̄ ↪→ C and an algebraic closure
Q̄ℓ of Qℓ together with an embedding iℓ : Q̄ ↪→ Q̄ℓ for any rational prime ℓ.

1.1.1 p-adic representations

Let E ⊆ Q̄ a number field and consider a finite set S of primes of E containing all archimedean
places and all primes above p. Denote by ES the maximal extension of E unramified outside S
and let GE,S = Gal(ES/E). Note that for any finite prime v | ℓ the embedding Q̄ ↪→ Q̄ℓ fixed
above realizes Gv = Gal(Q̄ℓ/Ev) as a decomposition group of GE = Gal(Q̄/E).

Definition 1.1.1. An O-adic (resp. K-adic) representation of GE is a free O-module T (resp. a
K-vector space V ) of finite rank (resp. dimension) with a continuous O-linear (resp. K-linear)
action of GE with respect to the p-adic topology on T (resp. V ).

Both O-adic and K-adic representations of GE , for a number field E are usually referred
as p-adic Galois representations in the litterature. This is because once we have an O-adic
representation T , the vector space V = T ⊗O K with the induced action

σ · (x⊗ r) = (σ · x)⊗ r, x ∈ T, r ∈ K;

is a K-adic representation of dimension equal to the rank of T and conversely any GE-stable
lattice T inside a K-adic representation V is naturally an O-adic representation, with the induced
action, of rank equal to the dimension of V .

We may attach to an O-adic representation T also a discrete torsion GE-module

A = V/T = T ⊗O K/O

Vanishing of X̃p∞(f/K) and consequences for anticyclotomic Iwasawa Theory 1
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and for any n > 0 we may consider its πn-torsion subgroup A[πn] = π−nT/T ∼= T/πn T (indeed
A[πn] is GE-stable, by the O-linearity of the action). Note that

A = lim−→
n

A[πn] =
⋃
n

A[πn],

indeed any x + T ∈ A is πn-torsion for a suitable n > 0 (let x =
∑
i aiti, for ti generators of T

over O and ai ∈ K and let aj be the coefficient with minimal p-valuation: if n ≥ −vp(aj), then
πnx ∈ T ).

Similarly
T = lim←−

n,π·−
T/πn T ∼= lim←−

n,π·−
A[πn]

indeed if one writes t =
∑
i aiti, for ti generators of T and ai ∈ O, one may recover the coefficients

ai (and hence t itself) by their reduction modπn.
Remark 1.1.2. All these representations may be equivalently seen as (continuous) group homo-
morphisms

ρM : GE → GL(M) ∼= GLn(B); ρ(σ)(x) = σ · x; for σ ∈ GE , x ∈M,

where n is the rank of T and B = O,K or κ respectively, depending on the fact that M = T, V
or A[π].
Example 1.1.3. Let χp : GQ → Z×

p be the p-adic cyclotomic character, i.e. the map such that
σ(ζ) = ζχp(σ) for any σ ∈ GQ and ζ ∈ µp∞(Q̄). The action of GQ on a free Zp-module of rank
one by χp gives rise to a Zp-adic representation. We will use the cyclotomic character moreover
in order to twist a p-adic representation: let T be a O-adic representation of GE , for a number
field E, and denote the action of σ ∈ GE on x ∈ T by σ · x, then for any j ∈ Z we define T (j) to
be the O-module T as a p-adic representation of GE with the action σ ◦ x = χp(σ)

j(σ · x). We
will call it the j-th Tate twist of T .

Unramified representations

The most important feature of p-adic representations is unramifiedness. For a finite place v | ℓ,
let Iv = Gal(Q̄p/Eur

v ) be the inertia subgroup of Gv at v. If v is archimedean (we write ℓ =∞)
Ev = R or C and we define Iv := Gv, that is trivial or has order 2.

Definition 1.1.4. Let M a p-adic GE-representation, we say that M is unramified at a place v
of E if Iv acts trivially, or equivalently if ρM (Iv) = { 1 }.

Note that T is unramified if and only if V or A are so.
Example 1.1.5. Note that the p-adic character χp is unramified at any prime ℓ ̸= p. Indeed if
ζ ∈ µp∞(Q̄), then Qℓ(ζ) is unramified and hence any σ ∈ Iℓ = Gal(Q̄ℓ/Qur

ℓ ) fixes ζ. Therefore
χp(Iℓ) = 1. This is not the case for ℓ = p, since Qp(ζ) in this case is totally ramified and hence
there is a σ ∈ Ip = Gal(Q̄p/Qur

p ) that does not fix ζ.
We will be interested in representations unramified outside the places of S. This amounts to

consider p-adic representations of GE,S , as the following discussion shows.
Denote by GSv and ISv respectively the decomposition and inertia subgroups of GE,S with

respect to v, induced by the embedding iℓ, for v | ℓ. Note that for any v /∈ S, ISv = { 1 }, since
ES is unramified at v.

Lemma 1.1.6. GE,S is the quotient of GE by H, the minimal closed normal subgroup containing
all Iv such that v /∈ S.
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Remark 1.1.7. Note that for a place v its inertia group Iv is defined only up to conjugation, but
the lemma does not depend on the particular choice because H is normal and therefore whenever
it contains a subgroup, it contains also all its conjugates.

Proof. Note that if π denotes the projection GE ↠ GE,S , by [Neu99, Ch. II, Prop. 9.4] applied
to the extensions ES/E and Ē/E, we have a commutative diagram

Iv Dv GE

ISv DS
v GE,S

π .

Hence Iv ⊆ kerπ for any v /∈ S, as π factors trough ISv = { 1 }. The lemma follows by Galois
correspondence and the maximality of ES .

Proposition 1.1.8. A representation ρ of GE is unramified outside S if and only if it factorizes
through GE,S.

Proof. If ρ factorizes as ρS through GE,S , then ρ(Iv) = ρS◦π(Iv) = ρS(ISv ) = ρS({ 1 }) = { 1 } for
any v /∈ S. Conversely, let ρ be unramified outside S. By the previous lemma, H = kerπ is the
minimal normal closed subgroup containing all Iv for v ∈ S, and so ρ(H) = { 1 }. In fact, denoting
by ρ′ the restriction of ρ to H, ker ρ′ is a normal subgroup of H such that Iv ⊆ ker ρ′ for any
place v /∈ S and hence H = ker ρ′ by minimality. Thus ρ factorizes through GE/H ∼= GE,S .

Duality

We have in our setting two notions of duality. The aim of this paragraph is to define the duality
functors and to study the relations among the different dual representations.

Definition 1.1.9. The linear dual of an O-adic (resp. K-adic) representation T (resp. V ) is
defined to be the free O-module T ∗ = HomO(T,O) (resp. the K-vector space V ∗ = HomK(V,K))
endowed with the p-adic topology and the continuous GE-action σ · f(x) = f(σ−1x) for any
σ ∈ GE , f ∈ T ∗, x ∈ T (resp. f ∈ V ∗, x ∈ V ).

Note that the functor (− )∗ is a dualizing functor on the category of finite free O-module
(resp. of K-vector spaces), i.e. the canonical map T → T ∗∗ is an isomorphism.

For a compact or discrete O-module M we may define moreover its Pontryagin dual.

Definition 1.1.10. Let M be a compact or a discrete O-module, the Pontryagin dual of M is
defined to be the O-module M∨ = Homcont

O (M,K/O) endowed with the compact-open topology.
If moreover M has a continuous GE-action, it induces a continuous GE-action on M∨ defined
by σ · f(x) = f(σ−1x) for any σ ∈ GE , f ∈M∨ and x ∈M .

It is known (e.g. [NSW00, Ch. I, Th. 1.1.8]) that the (− )∨ functor defines a duality functor
between the categories of compact and discrete O-modules.

If we define moreover A∗ = V ∗/T ∗ we may depict the relations among the linear and the
Pontryagin dual representations by the following diagram:

T T ∗

A A∗

(−)∗

⊗OK/O
(−)∨

⊗OK/O
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This diagram follows from the following proposition applied to M = T, T ∗ since all morphisms
φ : M → K/O are continuous, as long as M is a finite free O-module. In fact, since φ is O-linear,
it is enough to check that φ is continuous at 0 ∈ M ; that is, as M has the p-adic topology and
K/O is discrete, we have to find an N ≥ 0 such that φ(pNM) = 0+O. Let therefore m1, . . . ,ms

be a basis of M over O and φ(mi) = ai/π
ni +O for ai ∈ O×, ni ≥ 0, let N = maxi {ni }; then

φ(pNM) = 0 +O.

Proposition 1.1.11. If M is a finite free O-module HomO(M,O)⊗O K/O ∼= HomO(M,K/O)
.

Proof. The isomorphism is given by the multiplication map φ⊗x ↦→ x ·φ. Indeed, let m1, . . . ,ms

be an O-basis of M , and write m∗
i for the O-linear maps in HomO(M,O) such that m∗

i (mj) = δij ,
where δij is the Kronecker symbol. It is straight forward to check that the inverse of the previous
map is given by the linear homomorphism ψ ↦→

∑
im

∗
i ⊗ ψ(mi), as any ψ ∈ HomO(M,K/O) is

uniquely defined by its image on a basis.

Remark 1.1.12. It is worth observing that in the above definitions we can use Zp (resp. Qp) at
any occurrence of O (resp. K). This follows as O is free of rank [K : Qp] as Zp-module [Neu99,
Ch. I, Prop. 2.10], say generated by a1, . . . , an. Since T is free over O, say with basis t1, . . . , ts,
then it is free over Zp with basis a1t1, . . . , a1ts, . . . , ants and hence V = T ⊗O K = T ⊗Zp Qp
as Qp-vector spaces. Moreover A = V/T = T ⊗O K/O = T ⊗Zp

Qp/Zp as discrete Zp-modules.
Indeed the sequences

0 T = T ⊗Zp Zp V = T ⊗Qp Qp T ⊗Zp Qp/Zp 0,

0 T = T ⊗O O V = T ⊗O K T ⊗O K/O 0

are both exact, since T is free and hence flat both over O and Zp.
However the isomorphisms among the corresponding modules are not always canonical iso-

morphisms. Now observe that for a compact or discrete O-module M

Homcont
Zp

(M,Qp/Zp) = Homcont
Zp

(M ⊗O O,Qp/Zp) ∼= Homcont
O

(
M,HomZp(O,Qp/Zp)

)
,

and
HomZp(O,Qp/Zp) ∼= HomZp(O,Zp)⊗Zp Qp/Zp

as O is finite free over Zp (this is Prop. 1.1.11 replacing O to M and Zp to O). Moreover

HomZp
(O,Zp)⊗Zp

Qp/Zp = HomZp
(O,Zp)⊗O K/O

since HomZp
(O,Zp) is a fractional ideal isomorphic to the inverse different ([Neu99, Ch. III, §2 ])

and hence free both as Zp-module (again by [Neu99, Ch. I, Prop. 2.10], for M = HomZp
(O,Zp))

and as O-module (as any it is a fractional ideal in a PID is principal). Thus we may use the
same arguments we used above for T . In particular HomZp(O,Zp) has rank one over O and if
we choose a generator we find a non-canonical isomorphism of topological Zp-modules

Homcont
Zp

(M,Qp/Zp) ∼= Homcont
O (M,K/O).
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1.1.2 Local conditions and Selmer groups
Local Conditions

In this paragraph T will be an O-adic representation of GE,S and let V and A be the induced
representations as in the previous paragraph. We introduce the general formalism of Selmer
groups, following [MR04]. In the following all cohomology groups are the continuous cohomology
groups, introduced by [Tat76]. We refer to [Rub00, App. B.2] or [NSW00, Sec. II.3] for the
definition and the properties of these groups.

Definition 1.1.13. A local condition F = (Fv)v∈S is the choice, for any place v ∈ S of a
subspace H1

Fv
(Ev, V ) ⊆ H1(Ev, V ).

Note that the choice induces for any place v ∈ S the submodules H1
F (Ev, A) of H1(Ev, A)

and H1
F (Ev, T ) of H1(Ev, T ) taking respectively the image and the inverse image of H1

Fv
(Ev, V )

under the natural maps. The submodule H1
F (Ev, A[π

n]) of H1(Ev, A[π
n]) can be equally defined

[see Rub00, Rk. I.3.9] as the image of H1
Fv

(Ev, T ) under the map induced by

T ↠ T/πnT
·π−n

−−−→
∼

π−nT/T = A[πn]

or as the inverse image of H1
F (Ev, A) by the map induced by the inclusion A[πn] ↪→ A.

Example 1.1.14. Let X = T, V,A,A[πn] and v a finite place of E. We define the subgroup of
unramified cohomology classes as

H1
ur(Ev, X) = ker(H1(Ev, X)→ H1(Iv, X)),

where Iv denotes the inertia subgroup of Gv. If v ∤ p we define the finite local condition at v
to be H1

f (Ev, V ) = H1
ur(Ev, V ) and, as in the previous definition, H1

f (Ev, A) and H1
f (Ev, T ) to

be respectively the image and the inverse image under the natural morphisms. In particular the
commutative diagram

0 H1
ur(Ev, T ) H1(Ev, T ) H1(Iv, T )

0 H1
ur(Ev, V ) = H1

f (Ev, V ) H1(Ev, V ) H1(Iv, V )

0 H1
ur(Ev, A) H1(Ev, A) H1(Iv, A)

shows that H1
ur(Ev, T ) ⊆ H1

f (Ev, T ) and that H1
f (Ev, A) ⊆ H1

ur(Ev, A). The index

cv(A) := [H1
ur(Ev, A) : H

1
f (Ev, A)]

is finite and it is called the p-part of the Tamagawa number of A at v. If V is unramified at v,
then cv(A) = 1 [see Rub00, Lemma 3.5.iv ], i.e. H1

f (Ev, A) = H1
ur(Ev, A). Moreover by loc. cit. if

V is unramified at v, then also H1
f (Ev, T ) = H1

ur(Ev, T ) and H1
f (Ev, A[π

n]) = H1
ur(Ev, A[π

n]).

Formalism of Selmer groups

Definition 1.1.15. Let X = T, V,A,A[pn]. The Selmer group of X associated to a local
condition F is defined to be the group

H1
F (E,X) = ker

(
H1(ES/E,X)→

⨁
v∈S

H1(Ev, X)

H1
Fv

(Ev, X)

)
.

Vanishing of X̃p∞(f/K) and consequences for anticyclotomic Iwasawa Theory 5
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In this thesis we will consider mainly the Block-Kato Selmer groups defined in [BK90], usually
denoted by H1

f (Ev, X), i.e. the Selmer groups associated with the following local conditions:

H1
f (Ev, V ) =

⎧⎪⎪⎨⎪⎪⎩
H1

ur(Ev, V ) if v ∈ S, v ∤ p,∞,
ker
(
H1(Ev, V )→ H1(Ev, V ⊗Qp

Bcrys)
)

if v | p,
H1(Ev, V ) if v|∞.

where Bcrys denote the Fontaine ring of p-adic crystalline periods.

Greenberg Selmer Groups

If the representation V is ordinary at any v | p, in the sense of [Gre91], we have for any v | p
a filtration of K[Gv]-submodules V = F 0

v V ⊇ V +
v = F 1

v V ⊇ F 2
v V ⊇ . . . and we may define for

X = T, V,A the Greenberg Selmer group and the strict Greenberg Selmer group. For any v | p
let T+

v = V +
v ∩ T , A+

v = V +
v /T

+
v and X−

v = X/X+
v ; define

H1
Gr(E,X) = ker

(
H1(ES/E,X)→

⨁
v|p

H1(Iv, X
−
v )⊕

⨁
v∈S
v∤p∞

H1(Iv, X)

)
,

H1
str(E,X) = ker

(
H1(ES/E,X)→

⨁
v|p

H1(Gv, X
−
v )⊕

⨁
v∈S
v∤p∞

H1(Iv, X)

)
.

They are related by the exact sequence

0→ H1
str(E,X)→ H1

Gr(E,X)→
⨁
v|p

H1
(
Gv/Iv,H

0(Iv, X
−
v )
)
.

Note that the Greenberg Selmer groups of V fit into the general framework described above
using the local conditions

H1
FGr

(Ev, V ) =

⎧⎪⎪⎨⎪⎪⎩
H1

ur(Ev, V ) if v ∈ S, v ∤ p,∞;

H1
ord(Ev, V ) = ker

(
H1(Ev, V )→ H1(Iv, V

−
v )
)

if v | p;
H1(Ev, V ) if v|∞

and

H1
Fstr

(Ev, V ) =

⎧⎪⎪⎨⎪⎪⎩
H1

ur(Ev, V ) if v ∈ S, v ∤ p,∞;

H1
str(Ev, V ) = ker

(
H1(Ev, V )→ H1(Gv, V

−
v )
)

if v | p;
H1(Ev, V ) if v|∞.

It is immediate to observe that H1
Gr(E, V ) = H1

FGr
(E, V ) and H1

str(E, V ) = H1
Fstr

(E,X), but
in general H1

Gr(E,X) ̸= H1
FGr

(E,X), H1
str(E,X) ̸= H1

Fstr
(E,X) for X = T,A. For instance we

have already remarked in Ex. 1.1.14 that H1
ur(Ev, A) contains H1

f (Ev, A), that is the image of
H1

ur(Ev, V ) via the natural map, but these are not equal in general.

6 Luca Mastella - PhD Thesis



1.2. CYCLES AND MOTIVES

However, defining for any v | p and X = T, V,A,

H1
ord(Ev, X) = ker

(
H1(Ev, X)→ H1(Iv, X

−
v )
)
;

H1
str(Ev, X) = ker

(
H1(Ev, X)→ H1(Gv, X

−
v )
)
,

we may write the Greenberg and strict Selmer groups in a similar fashion:

H1
Gr(E,X) = ker

(
H1(ES/E,X)→

⨁
v|p

H1(Ev, X)

H1
ord(Ev, Xv)

⊕
⨁
v∈S
v∤p∞

H1(Ev, X)

H1
ur(Ev, X)

)
;

H1
str(E,X) = ker

(
H1(ES/E,X)→

⨁
v|p

H1(Ev, X)

H1
str(Ev, Xv)

⊕
⨁
v∈S
v∤p∞

H1(Ev, X)

H1
ur(Ev, X)

)
.

1.2 Cycles and Motives
In this section we review the notion of algebraic cycles and give the definition of Chow (and
Grothendieck) motives, We will not need in this work the general theory of motives, but we will
see in the next section the construction of the motive attached by Scholl to a modular form in
[Sch90].

1.2.1 Algebraic Cycles and Chow group
A good reference for the material of this paragraph is [Ful98]. Given a fixed ground a field K, a
variety over K means an integral (reduced and irreducible) scheme X of finite type over Spec(K)
and a subvariety V of X is a closed subscheme of X that is a variety over K. For this kind of
schemes we have a well shaped theory of dimension and codimension [see GW10, Ch. 5]. If X
is a variety over K, we set dX = dimK(X) and if V is a subvariety of X of generic point ηV ,
we let OX,V denote the stalk of OX at ηV and we call it the local ring at V ; its fraction field
K(V ) = FracOX,V is called the field of rational functions on V .

Definition 1.2.1. Let X be a variety over K. A codimension-r cycle on X is a finite formal
sum

∑
V nV [V ] of subvarieties V of X of codimension r. The group of codimension-r cycles

is denoted by Zr(X). Between codimension-r cycles we may define an equivalence ∼rat called
rational equivalence [Ful98, Sec. 1.3] and the subset Ratr(X) of cycles rationally equivalent to 0
form a subgroup. The Chow group of codimension-r cycle classes is defined to be the quotient

CHr(X) = Zr(X)/Ratr(X).

Definition 1.2.2. Let f : X → Y be a proper morphism of varieties over K. For a subvariety
V of X then W = f(X) is a closed subvariety of Y and we have an inclusion of K(W ) ↪→ K(V ),
that is a finite field extension when V and W have the same dimension. Set

deg(V/W ) =

{
[K(V ) : K(W )] if dim(W ) = dim(V );

0 if dim(W ) < dim(V )

and, for any subvariety V of X, f∗[V ] = deg
(
V/f(V )

)
[f(V )] ∈ ZdY −dX+r(Y ). This extends by

linearity to a homomorphism, called (proper) push-forward of cycles,

f∗ : Z
r(X) −→ ZdY −dX+r(Y ).

Vanishing of X̃p∞(f/K) and consequences for anticyclotomic Iwasawa Theory 7
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Definition 1.2.3. Let f : X → Y be a flat morphism of varieties of relative dimension n. Then
for any subvariety W of Y , all irreducible components of f−1(W ) have dimension dim(W ) + n
(in particular n = dX − dY , using W = Y ). Set for any subvariety W of Y of codimension r

f∗(W ) =
∑

V irr. comp.
of f−1(W )

mV [V ] ∈ Zr(X)

where mV = lenghtOX,V
(OX,V ). This extends by linearity to a homomorphism

f∗ : Zr(Y ) −→ Zr(X),

called (flat) pull back of cycles.

Remark 1.2.4. As we defined cycles in terms of codimension of subvarieties the comparison with
the statements in [Ful98], where cycles are defined in terms of their dimension, is not completely
straight forward but one has to switch dimension with codimension in order to check that they
are really the same.

By [Ful98, Th. 1.4, Th. 1.7] proper push forward and flat pull back are compatible with
rational equivalence, hence they induce morphisms at the level of Chow groups:

f∗ : CHr(X) −→ CHdY −dX+r(Y ),

f∗ : CHr(Y ) −→ CHr(X).

Lastly we recall that there is an intersection product, well defined at the level of Chow groups:

· : CHr(X)× CHs(X) −→ CHr+s(X)

Let now X,Y two smooth projective varieties defined over K.

Definition 1.2.5. A correspondence from a variety X to Y of degree r is an element of

Corrr(X,Y ) := CHr+dX (X × Y ).

The main example of correspondence is the graph Graph(f) of a morphism f : X → Y , that
is a subvariety of X ×Y . This example shows moreover that, philosophically speaking, a fruitful
way to think to correspondences is as a sort of multivalued maps.

For any correspondence α ∈ Corrr(X,Y ) we define the transposed correspondence αt as

αt = σ∗(α) ∈ CorrdY −dX+r(Y,X),

where σ : X × Y → Y ×X is the morphism switching the two factors, and pull-back and push-
forward on the Chow groups induced by α:

α∗ : CHj(X)→ CHj+r(Y ), β ↦→ (pY )∗(α · p∗Xβ);
α∗ : CHj(Y )→ CHj+r−dX−dY (X), β ↦→ (pX)∗(α · p∗Y β),

where pX : X × Y → X, pY : X × Y → Y are the canonical projections.
Two correspondences may also be composed: if we have three smooth projective varieties

X,Y, Z over K and two correspondences α ∈ Corrr(X,Y ) and β ∈ Corrs(Y,Z) we define their
composition to be

α ◦ β := (pXZ)∗(p
∗
XY α · p∗Y Zβ) ∈ Corrr+s(X,Z),
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where pXZ , pXY , pY Z are the projections from X × Y × Z respectively onto the factors X × Z,
X × Y , Y × Z and the intersection product is the intersection of cycles over X × Y × Z. This
composition law is associative by [Ful98, Prop. 16.1.1(a)] and makes

Corr(X) =
⨁
r

Corrr(X)

into an associative ring with as unit the correspondence ∆X attached to the diagonal embedding
∆X : X → X ×X and an involution (transposition of correspondences) [Ful98, Cor. 16.1.1]. In
particular the set of 0-degree correspondences Corr0(X,X) form a subring closed under trans-
positions and containing the graph of endomorphisms of X [see Ful98, Rk. 16.1(i)].

Remark 1.2.6. In the following we will allow coefficients of our cycles in any commutative ring
R, it is convenient therefore to define Zr(X)R = Zr(X) ⊗ R. Similarly as above one defines
a notion of rational equivalence thus one get the Chow group CHr(X)R with coefficients in R,
it is not obvious, but true that CHr(X)R = CHr(X) ⊗ R; however for other equivalences this
fails to be true [see And04, Sec. 3.1.2, 3.2.2]. We extend moreover by R-linearity pull-backs,
push-forwards and intersection products to Chow groups with coefficients in R. Thus defining
the correspondences with coefficients in R as elements of

Corrr(X,Y )R := CHr+dX (X × Y )R = CHr+dX (X × Y )⊗R,

the formula above defining the composition of two correspondences still make sense over R.

1.2.2 Chow Motives
Euristically, the theory of motive should be a sort of universal cohomology that lays above all the
others cohomology theories, that have to be thought as realisations of it and this would explain
the deep relations among them. Developped at first by Grothedieck, the theory of motives
is nowadays wide and still highly conjectural. We will however limit ourself to introduce the
definition of the categories of Chow and Grothendieck pure motives following [And04], then in
Sec. 1.3 we will sketch the construction of the motive attached by Scholl to a modular form of
even weight. Here K is a field and R a commutative ring.

Consider at first the category (Corr0K)R of K-correspondences with coefficients in R, whose
objects are the smooth projective varieties defined over K and the morphisms between X and
Y are the zero-degree correspondences Γ ∈ Corr0(X,Y )R. This is an R-linear category, whose
(finite) direct sums are given by the disjoint sum of varieties.

Definition 1.2.7. The category Meff
rat(K)R of pure effective Chow motives over K with coeffi-

cients in R is the pseudo-abelian completion of (Corr0K)R; explicitely its objects are of the form
(X, e), where

• X is a smooth projective variety defined over K,

• e = e2 ∈ Corr0(X,X)R is an idempotent.

If (X, e), (Y, f) ∈ Ob
(
Mrat(K)effR

)
,

HomMeff
rat(K)R

(
(X, e), (Y, f)

)
= e ◦ Corr0(X,Y )R ◦ f

where the composition is given by the composition of correspondences. We have moreover a
canonical embedding

h(−) : (Corr0K)R →Meff
rat(K)R,

Vanishing of X̃p∞(f/K) and consequences for anticyclotomic Iwasawa Theory 9
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given by X ↦→ (X,∆X), where ∆X is the graph of the diagonal morphism X ×K X → X and

(X, e)⊕ (Y, f) = (X ⨿ Y, e⨿ f)

For the definitions of pseudo-abelian categories and of pseudo-abelian completion (called also
Karoubian categories and Karoubian completion) and their properties see [SGA4, Exposeé 4,
Ex. 7.5] and [Stacks, Tag 09SF]. Let us just remark that in a Karoubian category C , given an
idempotent e : X → X, it has an image and there exist a direct sum decompositionX = im e⊕X ′,
hence it is suggesting to use the alternative notation eh(X) for the effective pure motive (X, e),
meaning that we would like to interpret an effective pure motive as a direct factor of the (euristic)
universal cohomology of X, cutted out by the idempotent e. This interpretation reflects on
realisations of the motive. For instance later on we will consider the p-adic étale realisation of
the Scholl motive that is indeed a direct factor of the étale cohomology of a Kuga-Sato variety.

We would like moreover to take into account in our theory also the Tate Twist of a motive.
This is realized by the following definition.

Definition 1.2.8. The categoryMrat(K)R of pure Chow motives over K with coefficients in R
is the category whose objects are of the form (X, e, i), where

• X is a smooth projective variety defined over K,

• e = e2 ∈ Corr0(X,X)R is an idempotent,

• i ∈ Z is an integer.

If (X, e, i), (Y, f, j) ∈ Ob
(
Mrat(K)R

)
,

HomMrat(K)R

(
(X, e, i), (Y, f, j)

)
= e ◦ Corri−j(X,Y )R ◦ f

where the composition is given by the composition of correspondences. The category of effective
motives embeds here by the natural functor (X, e) ↦→ (X, e, 0).

Again it will be euristically convenient to denote the motive (X, e, i) as eh(X)(i), when
e = ∆X or i = 0 they will be omitted by the notation.

The category Mrat(K)R admits also a ⊗-structure, the tensor products being defined as

eh(X)(i)⊗ fh(Y )(j) = (e× f)h(X × Y )(i+ j)

and the identity object being 1 = h(Spec(K)). The Tate twist of M (by i ∈ Z) is defined to be
M(i) :=M⊗ 1(i), where 1(i) := h(Spec(K))(i).

Moreover we have a notion of dual motive:(
eh(X)(i)

)∨
= et h(X)(dX − i)

and a motiveM is called self-dual ifM∨(1) ∼=M.
But the most important feature of the category of motives is that for any Weil cohomology

there are realisation functors. We refer to [And04, Sec. 3.3, 4.2.5] for the general theory. We
simply remark that the étale realisation of the motive h(X), where X is a projective variety,
is Hrét(X̄,Qp), X̄ denoting the base change of X to K̄, hence the realisation of eh(X)(i) is
eHrét

(
X̄,Qp(i)

)
, a direct factor of the i-th Tate twist of Hrét(X̄,Qp) cutted by a projector (that

we still call e, for its explicit definition see [Kin11, Sec. 1.2]).
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1.2.3 Continuous étale cohomology
Our next goal is to introduce a second kind of equivalence on Zr(X), coarser than the rational
one, the so called homological equivalence. In order to do that we need first to introduce the
continuous étale cohomology.

Let X be a proper and smooth variety of pure dimension d over a field K of characteristic
0. Fix an algebraic closure K̄ of K, let GK = Gal(K̄/K) and denote X̄ = X ⊗K K̄. Classically
(see e.g. [Mil80]) one defines the (geometric) étale cohomology with coefficient in Zp(j) as

Hrét(X̄,Zp(j)) := lim←−
n

Hr(X̄ét,Z/pnZ(j)),

where the cohomology groups Hr(X̄ét,Z/pnZ(j)) are the r-th derived functors of the functor of
global sections computed on the constant sheaf of abelian groups with stalk Z/pnZ on the variety
X̄, with respect to the étale topology, twisted by the j-th power of the cyclotomic character.

It is known that an anologous definition of the étale cohomology for X as

lim←−
n

Hr(Xét,Z/pnZ(j))

does not behave well in general as the groups Hr(Xét,Z/pnZ(j)) may not be finite (e.g. if K is
a number field).

In order to overcome this difficulty Jannsen introduces in [Jan88] a variant of this construction,
that he called continuos étale cohomology : for an inverse system of étale sheaves (Fn)n∈N, let
Hrét
(
X, (Fn)n

)
be the the right derived functors of the left exact functor

{ inverse systems of étale sheaves } → { abelian groups }
(Fn)n ↦→ lim←−

n

H0(Xét, Fn).

In particular we define the continuous (arithmetic) étale cohomology with values in Zp(j) as

Hrét(X,Zp(j)) := Hrét
(
X, (Z/pnZ(j))n

)
;

this notion being related to the inverse limit above by the short exact sequence

0→ lim←−
n

1 Hr(Xét,Z/pnZ(j))→ Hrét(X,Zp(j))→ lim←−
n

Hr(X̄,Z/pnZ(j))→ 0.

For instance in the case when Hr(Xét,Z/pnZ(j)) are finite (e.g. if K is already algebraically
closed) lim←−n

1 = 0, then
Hrét(X,Zp(j)) = lim←−

n

Hr(X̄,Z/pnZ(j))

and hence the continuous geometric étale cohomology coincide with the classical one.
Having a description of derived functor, the continuos étale cohomology enjoys more proper-

ties of the naive definition as inverse limit even in the non-gemetrical case. For instance there is
a Hochshild-Serre spectral sequence (see [Jan88, Rk. 3.5(b)])

Er,s2 = Hr
(
GK ,H

s
ét(X̄,Zp(j))

)
=⇒ Hr+sét (X,Zp(j)),

degenerating at E2.
Remark 1.2.9. Recently, in [BS15], Bhatt and Scholze have interpreted these continuous étale
cohomology modules of Jannsen as classical cohomology functors of sheaves, not on the étale site
Xét on X, but on the pro-étale site Xproét.

Vanishing of X̃p∞(f/K) and consequences for anticyclotomic Iwasawa Theory 11
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1.2.4 Homological equivalence and Gothendieck motives

An other important feature of the continuous étale cohomology for us is that it is endowed by a
cycle class map (for any 0 ≤ r ≤ d) [see Jan88, Lemma 6.14 and Th. 3.23]

clX = clrX : CHr(X)→ H2r
ét (X,Zp(r)).

Its kernel, denoted by CHr(X)0, is called the subgroup of null-homologous codimension-r cycles.
A priori it could depend on the prime p chosen, but since K has charachteristic 0 one can argue
as in [Nek00, Sec. 1.3] to show that the definition is independent of it.

Hence we define the so called homological equivalence ∼hom over Zr(X), by letting α ∼hom β
if and only if the class of α−β ∈ CHr(X)0. The quotient group CHrhom(X) = CHr(X)/CHr0(X)
is called the group of algebraic cycles modulo homological equivalence.

This would be enough in order to define Mhom(K)Z, in order to have Mhom(K)R, for R a
Zp-algebra we need a relative version: we define

clX,R = clX ⊗R : CHr(X)R ∼= CHr(X)⊗R→ H2r
ét (X,Zp(r))⊗R,

and sets CHr(X)0,R = ker(clX,R) and CHrhom(X)R = CHr(X)R/CH
r(X)0,R.

The category of pure Grothendieck motives Mhom(K)R is defined, for char(K) = 0, using
homological equivalence instead of the rational one: in the definitions of Sec. 1.2.2 one replaces
the group of correspondences as defined in Def. 1.2.5 with the following one.

Definition 1.2.10. A correspondence modulo homological equivalence from a variety X to Y
of degree r is an element of

Corrrhom(X,Y )R := CHr+dXhom (X × Y )R.

Definition 1.2.11. Let K a field of charachteristic 0 and R a Zp-algebra. The category
Mhom(K)R of pure Grothendieck motives over K with coefficient in R, is the category whose
objects are of the form (X, e, i), where

• X is a smooth projective variety defined over K,

• e = e2 ∈ Corr0hom(X,X)R is an idempotent,

• i ∈ Z is an integer;

If (X, e, i), (Y, f, j) ∈ Ob
(
Mhom(K)R

)
,

HomMhom(K)R

(
(X, e, i), (Y, f, j)

)
= e ◦ Corri−jhom(X,Y )R ◦ f

where the composition is given by the product of correspondences.

Remark 1.2.12. Let us remark that in order to define homological equivalence it would be
enough to have any Weil cohomology with coefficents in K, the (continuous) étale cohomology
being only one of them. Here we have chosen to follow this definition since we will need continuous
étale cohomology and its cycle map speaking about the p-adic Abel-Jacobi map in Sec. 2.2.2. An
other more classical choice is to use singular cohomology as in [Ful98, Ch. 19]: more precisely
his definition is given in terms Borel-More homology (and this explains the name of homological
equivalence). For the general theory see [And04, Sec. 3.3.4].
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1.3. MODULAR FORMS AND THEIR GALOIS REPRESENTATIONS

1.3 Modular Forms and their Galois Representations
In this section we recall some properties of Galois representations attached to modular forms.
The main references are [NP00], [Rib85] and [Rib77].

Let f =
∑
n≥1 anq

n be a cusp form of level Γ0(N) and weight k ≥ 2. Suppose moreover that
f is a normalized newform (thus a1 = 1, T (ℓ)f = aℓf for any rational prime ℓ). Let F be the
finite extension of Q in Q̄ generated over Q by all the i−1

∞ (an)’s, called the Hecke field of f , and
let OF be its ring of integers. For any p prime of F over p denote by Kp the completion of F at
p, by Op its ring of integers and, with a slight abuse of notation, denote by p also the maximal
ideal of Op. Let

ρf,p : GQ → GL2(OF ⊗Z Zp) ⊆ GL2(F ⊗Z Qp)
denote the (dual of the) continuous representation of GQ attached to f by Deligne in [Del71],
that is unramified outside the finte set of rational primes S = { ℓ prime : ℓ ∤ pN } ∪ {∞} and
characterized by the conditions

Tr
(
ρf,p(Frobℓ)

)
= i−1

∞ (aℓ)⊗ 1, det
(
ρf,p(Frobℓ)

)
= ℓk−1 ⊗ 1,

for any prime ℓ ̸= p and where Frobℓ is an arithmetic Frobenius. The decompositions

OF ⊗Z Zp ∼=
∏
p|p

Op, F ⊗Z Qp ∼=
∏
p|p

Kp

given by the map x⊗α ↦→
(
ip(x)α

)
p|p, induce a decomposition of ρf,p into the direct sum of the

representations
ρf,p : GQ → GL2(Op) ⊆ GL2(Kp),

for all primes p | p. For any such a prime p, ρf,p is unramified outside S, irreducible by a result
of Ribet [Rib77, Th. 2.3] and characterized by the conditions

Tr
(
ρf,p(Frobℓ)

)
= ip ◦ i−1

∞ (aℓ), det
(
ρf,p(Frobℓ)

)
= ℓk−1,

for any prime ℓ ̸= p. Ribet ([Rib77, Prop.. 2.2]) proves moreover that for any σ ∈ GQ

det ρf,p(σ) = χk−1
p (σ).

1.3.1 p-ordinary modular forms
From now on let p denote the prime of F induced by the chosen embedding ip : Q̄ ↪→ Q̄p, and
write O = Op, K = Kp. We denote the representation space of ρf,p by Vp. The choice of ip
identifies Gp = Gal(Q̄p/Qp) with a decomposition group of GQ at p, denote by Ip its inertia
subgroup and choose a Frobenius automorphism Frobp ∈ Gp. We omit moreover i−1

∞ from the
notations: for instance we write just ip(an) in place of ip ◦ i−1

∞ (an).

Definition 1.3.1. We say that f as above is ordinary at p (or p-ordinary) if ip(ap) ∈ O×.

By a result of Wiles ([Wil88, Th. 2.2.2]), in the p-ordinary case ρf,p|Gp
is reducible, as a

representation of Gp, and more precisely it is equivalent to a representation of the form(
ε1 ∗
0 ε2

)
,

where ε2 is the unramified character of Gp (i.e. ε2(Ip) = { 1 }) such that ε2(Frobp) = α, for
α ∈ O× the invertible root of the polynomial X2 − ip(ap)X + pk−1 = 0 (which exists since f is
p-ordinary).

Vanishing of X̃p∞(f/K) and consequences for anticyclotomic Iwasawa Theory 13
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Remark 1.3.2. Note that ε2 is well defined, in fact if ε2 is unramified and ε2(Frobp) = α, then
ε2(φp) = α for any other Frobenius φp in Gp (as it differ from Frobp by some σ ∈ Ip).
Remark 1.3.3. Note that this result endows Vp with a K[Gp]-submodule V 1

p of dimension 1 over
K such that Gp acts on V 1

p as ε1 and on Vp/V 1
p as ε2. In particular it follows that Vp is a Galois

representation ordinary at p in the sense of [Gre91] with filtration 0 ⊊ F 1Vp = V 1
p ⊊ F 0Vp = Vp,

since Vp/V 1
p is unramified.

1.3.2 Scholl motive
We now review the definition of the motive Mf attached to a modular form f by Scholl in
[Sch90], whose p-adic étale realisation, localized at p, is the dual of Vp. All the previous notation
are in force and we assume k > 2. Let Γ = Γ(N),Γ0(N),Γ1(N) and let Y (Γ) (resp. X(Γ))
be the open (resp. closed) modular curve with Γ-level structure, considered as a Q-scheme (for
N big enough). Denote by πΓ : EΓ → Y (Γ) (resp. π̄Γ : ĒΓ → X(Γ)) the universal elliptic curve
(resp. universal generalized elliptic curve) of level structure Γ.

Definition 1.3.4. We call Kuga-Sato variety of level Γ and weight k, denoted by Ẽk−2
Γ , the

canonical desingularization of the (k − 2)-fold fibre product

ĒΓ ×X(Γ) · · · ×X1(Γ) ĒΓ  
k−2 times

over X(Γ) of the universal generalized elliptic curve ĒΓ, constructed by Deligne in the case of
Γ = Γ(N). See [BDP13, Appendix] for the general construction.

We define an idempotent
∏
ε in Corr0(Ẽk−2

Γ(N), Ẽ
k−2
Γ(N)). Consider the group

Γk−2 :=
(
(Z/NZ)2 ⋊ {±1 }

)k−2 ⋊ Sk−2,

where Sk−2 denotes the symmetric group on k−2 letters, Γk−2 acts on Ẽk−2
Γ(N) in the following way:

(Z/nZ)2 acts by translation on ĒΓ(N) (where the translation is given by the level-N structure
on ĒΓ(N)), moreover −1 acts on Ē by inversion on the fibers and hence we get an action of(
(Z/NZ)2 ⋊ {±1 }

)k−2 on Ēk−2
Γ(N). Finally Sk−2 permutes the factors of Ēk−2

Γ(N); we get in this way
an action of Γk−2 on Ēk−2

Γ(N) and hence, by the properties of the canonical desingularization, also
on Ẽk−2

Γ(N).
We consider moreover the homomorphism ε : Γk−2 → ±1 that is trivial on (Z/NZ)2(k−2), the

product map on ({±1 })k−2 and the sign character on Sk−2, let
∏
ε be its attached projector∏

ε

=
1

(2N)k−2(k − 2)!

∑
γ∈Γk−2

ε(γ)γ ∈ Z
[

1

2N(k − 2)!

]
[Γk−2].

Viewing the action of γ as an automorphim of Ẽk−2
Γ(N) and taking its graph, then we may see

∏
ε

as a degree 0 correspondence on Ẽk−2
Γ(N). Its p-adic étale realisation corresponds to the action of∏

ε induced on the étale cohomology by the action of Γk−2 on Ẽk−2
Γ(N).

Definition 1.3.5. We call the Chow motive

Mk(N) :=
(
Ẽk−2
Γ(N),

∏
ε

)
∈Mrat(Q)

the motive of modular forms of weight k and level N .
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Scholl shows in particular that its p-adic étale realisation is a parabolic cohomology group:
let j : Y (N) ↪→ X(N) be the canonical embedding of the open into the compact modualr curve,
as Q-schemes, and denote by π := πΓ(N) : EN := EΓ(N) → Y (N) the universal elliptic curve with
level-N structure and FQp

the p-adic sheaf over Y (N) given by

Fn := Symk−2
(
R1π∗(Z/pnZ)

)
, F = (Fn)n, FQp = F ⊗Zp Qp.

Theorem 1.3.6 ([Sch90, Th. 1.2.1]).

H1
ét
(
X(N)Q̄, j∗FQp

)
=
∏
ε

Hk−1
ét (Ẽk−2

Γ(N) ⊗ Q̄,Qp).

InMhom(Q)hk(N) the motiveMk(N) decomposes and we have a projector Ψf assocated with
the modular form f . Its kernel is defined to be the motive Mf ∈ Mhom(Q)F attached to f . In
particular Scholl proves [Sch90, Th. 1.2.4] that the p-adic étale realisation ofMf , i.e.

Mp ⊆ Hk−1
ét (Ẽk−2

Γ(N),Qp),

is free of rank 2 over F⊗Qp and its localization Mp =Mp⊗F⊗Qp
Fp at p is, as GQ-representation,

unramified at primes ℓ ∤ Np and the characteristic polynomial of the geometric Frobenius Frobℓ
at ℓ (that is the inverse of the arithmetic Frobenius Frobℓ) is

char(Frobgeo
ℓ |Mp)(X) = X2 − ip(aℓ)X + ℓk−1.

It follows that Mp is the representation ρ′f,p dual to ρf,p: the representation space of ρ′f,p is
by definition Wp = HomQp

(Vp,Qp) and it is endowed with the action σ · w(v) = w(σ−1v)
for any σ ∈ GQ, w ∈ Wp, v ∈ Vp. Indeed similarly to Vp, also Wp is unramified outside
S = { ℓ prime : ℓ ∤ pN } ∪ {∞}, irreducible and characterized by the conditions

Tr
(
ρ′f,p(Frob

geo
ℓ )

)
= ip(aℓ), det

(
ρ′f,p(Frob

geo
ℓ )

)
= ℓk−1,

for any prime ℓ ̸= pN (and hence Mp coincides with Wp). Moreover one has that for any σ ∈ GQ

det ρ′f,p(σ) = χ1−k
p (σ).

These properties follows as ρ′f,p(Frob
geo
ℓ ) = ρf,p(Frobℓ)

t and more generally one proves that
ρ′f,p(σ) = ρf,p(σ)

t −1, where ∗t denotes the transposed matrix. Indeed for any w ∈Wp, v ∈ Vp,(
ρ′f,p(σ)w

)
(v) = (σ · w)(v) = w(σ−1 · v) = w

(
ρf,p(σ)

−1v
)

hence if ρf,p(σ) =
(
a b
c d

)
, then

ρ′f,p(σ)e
∗
1 = e∗1 ◦ ρf,p(σ)−1 = (1, 0) ◦ 1

ad− bc

(
d −b
−c a

)
=

1

ad− bc
(d,−b),

ρ′f,p(σ)e
∗
2 = e∗2 ◦ ρf,p(σ)−1 = (0, 1) ◦ 1

ad− bc

(
d −b
−c a

)
=

1

ad− bc
(−c, a)

and therefore

ρ′f,p(σ) =
1

ad− bc

(
d −b
−c a

)
= ρf,p(σ)

t −1.
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1.3.3 Self-dual twist
Consider, for k even, V = Wp(k/2) = Mp(k/2), which we call the self-dual twist of Wp and
suppose that p ∤ 2Nφ(N)(k − 2)!, where φ(N) denotes the Euler’s function. In [Nek92] Nekovar
defines a lattice T inside V as follows.

Let B = Γ0(N)/Γ(N), (that has order Nφ(N)) and
∏
B the idempotent

∏
B =

1

Nφ(N)

∑
b∈B

b ∈ Z
[

1

Nφ(N)

]
[B].

Note that B is the Borel subgroup of GL2(Z/NZ) and hence it acts on the parabolic cohomology
group H1

ét
(
X(N)Q̄, j

∗F
)
, where F = (Fn) is the ℓ-adic sheaf given by

Fn := Symk−2
(
R1π∗(Z/pnZ)

)
as in the previous section. The same proof of 1.3.6 shows that

H1
ét
(
X(N)Q̄, j∗F

)
=
∏
εH

k−1
ét (Ẽk−2

Γ(N) ⊗ Q̄,Zp).

Let
J =

∏
B H1

ét
(
X(N)Q̄, j

∗F
)
(k/2)

Scholl [Sch90, Sec. 4] also define a geometrical action of the Hecke operators Tℓ, for ℓ ∤ N , as
linear endomorphisms of Hk−1

ét (Ẽk−2
Γ(N) ⊗ Q̄,Qℓ): let Y (N, ℓ)/Q be the modular curve classifying

elliptic curves with a level-N structure and a subgroup C ⊆ E of order ℓ. The fibre product
EN,ℓ = EN ×Y (N) Y (N, ℓ) is the universal elliptic curve with a level-N structure and a subgroup
C ⊆ E of order ℓ. Let Q be the quotient of EN,ℓ by C. We get a diagram

Ek−2
N Ek−2

N,ℓ Qk−2 Ek−2
N

Y (N) Y (N, ℓ) Y (N, ℓ) Y (N)

φ1 ψ φ2

and we define the Hecke correspondence on Ek−2
N by Tℓ = φ1∗ψ

∗φ∗
2. The closure of its graph in

Ẽk−2
Γ(N)×Ẽ

k−2
Γ(N), still denoted by Tℓ, is the Hecke correspondence on Ẽk−2

Γ(N), inducing endomorphisms
on Hk−1

ét (Ẽk−2
Γ(N)⊗ Q̄,Qℓ) and hence on H1

ét
(
X(N)Q̄, j

∗F
)

and on J . Let TN be the Hecke algebra
generated over Z by these operators and let

ϑf : TN → OF

defined by Tℓ ↦→ aℓ and let If = ker(ϑf ). Consider the (OF ⊗ Zp)-module

Jf,p = {x ∈ J : If · x = 0 } ,

T := Jf,p := Jf,p ⊗OF⊗Zp
Op is the lattice T inside V we looked for. From the Poincaré duality

for étale cohomology Nekovar [see Nek92, Prop. 3.1(2)] constructs a GQ-equivariant and skew-
symmetric pairing

[−,− ] : : Jf,p × Jf,p → Zp(1)

over Jf,p, such that [λx, y] = [x, λy] for any x, y ∈ Lf,p, λ ∈ OF ⊗ Zp. Tensoring it with O
(resp. K), we see that T (resp. V ) is equipped with a GQ-equivariant, skew-symmetric, non

16 Luca Mastella - PhD Thesis
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degenerate O-linerar (resp. K-linear) pairing T × T → O(1) (resp. V × V → Qp(1)). It follows
that the map j : V ∼−→ V ∗(1), given by v ↦→ (v,−), where V ∗ = HomQp(V,Qp) is the linear dual
of V , is an isomorphism such that j∗(1) = −j, where j∗(1) denote the transposed of the linear
map j, seen as an equivariant map

V ∼=
(
V ∗(1)

)∗
(1)

∼−→ V ∗(1).

In fact, if εv denote the image of v ∈ V via the canonical isomorphism V ∼= V ∗∗, for any v, w ∈ V

j∗(εv)(w) = εv
(
j(w)

)
=
(
j(w)

)
(v) = (w, v) = −(v, w) = −

(
j(v)

)
(w).

Moreover j(T ) ⊆ T ∗(1), where T ∗ = HomZp
(T,Zp) is the Zp-linear dual of T .

The isomorphism V ∼= V ∗(1) explains the name for V of self-dual twist, the representation
V ∗(1) being called the Kummer dual of V .

Remark 1.3.7. Let us remark for later reference that by the calculations performed in Sec. 1.3.2
follows that the characteristic polynomial of Frobℓ over T for any ℓ ̸= p is

char(Frobℓ |T ) = X2 − ip(aℓ)

ℓk/2−1
X + ℓ.

Indeed the action of σ ∈ GQ on T is given by the matrix χℓ(σ)k/2 · ρf,p(σ)t −1, hence the action
of Frobℓ is given by ℓk/2 · ρf,p(Frobℓ)t −1: its trace is ip(aℓ)/ℓk/2−1 and its determinant is ℓ.

Remark 1.3.8. If f is p-ordinary, then by the results of Sec. 1.3.1 and recalling the relation
ρ′f,p(σ) = ρf,p(σ)

t −1, ρ′f,p|Gp
is equivalent to a representation of the form(

ε11 0
∗ ε−1

2

)
,

whith ε1, ε2 as above. Conjugating then by the matrix
(
0 1
1 0

)
, we see that ρ′f,p|Gp

is moreover
equivalent to a representation of the form(

ε−1
2 ∗
0 ε−1

1

)
=

(
δ ∗
0 δ−1χ1−k

p

)
,

denoting ε−1
2 by δ, since ε1ε2 = χk−1

p . Twisting by the k/2-th power of the cyclotomic character
χp : Gp → Z×

p it follows that ρV |Gp
is equivalent to a representation of the form(
δχ

k/2
p ∗
0 δ−1χ

1−k/2
p

)
.

We find therefore an exact sequence of K[Gp]-modules

0→ V + → V → V − → 0,

where V ± has dimension 1 over K, Gp acts on V + as δχk/2p and on V − as δ−1χ
1−k/2
p .

Vanishing of X̃p∞(f/K) and consequences for anticyclotomic Iwasawa Theory 17
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1.4 The Anticyclotomic Extension
The main purpose of this thesis is to describe the generalization of some results of Iwasawa
Theory of elliptic curves over the anticyclotomic Zp-extension of an imaginary quadratic field.
In this section we introduce this extension.

Definition 1.4.1. Let K be an imaginary quadratic field of discriminant d, i.e. K = Q[
√
−d],

and p an odd prime number. The anticyclotomic Zp-extension ofK is the unique Galois extension
K∞ of K with Galois group Gal(K∞/K) ∼= Zp pro-dihedral over Q, meaning that

Gal(K∞/Q) ∼= Gal(K∞/K)⋊Gal(K/Q),

where the complex conjugation τ ∈ Gal(K/Q) = { 1, τ } acts by inversion, that is τgτ−1 = g−1

for any g ∈ Gal(K∞/K).

The existence and uniqueness follow from the following theorem ([Bri07, Lemma 1]).

Theorem 1.4.2. Let L be the maximal abelian extension unramified outside p > 2. We may
write

Gal(L/K) = U ×W × T × T ′,

such that U,W ∼= Zp, T finite p-group, T ′ finite of order prime to p. Moreover τ operates trivially
on U and by inversion on W and U . This decomposition is the unique with these properties.

In fact it follows immediately that K∞ is the fixed field of W ×T ×T ′ and that the fixed field
of U × T × T ′ is the cyclotomic extension. These two extensions are linearly disjoint, i.e. their
compositum has Galois group Z2

p, moreover it contains all the other Zp-extensions of K.
However there is a more explicit way to construct K∞ using class field theory. This is the

aim of the following discussion.

1.4.1 Construction via ring class fields
First we briefly recall the definition and some properties of orders in quadratic fields and of the
ring class fields. The following material is taken from [Cox89, Ch. 2]. Let K denote a quadratic
field of discriminant d. Note that we may write its ring of integers as

OK = Z
[
d+
√
d

2

]
= ⟨1, w⟩Z; w =

d+
√
d

2
.

Definition 1.4.3. An order O in a quadratic field K is a subring of K containing 1 finitely
generated as Z-module and containing a Q-basis of K. Equivalently it is a subring containing 1,
free of rank 2 as Z-module.

In particular OK is an order of K and it is the maximal order, in the sense that it contains
any other order O. It follows easily [Cox89, Lemma 7.2] that the index of O in OK is finite, say
f = [OK : O], and O = Z+ fOK = ⟨1, fw⟩Z, and hence O is uniquely determined by f . We call
f the conductor of O and we denote the unique order of conductor f as Of .

Note that O1 = OK and as OK an order Of is a noetherian ring of dimension 1 (the same
proof holds), but it is of course no more integrally closed in K (that is by the definition its field
of fractions), unless f = 1. Therefore Of for f > 1 is not a Dedekind domain and we do not
have anymore unique factorization of ideals. There is however an interesting class of (fractional)
ideals of Of , called proper ideals, namely those ideals a of Of such that Of = {β ∈ K : βa ⊆ a }
(for general ideals we have only ⊆). The interesting feature of them is encoded in the following
lemma.

18 Luca Mastella - PhD Thesis
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Lemma 1.4.4 ([Cox89, Prop. 7.4]). Let Of be a an order in an imaginary quadratic field K and
let a a fractional ideal of Of . Then a is proper if and only if it is invertible.

We may therefore define Pic(Of ), the class group of the order Of , to be the group of proper
fractional ideals modulo principal fractional ideals. We denote by hf the order of Pic(Of ). Of
course Pic(O1) = Pic(OK) is the usual class group of K and h1 = hK is the class number of K.
The following formula allow us to compute the class number of an order in terms of its conductor
f and the class number of K when K is imaginary.

Theorem 1.4.5. Let Of the the order of the conductor f in an imaginary quadratic field K.
Then

hf =
hK f

[O×
K : O×

f ]

∏
p|f

(
1−

(
d

p

)
1

p

)
.

Above the symbol
(
d
p

)
denotes the classical Legendre symbol for an odd prime p and for p = 2

is the Kronecker symbol: (
d

p

)
=

⎧⎪⎨⎪⎩
0 if 2 | d,
1 if d ≡ 1 mod 8,

−1 if d ≡ 5 mod 8.

Note moreover that by the description of units in imaginary quadratic fields O×
f = {±1 } unless

f = 1 and hence

[O×
K : O×

f ] =

{
uK := |O×

K |/2 if f ̸= 1,

1 if f = 1.

The ring class field K[f ] of conductor f is defined to be the (unique) abelian extension that
corresponds via class field theory to Pic(Of ), i.e. it is characterized by Gal(K[f ]/K) ∼= Pic(Of ).
Note that K[1] is the Hilbert class field, that is the maximal abelian extension of K everywhere
unramified; in general K[f ]/K is unramified at primes p ∤ f . Moreover the ring class fields
are generalized dihedral over Q, meanig that Gal(K[f ]/Q) = Gal(K[f ]/K) ⋊ { 1, τ }, where τ
is the complex conjugation and acts on Gal(K[f ]/K) by inversion, i.e. τστ−1 = σ−1 for any
σ ∈ Gal(K[f ]/K).

We pass now to the explicit contruction of the anticyclotomic extension of K.

Lemma 1.4.6 ([Bri07, Lemma 3]). Let p ̸= 2 and n ≥ 0. The group of units of OK/pn+1OK
decomposes as (OK/pn+1OK)× = U × V × S′, where

• the complex conjugation τ operates trivially on U that is cyclic of order pn;

• the complex conjugation τ operates by inversion on V , and

V ∼=

⎧⎪⎨⎪⎩
Z/pnZ if p ∤ d,
Z/pn+1Z if p | d, unless p = 3 and d ≡ 3 mod 9,

Z/3nZ× Z/3Z if p = 3 and d ≡ 3 mod 9.

• S′ is the non-p-part of (OK/pn+1OK)× and has order

|S′| =

⎧⎪⎨⎪⎩
(p− 1)2 if

(
d
p

)
= 1,

p2 − 1 if
(
d
p

)
= −1,

p− 1 if
(
d
p

)
= 0.

Moreover there is a subgroup S′′ of S′ of order p − 1 such that (Z/pn+1Z)× = U × S′′ as
subgroup of (OK/pn+1OK)×.

Vanishing of X̃p∞(f/K) and consequences for anticyclotomic Iwasawa Theory 19
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Consider the tower of field extension, for any prime p,

K ↪→ K[1] ↪→ K[p] ↪→ K[p2] ↪→ . . . ↪→ K[pn] ↪→ . . . ↪→ K[p∞] =
⋃
n

K[pn],

it has the following properties

• For any n ≥ 1, Gal(K[pn+1]/K[pn]) ∼= Z/pZ.

In fact Gal(K[pn]/K) = Gal(K[pn+1]/K)
Gal(K[pn+1]/K[pn]) and

hpn+1/hpn =
hK p

n+1

uK

(
1−

(
d

p

)
1

p

)/
hK p

n

uK

(
1−

(
d

p

)
1

p

)
= p;

• If p > 3, then Gal(K[pn+1]/K[p]) is cyclic of order pn.
The order of this Galois group is clear:

hpn+1/hp =
hK p

n+1

uK

(
1−

(
d

p

)
1

p

)/
hK p

uK

(
1−

(
d

p

)
1

p

)
= pn.

Let us prove that it is cyclic. Assume for simplicity that uK = 1, in this case by class field
theory and Lemma 1.4.6 (as p ̸= 2)

Gal(K[pn+1]/K[1]) ∼=
(OK/pn+1OK)×

(Z/pn+1Z)×
= V × (S′/S′′).

First consider the case of p ramified in K, hence |S′| = p − 1 and V ∼= Z/pn+1Z and
therefore Gal(K[pn+1]/K[1]) ∼= V ∼= Z/pn+1Z. Thus Gal(K[pn+1]/K[p]) is cyclic because
it is subgroup of a cyclic group. If instead p does not ramify |V | = pn, |S′′/S′| = p ∓ 1,
depending whether

(
d
p

)
= 1 or −1, and therefore Gal(K[pn+1]/K[p]) = V ∼= Z/pnZ.

If uK > 1 we have to consider the full exact sequence

1→ O×
K/Z

× → (OK/pn+1OK)×

(Z/pn+1Z)×
→ Gal(K[pn+1]/K)→ Gal(K[1]/K)→ 1

hence Gal(K[pn+1]/K[1]) ∼= (OK/p
n+1OK)×

(Z/pn+1Z)×
/
(O×

K/Z×). In particular it follows that

Gal(K[pn+1]/K[1]) ∼= V × (S′′/S′)/(O×
K/Z

×),

as p > 3 and hence uK = 2, 3 prime to |V |, that is power of p. The rest is similar as above.

• If p > 3, then Gal(K[p∞]/K[p]) ∼= lim←−nGal(K[pn+1]/K[p]) ∼= Zp.

• Gal(K[1]/K) has order hk;

• Gal(K[p]/K[1]) has order u−1
K

(
p−

(
d
p

))
.

Remark 1.4.7. Suppose now that p ∤ hK and that p > 3 is not ramified in K (i.e.
(
d
p

)
̸= 0), it

follows that the abelian extensions Gal(K[pn+1]/K) admit canonical (and compatible) splittings

Gal(K[pn+1]/K) ∼= Gal(K[pn+1]/K[p])×Gal(K[p]/K) ∼= Z/pnZ×∆,

where ∆ has order prime to p. Therefore

Gal(K[p∞]/K) ∼= Gal(K[p∞]/K[p])×Gal(K[p]/K) ∼= Zp ×∆.

Hence K∞ = (K[p∞])∆ is a Zp-extension of K, dihedral over Q since any K[pn] is so. Hence
K∞ is the anticyclotomic extension of K introduced in the previous paragraph.
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1.4.2 Selmer groups over K∞

In the following denote Γ = Gal(K∞/K) ∼= Zp and let Kn, for n ≥ 1, be the unique subextension
of K∞/K such that Γn = Gal(Kn/K) ∼= Z/pnZ. Denote by Λn = O[Γn] the group algebra of
Γn and let Λ = lim←−n Λn = OJΓK be the completed group algebra of Γ. It is well known that
Λ ∼= OJXK via the map γ ↦→ 1+X, where γ is a topological generator of Γ ([NSW00, Prop. 5.3.5]).
Write Γn = Gal(K∞/Kn) ⊆ Γ0 = Γ.

Let T an O-adic representation of GK,S , for a finite set S of primes of K including all
archimedean primes and all primes v | p, and let A = T ⊗ K/O. Note that H1

f (Kn, A) and
H1
f (Kn, T ) inherit for any n the O-module structure by A and T (i.e. if α : GKn

→ X represent
a class ᾱ ∈ H1

f (Kn, X) for X = A, T , then we define r · ᾱ as the class of the cochain r · α such
that (r · α)(σ) = rα(σ) for any r ∈ O, σ ∈ GKn). They are moreover endowed with an action of
Γn, as follows by the following abstract lemma applied to G = GK , H = GKn and X = T,A as
Γn = GK/GKn

. Thus H1
f (Kn, A),H

1
f (Kn, T ) have a natural structure of Λn-module.

Lemma 1.4.8. Let G be a profinite group. If X is a G-module and H a closed normal subgroup
of G, then H1(H,X) is endowed with a natural action of G/H.

Proof. Recall that H1(H,X) ∼= Z1(H,X)
B1(H,X) , where the elements of

Z1(H,X) = {α : H → X s.t. α(gg′) = g · α(g′) + α(g′) }

are called (1-)cocycles and those of

B1(H,X) = {α : H → X s.t α(g) = g · a− a for some a ∈ X }

are called (1-)coboundaries. Note that if a class in H1(H,X) is represented by α, the formula

(gH · α)(x) = g · α(g−1xg),

for any x ∈ H, defines a cocycle whose class in H1(H,X) is independent of the choice of the
representative g. In fact if g′ = gh for h ∈ H and we denote by δ and δ′ the cocycles defined
respectively by δ(x) = gα(g−1xg) and δ′(x) = g′α(g′

−1
xg′), then, for any x ∈ H,

δ′(x) = gh · α(h−1g−1xgh) = gh · α(h−1) + δ(x) + xg · α(h)

and the cocycle x ↦→ gh · α(h−1) + xg · α(h) is a coboundary. Indeed for any x ∈ H

ghα(h−1) + xgα(h) = xg · α(h)− g · α(h) + g · α(h)− gh · α(h) =
= xg · α(h)− g · α(h)− g ·

(
h · α(h) + α(h−1)

)
=

= xg · α(h)− g · α(h)− g · α(hh′) =
= xg · α(h)− g · α(h)− g · α(1) =
= xg · α(h)− g · α(h).

Thus, δ = δ′ as classes in H1(H,X). It is straightforward to check that the above formula defines
an action of G/H on H1(H,X).

Remark 1.4.9. Recall the definition of restriction and corestriction ([NSW00, Ch. II, Sec. 5]).
Let G be a profinite group, X a G-module and H a closed normal subgroup of G. The

composition of a cochain with the inclusion of H in G gives a morphism of groups

resGH : H1(G,X)→ H1(H,X)
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CHAPTER 1. SELMER GROUPS AND ANTICYCLOTOMIC EXTENSION

called restriction. There is moreover another morphism

coresHG : H1(H,X)→ H1(G,X)

in the other direction, called corestriction such that (for H open normal subgroup)

resHG ◦ coresHG = NG/H :=
∑

σ∈G/H

σ, coresHG ◦ resHG = [G : H]

defined as follows: fix a class of representative of right cosets in H \G and for a class y ∈ H \G
denote by ȳ the representatives of y in the chosen class; the corestriction of a (1-)cocycle α on
H is the (1-)cocycle of G such that, for any x ∈ G,

coresHG (α)(x) =
∑

c∈H \G

c̄−1 · α
(
c̄x(cx)−1

)
.

We will use these maps in the rest with G = GKn
, H = GKm

, for n < m and we will drop them
by the notations, as the correct index is always understood.

Define then

H1
f (K∞, A) = lim−→

n,res

H1
f (Kn, A) and H1

f (K∞, T ) = lim←−
n,cores

H1
f (Kn, T ).

Both have naturally a Λ-module structure, that we now describe. Take r = (rn)n ∈ Λ, with
rn ∈ Λn, and x ∈ H1

f (K∞, A). Let m an integer such that x is represented by xm ∈ H1
f (Km, A).

We define r ·x as the element of H1
f (K∞, A) represented by rm ·xm ∈ H1

f (Km, A). The following
lemma shows that this definition is independent of the chosen m.

Lemma 1.4.10. Let n < m non-negative integers, let γn ∈ Γn, γm ∈ Γm such that γm|Kn
= γn

and let xm ∈ H1
f (Km, A) and xn ∈ H1

f (Kn, A) such that res(xn) = xm. Then

res(γn · xn) = γm · xm.

Proof. Let g ∈ GK extending γm and hence γn: we may use this g in both the definition of the
action of Γm on H1

f (Km, A) and of Γn on H1
f (Kn, A).

The Λ-module structure of H1
f (K∞, T ) is instead defined as follows: if r = (rn)n ∈ Λ, with

rn ∈ Λn and x = (xn)n ∈ H1
f (K∞, T ), with xn ∈ H1

f (Kn, T ) and xn = cores(xm) for n < m.
Then r · x = (rn · xn)n. It is indeed a compatible sequence by the following lemma.

Lemma 1.4.11. Let n < m non-negative integers, let γn ∈ Γn, γm ∈ Γm such that γm|Kn
= γn

and let xm ∈ H1
f (Km, T ) and xn ∈ H1

f (Kn, T ) such that xn = cores(xm). Then

γn · xn = cores(γm · xm).

Proof. As in the proof of the previous lemma if g ∈ GK extends γm and γn we may use this g in
both the definition of the action of Γm on H1

f (Km, T ) and of Γn on H1
f (Kn, T ). Choose a class of

representatives { ti }i of GKm\ GKn and denote, for any coset y, by ȳ its representative in { ti }i.
Hence for any x ∈ GKn

cores(γm · xm)(x) =
∑

c∈GKm\ GKn

c̄−1 · (γm · xm)
(
c̄x(cx)−1

)
=

=
∑

c∈GKm\ GKn

c̄−1g · xm
(
g−1c̄x(cx)−1g

)
.
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Note that if for any ti we let ui = g−1tig, then {ui }i is another class of representatives of
GKm

\ GKn
and if we denote, for any class y, by ỹ the representative of y in {ui }i, then

ỹ = g−1ȳg or in other terms ȳ = gỹg−1. Therefore

cores(γm · xm)(x) =
∑

c∈GKm\ GKn

gc̃−1 · xm
(
c̃g−1xg(c̃x)−1

)
=

= g · cores(xm)(g−1xg) = (γn · xn)(x).

If moreover the representation T is ordinary at any prime v | p we may define analogously the
Greenberg Selmer groups H1

Gr(K∞, A) and H1
Gr(K∞, T ) and the strict Greenberg Selmer groups

H1
str(K∞, A) and H1

str(K∞, T ) as the inductive and projective limit of the corresponding Selmer
groups relative to the finite extensions Kn.
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Chapter 2

Generalized Heegner cycles

In this chapter we introduce the so called generalized Heegner cycles of Bertolini, Darmon and
Prasanna [BDP13]. Their image via the p-adic étale Abel-Jacobi lays into the Block-Kato Selmer
group of the selfdual twist T of the representation attached to a modular form f . Castella and
Hsieh in [CH18] use them in order to define an anticyclotomic Euler system for T : they get
therefore a bound on the size of the Block-Kato Selmer group of the residual representation A,
we show that this bound can be improved under some conditions. We will moreover define a
notion of (p-primary) Shafarevich-Tate group for the modular curve f and we find a sufficient
condition for its vanishing.

Fix once and for all a prime number p and a positive integer N ≥ 5, let K be an imaginary
quadratic field of discriminant −dk coprime with pN , with ring of integers OK , satisfying the so
called Heegner hypothesis i.e. each prime factor of N splits in K. Fix moreover a cusp-newform
of level Γ0(N) and even weight k > 2. Assume moreover throughout that p ∤ 2Nφ(N)(k − 2)!,
where φ(N) denote the Euler function, and that p = pp̄ splits in K.

2.1 Generalized Heegner Cycles

We begin recalling the definition of generalized Heegner cycles, following [BDP13].

2.1.1 Generalized Kuga-Sato variety

Put, in order to simplify the notations, Ē = ĒΓ1(N), the universal generalized elliptic curve with
Γ1(N)-level structure, and Wk−2 = Ẽk−2

Γ1(N), the Kuga-Sato variety of level Γ1(N) and weight
k that we introduced in Sec. 1.3.2, namely the canonical desingularization of the (k − 2)-fold
self-product

W ♯
k−2 = Ē ×X1(N) · · · ×X1(N) Ē  

k−2 times

.

Over this variety we define an idempotent εW in the ring of the rational correspondences in a
fashion similar to what we did in loc. cit. First note that the Γ1(N)-level structure on Ē fixes a
section of order N on Ē , translations by this section give rise to an action of Z/NZ on Ē , thus of
(Z/NZ)k−2 on W ♯

k−2 and hence on Wk−2 by the properties of the canonical desingularization.
If σa denotes, for any a = (a1, . . . ak−2) ∈ (Z/NZ)k−2, the automorphism of Wk−2 obtained
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by the action of a, let ε(1)W be the idempotent

ε
(1)
W =

1

Nk−2
·
∑

a∈(Z/NZ)k−2

σa ∈ Z
[
1

N

][
Aut

(
Wk−2/X1(N)

)]
.

Consider moreover the group µk−2
2 ⋊ Sk−2. It acts on Wk−2, letting −1 act by inversion on Ē

and s ∈ Sk−2 by permuting the factors of W ♯
k−2. For any b ∈ µk−2

2 ⋊ Sk−2 denote by σb the
automorphism obtained by its action onWk−2 and let j : µk−2

2 ⋊Sk−2 → µ2 be the homomorphism
which is the identity on µ2 and the sign charachter on Sk−2: we define

ε
(2)
W =

1

2k−2(k − 2)!
·

∑
b∈µk−2

2 ⋊Sk−2

j(b)σb ∈ Z
[

1

2(k − 2)!

][
Aut

(
Wk−2/X1(N)

)]
.

It is immediate to verify that these are idempotents and commute between each other and hence
their composition gives rise to another idempotent.

Definition 2.1.1. Define the idempotent attached to Wk−2 as

εW = ε
(1)
W ◦ ε

(2)
W ∈ Z

[
1

2N(k − 2)!

][
Aut

(
Wk−2/X1(N)

)]
.

and by a slight abuse of notation we use the same symbol for the correspondence

εW ∈ Corr0(Wk−2,Wk−2)⊗ Z
[

1

2N(k − 2)!

]
,

obtained taking the graph of the involved automorphisms.

Let us fix once and for all a (complex) elliptic curve A with complex multiplication by OK .
By the theory of complex multiplication (see e.g. [Sil94, Th. II.4.1, Th. II.2.2(b)]) A is defined
over the Hilbert class field K[1] of K and there is an isomorphism

[ − ] : OK
∼−→ EndK[1](A),

normalized in such a way that [α]∗ω = αω for any ω ∈ Ω1
A/K[1].

Definition 2.1.2. The generalized Kuga-Sato variety of level Γ1(N)-level and weight k is the
(4k − 3)-dimensional variety defined over K[1]

Xk−2 =Wk−2 ×K[1] A
k−2.

Like the classical Kuga-Sato variety there is a proper morphism

π : Xk−2 → X0(N)

whose fibers over a non cuspidal points are products of elliptic curves of the form Ek−2 ×Ar−2,
where E varies.

We define moreover an idempotent εX in the ring of algebraic correspondences of Xk−2 into
itself: in order to do that first we consider the action of µk−2

2 ⋊Sk−2 on Ak−2 defined as that on
W ♯
k−2 replacing Ē by A and consider the idempotent correspondence

εA ∈ Corr0(Ak−2, Ak−2)⊗ Z
[

1

2(k − 2)!

]
.

defined precisely as ε(2)W .
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Definition 2.1.3. We define the idempotent correspondence attached to Xk−2 as

εX = (πW × πW )∗ εW ◦ (πA × πA)∗ εA ∈ Corr0(Xk−2, Xk−2)⊗ Z
[

1

2N(k − 2)!

]
,

where the multiplication is the composition of correspondences, after pulling them back to Xk−2

via the canonical projections πW : Xk−2 →Wk−2 and πA : Xk−2 → Ak−2.

2.1.2 Definition
Recall that the Heegner hypothesis ensures that there exists N -cyclic ideal N of OK (since each
prime factors ℓ of N splits in K, ℓOK = λλ̄: take N =

∏
ℓ|N λ and let N =

∏
ℓ|N λ̄), let us fix one

of them together with a N-torsion point tA ∈ A[N](C); by the moduli interpretation (A(C), tA)
gives rise to a point on X1(N)(C), since A[N] ⊆ A[N ]. Consider the set

Isog(A) = { (φ,A′) : A′ elliptic curve and φ : A→ A′ is an isogneny defined over K̄ } / ∼=,

where (φ1, A
′
1)
∼= (φ2, A

′
2) if there is a K̄-isomorphism ι : A′

1 → A′
2 such that φ2 = ιφ1.

The generalized Heegner cycles are indexed over the subset IsogN(A) of Isog(A) consisting
of isogenies φ : A → A′ whose kernel intersect A[N] trivially. A couple (φ,A′) ∈ IsogN(A)
determines a point PA′ = (A′, φ(tA)) on X1(N)(C) whose fibre with respect to the structural
morphism π : Wk−2 → Xk−2 is (A′)k−2. Let ιA′ : (A′)k−2 ↪→Wk−2 be the embedding of (A′)k−2

as the fibre of PA′ .
Consider now the cycle Υφ = Graph(φ)k−2 on the variety

(A×A′)k−2 ∼−→ (A′)k−2 ×Ak−2 ι
↪−→Wk−2 ×Ak−2 = Xk−2.

Definition 2.1.4. We define the generalized Heegner cycle attached to the isogeny φ ∈ IsogN(A)
as the cycle

∆φ = (εX)∗Υφ = (εX)∗Υφ ∈ CHk−1(Xk−2)⊗ Z
[

1

2N(k − 2)!

]
supported (by the construction of Υφ and the fact that push-forward and pull back by εX respect
the fibres) on the fibre XP := π−1

W (PA′) = (A′)k−2 ×Ak−2.

Proposition 2.1.5 ([BDP13, Prop. 2.7]). The cycle ∆φ is homologically trivial

Proof. A detailed proof of this fact can be found in [BDLP21].

In particular this means that ∆φ lays into the domain of the p-adic Abel-Jacobi map, that
we are going to define in the next section.
Remark 2.1.6. As observed in [BDP13] one can deal with rationality questions about the gen-
eralized Heegner cycles ∆φ: they are always defined over some abelian extension of K. The next
construction of Castella and Hsieh [see CH18] selects a subclass of these cycles that are ratio-
nal over the ring class fields K[n] and whose properties are closer to those of the classical CM
points, in particular they satisfy a sort of ‘Shimura reciprocity law’ and some ‘norm relations’
[see CH18, Lemma 4.3 and Prop. 4.4], these properties are crucial in order to make them into an
Euler system and to use them into anticyclotomic Iwasawa Theory: this last observation is the
reason why they are better suited for us than the classical Heegner cycles of [Nek92].

First of all, if k > 2, we make the extra assumption that dK > 3 is odd or 8|dK . Under these
assumption there exists a canonical elliptic curve, in the sense of Gross [see Yan04, Th. 0.1]. Let
the elliptic curve A fixed above to be such a curve. It is therefore characterized by the following
properties:
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• it has CM by OK ;

• A(C) = C/OK ;

• it is a Q-curve [see Gro80] defined over the real subfield K[1]+ = Q
(
j(OK)

)
of the Hilbert

class field K[1] of K;

• the conductor of A is divisible only by prime factors of dK .

Let now c be a positive integer and Cc = c−1Oc/OK , where Oc denotes the order of OK with
conductor c. Hence Cc is a cyclic subgroup of order c, the elliptic curve such that Ac(C) = A/Cc
is an elliptic curve defined over the real subfield K[c]+ = Q

(
j(Oc)

)
of the ring class field of K

of conductor c. Let φc : A → Ac be the isogeny given by the quotient map. Consider now a
fractional Oc-ideal a prime to cdkpN and the elliptic curve Aa such that Aa(C) = C/a−1. The
map C/c−1Oc → C/a−1 defined by z ↦→ cz corresponds to an isogeny λa : Ac → Aa and we
define

φa = λa ◦ φc : A→ Aa.

For a suitable choice of tA (see [CH18, Sec. 2.3], where is called ηc), we have therefore a generalized
Heegner cycle

∆a := ∆φa
∈ CHk−1(Xk−2/K[c])⊗ Z

[
1

2N(k − 2)!

]
.

In particular we write ∆c := ∆Oc
.

2.2 p-adic Abel Jacobi maps

In the following let F be number field containg the Hilbert class field K[1] of K. The aim of this
section is to define a p-adic étale Abel-Jacobi map

AJét
F : CHk−1(Xk−2/F )0 ⊗O → H1

f (F, T )

so that if ∆a is rational over F , its image via AJét
F gives a cohomology class in the same fashion

as the Kummer map attaches a cohomology class to Heegner points in the elliptic curve case.
In fact this is more than a simple analogy in the case k = 2: the source is the set of 0-divisors
on X1(N) and ∆φ, that is up to principal equivalence, of the type [P ]− [∞], where P is a CM
point on X1(N).

2.2.1 p-adic cycle map and p-adic Abel-Jacobi map

We now introduce the Abel-Jacobi map for general smooth varieties as in [Jan88, Rk. 6.15(c)].
Recall from Sec. 1.2.3 and 1.2.4 that we have a cycle class map

clX = cliX : CHi(X/F )→ H2i
ét(X,Zp(i)),

with kernel CHi0(X), and the Hochshild-Serre spectral sequence

Hr
(
GK ,H

s
ét(X̄,Zp(j))

)
=⇒ Hr+sét (X,Zp(j)).
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The two induce the following commutative diagram with exact rows:

0 CHi(X/F )0 CHi(X/F ) CHi(X/F )
CHi(X/F )0

0

0 F1 H2i
ét(X,Zp(i)) H2i

ét(X,Zp(i)) H2i
ét(X̄,Zp(i))GK

H1
(
GF ,H

2i−1
ét (X̄,Zp(i))

)

clX clX
clX

res .

Indeed since the sequence degenerates at E2,

Ep,q2 = Hp
(
GF ,H

q
ét(X̄,Zp(i))

) ∼= FpHp+qét (X,Zp(i))
Fp+1 Hp+qét (X,Zp(i))

;

applying this isomorphism to the case p = 1, q = 2i− 1 (resp. p = 0, q = 2i) we find a canonical
quotient map F1 H2i

ét(X,Zp(i)) ↠ H1
(
GF ,H

2i−1
ét (X̄,Zp(i))

)
(resp. we find that F1 H2i

ét(X,Zp(i))
is the kernel of the restriction map H2i

ét(X,Zp(i))→ H2i
ét(X̄,Zp(i))GF ).

The exactness of the rows implies that the image of CHi(X/F )0 via the cycle map is contained
into F1 H2i

ét(X,Zp(i)), giving rise to the dotted vertical map. The composition of the two leftmost
vertical maps

AJét
X : CHi(X/F )0 → H1

(
GK ,H

2i−1
ét (X̄,Zp(i))

)
is called the (i-th) p-adic Abel-Jacobi map. Via the isomophism

H1
(
GF ,H

2i−1
ét (X̄,Zp(i))

)
= Ext1GF

(
Zp,H2i−1

ét (X̄,Zp(i))
)

we can also give an explicit description of this map, sending a cycle Z on X homologous to zero
to the extension E obtained by pulling-back the following diagram

0 H2i−1
ét (X̄,Zp(i)) H2i−1

ét (Ū ,Zp(i)) H2i
ét,|Z̄|(X̄,Zp(i)) H2i

ét(X̄,Zp(i))

0 H2i−1
ét (X̄,Zp(i)) E Zp · c̄lX(Z̄) 0

,

where |Z̄| is the support of Z̄ and Ū = X̄ ∖ |Z̄|. For a proof of this fact see [Jan90, Lemma 9.4].
Let now X = Xk−2, i = k − 1 and F any finite extension of the Hilbert class field such that

∆φ is F -rational, after applying εX to the previous diagram we get an extension class in

Ext1GF

(
Zp, εX H2k−3

ét (X̄k−2,Zp(k − 1))
)
= H1

(
GF , εX H2k−3

ét (X̄k−2,Zp(k − 1))
)

and hence a map

AJét
F : CHk−1(Xk−2/F )0 ⊗ Zp → H1

(
GF , εX H2k−3

ét (X̄k−2,Zp(k − 1))
)

if we use as Z in the diagram the support of a cycle ∆ with coefficients in Zp. Hence we may apply
AJét

F to the the Heegner cycles, since their coefficients have possibly a denominator 2N(k − 2)!,
that is invertible in Zp (by the assumption p ∤ 2N(k − 2)!): their image via AJét

F is therefore
given by the extension E∆φ

given by the following diagram, where X♭
P := Xk−2 ∖XP , since the

cycle ∆φ is supported in XP :

0 εX H2k−3
ét (X̄k−2,Zp)(k − 1) E∆φ Zp · c̄lXP

(∆̄φ) 0

0 εX H2k−3
ét (X̄k−2,Zp)(k − 1) εX H2k−3

ét (X̄♭
P ,Zp)(k − 1) εX H2k−4

ét (X̄P ,Zp)(k − 2) 0

.
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2.2.2 Image of the Abel-Jacobi map

In order to get a map lending in H1(F, T ), as we look for, we need to have a map

εX H2k−3
ét (X̄k−2,Zp(k − 1))→ T,

we will obtain it following [CH18, Sec. 4.2]. Let here K be, as in Sec. 1.3.1, the completion of
the Hecke field of f at p and O its ring of integers.

Observe that by the definition of Xk−2 we have a natural morphism

εX H2k−3
ét (X̄k−2,Zp(k − 1))→ εW Hk−1

ét (W̄k−2,Zp)(k/2)⊗ Symk−2 H1
ét(Ā,Zp)(k/2− 1);

now we have a morphism (where the middle terms are defined in Sec. 1.3.3)

εW Hk−1
ét (W̄k−2,Zp)(k/2)

∏
εH

k−1
ét (Ẽk−2

Γ(N) ⊗ Q̄,Zp) J Jf,p T

and moreover we know that H1
ét(Ā,Zp)(k/2− 1) = Tp(A)(1− k/2) and hence we get a morphism

εX H2k−3
ét (X̄k−2,Zp(k − 1))→ T ⊗ Symk−2 Tp(A)(1− k/2).

Since A is just defined over the Hilbert class field K[1] of K, we consider its restriction of scalars
B = ResK[1]/K A: it is a CM abelian variety of dimension [K[1] : K] and we have a decomposition

Tp(B) =
⨁

ρ∈Gal(K[1]/K)

Tp(A
ρ)

therefore we may view Tp(A) ↪→ Tp(B). Castella and Hsieh [CH18, Sec. 4.4] show that for any
locally algebraic anticyclotomic character

χ : Gal(K[p∞]/K)→ O×
F

of infinity type (j,−j) there exists a finite order anticyclotomic charachter χt such that χ is
realized as direct summand of Symk−2 Tp(B)(1 − k/2) ⊗ χt and so we get a GK-equivariant
projection

eχ : Symk−2 Tp(B)(1− k/2)⊗ χt → χ,

finally leading to a natural morphism

εX H2k−3
ét (X̄k−2,Zp(k − 1))→ T ⊗ χ.

for any χ, that for χ = 1 gives exactly the claimed projection. We get therefore in this way

AJét
c : CHk−1(Xk−2/K[c])0 ⊗ Zp → H1(K[c], T )

and tensoring with O we get a morphism of O-modules:

AJét
O,c : CHk−1(Xk−2/K[c])0 ⊗O → H1(K[c], T ).

Denote by zf,c ∈ H1(K[c], T ) the image of ∆c via AJét
O,c.
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2.2.3 The Shafarevich-Tate group

Let Λ̃p(K[c]) = imAJét
O,c, that we will take as an analogous in higher weight of the K[c]-rational

points of an elliptic curve. Note that Λ̃p(K[c]) ⊆ H1
f (K[c], T ) by [Nek95, Sec. II.1.4] or [Niz97]

and hence Λ̃p(K[c])⊗K/O injects into H1
f (K[c], A).

Definition 2.2.1. We define the Shafarevich-Tate group X̃p∞(f/K[c]) of f over K[c] by the
exact sequence

0 Λ̃p(K[c])⊗K/O H1
f (K[c], A) X̃p∞(f/K[c]) 0

A similar definition could be given for X̃p∞(f/K), if we had a definition of Λ̃p(K). This
in fact cannot be defined as the image of the Abel-Jacobi map as above for K[c], as the Abel-
Jacobi map was defined only for a field F cointaining K[1]. However we can give an alternative
definition of it that suits our purpose. Consider the restriction map

resK[1]/K : H1(K,T )→ H1(K[1], T )Gal(K[1]/K),

under some standard assumptions this becomes an isomorphism of O-modules. In particular by
standard diagram chasing in the following diagram, where G1 = Gal(K[1]/K),

0 H1
f (K,T ) H1(K,T )

∏
v

H1(Kv,T )
H1

f (Kv,T )

0 H1
f (K[1], T )G1 H1(K[1], T )G1

(∏
v

H1(K[1]v,T )
H1

f (K[1]v,T )

)G1

∼
res

it follows that
resK[1]/K : H1

f (K,T )
∼−→ H1

f (K[1], T )G1 .

Definition 2.2.2. Assume that the restriction resK[1]/K is an isomorphism, in this case define

Λ̃p(K) := res−1
K[1]/K

(
Λ̃p(K[1])G1

)
⊆ H1

f (K,T ).

And we define the Shafarevich-Tate group X̃p∞(f/K) of f over K by the exact sequence

0 Λ̃p(K)⊗K/O H1
f (K,A) X̃p∞(f/K) 0

The main reason why we give this definition is because, in order to use the Heegner cycles
to give informations about H1

f (K,A), Λ̃p(K) and X̃p∞(f/K), we need that Λ̃p(K) contains the
basic generalized Heegner cycle

zf,K = coresK[1]/K(zf,1).

Indeed by Rk. 1.4.9
resK[1]/K(zf,K) = TrK[1]/K(zf,1) ∈ Λ̃p(K[1])G1 .

and hence zf,K ∈ Λ̃p(K).
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Remark 2.2.3. Several papers [see for instance Nek92; Bes97; LV17; Mas19], use classical Heeg-
ner cycles instead of the generalized ones, they consider therefore a different Abel-Jacobi map,

AJét : CHk/2(Ẽk−2
Γ(N)/K)0 → H1

f (K,T )

defining Λp(K) and the Shafarevich-Tate group Xp∞(f/K) respectively as the image and the
cokernel of this map. These may, at least in principle, differ by the groups Λ̃p(K) and X̃p∞(f/K)
that we defined here.

2.3 Euler system of generalized Heegner cycles
In [CH18, Sec. 7.3] Castella and Hsieh use the classes zf,c in order to construct an anticyclotomic
Euler system as in the following definition. Let here K denote the set of squarefree products of
primes ℓ inert in K such that ℓ ∤ 2pN and for any ℓ inert in K denote by Frobℓ the Frobenius
element at λ in GK , where λ is the unique prime of K over ℓ. Fix a compatible sequence of
primes λn of K[n] over λ with n ∈ K , by K[n]λ we mean the completion of K[n] at λn and by
κn its resudue field. Let locℓ be the localization map

locℓ : H1(K[n], T )→ H1(K[n]λ, T ).

Let aℓ(f) denote the (ℓ-th) Hecke eigenvalue of f and wf ∈ {±1 } its Atkin-Lehner eigenvalue.
Moreover we denote by τc the complex conjugation automorphism and by σN the image by the
Artin reciprocity map of N.

Definition 2.3.1. An anticyclotomic Euler system for T is a collection { cn }n∈K of classes
cn ∈ H1(K[n], T ) such that for any n = mℓ ∈ K :

(E1) coresK[n]/K[m](cn) = aℓ(f) · cm;

(E2) locℓ(cn) = resK[m]λ/K[n]λ(Frobℓ · locℓ(cm));

(E3) τ · cn = wf (σN̄ · cn).
The basic class of the Euler system is defined to be

cK = coresK[1]/K(c1) ∈ H1(K,T ).

What Castella and Hsieh prove is that the set { zf,n }n∈K form an Euler system and they use it
as an input of the Kolyvagin’s method, as modified by Nekovar in [Nek92]. They get therefore
the following theorem:

Theorem 2.3.2 ([CH18, Th. 7.7]). Let zf,K be non torsion in H1(K,T ), then

H1
f (K,V ) = K · zf,K

In fact they prove [see CH18, Th. 7.19] that under the non torsion hypothesis on zf,K , there
is a constant C such that

pC
(

H1
f (K,A)

(K/O)zf,K

)
= 0,

or, if we are in a situation sych that resK[1]/K is an isomorphism and hence X̃p∞(f/K) can be
defined, that pC kills X̃p∞(f/K). In the case of classical Heegner cycles [Bes97] shows that the
method of [Nek92] can be refined in some cases, in order to compute this constant C. We will
show now that the same holds for generalized Heegner cycles.

We need first to define a set Ψ(f) of exceptional primes, that we exclude, depending of f ,
that we suppose from now on to be a non - CM modular form.
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Definition 2.3.3. Let Ψ(f) be the set of rational primes consisting of the following primes:

• the primes p | 6Nφ(N)(k − 2)!

• the primes that ramify into the Hecke field of f ;

• the primes such that the image of ρf,p : GQ̄ → GL2(OF ⊗ Zp) does not contain the set

{ g ∈ GL2(Zp) : det g ∈ (Z×
p )

k−1 } .

Remark 2.3.4. The previous definition slightly differs from [Bes97, Def. 6.1] as we need to
exclude also p | φ(N)(k − 2)! in order to get the integrality of the Abel Jacobi map and since
we want to work with the selfdual lattice T coming from [Nek92]; we exlude also the prime 3 as
SL2(F2) ∼= S3 is solvable (cfr. Lemma 2.3.6) and therefore Lemma 2.3.5 does not hold anymore.
However this last condition is not necessary in order to get Th. 2.3.9, but it allows us to state it
in terms of X̃p∞(f/K) and we will assume it in our application in Ch. 4.

The hypothesis on the image of ρf,p is a kind of “big image” property and it is satisfied for
all but a finite number of primes by [Rib85, Th. 3.1]. It implies many technical properties on
the reduced representations A[pk] and their cohomology, as the next lemma. From now on we
use the notations Gn = Gal(K[n]/K) and G(n) = Gal(K[n]/K[1]).

Lemma 2.3.5. Let p be a non exceptional prime. For any M ≥ 1 and any n squarefree,
H0(K[n], A[pM ]) = H0(K,A[pM ]) = 0. In particular the restriction maps

resK[n]/K[1] : H1(K[1], A[pM ]) −→ H1(K[n], A[pM ])G(n),

resK[1]/K : H1(K,A[pM ]) −→ H1(K[1], A[pM ])G1

are isomorphisms.

Proof. By the inflation restriction sequence the second statement follows from the first one; it is
moreover enough to show it for M = 1. The following argument is taken from [LV17, Lemma 3.9
and 3.10]. By [Bes97, Prop. 6.3(1)] A[p] is an irreducible Fp-representation of GQ. Moreover, if
we consider the morphism ρ̄f,p : GQ → Aut(A[p]) attached to the representation A[p], by [Bes97,
Lemma 6.2], the image of ρ contains a subgroup isomorphic to GL2(Fp), hence one isomorphic
to SL2(Fp). As the latter is not solvable by the following lemma since p > 3, then the image of
ρ̄f,p is not solvable.

Suppose now that H0(K[n], A[p]) ̸= 0. By irreducibility H0(K[n], A[p]) = A[p]GK[n] = A[p]
and hence ρ̄f,p factorizes trough Gal(K[n]/Q). But K[n]/Q is solvable, beeing generalized dihe-
dral, and therefore the image of ρ̄f,p is solvable, leading to a contraddiction. The same argument
works for H0(K,A[pM ]) and in fact for any solvable extension of Q.

Lemma 2.3.6. For p > 3 prime number, the group SL2(Fp) is a perfect group, i.e. it equals its
derived subgroup. In particular it is not solvable.

Proof. Note first that the SL2(Fp) is generated by the matrixes of the form x(λ) =
(
1 λ
0 1

)
and

y(λ) =
(
1 0
λ 1

)
, varying λ ∈ Fp. Indeed any matrix in SL2(Fp) may be reduced to 12 via elementary

operations ( both on row and columns) that correspond to these matrixes.
It is enough to prove therefore that x(λ) and y(λ) are commutators for any λ ∈ Fp: choose

α ∈ F×
p such that α2 ̸= 1 (this is possible as p > 3) and define β = λ/(α2 − 1). Therefore

x(λ) =
[(
α 0
0 α−1

)
,
(
1 β
0 1

)]
and y(λ) =

[(
α 0
0 α−1

)
,
(
1 0
β 1

)]
.
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Remark 2.3.7. Lemma 2.3.5 implies in particular that Λ̃p(K) and X̃p∞(f/K) can be defined.
Indeed

H0(K[1], T ) = lim←−
m

H0(K[1], A[pm]) = 0

and therefore resK[1]/K is an isomorphism by the inflation-restriction sequence.

An other interesting consequence of Lemma 2.3.5 is the following corollary.

Corollary 2.3.8. If p is not an exeptional prime, then the O-module H1(K,T ) is torsion free.
In particular H1

f (K,T ) and Λ̃p(K) are free O-modules of finite rank.

Proof. It is known that H1
f (K,T ) is finitely generated of finite rank over O, therefore the second

statement follows immediately from the first. Since an O-module may have only p-torsion it is
enough to show that H1(K,T )[p] = 0. Under the hypothesis that p is non exeptional, p is a
uniformizer of O, (as p is unramified in F ) and therefore H1(K,T )[p] = H1(K,T )[p].

Consider now the short exact sequence 0 T T A[p] 0
·p , the induced long exact

sequence in cohomology

H0(K,A[p]) H1(K,T ) H1(K,T ) H1(K,A[p])
·p

shows that H1(K,T )[p] is a quotient of H0(K,A[p]), the latter beeing trivial by Lemma 2.3.5.

The following theorem is the analogous of [Bes97, Th. 1.2]

Theorem 2.3.9. Let p be a non exceptional prime, i.e. p /∈ Ψ(f), and zf,K be non torsion in
H1(K,T ). Then

p2IpX̃p∞(f/K) = 0,

where Ip is the smallest non negative integer such that zf,K is non-zero in H1
f (K,A[p

Ip+1]). In
particular, if Ip = 0, then X̃p∞(f/K) = 0 and Λ̃p(K)⊗K/O = H1

f (K,A) = zf,K · K/O.

Remark 2.3.10. The short exact sequence

0 T T
T

pMT
∼= A[pM ] 0

·pM redpM

induce the long exact sequence

H0(K,A[pM ]) H1(K,T ) H1(K,T ) H1(K,A[pM ]) H2(K,T )
·pM red

pk

and hence zf,K = 0 in H1(K,A[pM ]) if and only if it belongs to pM H1(K,T ), i.e. if and only if
it is divisible by pM in H1(K,T ). It follows that Ip can be seen as the order of zf,K , i.e. the
biggest integer M such that pM | zf,K in H1(K,T ). In particular Ip = 0 if and only if zf,K is
not divisible by p in H1(K,T ).

The proof of this theorem follows the lines of [Bes97] replacing generalized Heegner cycles
to the classical one in the definition of the classes P (n). We summarize their definition for
the convenience of the reader and we will show that with the definition in terms of generalized
Heegner cycles they enjoy the properties stated in [Bes97, Prop. 3.2]. This is enough: the proof
of [Bes97, Th. 1.2] is a formal consequence of these properties and applies vertim to our case,
once shown them.
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For any M ≥ 1, we define the set S(M) of M -admissible primes as the set of rational primes
ℓ such that

• ℓ ∤ NpdK ;

• ℓ is inert in K;

• pM | aℓ(f), ℓ+ 1;

• pM+1 ∤ ℓ+ 1± aℓ(f).

For any n squarefree product of primes ℓ ∈ S(M) recall that we defined G(n) = Gal(K[n]/K[1])
and Gn = Gal(K[n]/K). One proves that G(n) ∼=

∏
ℓG(ℓ) and G(ℓ) that is cyclic of order l+ 1,

say generated by an element σℓ. For any ℓ ∈ S(M) we define the operator

Dℓ =

ℓ∑
i=1

iσiℓ ∈ Z[G(ℓ)];

it satisfies the telescopic identity

(σℓ − 1)Dℓ = ℓ+ 1− Trℓ,

where Trℓ =
∑ℓ
i=0 σ

i
ℓ.

Remark 2.3.11. Note that the telescopic identity defines uniquely Dℓ ∈ G(ℓ) up to addition of
elements of the group ZTrℓ, since if (σℓ − 1)D = 0, for D =

∑ℓ
i=0 aiσ

i
ℓ ∈ Z[G(ℓ)], then

0 = (σℓ − 1)D =

ℓ∑
i=0

aiσ
i+1
ℓ −

ℓ∑
i=0

aiσ
i
ℓ = (aℓ − a0) +

ℓ∑
i=1

(ai − ai+1)σ
i
ℓ.

Thus a0 = a1 = · · · = aℓ =: k ∈ Z and D = kTrℓ. In fact several authors, for instance [Gro91],
just define Dℓ as a solution of the telescopic identity. Little would be lost with this definition,
however we prefer for simplicity to fix Dℓ explicitely as above.

We define then the (n-th) Kolyvagin’s derivative operator

Dn =
∏
ℓ|n

Dℓ ∈ Z[G(n)],

that make sense since Dℓ1 commutes with Dℓ2 , for ℓ1 ̸= ℓ2. We will see in the following any
D ∈ Z[G(n)] as an operator on the cohomology groups of T and A[pM ] via the standard Galois
action on them (as we did in Sec. 1.4.2). Recall moreover from Rk. 1.4.9 that for any extension of
normal number fields L/F , then resL/F ◦ coresL/F = TrL/F , where TrL/F is seen as an operator
on H1(L, ∗) via the standard Galois action of Gal(L/K).

The starting point of the Kolyvagin method is the following lemma.

Lemma 2.3.12. The class Dn

(
redpM (zf,n)

)
∈ H1(K[n], A[pM ]) is fixed by the action of G(n).

Proof. Let n = m · ℓ, then

(σℓ − 1)Dn(zf,n) = (σℓ − 1)DℓDm(zf,n) =

= (l + 1)Dm(zf,n)− TrℓDm(zf,n) =

= (l + 1)Dm(zf,n)−Dm Trℓ(zf,n) =

= (l + 1)Dm(zf,n)− aℓ(f)
(
resK[n]/K[m]Dm(zf,m)

)
≡

≡ 0 mod pM .
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Indeed:

• Trℓ(zf,n) = resK[n]/K[m] ◦ coresK[n]/K[m](zf,n) = al(f) resK[n]/K[m](zf,m) by (E2);

• ℓ+ 1, aℓ(f) ≡ 0 mod pM as ℓ ∈ S(M).

Thus, by Rk. 2.3.10, the class Dn

(
redpM (zf,n)

)
is fixed by the action G(ℓ) for any ℓ | n and hence

by the action of G(n).

Therefore by Lemma 2.3.5 there is a unique class D(n) ∈ H1(K[1], A[pM ]) such that

resK[n]/K[1]

(
D(n)

)
= Dn

(
redpM (zf,n)

)
,

let
P (n) = coresK[1]/K

(
D(n)

)
∈ H1(K,A[pM ]).

Remark 2.3.13. Note that D1 = id, hence P (1) = redpM (zf,K).

We come now to the properties of the classes P (n). For any n squarefreee product of primes
of S(M) we define εn = (−1)ω(n)wf , where ω(n) is the number of prime factors of n and wf is
the Atkin-Lehner eigenvalue of f .

Proposition 2.3.14. The class P (n) belongs to the εn-eigenspace of the complex conjugation τc
acting on H1(K,A[pM ]).

Proof. As a first step consider the group element τcDn ∈ Z[Gal(K[n]/Q)], we want to link it to
Dnτc. Recall that, since the extension K[n]/K is generalized dihedral over Q, στc = τcσ

−1 for
any σ ∈ Gn. In particular for any ℓ | n,

Trℓ τc =

ℓ∑
i=0

σiℓτc = τc

ℓ∑
i=0

σ−i
ℓ = τc Trℓ

hence, applying the telescopic identity,

(σℓ−1)Dℓτc = (ℓ+1−Trℓ)τc = τc(ℓ+1−Trℓ) = τc(σℓ−1)Dℓ = (σ−1
ℓ −1)τcDℓ = −σ−1

ℓ (σℓ−1)τcDℓ

and therefore (σℓ − 1)(σℓDℓτc + τcDℓ) = 0. It follows by Rk. 2.3.11 that

τcDℓ = −σℓDℓτc + k τc Trℓ,

since σℓDℓτc + τcDℓ = Dτc, for D ∈ Z[G(ℓ)] and (σℓ − 1)Dτc = 0 if and only if (σℓ − 1)D = 0.
Now consider Dnzf,n ∈ H1(K[n], T ) and let n = ℓ1 · · · ℓω(n)

τc · (Dnzf,n) = τc ·Dℓ1 · · ·Dℓω(n)
· zf,n ≡

≡ (−1)ω(n)σℓ1Dℓ1 · · ·σℓω(n)
Dℓω(n)

· τc · zf,n ≡

≡ (−1)ω(n)wf
(∏
ℓ|n

σℓ
)
Dn · zf,n =

= εnσN̄
(∏
ℓ|n

σℓ
)
(Dnzf,n) mod pM

since if n = ℓ · m, then Trℓ zf,n = aℓ(f) resK[n]/K[m](zf,m) ∼= 0 mod pM . Observe that in the
previous formula we used the fact that the σℓ’s (and hence the Dℓ’s and the Trℓ’s) commute with
each other and with σN̄ ∈ G1.
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Note moreover that Dn

(
redpM (zf,n)

)
is invariant under the action of the σℓ’s by Lemma

2.3.12, therefore

εnσN̄
(∏
ℓ|n

σℓ
)
Dn

(
redpM (zf,n)

)
= εnσN̄Dn

(
redpM (zf,n)

)
and in particular, since resK[n]/K is an isomorphism, τcD(n) = εnσN̄D(n). Thus

resK[1]/K

(
τcP (n)

)
= τc · resK[1]/K ◦ coresK[1]/K D(n) = τc TrK[1]/K D(n) =
= TrK[1]/K

(
τcD(n)

)
= TrK[1]/K

(
εnσN̄D(n)

)
=

= εn(σN̄ TrK[1]/K)D(n) = εnTrK[1]/K D(n) = εn resK[1]/K P (n) =

= resK[1]/K

(
εnP (n)

)
,

where we used the fact that

τc · TrK[1]/K =
∑
σ∈G1

τcσ =
∑
σ∈G1

σ−1τc = TrK[1]/K · τc

and that, since σN̄ ∈ G1,

σN̄ · TrK[1]/K =
∑
σ∈G1

σN̄σ =
∑
σ∈G1

σ = TrK[1]/K .

Being resK[1]/K is an isomorphism, it follows that τcP (n) = εnP (n).

We need moreover to study the properties of the localization of the classes P (n).

Proposition 2.3.15. For any n squarefree products of M -admissible primes,

locv P (n) ∈ H1
f (Kv, A[p

M ])

for any v ∤ Nn.

Proof. Note first that we know that zf,n ∈ Λ̃p(K,T ) ⊆ H1
f (K[n], T ) by Sec. 2.2.2.

Let’s consider the case v ∤ p, in that case H1
f (K[n], A[pM ]) = H1

ur(K[n], A[pM ]) by Ex. 1.1.14,
as the representation attached to a modular form is unramified at v ∤ Np. We have to show
therefore that locv

(
redpM zf,n

)
∈ H1(K[n]v, A[p

M ]) goes to 0 under the restriction map

H1(K[n]v, A[p
M ])

resK[n]ur/K[n]−−−−−−−−−→ H1(K[n]ur
v , A[p

M ]),

where K[n]v is the completion of K[n] at a prime v[n] over v. Since K[n]/K is unramified at
v ∤ n then Kur

v = K[1]ur
v = K[n]ur

v and hence we get a commutative diagram

H1(K,A[pM ]) H1(Kv, A[p
M ]) H1(Kur

v , A[p
M ])

H1(K[1], A[pM ]) H1(K[1]v, A[p
M ]) H1(K[1]ur

v , A[p
M ])

H1(K[n], A[pM ]) H1(K[n]v, A[p
M ]) H1(K[n]ur

v , A[p
M ])

locv

res

res

res res

locv

res

res

res res

locv res
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and therefore

resK[1]ur
v /K[1]v ◦ locv D(n) = resK[n]ur

v /K[nv ] ◦ locv
(
resK[n]/K[1]D(n)

)
=

= resK[n]ur
v /K[nv ] ◦ locv

(
Dn redpM zf,n

)
=

= Dn

(
resK[n]ur

v /K[nv ] ◦ locv
(
redpM zf,n

))
= 0.

Finally resKur
v /Kv

locv P (n) = 0 since

resKur
v /Kv

locv P (n) = resK[1]ur
v /K[1]v ◦ locv ◦(resK[1]/K ◦ coresK[1]/K D(n)) =

= resK[1]ur
v /K[1]v ◦ locv ◦

( ∑
σ∈G1

σD(n)
)

=

=
∑
σ∈G1

resK[1]ur
v /K[1]v ◦ locv ◦(σD(n)) = 0.

Let now v | p, then

locv
(
resK[n]/K[1]D(n)

)
= locv

(
Dn(redpM zf,n)

)
∈ H1

f (K[n]v, A[p
M ])

and therefore locv
(
D(n)

)
∈ H1

f (K[n]v, A[p
M ]) since the restriction map

resK[n]v/K[1]v :
H1(K[1]v, A[p

M ])

H1
f (K[1]v, A[pM ])

−→ H1(K[n]v, A[p
M ])

H1
f (K[n]v, A[pM ])

is injective by [CH18, Lemma 7.5]. Thus locv P (n) ∈ H1
f (K,A[p

M ]).

Consider now the finite-to-singular isomorphism φfs
ℓ : H1

f (Kλ, A[p
M ])→ H1

s(Kλ, A[p
M ]) com-

ing from the composition of the two isomorphisms

αℓ : H1
f (Kλ, A[p

M ]) ∼= H1(Kur
λ /Kλ, A[p

M ])
∼−→ A[pM ]

βℓ : H1
s(Kλ, A[p

M ]) ∼= H1(Kur
λ , A[p

M ])
∼−→ A[pM ]

given by evaluation of cocycles respectively at Frobℓ and at τℓ, where τℓ is a generator if the
pro-p-part of the tame inertia group of Kλ [see Nek92, Sec. 8].

Proposition 2.3.16. Let n = m · ℓ. Then there is a p-adic unit uℓ,n such that[
locℓ P (n)

]
s
= ūℓ,nφ

fs
ℓ

(
locℓ P (m)

)
,

where ūℓ,n is the reduction of uℓ,n to the residue field of OK,λ, in particular locℓ P (m) ̸= 0 if and
only if

[
locℓ P (n)

]
s
̸= 0.

Proof. The result follows by the formula of the following Lemma, since ℓ is M -admissible and
hence the two coefficients there are p-adic units.

We obtain the following formula appying the abstract nonsense of [Nek92, Sec. 9].

Lemma 2.3.17. If n = m · ℓ, then(
(−1)k/2−1εnaℓ(f)

pM
− ℓ+ 1

pM

)[
locℓ P (n)

]
s
=

(
−ℓ+ 1

pM
εn −

aℓ(f)

pM

)
φℓfs
(
locℓ P (m)

)
.
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Proof. Let us first consider the case where n = ℓ · 1, i.e. the formula(
(−1)k/2−1wfaℓ(f)

pM
− ℓ+ 1

pM

)[
locℓ P (ℓ)

]
s
=

(
ℓ+ 1

pM
wf −

aℓ(f)

pM

)
φℓfs
(
locℓ P (1)

)
.

Note that we have the following tower of field extension, where Qtℓ is the maximal tamely ramified
extension of Qℓ (i.e. the maximal extension which has ramification prime to ℓ) and K[1]+λ is
completion at the prime above ℓ of the maximal totally real subfield K[1]+ of K[1]

Qtℓ

K[ℓ]ur
λ Qur

ℓ ·K[ℓ]λ

Kur
λ K[1]ur

λ Qur
ℓ K[ℓ]λ

K[1]λ

K[1]+λ Kλ

Qℓ

ℓ+1

ℓ+1

Indeed

• ℓ is inert (hence unramified) in K and hence Kur
λ = Qur

ℓ ;

• ℓ is totally split in K[1]/K, hence K[1]λ = Kλ;

• λ1 is totally ramified in K[ℓ]/K[1] (that is cyclic of order ℓ+ 1), i.e. λ1 = λℓ+1
ℓ : it follows

that [K[ℓ]λ : K[1]λ] = ℓ + 1 and Gal(K[ℓ]λ/K[1]λ) ∼= Gal(κℓ/κ1), that is cyclic being the
Galois group of an extension of finite fields, moreover the ramification of K[ℓ]λ/Qℓ is prime
to ℓ, thus K[ℓ]ur ⊆ Qtℓ;

• Kλ ⊆ K[1]λ ⊆ Qur
ℓ , therefore Kur

λ = K[1]ur
λ = Qur

ℓ ;

• K[ℓ]ur
λ = Qur

ℓ ·K[ℓ]λ;

• K[ℓ]ur
λ /Qℓ is cyclic of order ℓ+ 1, since

Gal

(
K[ℓ]ur

λ

Qℓ

)
= Gal

(
Qur
ℓ ·K[ℓ]λ

Qℓ

)
∼= Gal

(
K[ℓ]λ

Qur
ℓ ∩K[ℓ]λ

)
= Gal

(
K[ℓ]λ
K[1]λ

)
;

• Qℓ ⊆ K[1]+λ ⊆ K[1]λ = Kλ, but the degree of K[1]λ/K[1]+λ is at least 2, thus K[1]+λ = Qℓ.

Now consider the inclusions

G̃ := Gal(Q̄/K[1]+) G := Gal(Q̄/K[1]) H := Gal(Q̄/K[ℓ])

G̃0 := Gal(Q̄ℓ/Qℓ) G0 := Gal(Q̄ℓ/K[1]λ) H0 := Gal(Q̄ℓ/K[ℓ]λ)

⊇

⊇

⊇

⊇ ⊇

⊇ ⊇

where the squares are cocartesian, i.e. G0 = G̃0 ∩ G, H0 = G̃0 ∩ H, moreover we have that
G/H = Gal(K[ℓ]/K[1]) = ⟨σℓ⟩ and G0/H0 = Gal(K[ℓ]λ/K[1]λ) = ⟨σℓ,0⟩, where (σℓ,0)|K[ℓ] = σℓ
and Gal(K[ℓ]ur

λ /K[1]ur
λ ) = ⟨σur

ℓ,0⟩, for (σur
ℓ,0)|K[ℓ]λ = σℓ,0. Write σ = σℓ and σ0 = σℓ,0, σur

0 = σur
ℓ,0.
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It is well known that we have an explicit description of the Galois group of the maximal
tamely ramified extension of Qℓ:

Gal(Qtℓ/Qℓ) = Gal(Qtℓ/Qur
ℓ )⋊Gal(Qur

ℓ /Qℓ) ∼= Ẑ′(1)⋊ Ẑ,

where Ẑ′(1) =
∏
q ̸=ℓ Zq(1): Ẑ′(1) and Ẑ are procyclic and have generators φ and τ respectively

such that φτφ−1 = τ ℓ. It follows an analogous description in a compatible way of the subgroups

Gal(Qtℓ/Kλ) = Gal(Qtℓ/Qℓ)⋊Gal(Qur
ℓ /Kλ) ∼= ⟨τ⟩⋊ ⟨φ2⟩ = Ẑ′(1)⋊ 2Ẑ

Gal(Qtℓ/K[ℓ]λ) = Gal(Qtℓ/K[ℓ]ur
λ )⋊Gal(K[ℓ]ur

λ /K[ℓ]λ) ∼= ⟨τ ℓ+1⟩⋊ ⟨φ2⟩ = (ℓ+ 1)Ẑ′(1)⋊ 2Ẑ

where (φ′)2 topologically generates Gal(K[l]ur
λ /K[ℓ]λ) ∼= Gal(Qur

ℓ /Kλ) ∼= 2Ẑ. Let us denote by
π the natural projection

π : G̃0 = Gal(Q̄ℓ/Qℓ)→ Gal(Qtℓ/Qℓ) ∼= Z′(1)⋊ Ẑ

and the induced projections

π : G0 → Ẑ′(1)⋊ 2Ẑ, π : H0 → (ℓ+ 1)Ẑ′(1)⋊ 2Ẑ.

Note moreover that

G0/H0
∼= Gal(K[ℓ]ur

λ /K[1]ur
λ ) ∼= Ẑ′(1)/(ℓ+ 1)Ẑ′(1),

so that we may assume to have choosen σℓ such that τ mod (ℓ+ 1)Ẑ′(1) = σur
ℓ,0.

Now before going on with the proof we need the following technical lemma, that is essentially
[Nek92, Lemma 4.1].

Lemma 2.3.18. Let K/Qℓ be a finite extension, for ℓ ̸= Np. Then H1(K,T ) ∼= H1(Kur/K, T ).

Proof. Let P = Gal(Qℓ/Kt) the wild inertia group of K, that is a pro-ℓ-group. Consider the
inflation-restriction exact sequence

0→ H1
(
Kur/K,H0(P, T )

)
→ H1(K,T )→ H1(Kt, T )Gal(Kt/K),

one has that H1(Kur/K, T ) ∼= H1(Kt, T ): indeed P is contained into the inertia group I of GK ,
but T is unramified at ℓ ̸= Np and hence H0(P, T ) = T ; moreover (since, as we just observed, P
acts trivially on T ) H1(Kt, A) = Homcont(P, T ) = 0 as P is a pro-ℓ-group and T a pro-p one.

Now denote by φ the generator of Gal(Kur/K) and τ the generator of Gal(Kt/Kur). We
have that φτφ−1 = τ ℓ

d

, where ℓd is the degree of the residue field of K over Fℓ. We apply again
the inflation-restriction exact sequence

0→ H1(Kur/K, T )→ H1(Kt/K, T )→ H1(Kt/Kur, T )Gal(Kur/K),

the rightmost term is again 0 and therefore

H1(Kur/K, T ) ∼= H1(Kt/K, T ) ∼= H1(Kt, T ).

Indeed H1(Kt/Kur, T ) ∼= Homcont
(
Gal(Kt/Kur), T

) ∼= T (ℓd), via the evaluation at τ , hence

H1(Kt/Kur, T )Gal(Kur/K) ∼= T (ℓd)Gal(Kur/K) = {x ∈ T : (φ− ℓd)(x) = 0 } = 0,
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since by the Weil conjectures φ = Frobℓ
d

ℓ acts on T in a semisimple way and the absolute value
of its eigenvaues α1, α2 is ℓd/2: if x =

(
x1
x2

)
, then

(φ− ℓd)(x) =
(
α1 − ℓd 0

0 α2 − ℓd
)(

x1
x2

)
=

(
(α1 − ℓd)x1
(α2 − ℓd)x2

)
=

(
0
0

)
if and only if x1 = x2 = 0 as |αi| ≠ ℓd and hence α1 − ℓd ̸= 0 for i = 1, 2.

Applying this result to Kλ and K[ℓ]λ and Lemma [Rub00, B.2.8], then we see that

H1(G0, T ) H1(Kt
λ/Kλ, T ) H1(Kur

λ /Kλ, T ) T/(φ2 − 1)T

H1(Ẑ′(1)⋊ 2Ẑ) H1(2Ẑ, T )

∼

∼

∼ ∼

∼
∼

∼

where the middle isomorphism is the inflation and the last one is the evaluation at φ2. Similarly
H1(H0, T ) ∼= T/(φ2 − 1)T . This means that for a 1-cocycle F ∈ Z1(Ẑ′(1)⋊ 2Ẑ),we have

F (τuφ2v) = (1 + φ2 + · · ·+ φ2(v−1))a+ (φ2 − 1)b,

where a, b ∈ T and a ∼= F (φ2) mod (φ2 − 1)T , i.e. a mod (φ2 − 1)T corresponds to the class
[F ] ∈ H1(Ẑ′(1)⋊ 2Ẑ, T ) in the above isomorphism. Indeed, as F (τ) = 0 (since the inflation is an
isomorphism) and τ acts trivially on T (that is unramified at ℓ ̸= Np), then

F (τv) = F (ττv−1) = F (τ) + τ · F (τv−1) = F (τv−1) = · · · = F (τ) = 0,

and therefore

F (τuφ2v) = F (τu) + τu · F (φ2v) = F (φ2φ2(v−1)) = F (φ2) + φ2 · F (φ2(v−1)) ≡
≡ a+ φ2 · (F (φ2) + φ2 · F (φ2(v−2))) ≡ a+ φ2 · a+ φ4 · F (φ2(v−2)) =

= · · · ≡ (1 + φ2 + · · ·+ φ2(v−1))a mod (1 + φ2)T.

Now let x := zf,1 ∈ H1(K[1], T ) = H1(G,T ), y := zf,ℓ ∈ H1(K[ℓ], T ) = H1(H,T ), so that
coresGH(y) = aℓx and z := D(ℓ) ∈ H1(G,A[pM ]) = H1(K[1], A[pM ]). In particular we have that
resGH(z) = Dℓ(redpM (y)) ∈ H1(H,A[pM ]). Note that for any α ∈ H1(H,A[pM ]),

resHH0
(Dℓα) =

ℓ∑
i=1

iσi0 · α,

and for any t ∈ T :
ℓ∑
i=1

iσ̃i · t =
ℓ∑
i=1

it =

(
(ℓ+ 1)ℓ

2

)
t ≡ 0 mod pMT

as σ0 acts as σur
0 , that corresponds to τ and hence acts trivially on T .

Thus resGH0
(z) = 0 ∈ H1(G,A[pM ]) = H1(K[1]λ, A[p

M ]) and hence by the inflation-restriction
exact sequence there is

z0 ∈ H1(G0/H0, A[p
M ]) ∼= Homcont(⟨σ0⟩, A[pM ])
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such that inflG0

G0/H0
(z0) = resGG0

(z) ∈ H1(G0, A[p
M ]). Our next goal will be to calculate z0(σ0). In

order to do that we need to perform some computations at the levels of cocycles: let x̃ ∈ Z1(G,T ),
ỹ ∈ Z1(H,T ) representing respectively x and y.

Since cores(y) = aℓx, then cores(ỹ)− aℓx̃ is a coboundary, i.e. there is an element a ∈ T such
that for any g ∈ G,

cores(ỹ)(g)− aℓx̃ = (g − 1)a,

moreover the computations of [Nek92, Sec. 7] show that z(σ0) = −a. Restricting to g = g0 ∈ G0

(fixing a lift σ̃0 ∈ G0 of σ0 ∈ G0/H0)

ℓ∑
i=0

ỹ(σ̃−i
0 g0σ̃

i
0)− aℓx̃(g0) = (g0 − 1)a.

On the other end, if π(g0) = φ2, we showed above that

x̃(g0) = ax + (φ2 − 1)bx, ỹ(g0) = ay + (φ2 − 1)by,

where ax, ay, bx, by ∈ T and [resGG0
(x̃)],[resHH0

(ỹ)] correspond respectively to ax, ay mod (φ2−1)T
and therefore evaluating the formula at g0 = φ2 we get:

(ℓ+ 1)ay − aℓax = (φ2 − 1)(a+ aℓbx − (ℓ+ 1)by)

and since T is torsion free, but pM | aℓ, ℓ+ 1,

ℓ+ 1

pM
ax −

aℓ
pM

=
(φ2 − 1)

pM
(a+ pM · ∗),

for ∗ = aℓ
pM
bx− ℓ+1

pM
by ∈ T . Now observe that resGG0

(x) = locℓ(zf,1) and resHH0
(y) = locℓ(zf,ℓ) and

φ is the local Frobenius, therefore by (E2) we get that φ(ax) ∼= ay mod (φ2−1)T : we may safely
suppose to have previously choosen ay = φ(ax). Moreover on T

φ2 − aℓ
ℓk/2−1

φ+ ℓ = 0

since char(Frobℓ |T ) = X2 − aℓ/ℓk/2−1X + ℓ by 1.3.7 and therefore the above formula becomes(
ℓ+ 1

pM
φ− aℓ

pM

)
ax =

(
aℓ
pM

ℓ1−k/2φ− (ℓ+ 1)

pM

)
a+ pM · ∗

and hence, reducing to A[pM ]:(
ℓ+ 1

pM
τc −

aℓ
pM

)
redpM (ax) =

(
aℓ
pM

(−1)1−k/2τc −
(ℓ+ 1)

pM

)
redpM a.

In fact, since τ2c = id, then its minimal polynomial over A[pM ] is X2 − 1, therefore it coincides
with the minimal polynomial of φ over A[pM ], since aℓ ≡ 0 mod pM and ℓ ≡ −1 mod pM . Now we
want to express a in terms od locℓ(z) = inflG0

G0/H0
(z0): as σ0 may be lifted to τ and a = −z0(σ0),

then it is enough to apply the finite singular isomorphism that exchanges cocylces with the same
values on τℓ and Frobℓ. We then apply the corestriction to trasfer this formula to P (1) and P (ℓ):
note first that τc ·P (1) = wfP (1) and τc ·P (ℓ) = −wfP (ℓ), hence we obtain the desired formula.

The general formula is proven in the same way if we put, for n = m · ℓ, G = Gal(K[n]/K[1]),
H = Gal(K[n]/K[m]), G0 = Gal(K[n]λ/K[1]λ), H0 = Gal(K[n]λ/K[m]λ), x = D(m)zf,n,
y = D(m)zf,m since these groups and classes enjoy all the properties we listed above and that
made the proof work. Just observe that in that case τc · P (n) = εnP (n) and τc · P (m) =
εn−1P (m) = −εnP (m).
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Now we can come back to the proof of Th. 2.3.9

Proof (Th. 2.3.9). We established for the classes P (n), that we defined in terms of generalized
Heegner cycles, the properties listed in [Bes97, Th. 3.2]. We don’t need to show anything else:
indeed the proof of [Bes97, Th. 2.1] is just a formal consequence of these properties and does
not depend on their actual definition. It applies verbatim therefore to our case, leading to a full
proof of 2.3.9.
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Chapter 3

Selmer Complexes

In the first chapter we introduced several notions of Selmer group attached to a p-adic represen-
tation, generalizing the notion of Selmer group of an elliptic curve. In this chapter we treat even
more general objects: the Selmer Complexes, introduced by J. Nekovar in [Nek06]. The impor-
tance of Selmer Complexes is that their cohomolgy objects give rise to a notion of generalized
Selmer group, that in the cases of “bad reduction” beaves better than the usual theory of Selmer
groups. However, we will not need the full power of Selmer Complexes, but we use them only
as intermediate objects in order to study the structure of more classical Selmer groups. In this
chapter we give a brief overview of the theory of Selmer Complexes for the convenience of the
reader and we see how the classical (Greenberg) Selmer groups fit into this theory.

Notations

We collect here some notations that we introduce in this chapter:

• (R-Mod) : Modules over any commutative ring R;

• (R-Mod)ft: R-modules of finite type (noetherian);

• (R-Mod)coft: R-modules of cofinite type (artinian);

• C∗(C ), for ∗ = ∅, b,+,−: the category of all (resp. bounded, bounded below, bounded
above) complexes in an abelian category C ;

• K∗(C ), for ∗ = ∅, b,+,−: homotopy category (+ bounds) of an abelian category C ;

• D∗(C ), for ∗ = ∅, b,+,−: derived category (+ bounds) of an abelian category C ;

• D∗
C ′(C ), for ∗ = ∅, b,+,−: derived category (+ bounds) of an abelian category C such

that the cohomology objects belong (up to iso) to a full subcategory C ′ of C .

From Sec. 3.1.2:

• R: a fixed noetherian complete local ring of dimension d, maximal ideal m and finite residue
field k of characteristic p > 2;

• G: a profinite group;

• (R[G]-Mod)ad: Admissible R[G]-modules;

• (R[G]-Mod)ind-ad: Ind-admissible R[G]-modules;

• (R[G]-Mod){m }: R[G]-modules M supported on m (i.e. M =
⋃
n>0M [mn]).
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3.1 Homological Algebra

In order to introduce Selmer Complexes we first need to recall some constructions that we can
make starting from complexes in an abelian category. Let us fix an abelian category C , and
consider the corresponding category of complexes C(C ). Given a complex X ∈ Ob

(
C(C )

)
we

denote by Xi the object of C in the i-th position and by diX : Xi → Xi+1, the i-th differential of
X. Recall that a map of complexes f ∈ HomC(C )(X,Y ) is a collection of morphisms f i : Xi → Yi
compatible with the differentials. The content of this section can be found in [Nek06, Ch. 1].

3.1.1 Constructions of complexes

Shift and Cone

Definition 3.1.1. For any n ∈ Z we define the translation (or shift) by n functor

[n] : C(C )→ C(C );

On objects: for any X ∈ C(C ); X[n] is the complex such that X[n]i = Xn+i; diX[n] = (−1)ndi+nX .
On morphisms: if X,Y ∈ C(C ) and f : X → Y is a map of complexes, f [n] : X[n]→ Y [n] is the
map of complexes such that f [n]i = f i+n.

Remark 3.1.2. Note that for us X[1] represent the translation of X by 1 to the left and X[−1]
the translation by 1 to the right, whereas in some references one takes the opposite convention.

Remark 3.1.3. In the following we will see C embedded in C(C ): X ∈ Ob(C ) and we see
it as the complex, still denoted by X, such that X0 = X, Xi = 0 for i ̸= 0 and everywhere
0-differentials. We say that such a complex is concentrated in degree 0. Following the warning of
the previous remark: pay attention that X[k] is a complex concentrated in degree −k (and not
in degree k, as one could expect).

Definition 3.1.4. Let X,Y ∈ C(C ) and f : X → Y . The Mapping Cone of f is the complex
Cone(f) that is Y ⊕X[1] at the level of objects, with differentials

diCone(f) =

(
dY f i+1

0 −di+1
X

)
: Y i ⊕Xi+1 → Y i+1 ⊕Xi+2.

Tensor products and Hom

In this section the capital letters X,Y, Z, . . . will denote complexes of R-modules, for a commu-
tative ring R.

Definition 3.1.5. We define the complex X ⊗R Y by

(X ⊗R Y )n =
⨁
i∈Z

Xi ⊗ Y n−i,

with differentials defined by the formula

dn(x⊗ y) = diXx⊗ y + (−1)ix⊗ dn−iY y ∈ (Xi+1 ⊗ Y n−i)⊕ (Xi ⊕ Y n−i+1),

for x⊗ y ∈ Xi ⊗R Y n−i.
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Definition 3.1.6. We define the complex Hom•
R(X,Y ) by

Homn
R(X,Y ) =

∏
i∈Z

HomR(X
i, Y i+n),

with differentials defined by the formula

dnf = (dn+iY ◦ fi + (−1)n−1fi+1 ◦ diX)i∈Z,

for f = (fi)i∈Z ∈ Homn
R(X,Y ).

Remark 3.1.7. If Y is a bounded (resp. bounded below) complex of injective R-modules and Y
is any (resp. bounded above) complex of R-modules, then the complex Hom•

R(X,Y ) represents
the right derived functor RHomR(X,Y ), meaning that its localization into the derived category
D(R-Mod) coincide with RHomR(X,Y ). For the reader interested in a complete discussion of
this topic see also [KS06, Sec 13.3, 13.4].

Simmetries

We have the following isomorphisms of complexes:

• The associativity isomorphism

(X ⊗R Y )⊗R Z X ⊗R (Y ⊗R Z)

(x⊗ y)⊗ z x⊗ (y ⊗ z)

∼

,

• The transposition isomorphism s12

s12 : X ⊗R Y Y ⊗R X

Xi ⊗R Y j ∋ x⊗ y (−1)ijy ⊗ x

∼

,

• The transposition isomorphism s23

s23 : (X ⊗R A)⊗R (Y ⊗R B) (X ⊗R Y )⊗R (A⊗R B)

(Xi ⊗R Aa)⊗R (Y j ⊗R Bb) ∋ (x⊗ a)⊗ (y ⊗ b) (−1)aj(x⊗ y)⊗ (a⊗ b)

∼

.

And the transposition isomorphisms are compatible, i.e. the following diagram commutes

(X ⊗R A)⊗R (Y ⊗R B) (X ⊗R Y )⊗R (A⊗R B)

(Y ⊗R B)⊗R (X ⊗R A) (Y ⊗R X)⊗R (B ⊗R A)

∼
s23

s12

∼

s12⊗s12
∼

s23
∼

.
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Adjunction

We have an adjunction morphism at the level of complexes

adj : Hom•
R(X ⊗ Y, Z) Hom•

R

(
X,Hom•

R(Y, Z)
)

given by the following formula: if f =
(
fr : (X ⊗ Y )r → Zr+n

)
r∈Z ∈ Homn

R(X ⊗ Y,Z), then
adj(f) =

(
adj(f)i : X

i → Homi+n
R (Y,Z)

)
i∈Z, where

(
adj(f)i(x)

)
j
(y) = fi+j(x ⊗ y), for x ∈ Xi,

y ∈ Y j . It induces an adjunction morphism of R-modules

adj : HomC(R-Mod)(X ⊗ Y,Z) −→ HomC(R-Mod)

(
X,Hom•

R(Y,Z)
)
.

Indeed
HomC(R-Mod)(A,B) = { f ∈ Hom0

R(A,B) : dB ◦ f = f ◦ dA }

so if f ∈ HomC(R-Mod)(X ⊗Y,Z), then of course adj(f) ∈ Hom0
R

(
X,Hom•

R(Y,Z)
)
, but it is easy

to check that adj(f) commutes with the differentials.
Both morphisms are monomorphisms, and isomorphisms if X,Y are bounded above and Z

bounded below.

Evaluations

We have two evaluation maps

ev1 : Hom•
R(X,Y )⊗X Y

Homi
R(X

r, Y r+i)⊗Xj ∋ (fr : X
r → Y r+i)r∈Z ⊗ x fj(x) ∈ Yi+j

and
ev2 : X ⊗Hom•

R(X,Y ) Y

Xj ⊗Homi
R(X

r, Y r+i) ∋ x⊗ (fr : X
r → Y r+i)r∈Z (−1)ijfj(x) ∈ Yi+j

and it is easy to check that these are compatible with the transposition morphism, in the sense
that the following diagram commutes:

Hom•
R(X,Y )⊗X Y

X ⊗Hom•
R(X,Y ) Y

ev1

s12

ev2

.

Note moreover that adj(ev1) = id, under the adjunction morphism

adj : HomC(R-Mod)(Hom•
R(X,Y )⊗X,Y ) −→ HomC(R-Mod)

(
Hom•

R(X,Y ),Hom•
R(X,Y )

)
.

Indeed for any f = (fr)r∈Z ∈ Homi
R(X,Y ), x ∈ Xj ,(

adj(ev1)i(f)
)
j
(x) = (ev1)i+j(f ⊗ x) = fj(x) ∈ Y i+j .
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Dualizing functors

Let I an R-module and consider the functor

DI(− ) = HomR(− , I) : (R-Mod)op → (R-Mod).

Definition 3.1.8. We say that DI is dualizing if the canonical morphims ε : M → D
(
D(M)

)
are isomorphisms, for any M ∈ (R-Mod)ft.

If DI is dualizing, we can construct a duality theory for D, called Maltis Duality. The
following proposition resume [BH93, Sec. 3.2].

Proposition 3.1.9. DI is dualizing if and only if I is an injective hull of k [BH93, Def. 3.2.3].
Such a module is unique up to a unique isomorphism, therefore we an injective hull I of k and
we denote DI by DR. The functor DR is exact and induces an equivalence of categories

(R-Mod)opft ←→(R-Mod)coft.

In particular the map ε is an isomorphism for both M ∈ (R-Mod)ft and M ∈ (R-Mod)coft.

Example 3.1.10. If R is a complete discrete valuation ring with fraction field K, K/R is an
injective hull of k. In the case of R = O the ring of integers of a finite extension of Qp then
DR(M) coincide with the Pontryagin dual for R-modules of finite and cofinite type, equipped
the finite type modules with the m-adic topology and the cofinite type ones with the discrete
topology. (See [Nek06, Sec 2.9], Def. 1.1.10 and the following discussion).

In the case of M•, J• ∈ C(R-Mod) the analogous functor is DJ•(M•) = Hom•
R(M

•, J•).
When J• = I[n], for I an injective hull of k, n ∈ Z, we denote DI[n], by DR,n. The morphism of
complexes

εn : M
• −→ DR,n

(
DR,n(M

•)
)

is an isomorphism for any M• ∈ D∗(R-Mod), where ∗ = ft, coft.

3.1.2 Continuous cohomology
Let from now on R be a noetherian complete local ring, with maximal ideal m, finite residue field
k of characteristic p > 2. In this section we will extend the notion of continuous cohomology
groups to complexes of R[G]-modules, for a profinite group G. Recall that an R[G]-module is
equivalently an R-module endowed with an R-linear action of G, where the action is given by the
multiplication by the group-like elements of R[G]. For such an M we denote by λM the action

λM : G×M →M ; λM (g,m) = g(m)

and by ρM the induced R-linear map

ρM : R[G]→ EndR(M); ρM
(∑

i

rigi
)
(m) =

∑
i

rigi(m).

Definition 3.1.11. We say that M is an admissible R[G]-module if Im(ρM ) is an R-module of
finite type and the map G→ R[G]→ Im(ρM ) is continuous, when Im(ρM ) is equipped with the
m-adic topology.

The admissible R[G]-modules form an abelian full subcategory (R[G]-Mod)ad of (R[G]-Mod)
with enough injectives.

We are interested mainly in R[G]-modules that are of finite or of cofinite type over R. In this
case these modules are admissible if and only if the action of G is continuous, more precisely:
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Proposition 3.1.12 ([Nek06, Lemma 3.2.4]). Let T (resp. A) be an R[G]-module of finite
(resp. cofinite) type over R. If we equip it with the m-adic topology (resp. discrete) topology,
then T (resp. A) is admissible if and only if the action λT : G× T → T (resp. λA : G×A→ A)
is continuous.

Remark 3.1.13. In [Nek06, Def. 3.3.1] Nekovar introduces a more general class of modules for
wich the continuous cohomology can be defined, called ind-admissible, that are inductive limits of
admissible modules. Several of the following definitions and results are stated there in these more
general terms. However we will enounce them just in terms of admissible modules by simplicity
as for R[G]-modules (co)finitely generated over R, namely the class of modules we are interested
in, the two notions are equivalent by [Nek06, Prop. 3.3.5.vi]. Therefore when, discussing of
Iwasawa Theory, we will meet true ind-admissible modules the reader shouldn’t be harmed if we
give reference to previous results for admissible ones: they hold also in the ind-admissible case.

For an admissible R[G]-module M we may consider the complex of the continuous cochains,
introduced by Tate in [Tat76]: we denote

Cicont(G,M) := { continuous maps Gi →M } .

and we let δiM : Cicont(G,M)→ Ci+1
cont(G,M) be the standard differential defined by

(δic)(g1, . . . , gi+i) = g1c(g2, . . . , gi+1)+

i∑
j=1

(−1)jc(g1, . . . , gjgj+1, . . . , gi+1)+(−1)i−1c(g1, . . . , gi).

Definition 3.1.14. Let M ∈ (R[G]-Mod)ad. The continuous cohomology Hicont(G,M) of G with
values in M is the i-th cohomology object of the complex (Cicont(G,M), δi). It has an R-module
structure.

We define a continuous cochains complex C•
cont(G,M

•) also for a complex (M•,dM•) of
R[G]-admissible modules: its component of degree n is

Cncont(G,M
•) =

⨁
i+j=n

Cjcont(G,M
i).

and the differential is δnM• restricts to Cjcont(Gv,d
i
M•) + (−1)jδjMi on Cjcont(Gv,M

i).

Definition 3.1.15. The i-th hypercohomology module Hicont(G,M
•) with values in M• is de-

fined to be the i-th cohomology of C•
cont(G,M

•).

The functor M• ↦→ C•
cont(G,M

•) induces an exact functor on the derived categories

RΓcont(G, − ) : D+(R[G]-Mod)ad → D+(R-Mod).

Remark 3.1.16. Note that C•
cont(G,M

•) is by definition the total complex of the double complex(
Cjcont(G,M

i)
)
i,j

with the differentials of the rows induced by these of M• and the standard
cohomological ones on the columns.

Many features of cohomology groups extend to the case of complexes. Recall for instance the
cup products:

Definition 3.1.17. Let A,B ∈ (R[G]-Mod)ad, the cup products are the R-linear maps

∪ij : Cicont(G,A)⊗R Cjcont(G,B)→ Ci+jcont(G,A⊗R B)
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defined by the usual formula

(α ∪ β)(g1, . . . , gi+j) = α(g1, . . . , gi)⊗ (g1 · · · · · gi)β(gi+1, . . . , gi+j).

They induce a morphism of complexes

∪ : C•
cont(G,A)⊗R C•

cont(G,B)→ C•
cont(G,A⊗R B)

since δ(α ∪ β) = δα ∪ β + (−1)iα ∪ δβ.

This definition can be extended to the cup product of complexes:

Definition 3.1.18. Let A•, B• complexes in (R[G]-Mod)ad, the individual cup products

∪abij : Cicont(G,A
a)⊗R Cjcont(G,B

b)→ Ci+jcont(G,A
a ⊗R Bb)

can be combined to the total cup product

∪ : C•
cont(G,A

•)⊗R C•
cont(G,B

•)→ C•
cont(G,A

• ⊗R B•)

choosing carefully the signs: ∪ on Cicont(G,A
a)⊗R Cjcont(G,B

b) is defined to be (−1)ib∪abij .

Remark 3.1.19. If G = Gv is the absolute Galois group of a local field, its cohomological
properties show that if A is an R-module with trivial Gv-action and A(1) = A⊗Zp(1) is the first
Tate twist of A (see Ex. 1.1.3), then by local class field theory and the since the p-cohomological
dimension of Gv is 2 we have that

H2
(
Gv, A(1)

) ∼= A, Hj
(
Gv, A(1)

)
= 0, for j > 2.

Therefore there is a quasi isomorphism

A[−2]→ τ≥2C
•
cont
(
Gv, A(1)

)
,

recall indeed that the truncation τ≥n of a complex (M•, dM ) is defined to be the complex

τ≥nM
• : [· · · → 0→ 0→ coker dn−1

M →Mn+1 →Mn+2 → . . . ],

and hence by definition

Hi(τ≥nM
•) =

{
Hi(M•), for i ≥ n;
0 for i < n.

More in general if A• is a bounded below complex of R-modules, then iv induce a canonical
morphism between the double complexes whose i-th columns are respectively the complexes
Ai[−2] and the truncation τ≥2C

•
cont
(
Gv, A

i(1)
)
. Denote the total complex of the latter by

τ II≥2C
•
cont
(
Gv, A

•(1)
)

and observe that the total complex of the former is A•[−2]: there is therefore
an induced quasi-isomorphism of complexes

iv : A
•[−2]→ τ II≥2C

•
cont
(
Gv, A

•(1)
)
.

If A• = J is a bounded below complex of injective R-modules with trivial Gv action, then iv has
a homotopy inverse (unique up to homotopy)

rv = rJ,v : τ
II
≥2C

•
cont
(
Gv, J(1)

)
→ J [−2].

We conclude this section with a definition for later reference.

Definition 3.1.20. An admissible R[G]-module is said to be supported on m ifM = lim−→n
M [mn].

The full subcategory of such modules will be denoted by (R[G]-Mod)ad{m }.
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3.2 Selmer Complexes
In this section we introduce Selmer Complexes. All the notations and assumptions of the previous
sections are in force. Fix moreover a number field K and a finite set S of primes of K containing
all the archimedean places and all primes above p. By Sf we denote the finite (non-archimedean)
primes of S. In this section the role of G will be played by the Galois groups GK , GK,S and GKv .
Note that, as in Prop. 1.1.8, an admissible R[GK,S ]-module is an admissible R[GK ]-module
unramified at all v /∈ S. This material can be found in [Nek06, Ch. 6].

3.2.1 General definitions
Definition 3.2.1. Let X a complex in (R[GK,S ]-Mod)ad. A local condition for X is a collection
∆(X) = (∆v(X))v∈Sf

, where ∆v(X) consists of a complex U+
v (X) of R-modules together with

a morphism of complexes
i+v (X) : U+

v (X)→ C•
cont(Gv, X).

Denote i+S (X) = (i+v (X)).

Definition 3.2.2. The Selmer complex attached to the local condition ∆(X) onX is the complex

R̃Γf (GK,S , X; ∆(X)) =Cone

(
C•

cont(GK,S , X)⊕
⨁
v∈Sf

U+
v (X)

res−i+S (X)
−−−−−−−→

⨁
v∈Sf

C•
cont(Gv, X)

)
[−1].

We will often see it implicitly as an object of the derived category.

Definition 3.2.3. The i-th generalized Selmer group of X with local conditions ∆(X) is

H̃
i
(GK,S , X,∆(X)) = Hi

(
R̃Γf (GK,S , X; ∆(X))

)
.

It has an R-module structure.

Write moreover U−
v (X) = Cone

(
U+
v (X)

−i+v (X)−−−−−→ C•
cont(Gv, X)

)
. Explicitely

U−
v (X)j = Cjcont(Gv, X)⊕ U+

v (X)j+1

and the differential is given, for x ∈ Cjcont(Gv, X), y ∈ U+
v (X)j+1, by

djU−(a, b) = (δja− i+v (X)jb,−dj+1
U+ b).

Orthogonal Local conditions

Fix J a bounded complex of injective R-modules and let X,Y be two complexes of admissible
R[GK,S ]-modules, ∆(X),∆(Y ) local conditions for X and Y and a morphism π : X⊗RY → J(1)
of complexes of R[GK,S ]-modules. Consider for any place v of K the map

•
∪π : C•

cont(Gv, X)⊗R C•
cont(Gv, Y )

∪−→ C•
cont(Gv, X ⊗ Y ) −→

π∗−→ C•
cont(Gv, J(1))

τII
≥2−−→ τ II≥2C

•
cont(Gv, J(1))

where π∗ denotes the morphism induced by π at level of cochain complexes and τ II≥2C
•
cont(Gv,M)

is the total complex (second) truncation of C•
cont(Gv, J(1)) introduced in Rk. 3.1.19. The mor-

phism

C•
cont(Gv,M)

τII
≥2−−→ τ II≥2C

•
cont(Gv,M)

52 Luca Mastella - PhD Thesis



3.2. SELMER COMPLEXES

is defined on Cjcont(Gv,M
i) as the identity for j > 2, as the projection on coker δ1Mi for j = 2

and as the 0-map for j < 2.

Definition 3.2.4. For each v ∈ Sf denote by prodv(X,Y, π) the morphism of complexes

U+
v (X) ⊗R U+

v (Y )
i+v (X)⊗i+v (Y )−−−−−−−−−→ C•

cont(Gv, X) ⊗R C•
cont(Gv, Y )

•
∪π−−→ τ II≥2C

•
cont(Gv, J(1)).

We say that ∆v(X) ⊥π,hv
∆v(Y ), or by words that ∆v(X) is orthogonal to ∆v(Y ) with respect

to π and hv, if there is an homotopy (denoted by ⇝)

hv : prodv(X,Y, π)⇝ 0.

If ∆v(X) ⊥π,hv
∆v(Y ) for any v ∈ Sf we say that ∆(X) ⊥π,hS

∆(Y ) (here hS = (hv)v∈Sf
), by

words we say that ∆v(X) is orthogonal to ∆v(Y ) with respect to π and hS .

Remark 3.2.5. If the morphism prodv(X,Y, π) = 0, as we will have in our examples, then
(trivially) ∆v(X) ⊥π,0 ∆v(Y ).

Local cup product

Fix a place v ∈ Sf and assume that ∆v(X) ⊥π,hv
∆v(Y ). Fix the elements a1 ∈ Cj−1

cont(Gv, X),
a2 ∈ Cj−1

cont(Gv, Y ), b1 ∈ U+
v (X)j , b2 ∈ U+

v (Y )j ; the formulas

(a1, b1) ∪−,hv
b2 = a1

•
∪π iv(Y )j(b2) + hv(b1 ⊗ b2);

b1 ∪+,hv
(a2, b2) = (−1)j i+v (X)j(b1)

•
∪π a2 + hv(b1 ⊗ b2),

composed with the quasi isomorphism rJ,v[−1], define morphisms of complexes

∪−,π,hv : U
−
v (X)[−1]⊗R U+

v (Y ) −→
(
τ II≥2C

•
cont(Gv, J(1))

)
[−1] rJ,v [−1]−−−−−→ J [−3];

∪−,π,hv
: U+

v (X)⊗R U−
v (Y )[−1] −→

(
τ II≥2C

•
cont(Gv, J(1))

)
[−1] rJ,v [−1]−−−−−→ J [−3].

And hence, by adjunction,

u−,π,hv
= adj(∪−,π,hv

) : U−
v (X)[−1]→ DJ[−3](U

+
v (Y ));

u+,π,hv
= adj(∪+,π,hv

) : U+
v (X)→ DJ[−3](U

−
v (Y )[−1]).

Definition 3.2.6. Fix a place v ∈ Sf and assume that ∆v(X) ⊥π,hv ∆v(Y ), we define the error
term at v as

Errv(∆v(X),∆v(Y ), π) = Cone(u+,π,hv )

and, if ∆(X) ⊥π,hS
∆(Y ), the global error term as

ErrS(∆(X),∆(Y ), π) =
⨁
v∈Sf

Errv(∆v(X),∆v(Y ), π).
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Duality

Definition 3.2.7. Suppose that X,Y are bounded, J = I[n], for some n ∈ Z and either the
cohomology groups of X are of finite type and those of Y of cofinite type or the converse, then we
say that π is a perfect duality if the adjunction morphism adj(π) : X → DJ(Y )(1) (or equivalently
adj(π ◦ s12) : Y → DJ(X)(1)) is a quasi isomorphism.

Example 3.2.8. The evaluation morphisms ev1, ev2 are perfect dualities. In fact, as we have
already noticed in Sec. 3.1.1, adj(ev1) : DJ(X)(1) → DJ(X)(1) is the identity morphism of
DJ(X)(1) and ev2 = ev1 ◦ s12.

Definition 3.2.9. Under the assumptions of Def. 3.2.7, suppose that π is a perfect duality and
∆v(X) ⊥π,hv

∆v(Y ) for v ∈ Sf . We say that ∆v(X) ⊥⊥π,hv
∆v(Y ), by words that ∆v(X)

and ∆v(Y ) are othogonal complements of each other with respect to π and hv, if the morphism
u+,π,hv

(or equivalently u−,π,hv
) is a quasi isomorphism.

Proposition 3.2.10 ([Nek06, Cor. 6.2.8]). Under the assumption of Def. 3.2.9

∆v(X) ⊥⊥π,hv ∆v(Y )⇐⇒ Errv(∆v(X),∆v(Y ), π) = 0 in D(R-Mod).

The following theorem is the general form of a whole series of Duality Theorems for Selmer
Complexes that we will state in this chapter.

Theorem 3.2.11 ([Nek06, Th. 6.3.4]). Let the assumptions of Def. 3.2.7 hold, π be a perfect
duality and ∆(X) ⊥π,hS

∆(Y ). We have than an exact triangle in D(R-Mod)

R̃Γf (X)
γπ,hS−−−−→ DJ[−3](R̃Γf (Y )) −→

⨁
v∈Sf

Errv(∆v(X),∆v(Y ), π)

and in particular if ∆v(X) ⊥⊥π,hv
∆v(Y ) the map

γπ,hS
: R̃Γf (X)−→DJ[−3](R̃Γf (Y ))

is an isomorphism in D(R-Mod).

3.2.2 Local Conditions

In this section we introduce some concrete local conditions for Selmer complexes that will be of
interest for us. The reference here is [Nek06, Sec. 6.7, 7.6, 7.8]

Ordinary conditions

The notations and assumptions of the previous paragraph are in force. Fix a prime v ∈ Sf and
X+
v , Y +

v complexes of admissible R[Gv]-modules together with morphisms of R[Gv]-modules

j+v (X
+
v ) : X

+
v → X, j+v (Y

+
v ) : Y +

v → Y.

This data induce local conditions

∆v(X) : U+
v (X) = C•

cont(Gv, X
+
v )

j+v (X)∗−−−−−→ C•
cont(Gv, X),

∆v(X) : U+
v (Y ) = C•

cont(Gv, Y
+
v )

j+v (Y )∗−−−−−→ C•
cont(Gv, Y ).
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Put moreover

X−
v = Cone(X+

v

−j+v (X)−−−−−→ X), Y −
v = Cone(Y +

v

−j+v (Y )−−−−−→ Y ),

then

U−
v (X) = C•

cont(Gv, X
−
v ) = C•

cont
(
Gv,Cone(X

+
v

−j+v (X)−−−−−→ X)
)
=

= Cone
(
C•

cont(Gv, X
+
v )

−j+v (X)∗−−−−−−→ C•
cont(Gv, X)

)
and similarly U−

v (Y ) = C•
cont(Gv, Y

−
v ).

Remark 3.2.12. In particular in the case where the complexes X,X+
v are concentrated in degree

0 and jv(X) is injective, the complex

X−
v = [· · · → 0→ X+,0

v

−jv(X)−−−−−→ X0 → 0→ . . . ]

(concentrated in degrees −1, 0) is quasi isomorphic to the complex concentrated in 0 with
X0
v/jv(X)(X+,0

v ) as 0-term. Therefore in that case U−
v (X) = C•

cont(Gv, X
0
v/j

+
v (X)(X+,0

v )) in
the derived category, since C•

cont(Gv, − ) respects quasi isomorphisms [Nek06, Prop. 3.5.5].

Definition 3.2.13. We say that X+
v ⊥π Y +

v if the morphism

X+
v ⊗R Y +

v

j+v (X)⊗j+v (Y )−−−−−−−−−→ X ⊗R Y
π−→ J(1)

is zero.

And this definition make sense due to the following lemma:

Lemma 3.2.14 ([Nek06, Prop. 6.7.3]). If X+
v ⊥π Y +

v , then ∆v(X) ⊥π,0 ∆v(Y ).

Proof. By the standard functoriality properties of the cup product [see NSW00, Prop. I.1.4.2],

C•
cont(Gv, X

+
v )⊗ C•

cont(Gv, Y
+
v ) C•

cont(Gv, X
+
v ⊗ Y +

v )

C•
cont(Gv, X)⊗ C•

cont(Gv, Y ) C•
cont(Gv, X

+
v ⊗ Y +

v )

j+v (X)⊗j+v (Y )

∪

j+v (X)∗⊗j+v (Y )∗

∪

and hence by definition prodv(X,Y, π) = 0.

Note that the morphism π ◦
(
j+v (x) ⊗ j+v (Y )

)
factors through X ⊗R Y +

v , hence we get by
adjunction a morphism

adj
(
π ◦
(
idX ⊗ j+v (Y )

))
: X → Hom•

R(Y
+
v , J(1)) = DJ(Y

+
v )(1)

and if X+
v ⊥π Y +

v ,

adj
(
π ◦
(
j+v (x)⊗ j+v (Y )

))
: X+

v → Hom•
R(Y

+
v , J(1)) = DJ(Y

+
v )(1)

is zero and hence adj
(
π ◦
(
idX ⊗ j+v (Y )

))
induces

X−
v → Hom•

R(Y
+
v , J(1)) = DJ(Y

+
v )(1).

Definition 3.2.15. We say that X+
v ⊥⊥π Y +

v if the latter morphism is a quasi isomorphism.
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Suppose moreover that X,Y,X+
v , Y

+
v are bounded and J = I[n], for some n ∈ Z and either

the cohomology groups of X,X+
v are of finite type and those of Y, Y +

v of cofinite type or the
converse and that π is a perfect duality. Under these assumptions we have the following lemma.

Lemma 3.2.16 ([Nek06, Prop. 6.7.6]). If X+
v ⊥⊥π Y +

v , then ∆v(X) ⊥⊥π,0 ∆v(Y )

We have also a nice expression of the error term: if we complete the morphism above into an
exact triangle

Wv → X−
v → DJ(Y

+
v )(1)

in Db(R[Gv]-Mod) then there is an isomorphism [Nek06, Prop. 6.7.6.iv] in Db(R-Mod)

Errv(∆v(X),∆v(Y ), π) ∼= RΓcont(Gv,Wv)

The Duality Theorem 3.2.11 becomes, using ordinary local conditions for any v ∈ Sf ,

Theorem 3.2.17 ([Nek06, Prop. 6.7.7]). Under the previous assumptions on the complexes
X,Y,X+

v , Y
+
v , and on J , suppose that π is a perfect duality and X+

v ⊥π Y +
v for all v ∈ Sf . Then

we have an exact triangle in Db∗(R-Mod) (with ∗ = ft, coft depending on the case in wich we are)

R̃Γf (X)
γπ,0−−→ DJ[−3](R̃Γf (Y )) −→

⨁
v∈Sf

RΓcont(Gv,Wv)

and in particular if X+
v ⊥⊥π Y +

v the map

γπ,0 : R̃Γf (X) −→ DJ[−3](R̃Γf (Y ))

is an isomorphism in Db∗(R-Mod).

Unramified local conditions

Another kind of local conditions defining Selmer Complexes are the unramified conditions. These
are a generalization of the unramified local condition

H1
ur(Gv,M) = ker

(
H1(Kv,M)→ H1(Iv,M)

)
for the first cohomology groups introduced in Sec. 1.1.2. In this paragraph v is a finite place over
a rational prime l ̸= p.

If M ∈ (R[Gv]-Mod)ad it is natural to define the unramified local condition as

∆ur
v (M) : U+

v (M) = C•
cont(Gv/Iv,M

Iv )
inf−−→ C•

cont(Gv,M).

In fact the inflation map induce isomorphisms

Hi(Gv/Iv,M
Iv ) =

⎧⎪⎨⎪⎩
MGv for i = 0,

H1
ur(Gv,M) for i = 1,

0 for i > 1.

The naive generalization to complexes of R[Gv]-modules does not work. However, introducing
some auxiliary complexes and working with the wild inertia group Iwv = Gal(K̄v/K

t
v), where Kt

v

the maximal tamely ramified extension of Kv inside K̄v, one can still define [see Nek06, Sec. 7.2]
an unramified local condition for a complex M• in C(R[Gv]-Mod)ad

∆ur
v (M•) : C•

ur(Gv,M) = U+
(
(M•)I

w
v
)
→ C•

cont(Gv,M
•).
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If J is a bounded complex of injective R-modules, vanishing in all its negative terms and M•

a complex of R[GK,S ]-modules one has

∆ur
v (M•) ⊥ev2,0 ∆ur

v

(
DJ(M

•)(1)
)
, ∆ur

v

(
DJ(M

•)(1)
)
⊥ev1,0 ∆ur

v (M•)

and, if M• is bounded with cohomology of finite or cofinite type, then

∆ur
v (M•) ⊥⊥ev2,0 ∆ur

v

(
DJ(M

•)(1)
)
, ∆ur

v

(
DJ(M

•)(1)
)
⊥⊥ev1,0 ∆ur

v (M•).

Greenberg local conditions

Another example of local conditions, that is a combination of the previous ones, are the Greenberg
local conditions for a Selmer Complex. These are the ordinary local conditions for the places
v ∈ Σ, where Σ ⊆ Sf contains all v | p, and the unramified ones for v ∈ Sf ∖ Σ. The resulting
Selmer Complex is a generalization of the Greenberg Selmer Group of Sec. 1.1.2.

Fix Σ ⊆ Sf containing all primes v | p. Let J = I a complex of injective modules concen-
trated in degree 0 and π : X ⊗R Y → J(1) a perfect duality. Consider X,Y bounded complexes
in (R[GK,S ]-Mod)ad and assume that we are given, for v ∈ Σ, X+

v , Y
+
v such that either the

cohomology groups of X,X+
v are of finite type and those of Y, Y +

v of cofinite type or vice versa,
and morphisms of complexes

j+v (X) : X+
v → X, j+v (Y ) : Y +

v → Y.

Assume moreover that X+
v ⊥⊥π Y +

v .
The Greenberg local conditions are, for Z = X,Y ,

∆v(Z) =

{
∆+
v (Z) : C

•
cont(Gv, Z

+
v )→ C•

cont(G,Z) if v ∈ Σ,

∆ur
v (Z) : C•

ur(Gv, Z)→ C•
cont(Gv, Z) if v ∈ Sf ∖ Σ.

In this case Th. 3.2.11 becomes

Theorem 3.2.18 ([Nek06, Sec. 7.8.4.2]). There is an isomorphism in Db(R-Mod)

γπ,0 : R̃Γf (X)−→DI[−3]

(
R̃Γf (Y )

)
Proof. We have that ∆v(X) ⊥⊥π,0 ∆v(Y ) for any v ∈ Σ by Lemma 3.2.16 since for such primes
the local conditions are the ordinary ones and we assumed that X+

v ⊥⊥π Y +
v . Furthermore,

since π is perfect in the sence of definition 3.2.7, we have a commutative diagram with quasi
isomorphism vertical arrows

X ⊗R Y J(1)

X ⊗R DJ(X)(1) J(1)

π

id⊗adj(π◦s12)

ev2

and hence, since (as we observed in the previous paragraph)

∆ur
v (X) ⊥⊥ev2,0 ∆ur

v

(
DJ(X)(1)

)
,

it follows that ∆v(X) ⊥⊥π,0 ∆v(Y ) for any v ∈ Sf ∖ Σ as for such primes the local conditions
are the unramified ones.
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3.3 Iwasawa Theory and Selmer Complexes
In this section we treat Selmer Complexes over a Zrp-extension K∞/K following [Nek06, Ch. 8].

3.3.1 Abstract theory
Let U ⊆ G be an open normal subgroup of a profinite group G and X be a discrete U -module.
The induced module

IndGU (X) = { f : G→ X : s.t. f locally constant, f(ug) = uf(g) for any u ∈ U, g ∈ G }

is a discrete G-module with the left G-action given by g · f(g′) = f(gg′). We have the classic:

Lemma 3.3.1 (Shapiro). There is a quasi isomorphism sh: C•
cont(G, Ind

G
U (X))→ C•

cont(U,X).

If moreover X is a discrete G-module and we denote, with a slight abuse of notations, again by
X its restriction as U -module, then IndGU (X) is isomorphic to the following discrete G-modules:

XU = Z[G/U ]⊗Z X, g · (β ⊗ x) = gβ ⊗ g · x, for β ∈ G/U , x ∈ X;

XU = HomZ(Z[G/U ], X), (g · a)(β) = g · a(g−1β), for a : G/U → X, β ∈ G/U.

The isomorphisms being given by

IndGU (X)
∼−→ XU , f ↦→

[
gU ↦→ g

(
f(g−1)

)]
;

IndGU (X)
∼−→ XU ,

∑
gU∈G/U

gU ⊗ g
(
f(g−1)

)
.

Denoting moreover by δβ the Kroneker delta function of β ∈ G/U , i.e. for any β′ ∈ G/U

δβ(β
′) =

{
1 if β′ = β

0 if β′ ̸= β
,

the composed G-equivariant isomorphism XU
∼−→ XU is given∑

β∈G/U

β ⊗ xβ ↦→
∑

β∈G/U

xβδβ .

Therefore for general M ∈ (R[G]-Mod)ad we take as analogous of the induced module

MU = Z[G/U ]⊗Z M, g · (β ⊗m) = gβ ⊗ g ·m, for β ∈ G/U , x ∈M ;

MU = HomZ(Z[G/U ],M), (g · a)(β) = g · a(g−1β), for a : G/U →M , β ∈ G/U.

Note that the G-actions above make them into R[G]-modules and, as in the discrete case, the
formula

∑
β ⊗ xβ ↦→

∑
xβδβ give an isomorphism MU

∼−→ MU and we have the Shapiro-type
quasi isomorphisms

C•
cont(G,MU ) −→ C•

cont(U,M)←− C•
cont(G, MU ).

All the definitions above extend verbatim to complexes M• in (R[G]-Mod)ad. If moreover M• is
bounded below or cdp(G) is finite, then we have Shapiro-type quasi-isomorphisms

C•
cont(G,M

•
U ) −→ C•

cont(U,M
•)←− C•

cont(G, M•
U ).
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Note moreover that for an admissible R-module M both MU and MU have a structure of
R[G/U ][G]-modules, the (left) action of G/U being given by the Ad-actions (that in the discrete
case they correspond to the classical Ad-action on the induced module)

(gU) · (hU ⊗ x) = (hg−1U)⊗ x for g, h ∈ G, x ∈MU ;

(gU) · a : g′U ↦→ a(g′gU) for g, g′ ∈ G, a ∈ MU .

Define ι : R[G/U ] → R[G/U ] as the R-linear involution induced by g ↦→ g−1. If G/U is abelian
the action of β ∈ R[G/U ] on MU (resp. on MU ) is given by id⊗ ι(β) (resp. by Hom(β, id)). We
have moreover the following results

Proposition 3.3.2 ([Nek06, Lemma 8.2.5]). Assume that G/U is abelian. Then:

1. if M is an admissible R[G]-module, then MU and MU are admissible R[G/U ][G]-modules;

2. if M is of finte (resp. co-finite) type over R, then MU and MU are of finite (resp. cofinite)
type over R[G/U ].

Therefore we may see the functors M ↦→MU and M ↦→ MU as functors

(R[G]-Mod)adR−∗ −→ (R[G/U ][G]-Mod)adR[G/U ]−∗,

where ∗ = ft, coft.

Infinite Extensions

Now let H be a closed normal subgroup of G and put Γ = G/H. Denote by U the family of all
U open subgroups of G containing H and let

R̄ = RJΓK = lim←−
U∈U

R[G/U ].

For any M ∈ (R[G]-Mod)ad the collection of modules {MU }U∈U (resp. { MU }U∈U ) form a
projective (resp. injective) system with respect to the projection maps R[G/U ] → R[G/V ], for
V ⊂ U , U, V ∈ U . Hence we may define their limits

FΓ(M) = lim←−
U∈U

MU ; FΓ(M) = lim−→
U∈U

MU ,

that are both (left) R̄-modules. Similarly we define FΓ(M
•) and FΓ(M

•) for a complex M• of
admissible R[G]-modules. Note that in general FΓ(M) is only an ind-admissible R̄[G]-module, as
direct limit of admissible R[G]-modules. However this is not a problem by Rk. 3.1.13. Moreover
if M• is supported on m, then so is FΓ(M

•).

Lemma 3.3.3 ([Nek06, Prop. 8.3.2]). If M• is a complex of admissible R[G]-module, then
FΓ(M

•) is a complex of ind-admissible R̄[G]-modules and the canonical map

lim−→
U∈U

C•
cont(G, MU

•) −→ C•
cont
(
G,FΓ(M

•)
)

is an isomorphism of complexes.

We may perform moreover the projective limit

lim←−
U∈U

C•
cont(G,M

•
U ),

but the analogous lemma does not hold: we denote by

RΓIw(G,H;M•) ∈ D(R̄-Mod)

the corresponding object in the derived category and by HiIw(G,H;M•) its cohomology groups.
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Zrp-extensions

Now suppose that Γ ∼= Zrp, for some r > 0. In this case, chosen a set { γi }i=1,...,r of topological
generators of Γ,

R̄
∼−→ RJX1, . . . , XrK; γi ↦→ 1 +Xi.

In particular R̄ is a complete local Noetherian ring, of dimension d+r. Let m̄ ∼= mR̄+(X1, . . . , Xr)
be the maximal ideal of R̄ and note that the residue field of R̄ is R̄/m̄ = k.

Definition 3.3.4. Let χΓ : G↠ Γ = G/H ↪→ R[Γ]∗. For any n ∈ Z and M an R[Γ][G]-module,
define a new R[Γ][G]-module M⟨n⟩ as M itself as R[Γ]-module, the G-action being given by

g ·n x = χΓ(g)
ng · x; g ∈ G, x ∈M.

Definition 3.3.5. Recall the involution ι : R[Γ] → R[Γ] induced by the inversion on group-
like elements. Let M be a R[Γ][G]-module and define the R[Γ][G]-module M ι as M itself as
R[G]-module, with the action of Γ given by

x ·ι y = ι(x) · y; x ∈ R[Γ], y ∈M.

We may relate these two constructions: M⟨n⟩ι ∼−→ M ι⟨−n⟩. We may moreover use them in
order to give a characterization of FΓ(M) and FΓ(M):

Lemma 3.3.6 ([Nek06, Prop. 8.4.4.1]). If M is an admissible R[G]-module of finite type, then
we have canonical isomorphisms of R̄[G]-modules

FΓ(M)
∼−→ (M ⊗R R̄)⟨−1⟩; FΓ(M)ι

∼−→ (M ⊗R R̄)⟨1⟩.

The two functors FΓ, FΓ derive to exact functors

FΓ : D∗(R[G]-Mod)adR−coft −→ D∗(R̄[G]-Mod)adR̄−coft;

FΓ : D∗(R[G]-Mod)adR−ft −→ D∗(R̄[G]-Mod)adR̄−ft,

where ∗ = ∅,+,−, b.
Looking for a relation between the two functors we have to consider the dualizing functors

D = DR and D̄ = DR̄. Note that if I is an injective hull of k over R, and therefore D = DI ,
then D̄ = DĪ , for Ī = FΓ(I), as one can show that Ī is an injective hull of k over R̄.

Proposition 3.3.7 ([Nek06, Lemma 8.4.5.1]). For any admissible R[G]-module M there are
canonical isomorphisms

FΓ(M)
∼−→ D̄

(
FΓ(D(M))ι); D̄(FΓ(M))

∼−→ FΓ(D(M))ι

And one may show that if T, T ∗ ∈ DbR−ft(R[G]-Mod)ad and A,A∗ ∈ Db
R−coft(R[G]-Mod)ad

are related by the duality diagram

T T ∗

A A∗

D

Φ
D

Φ

60 Luca Mastella - PhD Thesis



3.3. IWASAWA THEORY AND SELMER COMPLEXES

(that is the analogous of the diagram for representations of Sec. 1.1.1), then one has that
FΓ(T ),FΓ(T

∗) ∈ DbR̄−ft(R̄[G]-Mod)ad and FΓ(A), FΓ(A
∗) ∈ DbR̄−coft(R̄[G]-Mod)ad and there

is a duality diagram

FΓ(T ) FΓ(T
∗)

FΓ(A) FΓ(A
∗)

D̄

Φ̄

D̄

Φ̄

3.3.2 Greenberg’s conditions in Iwasawa Theory
Consider now a Zrp-extension K∞/K contained in KS , for r > 0, and let G = Gal(KS/K),
H = Gal(KS/K∞), hence Γ = Gal(K∞/K). Assume moreover that all the finite places v /∈ Σ
are unramified in K∞/K. We apply the results of Sec. 3.3.1. The notations of Sec. 3.2.2 are in
force, too.

Let T,M complexes respectively in (R[GK,S ]-Mod)adR−ft and in (R[GK,S ]-Mod)adR−coft,{m },
both bounded below. Assume moreover that we are given for any v ∈ Σ a couple of bounded
below complexes T+

v ,M
+
v respectively in (R[Gv]-Mod)adR−ft and in (R[Gv]-Mod)adR−coft,{m } and

morphisms of complexes T+
v → T , M+

v →M .
These data define Greenberg local conditions ∆v(Z) for Z = T,M, TU ,MU ,FΓ(T ), FΓ(M)

(where U is an open subgroup of GK), as in Sec. 3.2.2. Fix moreover an embedding K̄ ↪→ K̄v

for any v ∈ Sf . Write

R̃Γf,Iw(K∞/K, T ) = R̃Γf
(
GK,S ,FΓ(T ),∆

(
FΓ(T )

))
;

R̃Γf (KS/K∞,M) = R̃Γf
(
GK,S , FΓ(M),∆

(
FΓ(M)

))
.

and denote by H̃
i

f,Iw(K∞/K, T ), H̃
i

f (KS/K∞,M) their cohomology.
For any K ′/K finte subextension of K∞/K if v′ is the prime of K ′ induced by the previous

embedding the same data define Greenberg local conditions ∆v′(Z), for Z = T,M over GK′,S ,
defining the Selmer complexes

R̃Γf (K ′/K, T ) := R̃Γf (GK′,S′ , T,∆′(T )); R̃Γf (KS/K
′,M) := R̃Γf (GK′,S′ ,M,∆′(M)).

Denote their cohomology respectively by H̃
i

f (K
′/K, T ) and H̃

i

f (KS/K
′,M).

The following proposition says that these notations are compatible.

Proposition 3.3.8 ([Nek06, Prop. 8.8.6]). 1. We have an isomorphism of R̄-modules

H̃
i

f (KS/K∞,M)
∼−→ lim−→

res,K′

H̃
i

f (KS/K
′,M);

2. We have a canonical isomorphism of complexes

R̃Γf,Iw(K∞/K, T )
∼−→ lim←−

U

R̃Γf
(
GK,S , TU ,∆(TU )

)
,

inducing on cohomology an isomorphism of R̄-modules

H̃
i

f,Iw(K∞/K, T )
∼−→ lim−→

cores,K′

H̃
i

f (K
′/K, T ).
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Duality

Let now T, T ∗(1) be two bounded complexes in (R[GK,S ]-Mod)adR−ft and T+
v , T

∗(1)+v two bounded
complexes in (R[Gv]-Mod)adR−ft, for any v ∈ Σ, together with morphisms of complexes T+

v → T ,
T ∗(1)+v → T ∗(1) that induce local conditions on T and T (1)∗. Recall that T−

v = Cone(T+
v → T ),

T ∗(1)−v = Cone(T ∗(1)+v → T ∗(1)). Define moreover the bounded complexes

A = D(T ∗(1))(1), A∗(1) = D(T )(1), A+
v = D(T ∗(1)−v )(1), A∗(1)+v = D(T−

v )(1).

Note that A,A∗(1) are complexes in (R[GK,S ]-Mod)adR−coft, A
+
v , A

∗
v(1) in (R[Gv]-Mod)adR−coft and

applying D to the canonical morphisms T ∗(1) → T ∗(1)−v , T → T−
v we get the morphisms

A+
v → A, A∗(1)+v → A∗(1) inducing Greenberg’s local conditions on A,A∗(1).

By these definitions follows immediately that the pairings

ev2 : T ⊗R A∗(1) −→ I(1), ev1 : A⊗R T ∗(1) −→ I(1)

are perfect and
T+
v ⊥⊥ev2 A

∗(1)+v , A+
v ⊥⊥ev1 T

∗(1)+.

As explained in the previous paragraph these data induce corresponding Greenberg data on
FΓ(T ),FΓ(T

∗(1)), and FΓ(A), FΓ(A
∗(1)). By Prop. 3.3.7 we have two perfect morphisms

ev2 : FΓ(T )⊗R FΓ(A
∗(1))ι → Ī(1), ev1 : FΓ(A)⊗R FΓ(A

∗(1))ι → Ī(1)

and
FΓ(T )

+
v ⊥⊥ev2

(FΓ(A
∗(1))ι)+v ; FΓ(A)

+
v ⊥⊥ev1

(FΓ(T
∗(1))ι)+v .

Therefore applying Theorem 3.2.18 to the couples FΓ(T ), FΓ(A
∗(1))ι and FΓ(A),FΓ(A

∗(1))ι:

Theorem 3.3.9 ([Nek06, Sec. 8.9.6.1]). We have isomorphisms

R̃Γf,Iw(K∞/K, T )
∼−→ DĪ[−3]

(
R̃Γf (KS/K∞, A

∗(1))ι
)
,

R̃Γf (KS/K∞, A)
∼−→ DĪ[−3]

(
R̃Γf,Iw(K∞/K, T

∗(1))ι
)

respectively in Dbft(R̄-Mod) and Dbcoft(R̄-Mod).

Control theorem

A classic tool in Iwasawa Theory for elliptic curves is Mazur’s Control Theorem: it studies
the relations between the Selmer groups over K and K∞. In our context it generalizes to the
following Exact Control Theorem.

Theorem 3.3.10 ([Nek06, Prop. 8.10.1]). There is a canonical isomorphism

R̃Γf,Iw(K∞/K, T )
L
⊗R̄ R

∼−→ R̃Γf (K,T )

in Db(R-Mod) inducing a homological spectral sequence

E2
i,j = Hi,cont

(
Γ, H̃

−j
f,Iw(KS/K∞, T )

)
=⇒ H̃

−i−j
f (K,T ).

In particular dualizing it we get also a cohomological spectral sequence

Ei,j2 = Hicont
(
Γ, H̃

j

f (K∞/K,A)
)
=⇒ H̃

i+j

f (K,A).
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3.4 Comparison with classical Selmer groups

Consider now a special case of the theory described so far: let R = O the ring of integers of a
finite extension K of Qp and take T a free O-module, equipped with a continuous O-linear action
of GK,S . Define as in Sec. 1.1.1 the auxiliary (continuous) representations

V = T ⊗O, A = V/T = T ⊗O K/O,
T ∗ = HomO(T,O), A∗ = HomO(T

∗,O) = T ∗ ⊗K/O.

Related by a diagram

T T ∗

A A∗

(−)∗

⊗OK/O
(−)∨

⊗OK/O

where (− )∗ = HomO(− ,O) denotes the linear dual, while

(−)∨ = Homcont
O (− ,K/O) = HomO(− ,K/O) = D(− )

is the Pontryagin one. Being finite free over O, T is a finite type O-module and hence by
Prop. 3.1.12 it is an admissible O[GK,S ]-module. The same applies to A, T ∗, A∗: indeed T, T ∗

are finite free over O and hence both A = D(T ∗) and A∗ = D(T ) are of cofinite type. By
similar arguments all the modules labeled with a T (resp. A) in the following are admissible
O[GK,S ]-module of finite (resp. cofinite) type over O.

Assume we are given a (continuous) K[Gv]-submodule Vv for each v | p. Let

T+
v = T ∩ V +

v , A+
v = V +

v /T
+
v ⊆ V/T = A, X−

v = X/X+
v for X = T, V,A

and

V ∗(1)±v = HomK(V
∓
v ,K)(1), T ∗(1)±v = HomO(T

∓
v ,O)(1), A∗(1)± = V ∗(1)±v /T

∗(1)±v .

These data define Greenberg’s local conditions for Z = T, V,A, T ∗(1), V ∗(1), A∗(1) in the sense
of Sec. 3.2.2, letting Z• and Z•,+

v be the complexes concentrated in degree 0 with respectively
Z and Z+

v as 0-term, for v | p and letting Z•,+
v → Z• to be the inclusion in the 0-term, the zero

map otherwise. Note, as we observed in Rk. 3.2.12, Z−,•
v is quasi isomorphic to the complex

concentrated in degree 0, with Z−
v as its zero term. Explicitly the local conditions are the

inclusions of

U+
v (Z) =

{
C•

cont(Gv, Z
+
v ) for v | p,

C•
cont(Gv/Iv, Z

Iv ) for v ∈ Sf , v ∤ p.

into C•
cont(GK,S , Z). Denote the resulting Selmer complexes by R̃Γf (K,Z) and the generalized

Selmer groups by H̃
i

f (K,Z). In particular H̃
i

f (K,Z) = 0 for i < 0, as R̃Γf (Z)i = 0 when i < 0

(by the very definition of Selmer complex). The first generalized Selmer group H̃
1

f (K,Z) of Z
often coincide with some more classical Selmer Groups as those defined in Sec. 1.1.2; in general
it is related to the strict Greenberg Selmer group in the following way:
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Proposition 3.4.1 ([Nek06, Lemma 9.6.3]). For each Z = T, V,A, there is an exact sequence

0→ H̃
0

f (K,Z)→ H0(K,Z)→
⨁
v|p

H0(Gv, Z)→ H̃
1

f (K,Z)→ H1
str(K,Z)→ 0.

If we consider moreover K∞ a Zp-extension of K we define H̃
1

f (KS/K∞, A), H̃
1

f (K∞/K, T )

as in Sec. 3.3.2. Consider the generalized Selmer groups H̃
1

f (K
′/K, T ) and H̃

1

f (KS/K
′, A) for

any finite subextension K ⊆ K ′ ⊆ K∞, by Prop. 3.3.8

H̃
1

f (KS/K∞, A) ∼= lim−→
res,K′

H̃
1

f (KS/K
′, A); H̃

1

f,Iw(K∞/K, T ) ∼= lim−→
cores,K′

H̃
1

f (K
′/K, T ).

In the rest, when the base field K will be clear from the context, we will drop the notations
K ′/K and KS/K

′ (resp. K∞/K and KS/K∞) and we will label the generalized Selmer groups
by K ′ (resp. K∞). The Iw will be dropped by the notations, too.

Duality

In this special case Th. 3.2.18 has the following form:

Theorem 3.4.2. There are isomorphisms

H̃
i

f (K,T )
∼−→ D

(
H̃

3−i
f (K,A∗(1))

)
;

H̃
i

f (K,A)
∼−→ D

(
H̃

3−i
f (K,T ∗(1))

)
.

Proof. Observe that I = K/O is an injective hull of k (as we saw in Ex. 3.1.10) and let J = I[0].
By Th. 3.2.18

H̃
i

f (K, T ) = Hi
(
R̃Γf (K,T )

) ∼= Hi
(
DI[−3]

(
R̃Γf

(
K,A∗(1)

)))
But

DI[−3]

(
R̃Γf

(
K,A∗(1)

))i
=
∏
j∈Z

HomO

(
R̃Γf

(
K,A∗(1)

)j
, J i+j−3

)
=

= HomO

(
R̃Γf

(
K,A∗(1)

)3−i
, K/O

)
= D

(
R̃Γf

(
K,A∗(1)

)3−i)
as

J i+j−3 =

{
K/O if j = 3− i,
0 else.

Therefore, since K/O is injective and therefore D = HomO(− ,K/O) is exact and commutes
with taking the i-th cohomology of complexes

H̃
i
(K,T ) ∼= Hi

(
DI[−3]

(
R̃Γf

(
K,A∗(1)

))) ∼= D
(
H̃

3−i
f

(
K,A∗(1)

))
.

The formulation of Th. 3.3.9 simplifies too. The proof is analogous to the previous one,
using D̄, Ī in place of D, I. But note that, since Λ = OJΓK has k as residue field, Ī = K/O.
Therefore D̄(M) coincides as O-modules with the Pontryagin dual M∨ of M . However one has
to be careful: the natural Γ-action on M∨ is γ · f(m) = f(γ−1 ·m). We will write D(M) for
the Λ-module M∨ with the induced Λ-scalar multiplication: this Λ-module structure is not the
same of D̄(M). The latter is in fact given by λ · f(m) = f(λm), i.e. D̄(M) = D(M)ι.
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Theorem 3.4.3. There are isomorphisms

H̃
i

f (KS/K∞, T )
∼−→ D

(
H̃

3−i
f (K∞/K,A

∗(1))
)
;

H̃
i

f (K∞/K,A)
∼−→ D

(
H̃

3−i
f (KS/K∞, T

∗(1))
)
,

where D(M) is the Pontryagin dual M∨ of M seen as a Λ-module with the action of Γ defined
by γ · f(m) = f(γ−1 ·m) for any γ ∈ Γ, m ∈M .

Exact Control Theorem

We begin this section recalling a classical definition in Iwasawa Theory: for any Λ-module M
the O-module of coinvariants is the module MΓ =M/IΓM , where IΓ is the augmentation ideal,
i.e. the ideal generated by γ − 1, being γ a topological generator of Γ. This is an important
notion in the theory of Iwasawa modules, mainly because of the following version of Nakayama’s
lemma.

Lemma 3.4.4 (Nakayama). If M is a finitely generated Λ-module and MΓ = 0, then M = 0

We have moreover the following lemma, that explains the name “coinvariants”.

Lemma 3.4.5. For any Λ-module M we have an isomorphism of Λ-modules D̄(M)Γ ∼= D̄(MΓ).

Proof. If Φ: M →M is the multiplication by (γ− 1) map, then ker(Φ) =MΓ, we have therefore
an exact sequence

0 MΓ M M
j Φ

and dualizing it

D̄(M) D̄(M) D̄(MΓ) 0
D̄(Φ) D̄(j)

But D̄(Φ) is again the multiplication by γ − 1 as for any φ ∈ D̄(M), m ∈M

D̄(Φ)(φ)(m) = (φ ◦ Φ)(m) = φ
(
(γ − 1)m

)
=
(
(γ − 1) · φ

)
(m).

Thus im D̄(Φ) = (γ − 1)D̄(M) = IΓD̄(M) and hence

D̄(MΓ) = coker D̄(Φ) = D̄(M)/ im D̄(Φ) = D̄(M)/IΓD̄(M) = D̄(M)Γ.

Remark 3.4.6. The previous lemma can be stated also in terms of the natural action of Γ on
M∨: applying ι on both sides we get indeed D(M)Γ ∼= D(MΓ).

This property will be used into the proof of the next theorem, that is the version of the Exact
Control Theorem 3.3.10 that holds in this particular case. It moreover explains why the theorem
was called in that way.

Theorem 3.4.7. Suppose that H̃
0
(K,A) = 0. It follows that the canonical map

H̃
1

f (K,A)
∼−→ H̃

1

f (K∞/K,A)
Γ

is an isomorphism of O-modules.
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Proof. Consider the first quadrant spectral sequence

Ei,j2 = Hi
(
Γ, H̃

j

f (K∞/K,A)
)
=⇒ H̃

i+j

f (K,A)

given by Th. 3.3.10. Note that, since the spectral sequence sits in the first quadrant, then

E0,0
∞
∼= E0,0

2 = H̃
0

f (K∞/K,A)
Γ ∼=

F 0 H̃
0

f (K,A)

F 1 H̃
0

f (K,A)
= H̃

0

f (K,A) = 0

But then by the Duality Theorem 3.4.3

0 = D
(
H̃

0

f (K∞/K,A)
Γ
) ∼= H̃

3

f (KS/K∞, T )Γ

and hence H̃
3

f (KS/K∞, T ) = 0 by Nakayama’s lemma (it in fact a fintite type Λ-module). It

follows that, being its Pontryagin dual, also H̃
0

f (K∞/K,A) = 0.
Therefore we obtain that Ei,j2 = 0 if j ̸= 1, 2 (i.e. the E2-sheet of this spectral sequence has

nonzero terms only in the horizontal half-lines j = 1, 2, i ≥ 0); in fact H̃
j
(K∞/K,A) = 0 for any

j < 0 by construction, for j = 0 since we just showed that H̃
j

f (K∞/K,A) = 0 and for j > 3 since

H̃
j
(K∞/K,A) ∼= D

(
H̃

3−j
f (KS/K∞, T )

)
= 0.

In particular the five term exact sequence

0→ E1,0
2 → E1 → E0,1

2 → E2,0
2 → E2

becomes
0→ 0→ H̃

1

f (K,A)→ H̃
1

f (K∞/K,A)
Γ → 0→ H̃

2

f (K,A)

and hence the edge morphism H̃
1

f (K,A)→ H̃
1

f (K∞/K,A)
Γ is an isomorphism.

66 Luca Mastella - PhD Thesis



Vanishing of X̃p∞(f/K) and consequences for anticyclotomic Iwasawa Theory 67



68 Luca Mastella - PhD Thesis



Chapter 4

Vanishing of X̃p∞(f/K) and its
consequences for Anticyclotomic
Iwasawa Theory

In this chapter, based on the results of the previous ones, we prove our main result Th. 4.3.6
following [MN19], showing under some conditions on the basic generalized Heegner cycle, that
the Shafarevich-Tate group X̃p∞(f/K∞) of a modular form f over the anticyclotomic extension
K∞ of an imaginary quadratic field K (that will be defined in Def. 4.3.3) vanishes.

4.1 Setup
Notations of Sec. 1.3 are in force. Note in particular we fix a rational prime p and everything
depends on the choice of embeddings i∞ : Q̄ ↪→ C and ip : Q̄ ↪→ Q̄p and that p is the prime
induced by ip on the Hecke field F = Q[ai]i>0 of a cusp-newform f =

∑∞
n=1 anq

n of level Γ0(N)
of even weight k > 2. Assume that f is ordinary at p and that is not a CM-form in the sense
of [Rib77]. Let K denote the completion Fp of the Hecke field F at p and let O be its ring of
integers. Let V = Wp(k/2) be the selfdual Galois representation attached to f , T the selfdual
lattice as introduced in Sec. 1.3.3 and let A = V/T . In the rest fix moreover a natural number N
not divisible by p and a quadratic imaginary field K of discriminant dK coprime to Np satisfying
the Heegner hypotesis, i.e. in which all primes dividing N split.
Assumption 1. Take the following hypothesis on the prime p.

(i) p ∤ 6Nφ(N)(k − 2)!, where φ is the Euler function;

(ii) the image of ρf,p : GQ → GL2(OF ⊗ Zp) contains the set

{ g ∈ GL2(OF ⊗ Zp) : det g ∈ (Z×
p )

k−1 } ;

(iii) p does not ramify in F ;

(iv) p splits in K;

(v) p ∤ hK , where hK is the class number of K;

(vi) p ∤ cf =
[
OF : Of

]
, where Of = Z[ai]i>0.
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Remark 4.1.1. Note that the first three hypothesis say that p is an admissible prime as in
Def. 2.3.3. For a discussion of the significance of these hypothesis see Rk. 2.3.4. The assumption
iv. is a technical hypotesis in the construction of the generalized Heegner cycles. We already
discussed the role of v. in Rk. 1.4.7. Finally the hypothesis vi. is a technical hypothesis coming
from [LV19]: assuming it Of ⊗Zp = OF ⊗Zp. As observed in [LV19, Rk. 2.2] once f and K are
given the restrictions of Assumption 1 are satisfied by an infinite set of primes.

Let then K∞ denote the anticyclotomic Zp-extension of K, and write Γ = Gal(K∞/K) ∼= Zp,
denote by Kn the subextension of K ⊆ K∞ with Galois group Γn ∼= Z/pnZ. Let Λn = O[Γn],
Λ = OJΓK = lim←−n Λn.

For any n ≥ 0 define Xn = H1
f (Kn, A)

∨, that is naturally a Λn-module (see Sec. 1.4.2), in
particular we will write X = X0 = H1

f (K,A)
∨ (that is a module over O = Λ0). Their projective

limit
X∞ = lim←−

n

Xn = H1
f (K∞, A)

∨,

has a structure of Λ-module, as we saw in Sec. 1.4.2. In the framework of Assumption 1,
Longo and Vigni constructed in [LV19] the Λ-adic anticyclotomic Kolyvagin system of generalized
Heegner cycles and they use it in order to describe the structure of X∞ as a Λ-module.

Theorem 4.1.2 ([LV19, Th. 1.1]). There is a finitely generated torsion Λ-module M such that
X∞ is pseudoisomorphic to Λ⊕M ⊕M , i.e. there exists a morphism η : X∞ → Λ⊕M ⊕M of
Λ-modules with finite kernel and cokernel.

Our goal is to refine this result, showing that if the basic generalized Heegner cycle zf,K is
non-torsion and not divisible by p in H1

f (K,T ), then X∞ is in fact free of rank one over Λ: this
is the content Th. 4.3.6. We will obtain it following the method of [MN19], i.e. putting together
the Euler system argument of Sec. 2.3 with an abstract Iwasawa theoretical one.

We need moreover some other technical assumptions. In Ex. 1.1.14 we defined, for an exten-
sion E/K and a finite place v ∤ p, cv(A) to be the p-part of the Tamagawa number of A. Recall
that if the representation V is unramified at v, then cv(A) = 1. Therefore in our case cv(A) = 1
for any finite place v ∤ Np.
Assumption 2. Assume that cv(A) = 1 for any place v of K such that v | N .

We take the following assumption on the q-expansion of f .

Assumption 3. ip(ap) ̸≡ 1 mod p.

4.2 Comparison of Selmer groups, Exact Control Theorem
We now make a comparison of the Selmer groups introduced in Sec. 1.1.2 and the generalized
ones introduced in Sec. 3.4. In Sec. 1.3.8 we saw that V is (the k/2-twist of the dual of) a
p-ordinary representation, more precisely we have an exact sequence

0→ V + → V → V − → 0

of K[Gp]-modules such that V ± has dimension 1 and Gp acts on V + by δχ
k/2
p and on V − by

δ−1χ
1−k/2
p , for δ an unramified character and χp the p-adic cyclotomic character.

Let E a number field and v | p a place and see the previous exact sequence as an exact
sequence of K[GEv

]-modules. We have

Lemma 4.2.1. H0(Ev, V
−) = 0

70 Luca Mastella - PhD Thesis



4.2. COMPARISON OF SELMER GROUPS, EXACT CONTROL THEOREM

Proof. By [NP00, (3.1.5)], in the case p ∤ N . It can be done also directly observing that σ ∈ Ip
acts as χp(σ)1−k/2 and there is a σ such that this χp(σ)1−k/2 ̸= 1, as k > 2. But by loc. cit. this
holds even for k = 2 if p ∤ N .

Proposition 4.2.2. H̃
1

f (E, V ) = H1
f (E, V ) = H1

str(E, V ) = H1
Gr(E, V ).

Proof. The first equality follows from the exact sequence [Nek06, Prop. 12.5.9.2(iii)] for the
representation attached to an ordinary modular form

0→
⨁
v|p

H0(Ev, V
−)→ H̃

1

f (E, V )→ H1
f (E, V )→ 0.

and the previous lemma. The second equality follows from the exact sequence

0→ H̃
0

f (E, V )→ H0(E, V )→
⨁
v|p

H0(Ev, V
−)→ H̃

1

f (E, V )→ H1
str(E, V )→ 0

of Prop. 3.4.1 plus Lemma 4.2.1. For the equality H1
f (E, V ) = H1

Gr(E, V ) it is enough to prove
that H1

f (Ev, V ) = ker
(
H1(Ev, V ) → H1(Iv, V

−)
)

for any place v | p of E. This is shown in
[LV21, Sec. 3.3.3].

If we restrict to E = K or E = Kn, the n-th layer of the anticyclotomic extension K∞ of K,
we may compare also the Selmer groups of A. First let us make a technical remark.
Remark 4.2.3. The aim of this remark is to fix a Frobenius automorphism φp in Gp such that
χp(φp) = 1. Recall that the maximal unramified extension of Qp is Qur

p = Qp(µp∞−1) and
consider the short exact sequence

1→ Ip = Gal(Q̄p/Qur
p )→ Gp → Gal(F̄p/Fp)→ 1.

A Frobenius automorphism is any lift to Gp of the the p-power map x ↦→ xp of Gal(F̄p/Fp); in
particular its restriction to Qur

p is uniquely determined by this property, as

Gp/Ip = Gal(Qur
p /Qp) ∼= Gal(F̄p/Fp)

via the reduction map. It follows that for any Frobenius automorphism Frobp, its restriction to
Qur
p is the unique Qp-automorphism of Qur

p such that ζ ↦→ ζp for any ζ ∈ µp∞−1. Conversely we
may freely choose its extension from Qur

p to Q̄p, let φp be the Frobenius of Gp extended by the
identity.

We want to compute the value of χp(φp). It is enough to observe that µp∞ ∩Qur
p = 1 being

the extension Qp(µpn)/Qp totally ramified for any n > 0. It follows that φp fixes µp∞ and so
χp(φp) = 1 as ζχp(φp) = φp(ζ) = ζ, for any ζ ∈ µp∞ . Note that if we choose another Frobenius
Frobp the value of χp(Frobp) could be different, in fact it differs from φp by some σ ∈ Ip, but χp
is a ramified character and hence possibly χp(σ) ̸= 1.

Consider now K∞. Recall how the ramification in a Zp-extension K∞ of a number field K
[see Was97, Prop. 13.2, 13.3] works: it is concentrated at places above p and one of them must
ramify. Furthermore if v | p ramifies in K∞/K, it may in general be unramified in Kn/K up to
some layer n, but after that it is totally ramified in K∞/Kn. In fact in our case since K∞/Q and
p slits in K, both places p and p̄ of K over p have the same beaviour in K∞/K, namely they are
totally ramified as K∞ ∩K[1] = K (since p ∤ hK and K∞ is a p-extension) and therefore they
cannot be unramified in any layer Kn for n ≥ 1. It follows, again since p splits in K, that p is
totally ramified in K∞/Q.
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Choose a compatible sequence of places vn of Kn over p and let Kn,v be the completion of
Kn at vn. By the previous discussion the inertia degree of Kv,n/Qp is 1 and hence the residue
field of Kv,n is Fp. Hence φp is a Frobenius of the absolute Galois group Gn,v of Kn,v. Let
In,v = Ip ∩ Gn,v be the inertia subgroup of Gn,v, note that Gn,v/In,v is cyclic generated by
φp mod In,v.

Lemma 4.2.4. For any place vn | p, H1
(
Gn,v/In,v,H

0(In,v, A
−)
)
= 0.

Proof. Since H0(In,v, A
−) is a subgroup of A− ∼= K/O, and so torsion and discrete, we may

apply [Rub00, B.2.8]. Therefore,

H1
(
Gn,v/In,v,H

0(In,v, A
−)
) ∼= H0(In,v, A

−)

(φp − 1)H0(In,v, A−)
.

Let α be the p-adic unit root of the polynomial X2 − ip(ap)X + pk−1, as defined in Rk. 1.3.8
and let β be the non unit root. Recall that we may see A− as K/O together with the action
given by δ−1χ

1−k/2
p , where δ is the unramified character of Gp such that δ(Frobp) = α−1, for

any arithmetic Frobenius Frobp. Then

φp · x = δ(φp)
−1χp(φp)

(1−k/2)x = αx

for any x ∈ H0(In,v, A
−) (seen as a subgroup of K/O), as χp(φp) = 1. It follows that

H1
(
Gn,v/In,v,H

0(In,v, A
−)
) ∼= H0(In,v, A

−)

(α− 1)H0(In,v, A−)
.

Note that α+ β = ip(ap) and hence (as β ≡ 0 mod p)

α ≡ ip(ap) mod p.

By Assumption 3, α ̸≡ 1 mod p. Hence α− 1 is a p-adic unit and so

(α− 1)H0(In,v, A
−) = H0(In,v, A

−),

as the inclusion (⊆) is trivial, while for (⊇) it is enough to observe that if x+O ∈ H0(In,v, A
−),

then x+O = (α− 1)y +O, for y +O = (α− 1)−1x+O ∈ H0(In,v, A
−). Thus,

H1
(
Gn,v/In,v,H

0(In,v, A
−)
)
= 0

Lemma 4.2.5. For any place vn | p, H0(Kn,v, A
−) = 0.

Proof. In the isomorphism A− ∼= K/O, φp ∈ Gn,v acts as α and (α− 1) ∈ O×, as we saw in the
previous lemma. Therefore for any x+O ∈ K/O, with vp(x) < 0,

φp · (x+O) = αx+O ≠ x+O.

because vp(αx − x) = vp
(
(α − 1)x

)
= vp(x) < 0. This means that there exists for any nonzero

element of A− an automorphism of Gn,v that does not fix it and so H0(Kn,v, A
−) = 0.

We may now compare the various selmer groups of A that we know. We first deal with the
comparison of finite and unramified local conditions at primes v of bad reduction, i.e. v | N .

Lemma 4.2.6. For any place vn of Kn such that vn | N , we have cvn(A) = 1.
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Proof. For any p-adic field L write AL = H0(IL, A)/H
0(IL, A)div. By [Rub00, Lemma I.3.2(iii.)]

H1
ur(L,A)

H1
f (L,A)

∼−→ AL
(FrobL−1)AL

.

Since by Assumption 2, cv(A) = 1 for any v | N , then H1
ur(Kv, A) = H1

f (Kv, A) and hence
AKv

/(FrobKv
−1)AKv

= 0. But since v ∤ p, Kn/K is unramified at v, hence In,v = Iv and
therefore AKn,v

= AKv
. Thus H1

ur(Kn,v, A) = H1
f (Kn,v, A), too.

Proposition 4.2.7. H̃
1

f (Kn, A) = H1
f (Kn, A) = H1

str(Kn, A) = H1
Gr(Kn, A) for any n ≥ 0.

Proof. Observe that H̃
1

f (Kn, A) = H1
str(Kn, A), by the exact sequence of Prop. 3.4.1

0→ H̃
0

f (Kn, A)→ H0(Kn, A)→
⨁
vn| p

H0(Kn,v, A
−)→ H̃

1

f (En, A)→ H1
str(Kn, A)→ 0,

as H0(Kn,v, A
−) = 0 by Lemma 4.2.5. Moreover by Lemma 4.2.4 the exact sequence

0→ H1
str(Kn, A)→ H1

Gr(Kn, A)→
⨁
vn| p

H1
(
Gn,v/In,v,H

0(In,v, A
−)
)
= 0

shows that H1
str(Kn, A) = H1

Gr(Kn, A). Finally H1
Gr(Kn, A) = H1

f (Kn, A) by comparing each
local condition: in fact for any vn ∤ p, H1

f (En,v, A) = H1
ur(Kn,v, A) as cvn(A) = 1 and for vn | p

the proof of [LV21, Lemma 5.4] shows (it is the injectivity of the first map considered there) that

H1
f (Kn,v, A) = ker

(
H1(Kn,v, A)→ H1(In,v, A

−)
)
= H1

ord(Kn,v, A).

Remark 4.2.8. Lemma 4.2.4 and 4.2.5 would work even if p were inert in K, if we asked

ip(ap) ̸≡ ±1 mod p.

In fact in that case the inertia degree of Kn,v/Qp would have been 2 and hence Gn,v/In,v would
have been generated by φ2

p mod In,v and the lemmas would follow once α2 − 1 is a unit.

We may state a more precise theorem about generalized Selmer groups, we need first some
technical lemmas about the vanishig of the H0 of A over the anticyclotomic tower.

Proposition 4.2.9. H0(Kn, A[p]) = 0 for any n ≥ 0

Proof. The proof is anologous to the proof of Lemma 2.3.5 replacing Kn to K[n]. In fact Kn/Q
is solvable as K/Q is abelian and Kn/K is a cyclic extension.

Proposition 4.2.10. 1. H0(Kn, A[p
m]) = 0 for any n ≥ 0, m > 0;

2. H0(Kn, A) = 0 for any n ≥ 0;

3. H0(K∞, A) = H0(K∞, A[p
m]) = 0 for any m > 0;

4. H0(Kn, V ) = 0, H0(Kn, T ) = 0 for any n ≥ 0;

5. H0(Kn, V
∗(1)) = 0, H0(Kn, T

∗(1)) = 0 for any n ≥ 0.
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Proof. (1) follows by induction: Prop. 4.2.9 is the base case. As H0 and taking torsion commute,
for m > 1 and x ∈ H0(Kn, A[p

m]) then px ∈ H0(Kn, A[p
m−1]). Therefore x ∈ H0(Kn, A[p]),

since H0(Kn, A[p
m−1]) = 0 by inductive hypothesis, and so x = 0 again by Prop. 4.2.9.

(2) follows from (1) taking inductive limit over m as A ∼= lim−→m
A[pm] and the fact that H0

commutes with lim−→. (3) then follows from (2) and (1) taking inductive limit over n. (4) follows
from (2): Suppose that there is an element 0 ̸= x ∈ V fixed by any σ ∈ GKn

, then its image
x̄ ∈ A is still fixed. We may moreover assume x /∈ T , up to multiplication by a suitable power
of p (the action of σ is linear), i.e. x̄ ̸= 0. This proves the claim for V . The claim for T follows
because T ⊆ V , so H0(Kn, T ) ⊆ H0(Kn, V ). At last by (4) and the isomorphism V ∼= V ∗(1)
follows that H0(Kn, T

∗(1)) ⊆ H0(Kn, V
∗(1)) = 0 and hence (5) is proved.

Proposition 4.2.11. For V the selfdual Galois representation attached to a p-ordinary newform

H̃
i

f (Kn, A) =

⎧⎪⎪⎨⎪⎪⎩
H1
f (Kn, A) for i = 1;

D
(
H̃

1

f

(
Kn, T

∗(1)
))

for i = 2;

0 for i ̸= 1, 2.

Proof. We have H̃
i

f (Kn, A) = H1
f (Kn, A) by Prop. 4.2.7. By Prop. 3.4.2, there is an isomorphism

H̃
i

f (Kn, A) ∼= D
(
H̃

3−i
f (Kn, T

∗(1))
)
. It follows that H̃

i

f (Kn, A) ∼= D
(
H̃

3−i
f (Kn, T

∗(1))
)

for any

i ∈ Z. Therefore, as H̃
j

f (Kn, A) = 0 if j < 0 by definition, it follows that H̃
i

f (Kn, A) = 0 for

i ̸= 0, 1, 2, 3. Furthermore H̃
3

f (Kn, A) = 0, as it is the dual of H̃
0

f (Kn, T
∗(1)), that is a submodule

of H0(Kn, T
∗(1)) and the latter vanishes by Prop. 4.2.10(5). Similarly H̃

0

f (Kn, A) = 0 as it is a
submodule of H0(Kn, A), that vanishes by Prop. 4.2.10(2).

Taking the direct limit over n we have:

Proposition 4.2.12. For V the selfdual Galois representation attached to a p-ordinary newform

H̃
i

f (K∞, A) =

⎧⎪⎪⎨⎪⎪⎩
H1
f (K∞, A), for i = 1;

D
(
H̃

1

f

(
K∞, T

∗(1)
))
, for i = 2;

0 for i ̸= 1, 2.

Therefore Th. 3.4 becomes:

Theorem 4.2.13 (Exact Control Theorem). The canonical map

H1
f (Kn, A)

∼−→ H1
f (K∞, A)

Gal(K∞/Kn)

is an isomorphism.

Proof. Apply Th. 3.4 to K∞/Kn and combine with Prop. 4.2.11 and 4.2.12.

Remark 4.2.14. Recall that for any Λ-module M the O-module of co-invariants is defined to be
MΓ = M/IM , where I is the ideal of Λ generated by γ − 1, for a topological generator γ of Γ.
In terms of coinvariants the exact control theorem is equivalent to an isomorphism of Λ-modules

(X∞)Γ
∼−→ X ,

as D(MΓ) ∼= D(M)Γ by Rk. 3.4.6.
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4.3 Vanishing of X̃p∞(f/K∞)

In this section we obtain our main theorem. As a first step we show that we may extend the
corank one of the Bloch-Kato Selmer group over the anticyclotomic extension K∞/K.

Theorem 4.3.1. Let X be a free O-module of rank 1, then X∞ is a free Λ-module of rank 1.

Proof. By Th. 4.2.13 and Rk. 4.2.14 (X∞)Γ ∼= X ∼= O, i.e. there is an x ∈ X∞ whose image in
X∞ generates it as an O-module. It follows that (X∞/xΛ)Γ = 0 and therefore by Nakayama’s
lemma X∞ = xΛ, i.e. X∞ is a cyclic Λ-module. In fact, if we consider the short exact sequence

0→ xΛ→ X∞ → X∞/xΛ→ 0

and hence, taking coinvariants, the sequence

(xΛ)Γ → (X∞)Γ → (X∞/xΛ)Γ → 0

is exact. Therefore (X∞/xΛ)Γ = 0, since the map (xΛ)Γ → (X∞)Γ is an isomorphism.
It is left to show that X∞ it is not Λ-torsion. Suppose by contraddiction that this is the case.

Consider the map η : X∞ → Λ ⊕M ⊕M of Th. 4.1.2. The Λ-module X∞ is cyclic and torsion
and so Im η = αΛ, with α a torsion element, i.e. α ∈M ⊕M . Therefore

coker η =
Λ⊕M ⊕M

αΛ
= Λ⊕ M ⊕M

αΛ

is infinite, contradicting Th. 4.1.2.

The previous theorem can be rephrased, using the notions introduced in Ch. 2, in terms of
the (p-primary) Shafarevich-Tate group of f . In order to do that we need to define Λ̃p, the
analogous of the Mordell-Weil group of an elliptic curve, over the anticyclotomic extension K∞
of K and its layers Kn. As for the definition of Λ̃p(K), in order to define it we assume that the
restriction map

resK[pn+1]/Kn
: H1(Kn, T )→ H1(K[pn+1], T )Gal(K[pn+1]/Kn)

is an isomorhism for n > 0.

Definition 4.3.2. We define for any n > 0,

Λ̃p(Kn) := res−1
K[pn+1]/Kn

(
Λ̃p(K[pn+1])Gal(K[pn+1]/Kn)

)
.

and Λ̃p(K∞) = lim←−n,cores Λ̃p(Kn) ⊆ H1
f (K∞, T ).

Definition 4.3.3. The p-divisible Tate-Shafarevich group X̃p∞(f/Kn) of f over Kn is defined,
for any n = 0, . . . ,∞, by the exact sequence

0 Λ̃p(Kn)⊗K/O H1
f (Kn, A) X̃p∞(f/Kn) 0

Remark 4.3.4. Note that under our assumptions the restriction is indeed an isomorphism:
it follows by Lemma 2.3.5 with the same argument of Rk. 2.3.7 and therefore Λ̃p(Kn) and
X̃p∞(f/Kn) are well defined. In particular, since H0(Kn, A[p]) = 0 by Prop. 4.2.9, the same
argument of Lemma 2.3.5 shows that Λ̃p(Kn) is a free O-module of finite rank. Moreover each
Λ̃p(Kn) is endowed of an action of Gal(Kn/K) and hence Λ̃p(K∞) has a structure of Λ-module,
compatible with the inclusion into H1

f (K∞, T ).
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Using this language we may enhance Th. 4.3.1.

Theorem 4.3.5. Suppose that Λ̃p(K) ⊗ K/O and Λ̃p(K∞) are nontrivial. If X is free of rank
1 over O, then

X̃p∞(f/K) = X̃p∞(f/K∞) = 0; H1
f (K∞, A) = Λ̃p(K∞)⊗K/O,

the Pontryagin dual X∞ of the latter group being free of rank 1 over Λ.

Proof. If X ∼= O, then H1
f (K,A)

∼= K/O. Now by Cor. 2.3.8 Λ̃p(K) = Oj for some j > 0

0 ̸= Λ̃p(K)⊗K/O ∼= (K/O)j ⊆ H1
f (K,A)

∼= K/O,

therefore j = 1 and the inclusion must be an equality and hence X̃p∞(f/K) = 0.
Let us now pass to K∞. By Th. 4.3.1 we already know that X∞ has rank 1 over Λ, let us

show that X̃p∞(f/K∞) = 0. Let

Z∞ = D
(
X̃p∞(f/K∞)

)
, Y∞ = D

(
Λ̃p(K∞)⊗K/O

)
,

we have by duality a short exact sequence

0 Z∞ X∞ Y∞ 0

and hence our vanishing claim is equivalent to show that X∞/Z∞ = Y∞ is not Λ-torsion: indeed
being Y∞ a quotient of X∞ ∼= Λ, it is Λ-torsion if and only if Z∞ ̸= 0. Observe that

Y∞ = HomO
(
Λ̃p(K∞)⊗K/O,K/O

)
=

= HomO
(
Λ̃p(K∞),HomO(K/O,K/O)

)
=

= HomO
(
Λ̃p(K∞),O

)
= Λ̃p(K∞)∗

and that in particular Y∞[p] = HomO
(
Λ̃p(K∞),O[p]

)
= 0, since O[p] = 0.

It follows that if Y∞ were Λ-torsion, then it would be a free O-module of finite type. Indeed
there would be a nonzero ideal J of OJT K such that Y∞ ∼= OJT K/J , moreover since Y∞[p] = 0
all power series f =

∑∞
j=0 ajT

j ∈ J are such that aj /∈ p for some j (otherwise the power
series f ′ =

∑∞
j=0(aj/p)T

j ∈ OJT K would be p-torsion modJ): fix such a series and let s be
the smallest index j such that aj /∈ p. By the division lemma [NSW00, Lemma 5.3.1], for any
g ∈ OJT K, f = gq + r for q ∈ OJT K and r ∈ O[T ]≤s−1 and in particular the powers T, . . . , T s−1

would be a set of generators of OJT K/(f), and hence of its quotient OJT K/J , as an O-module.
Thus Y∞ would be of finite type over O and free since Y∞[p] = 0, following the same argument
of the proof of Cor. 2.3.8.

But since Y∞ = Λ̃p(K∞)∗, then also Λ̃p(K∞) would be a free O-module of finite rank; in
particular there would be an m such that Λ̃p(K∞) = resK∞/Km

(
Λ̃p(Km)

)
, then

coresKn+k/Kn

(
Λ̃p(Kn+k)

)
= coresKn+k/Kn

◦ resKn+k/Kn

(
Λ̃p(Kn)

)
=

= [Kn+k : Kn]Λ̃p(Kn) = pkΛ̃p(Kn)

for any k > 0, n ≥ m. But then Λ̃p(K∞) = 0, contraddicting our hypothesis. Let indeed
(εn)n ∈ Λ̃p(K∞), for any n ≥ m this fact implies that εn = coresKn+k/Kn

(εn+k) is divisible by
pk for any k > 0, but then εn = 0 since Λ̃p(Kn) is finite free over O and therefore it does not
have infinitely divisible nonzero elements. Hence εn = 0 for any n.
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4.3. VANISHING OF X̃P∞(F/K∞)

Let us now consider the generalized Heegner cycles zf,c of Sec. 2.2.2. We saw in Sec. 2.3 that
they may be used in order to bound the size of H1

f (K,A). We may moreover use them in order
to endow the Λ̃p(Kn)’s with a sistematic supply of classes

αn = coresK[pn+1]/Kn
(zf,pn+1) ∈ Λ̃p(K∞);

Longo and Vigni in [LV19, T. 4.12] proved that starting from them we may construct a nontrivial
element κ̃1 ∈ Λ̃p(K∞). Therefore, in particular, the condition Λ̃p(K∞) ̸= 0 is always satisfied
under our assumptions.

Finally we may gather everything together and state our main theorem.

Theorem 4.3.6. Suppose that the basic generalized Heegner cycle zf,K is non-torsion and that
zf,K /∈ pH1

f (K,T ). Then X̃p∞(f/K) = 0 and

Λ̃p(K)⊗K/O = H1
f (K,A) = zf,K · K/O,

moreover X̃p∞(f/K∞) = 0 and H1
f (K∞, A) = Λ̃p(K∞)⊗K/O, the Pontryagin dual X∞ of the

latter group beeing free of rank 1 over Λ.

Proof. This is the combination of Th. 2.3.9 and Th. 4.3.5. In order to glue them together observe
that zf,K , beeing non torsion in Λ̃p(K), is nontrivial in Λ̃p(K)⊗K/O and that

zf,K · K/O

has corank 1 over O.
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