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1. SPECYL and its Boundary Conditions " Abstract: A

/ \ * 3D nonlinear MHD code SPECYL [1] boundary conditions (BCs) have been increasingly made more realistic, from traditional SpeCyl.1
SPECYL: (ideal conductor facing plasma) to modelling plasma-vacuum interface as a resistive thin-shell [2].

. i i ( 1 * Linear benchmark against ideal MHD (n,,;, v,; = 0) suggested the need for finite plasma-edge V. [3].

Self-consistent 0,0 +v- Vv = ;] % B + vV2v pl Vp T

Non. * We present the resulting BCs, here dubbed SpeCyl.2
. on-linear

3 ;B =V X (xB—nj) » Verification of SpeCyl.2 against another code (Pixie3D [4]), enforcing analogous physical assumptions in BCs, amends some
. Visco-resistive J=VxB unphysical idealities of SpeCyl.1 and completes what already done in [5].
=V X
. cvlindrical ol * Linear benchmark against the theory of ideal MHD instabilities is also presented
ylindrical plasma \V-B=0

Boundary conditions: Conclusions:

e SpeCyl.2 is a new set of BCs for SPECYL. It combines pre-existing thin-shell like modelling of interface with finite radial (and angular)

SpeCyl.1 SpeCyl.2 edge flow.
Acentralaxis ideal conductor % \m\\\\\l\ \\&{\\ re\S/\i;EI\:e ideal conductor \
S G 3 N . e . . . . . . )
N \\?\\1 - \ \ d R § - » Verifications (Br properties and against Pixie3D) found improved self-consistency.

\ Benchmark against the theory of linear ideal MHD instabilities (mainly external kinks) show promising behaviour, both concerning
modes radial profiles and their exponential growth rates.

Magnetic Part: 2. Verifications of SpeCyl.2
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\ / \ Reversed-Field Pinch (RFP) 2D simulation, 10 modes m/n=1/8, saturated externally resonating (near axis) kink m=1. Profiles taken at final time 5000 - 7, J

3. Energy Principle and numerical set-up 4. Linear Benchmark against ideal MHD external kink
/Energy Principle: what is vacuum [6,7] \ / \

“Energy balance”
p 1
_wzfvEf ' f*d31: =—2 [, Fl§]- & d°r

Kinetic term System potential variation

KT11$1] WIS, ¢

Momentum balance equation “Newton’s law”

dv
—+pv-V)v=]JXxB-"Vp y Leading order:

~ p¢ = F[¢]

|Plasma reaction| |Force density .‘T'|

Shafranov’s flat- * SpeCyl.2 reliably predicts instability region for kink m=2 (1 < g, < 2)

ot

current model

* Little under-estimate of y. Small y < 0 when theory gives stability (y = 0)

Growth rate and * |deal-wall scan qualitatively good. Matching of critical stabilizing distance. Results compatible with [8]

profiles, mode m=2
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Shafranov (flat-current) model in tokamak geometry, external kink m=2. Inverse aspect ratio small € = 0,05, r]pl(O) =105, Vpr = 10710 » ¢, Ty = T4/100, 2D simulations with m/n=2, no-stress BCs for

- - Vg and V. Growth rates normalized on toroidal Alfven time 1,4 /€ and (first figure) edge-plasma safety factor q,.
Numeric set-up for linear benchmark
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