

Formulation and numerical benchmark of improved magneto-fluid boundary conditions for 3D nonlinear MHD code SPECYL L. Spinicci^{1,2}, D. Bonfiglio^{2,3}, S. Cappello^{2,3}, M. Veranda^{2,3}, L. Chacón⁴

¹ University of Padova, Padova, Italy

² Consorzio RFX, Euratom-ENEA Association, Padova, Italy

³ ISTP-CRN, Milano-Padova-Bari, Italy

⁴ Los Alamos National Laboratory, Los Alamos, USA

Luca.spinicci@igi.cnr.it

1. SPECYL and its Boundary Conditions

- **SPECYL:**
 - Self-consistent
- $\partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} = \frac{1}{\rho} \boldsymbol{J} \times \boldsymbol{B} + \nu \nabla^2 \boldsymbol{v}$

Abstract:

- 3D nonlinear MHD code SPECYL [1] boundary conditions (BCs) have been increasingly made more realistic, from traditional SpeCyl.1 (ideal conductor facing plasma) to modelling plasma-vacuum interface as a resistive thin-shell [2].
- Linear benchmark against ideal MHD ($\eta_{pl}, \nu_{pl} \rightarrow 0$) suggested the need for finite plasma-edge V_r [3].
- We present the **resulting BCs**, here dubbed SpeCyl.2

- Verification of SpeCyl.2 against another code (Pixie3D [4]), enforcing analogous physical assumptions in BCs, amends some unphysical idealities of SpeCyl.1 and completes what already done in [5].
- Linear benchmark against the theory of ideal MHD instabilities is also presented

Conclusions:

- SpeCyl.2 is a new set of BCs for SPECYL. It combines pre-existing thin-shell like modelling of interface with finite radial (and angular) edge flow.
- Verifications (Br properties and against Pixie3D) found improved self-consistency.
- Benchmark against the theory of linear ideal MHD instabilities (mainly external kinks) show promising behaviour, both concerning modes radial profiles and their exponential growth rates.

2. Verifications of SpeCyl.2

3. Energy Principle and numerical set-up

4. Linear Benchmark against ideal MHD external kink

