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• Profile of 𝐽𝑧
0,0

numerically produced by shaping 𝜂𝑝𝑙(𝑟)

• Step-profile of 𝜌(𝑟): 

• Two current models:
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Abstract:

Conclusions:

• SpeCyl.2 is a new set of BCs for SPECYL. It combines pre-existing thin-shell like modelling of interface with finite radial (and angular) 
edge flow.

• Verifications (Br properties and against Pixie3D) found improved self-consistency.

• Benchmark against the theory of linear ideal MHD instabilities (mainly external kinks) show promising behaviour, both concerning
modes radial profiles and their exponential growth rates.

• 3D nonlinear MHD code SPECYL [1] boundary conditions (BCs) have been increasingly made more realistic, from traditional SpeCyl.1 
(ideal conductor facing plasma) to modelling plasma-vacuum interface as a resistive thin-shell [2].

• Linear benchmark against ideal MHD (𝜂𝑝𝑙 , 𝜈𝑝𝑙 → 0) suggested the need for finite plasma-edge 𝑉𝑟 [3].

• We present the resulting BCs, here dubbed SpeCyl.2

• Verification of SpeCyl.2 against another code (Pixie3D [4]), enforcing analogous physical assumptions in BCs, amends some 
unphysical idealities of SpeCyl.1 and completes what already done in [5].

• Linear benchmark against the theory of ideal MHD instabilities is also presented

• Self-consistent

• Non-linear

• Visco-resistive

• Cylindrical plasma

𝜕𝑡𝝊 + 𝝊 ⋅ ∇𝝊 =
1

𝜌
𝑱 × 𝑩 + 𝜈∇2𝝊

𝜕𝑡𝑩 = ∇ × 𝝊 × 𝑩 − 𝜂𝑱

𝑱 = 𝛁 × 𝑩

𝛁 ⋅ 𝑩 = 𝟎

𝑟

ideal conductor

𝑎

plasma

ce
n

tr
al

ax
is

SpeCyl.1

𝑎

central axis

SpeCyl.2

𝑟

ideal conductor

𝑎

plasma

thin, 
resistive 

wall

vacuum

ce
n

tr
al

ax
is

𝑎

central axis

On ideal conductor surface: 𝐸∥ = 𝐵𝑟 = 0
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Vacuum fields are analytical solutions of Poisson’s
problem in the cylinder (Bessel’s functions)
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1. SPECYL and its Boundary Conditions
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Ideal wall limit yields 

SpeCyl.1 𝐵 field

Reversed-Field Pinch (RFP) 2D simulation, 10 modes m/n=1/8, externally resonating
(near axis) kink m=1.
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• 𝐵𝑟(𝑟 = 𝑎) slope imbalance levels up in 𝑡 ∼ 𝒪(𝜏𝑤)

• If 𝜏𝑤 → ∞ the shell becomes ideal: SpeCyl.1 limit case

• Vacuum fields are analytical solutions of Poisson’s problem

• 𝐵𝑟(𝑟 = 𝑎) slope imbalance levels up in 𝑡 ∼ 𝒪(𝜏𝑤)

• If 𝜏𝑤 → ∞ the shell becomes ideal: SpeCyl.1 limit case

• Vacuum fields are analytical solutions of Poisson’s problem

• Components of 𝐵∥ found from Ohm’s equation, assuming 𝐸∥ , 𝑝𝑙 = 𝐸∥ ,𝑤𝑎𝑙𝑙

Fully consistent
magneto-fluid BCs

Magnetic diffusion
across interface

SpeCyl.1

SpeCyl.2  
(𝜏𝑤 → ∞)

Pixie3D  
(ideal wall)

• Successful nonlinear benchmark of SpeCyl.1 and Pixie3D already in [5], now extended to SpeCyl.2 (ideal wall limit)
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Nontrivial (very good) agreement 
Pixie3D-SpeCyl.2.
Verification achieved!

Full self-consistency:
SpeCyl.1 has unphysiscal current-
spikes near edge. 
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Reversed-Field Pinch (RFP) 2D simulation, 10 modes m/n=1/8, saturated externally resonating (near axis) kink m=1. Profiles taken at final time 5000 ⋅ 𝜏𝐴
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than SpeCyl.1

2. Verifications of SpeCyl.2

Momentum balance equation
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System potential variation
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𝐾[|𝜉|]
𝝃 such that 𝛿𝑊 𝝃 + 𝜹𝝃, 𝝃∗ + 𝜹𝝃∗ − 𝛿𝑊 𝝃, 𝝃∗ = 021
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equation
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■ 𝝃 is chosen after force density ℱ = 𝐽 × 𝐵 − 𝛻𝑝 and regardless of 𝜌

■ Modes stability (=sign of 𝜔2) depends solely on 𝝃

■ Growth rate 𝜸 = 𝐈𝐦{𝝎} depends also on 𝜌

𝛻𝑝 ≈ 0 for large aspect ratio

Vacuum is the same as 𝑱 = 𝟎

Vacuum requires also 𝜌 = 0

Plasma region 𝜌 𝑟 < 𝑎 ≈ 1

P𝐬𝐞𝐮𝐝𝐨 𝐯𝐚𝐜𝐮𝐮𝐦 𝜌 𝑎 < 𝑟 < 𝑟𝑤𝑎𝑙𝑙 ≈ 10−3 (shaded in figures)
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𝑎 = 𝑟0 = 0,9 𝑎 = 0,8 < 𝑟0 = 0,9

Density and current drop at the same radius! Highly resististive (unideal) region 𝟎, 𝟖 < 𝒓 < 𝟎, 𝟗
already in pseudo-vacuum.

pseudo vacuum is used
in many other codes, 
e.g. in JOREK [8]

Energy Principle: what is vacuum [6,7]

3. Energy Principle and numerical set-up

SPECYL:

Boundary conditions:

Numeric set-up for linear benchmark

4. Linear Benchmark against ideal MHD external kink

• SpeCyl.2 reliably predicts instability region for kink m=2 (1 ≤ 𝑞𝑎 ≤ 2)

• Little under-estimate of 𝛾. Small 𝛾 < 0 when theory gives stability 𝛾 = 0

• Ideal-wall scan qualitatively good. Matching of critical stabilizing distance. Results compatible with [8]

• Profiles in optimal agreement in plasma region and psudo-vacuum (only 𝐵𝑟
2,1

) 

Shafranov’s flat-
current model

Growth rate and 
profiles, mode m=2

Shafranov (flat-current) model:

• Very good agreement on 𝛾:

• Profiles are well-resolved

• Flat 𝑞(𝑟) profile allows no internal modes

boundaries

values

Wesson (peaked-current) model:

• Good agreement on 𝛾.

• Profiles are well-resolved.

• Shaped 𝑞(𝑟) intercepts also internal resonances

Internal
modes

Shafranov (flat-current) model in tokamak geometry, external kink m=2. Inverse aspect ratio small 𝜖 = 0,05, 𝜂𝑝𝑙 0 = 10−5, 𝜈𝑝𝑙 = 10−10 ≁ 𝑟, 𝜏𝑤 = 𝜏𝐴/100, 2D simulations with m/n=2, no-stress BCs for 

𝑉𝜃 and 𝑉𝑧. Growth rates normalized on toroidal Alfvèn time 𝜏𝐴/𝜖 and (first figure) edge-plasma safety factor 𝑞𝑎. 

Shafranov’s and 
Wesson’s models

Growth rate and 
profiles, mode m=1
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