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ABSTRACT 

 

The “Centers for Disease Control” defines a chronic disease as a health condition which lasts at least one 

year, it limits daily activities and it requires continuous medical attention. Furthermore, when at the same 

time at least two chronic health diseases are co-occurring in the same individual, we refer to 

multimorbidity, which is a growing global public health issue, worsened by the aging of the population. 

Chronic diseases lead to poorer health outcomes which could heavily affect health care systems and their 

related costs in the future. 

Diabetes is one of the most diffused chronic disease, and we refer to Type 2 Diabetes (T2D) when the 

body is not able to correctly use insulin. Glucose Lowering Medications (GLMs) are used in T2D patients 

to control blood glucose, Body Mass Index (BMI), blood pressure and lipids, to improve cardiovascular 

outcomes. In the last decades, lots of Randomized Controlled Trials (RCTs) have been conducted to 

evaluate the treatment effect of such medications, in comparison with placebo or between them.  

However, these results which were obtained in RCT settings have to be confirmed by real world data 

(RWD), which are the ensemble of data related to the patient health status, routinely collected from 

different sources (i.e. disease registries, administrative databases where claims, billing activities, 

diagnoses of hospitalizations are collected). In fact, RCTs are a powerful tool to have scientific evidence 

about safety and efficacy of drugs, and they could help to understand the biological mechanisms 

undergoing the therapeutic actions stating if a medical product can ideally work, with a very high internal 

validity. Moreover, RCTs often have a low external validity and they are not sufficient to guide the 

decision-making process. It is therefore necessary to integrate knowledge from RCTs with Real World 

Evidence (RWE) which comes from RWD. 

However, when dealing with RWD, lots of problems arise, such those relating to the absence of 

randomization in the treatment assignment, confounding, model specification, missing data, big data 

availability. In the last decades, lots of Machine Learning (ML) approaches have been developed to 

address these issues. 

This thesis is focused on the application of advanced statistical approaches to analyze health outcomes 

and comorbidity patterns in patients with chronic diseases from RWD. 

More in details, in the first contribution Propensity Score (PS) methods have been applied to evaluate 

the treatment effect of different GLMs, in terms of simultaneous reduction in HbA1c, body weight, and 

systolic blood pressure in T2D patients. Data were extracted from Dapagliflozin Real World evIdeNce 

in Type 2 Diabetes (DARWIN-T2D), a retrospective multicenter study conducted at diabetes specialist 



 

20 

outpatient clinics in Italy. In this study, we observed that in routine ambulatory care, initiation of 

Dapagliflozin (a SGLT2i drug) can be as effective as initiation of a GLP-1 receptor agonists (GLP-1RA) 

for the attainment of combined risk factor goals. 

However, in this first work, we had to deal with lots of issues related to RWD: the absence of 

randomization in the treatment assignment, the high amount of missing data (about 50%, both on 

covariates and outcome measures), the misspecification of treatment and outcome models. 

It follows that in the second contribution I tried to limit the size of biases occurring in observational 

context related to such issues applying different advanced statistical approaches, mainly focusing on the 

particular case in which a high percentage of missing not at random (MNAR) data are present in a 

dichotomous outcome. Covariate adjustment, PS adjustment, PS matching, inverse probability of 

treatment weighting, targeted maximum likelihood estimator (TMLE), were compared using DARWIN-

T2D data and also in a simulation setting, done through Bayesian Networks (BNs) to resemble 

DARWIN-T2D characteristics. TMLE showed less biases and higher precision in estimating the 

Marginal Treatment Effect in an observational setting, in which the outcome and/or treatment models 

could be misspecified, regardless the amount of MNAR outcome data. 

Then, in the third contribution, the aim was to evaluate generalizability of cardiovascular outcome trials 

(CVOTs) on GLP-1RA to the real-world population of T2D patients. The proportion of real-world 

patients which constitute CVOT-like populations were assessed, using as target population DARWIN-

T2D. We developed a novel approach, based on BNs which allow to assess conditional dependencies 

among variables in DARWIN-T2D. Such method was then used to sample the greatest subsets of real-

world patients yielding true CVOT-like populations. A very small proportion of real-world patients 

constitute true CVOT-like populations. These findings question whether any meaningful information can 

be drawn from applying trial Inclusion/Exclusion criteria to real-world T2D patients. Clinical practice 

transferability of CVOT should rather rely on observational effectiveness studies. 

In the fourth contribution, the aim was transferring results obtained in CVOTs to the real-world setting, 

using again DARWIN-T2D as target population. A post-stratification approach based on aggregated data 

of CVOTs and individual data of a target population of diabetic outpatients was used. Stratum-specific 

estimates available from CVOTs were extracted from publications to calculate expected effect size for 

DARWIN-T2D by weighting the average of the stratum-specific treatment effects according to 

proportions of a given characteristic in the target population. The main finding was that, based on CVOT 

stratum-specific effects, cardiovascular protective actions of investigational GLMs are transferrable to a 

much different real-world population of patients with T2D. 
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Finally, in the fifth contribution, I worked on administrative databases of Piedmont, a Northern Italy 

region, to forecast urgent hospitalization in people aged more than 65 years. I applied the Bidirectional 

Encoder Representations from Transformers (BERT), which is a deep learning approach developed by 

Google in 2018. The aim was to deal with healthcare trajectories, defined as a sequence of medication 

purchases and hospitalization diagnoses, to forecast urgent hospitalizations within 3 months. Results 

suggested that BERT is able to embed administrative health records, into patients’ medical histories to 

predict future urgent hospitalizations. This could be a tool which could help to improve the quality of 

life of elderly people, preventing adverse outcomes in a personalized way, and to optimize the allocation 

of healthcare resources in the future. 
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CHAPTER 1 
 

INTRODUCTION  

 

Chronic diseases and multimorbidity 

 

The Centers for Diseases Control defines “chronic” all those diseases which last more than one year, 

which require continuous medical attention and limit daily activities. However, in the biomedical 

literature is still lacking a uniformed definition of chronic diseases (1). For example, the World Health 

Organization (WHO) defines chronic diseases all those illnesses that “are not passed from person to 

person. They are of long duration and generally slow progression. The four main types […] are 

cardiovascular diseases (like heart attacks and stroke), cancers, chronic respiratory diseases (such as 

chronic obstructed pulmonary disease and asthma) and diabetes” (2). The Australian Institute for Health 

and Welfare defines chronic diseases if there is a complex causality, a long development period without 

symptoms, a prolonged course of illness and associated functional disabilities (1) (3). 

When at least two chronic diseases are simultaneously present in the same individual we refer to 

multimorbidity or comorbidity (4). Multimorbidity is a growing global public health issue, worsened by 

the increasing aging of the global population, which leads to adverse outcomes that contribute to heavily 

affect the health-care systems (4)(5). Furthermore, multimorbidity is strictly connected to polypharmacy 

(6), i.e. the use of multiple medications by the same individual at the same time, that increases the 

complexity of managing such patients (7).  

Multimorbidity is then highly correlated with “frailty”, a decline of the health condition of a subject, 

which is strictly related to aging. Frailty leads to reduced physical and mental health faculties, resulting 

in higher vulnerability and increased risk of bad health outcomes, with negative implications for both 

older people themselves and for the entire society (8). 

A better knowledge of the epidemiology of chronic diseases and multimorbidity is therefore necessary 

to develop intervention tailored to prevent them, to manage them in a personalized way and to better 

allocate healthcare resources (5). 
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An example of chronic disease: type 2 diabetes  

 

T2D is one of the most diffused chronic disease, which affected 108 million of people in 1980 and 

increased to 422 million in 2014, with a higher prevalence in particular in the low- and middle-income 

countries (9). More in detail, in 2014 the 8.5% of adults (> 18 years) were diabetic people. In 2019, 1.5 

million deaths were directly due to diabetes (9). These data highlights that diabetes is a huge global 

healthcare concern (10). 

T2D occurs when pancreas produces not enough insulin or  when the body is not able to correctly use 

the insulin produced (9). The main consequence of T2D is hyperglycemia, which leads to many problems 

related to blood vessels, nerves, heart, eyes, and kidneys (9). In fact, in many scientific studies it has been 

shown that adults affected by T2D have a two- or three-fold increase in the risk of heart attacks or strokes 

(11). Furthermore, if nerves damage in the feet is concomitant with reduced blood flow, there is an 

increase in the risk of having infections, foot ulcers and eventual need for amputations (9). Moreover, 

2.6% of global blindness is caused by diabetes (12), and T2D is one of the main causes of kidney failure 

(13).  

The main risk factors which lead to T2D, are excess of body weight, physical inactivity, obesity, 

hypertension and dyslipidemia (9) (10).  

Glucose Lowering Medications (GLMs) are the main drugs used to control the level of glucose in blood, 

Body Mass Index (BMI), blood pressure and lipids to improve cardiovascular outcomes (10). 

Sodium glucose co-transporter 2 inhibitors (SGLT2i) are GLMs which prevent renal glucose resorption. 

SGLT2i were available for the treatment of T2D in Italy (as Dapagliflozin) from March 2015 (10). In the 

last years, lots of RCTs have been conducted to evaluate the efficacy of Dapagliflozin. It was evaluated 

in comparison with placebo, or as add-on to metformin, sulphonylurea, DPP-4i, insulin or versus active 

comparators (14). Many meta-analyses showed non inferiority of Dapagliflozin 10 mg if compared with 

Glipizide and Saxagliptin. It has been shown that Dapagliflozin reduces Hba1c by 0.5-0.7% if compared 

with placebo at 24 weeks, and had sustained glucose lowering effects over periods of 48-102 weeks 

(15,16).  

In conclusion, lots of studies showed that Dapagliflozin improves glycemic control in T2D patients, and 

that it is protective against cardiovascular risks by acting on well known risk factors.  
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Research on chronic diseases: from RCT to RWD 

 

Results about the protective effect of Dapagliflozin against cardiovascular risk in T2D have been 

obtained mainly within RCTs, which are ideal settings, and patients enrolled in the trial are very selected 

ones. 

It is therefore necessary to verify if the same conclusions are reached also analyzing RWD, extracted 

from routinely accumulated clinical data (10). Many studies have jet been conducted in this setting, 

substantially confirming the glycemic and extra-glycemic effects observed in RCTs and they support the 

protection against cardiovascular diseases (17–19).  

 

Randomized Controlled Trials (RCTs)  

 

Clinical trials are prospective studies in which subjects receive an experimental intervention. The design 

of RCTs is more complex at earlier phase of the study (20). In particular, phase I trials have the main aim 

of studying the pharmacokinetic, pharmacodynamics and safety. Typically, they are small, in fact often 

less than 100 healthy volunteers are enrolled, and there is a single arm.  

Phase II trials may instead be composed by two or more arms, and subjects are randomized to the active 

treatment/intervention or to the control arm, which can be placebo or a comparative medication/ 

intervention. Randomization allows researchers to apply very basic statistical approaches, which lead to 

robust causal effect estimates, with simple outcome comparisons between the two arms (21).  In this 

phase, safety and preliminary efficacy are assessed, and from 100 up to 300 patients are generally 

enrolled.  

Then, often one of the aims in phase II trials is to determine the optimal medication dose, which will be 

used in phase III trials, that are generally used to establish the efficacy of a drug. They are bigger studies, 

involving generally more than 1000 patients, they can be single, double or triple blinded, and follow-up 

is typically longer than trials in the previous phases. 

Finally, in phase IV trials the long term risks and rare adverse events are monitored and the optimal use 

of the drug in clinical practice is investigated (22). 

RCTs are considered the most reliable method of generating evidence on the efficacy of interventions or 

medications (23). In fact, for many years RCTs and meta-analysis of RCTs were at the top of the 

hierarchy of study designs for the evidence of a treatment effect (24). 
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However, in 2016 Murad et colleagues published the “New evidence pyramid”, in which they suggested 

another way of looking at the evidence-based medicine pyramid (25). They pointed out that the study 

design alone is not sufficient to state the risk of bias. In fact, methodological limitations of a study, 

imprecisions, and inconsistencies could be factors which influence the quality of a study (25). So, the 

authors replaced the straight lines that in the classic pyramid separate the different study designs with 

wavy lines (25). Then, they removed meta-analysis from the top of the pyramid and instead they use 

them as a lens through which other types of studies should be seen (25). 

 

 

Figure 1. From «New evidence pyramid», M. H. Murad et al., Evid. Based Med 2016  (25). 

 

The strongest point of RCTs is their excellent internal validity, due to the power of randomization that 

potentially remove confounding, ensuring that if a difference between groups is observed,  it is highly 

probable that it is due to intervention itself and not to other confounding factors (23).  

However, RCTs tend to be conducted in very selected populations and in particular environments which 

are different from the real-world clinical or home settings (26) (23). In fact, strict inclusion/exclusion 

(I/E) criteria are applied, that lead larger effect with respect to the expected in the general population. 

Strata of population which are vulnerable to side effects, i.e. children or older people affected for example 

by multimorbidity, are often excluded from trials (21). For example, in the oncological field, only <10% 
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of patients with cancer are enrolled into RCTs, and elderly subjects, with more than two diseases and 

with a lower socio-economic status are strongly under-represented (23). 

RCTs can provide important information about efficacy, which is the drug effect under ideal settings, but 

not about effectiveness, i.e. the true benefit in routine clinical practice (23). Furthermore, RCTs have a 

limited capability in detecting toxicity or side effects, due to the relatively small sample size and the 

usually short follow up period (23).  

However, in such specific settings it is easier to have a higher control of the quality of data, using detailed 

case-report forms that exist separately from ordinary medical records and which are designed specifically 

for research purposes. Moreover, when RCTs are conducted, an intensive monitoring controls the strict 

adherence of the research to a well-characterized protocol that ensure precision in data recruitment (26). 

 

Real World Data and Real World Evidence  

 

Evidence which comes from RCTs has to be integrated with evidences assessed in the real world context.  

RWD can be used to understand how different treatments or exposures affect outcomes of interest in  real 

settings (21). Analyses of RWD leads to RWE, which is defined as the clinical evidence regarding the 

benefits and risks of the medication/intervention investigated (26). RWE provides information about 

safety surveillance and effectiveness of drugs and interventions, and can investigate which factors can 

influence treatment effects (26). 

The availability of RWD, which can be used for healthcare research purposes, is constantly growing, due 

by the rise of electronic health records, disease registries, administrative databases which collect billing 

activities, diagnoses of hospitalizations, and data obtained from electronic devices (26). From these data, 

it is possible to reconstruct healthcare trajectories, which are defined as the ensemble of cares received 

and outcomes experienced by a subject. This leads to evidence which could be used to learn how to 

effectively treat patients in the future (27). However, RWD coming from claims databases, electronic 

devices, and disease registries were not designed for research aims, but for administrative purposes (26). 

For this reason, some critical issues are found when they are used to conduct medical research. For 

example, population databases often do not report the plan of specific treatments, but it could be 

reconstructed indirectly linking different data sources, with a questionable quality of data (23). 

Furthermore, confounding is a big issue in the observational context, due to the absence of randomization 

in the assignment of the treatment. 
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To deal with such intrinsic limitations of RWD, it is necessary using more advanced statistical 

approaches (10). In fact, the considerable sizes of data sets, the uncertain quality of data with high amount 

of missing data, the absence of randomization, and the presence of measured and/or unmeasured 

confounders could lead to incorrect conclusions (26). Statistical approaches typically used to deal with 

confounding are multivariable analysis and propensity score (PS) approaches. However, such approaches 

are regression-based models, which require lots of assumptions to be satisfied (28). 

However, RWD leads to research with high external validity and provide insights into delivery of care 

in routine clinical practice to all patients, even those elderly and with comorbidity, that better represent 

population that effectively use medications in the real world (23). 

Furthermore, RWD require less time and costs, allow to conduct safe research on high-risk groups and 

on effectiveness, and they provide higher sample size which allows to detect rare side effects or toxicity 

(24,31). 

 

The complementarity of RCTs and RWD  

 

RCTs are a powerful tool to have scientific evidence about safety and efficacy of medications, and they 

help to understand the biological mechanisms undergoing the therapeutic actions stating if a medical 

product can work, with a very high internal validity  (26). 

However, in the last decades, the idea that RCTs have a low external validity and that they are not 

sufficient to guide the decision processes is gaining traction, because the contexts in which they are 

conducted could be very different from the real-life clinical settings. In fact, many factors such as the 

heterogeneity the characteristics of patients, the simultaneous use of different drugs over time (i.e. 

polypharmacy), and the adherence to the treatments, are factors that could lead to discrepancies between 

the evidence generated in RCTs and their generalizability in the real world clinical practice. 

Furthermore, there are several reasons for which in some particular situation, a RCT cannot be conducted, 

and it is necessary to replace it with an observational study. More in detail, Black and colleagues 

identified four main reasons that do not allow to perform an RCT. In fact, experimentation could be (24) 

(29): 

1) unnecessary, if the treatment effect is so dramatic that unknown confounding elements could be 

ignored 

2) inappropriate, if the analyzed outcome is rare, because long follow up are necessary 
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3) impossible, due to clinician’s refusal to participate or to legal or ethical obstacles 

4) inadequate if the external validity is low. 

So, for many different reasons, RWE has a big potential in complementing the knowledge deriving from 

traditional RCTs, whose limitations make it difficult to generalize finding to the population of patients 

that uses medical products in practice (23).  

Summarizing, RCTs are essential tools with a strong internal validity but a weak generalizability to real 

life context. For these reasons, there is a growing interest in RW studies, due to their close association 

with the routine clinical practice. However, RW studies are weak in terms of internal validity, and strong 

statistical tools are necessary to overcome their numerous intrinsic limitations, such as missing data and 

confounding. 

In conclusion, RCTs and RW studies are complementary and only if they are used together we can obtain 

a better evidence, jointly in terms of internal and external validity of evidence. So, first conduct a RCT 

to demonstrate efficacy of a medication. Then, real world studies should evaluate patterns of care, toxicity 

and effectiveness in routine clinical practice (23) (30). 

 

Table 1: Advantages and disadvantages of RCTs and RWE 

 

 RCTs RW studies 

Advantages • Efficacy 

• Randomization 

• Blinding 

• Control arm 

• Rigorous analysis methods 

• Simple statistical analyses 

• High quality of data 

• Effectiveness 

• Non-selected population 

• Ethical feasibility 

• Rare or late side effects 

• Clinical routine practice setting 

Disadvantages • Selected population 

• Setting and monitoring bias 

• Ethical restrictions 

• Not able to detect side effects 

• Short duration 

• Lack of randomization 

• Confounding factors 

• Lack of blindness 

• Complex statistical analyses 

• Low quality of data (missing 

data, inaccuracies,…) 
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Two examples of Real World databases  

 

DARWIN-T2D 

 

Dapagliflozin Real World evIdeNce in Type 2 Diabetes (DARWIN-T2D) is a real world multicenter 

retrospective nationwide Italian study, promoted by Italian Diabetes Society and AstraZeneca (ESR-14-

11441) (10).  

DARWIN-T2D uses clinical data which are routinely accumulated (31), with the aim to describe which 

are the baseline clinical characteristics of T2D patients, and to control glycemic and extra-glycemic 

parameters in patients undergoing Dapagliflozin compared with patients initiated on comparator GLMs 

(DPP-4i, i.e. Sitagliptin, Saxagliptin, Vildagliptin, Alogliptin) in Italian diabetes outpatient clinics (10).  

The analysis is retrospective and starts on 13th March 2015, when Dapagliflozin was approved in Italy, 

and ends on 31st December 2016. 

Secondary aims of DARWIN-T2D are to describe heterogeneity, regional variations, and temporal trends 

of baseline characteristics of T2D patients (10).  

The study includes four groups of patients, in accordance with their main therapy (i.e. Dapagliflozin, 

DPP-4i, Gliclazide, GLP-1RA). As typically occurs in observational studies, the comparison of such 

groups is made more difficult by the absence of randomization (10). 

T2D patients can be included in DARWIN-T2D if the following inclusion criteria are met (10):  

 Age: 18-80 years; 

 diagnosis of T2D since at least 1 year; 

 had initiated Dapagliflozin 10 mg as add-on to metformin and/or insulin from 13th March 2015 

to 31st December 2016 OR 

 patients taking full-dose DPP4i OR 

 patients taking Liraglutide 1.2 mg or 1.8 mg OR 

 patients taking Exenatide QW 2 mg OR 

 patients taking Gliclazide modified release 30 mg or higher; 

 

On the other side, the exclusion criteria were the following (10): 
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 Diagnosis of type 1 diabetes 

 Age < 18 years or age >80 years 

 Previous therapy with SGLT2i 

 Previous Chronic Kidney Disease (CKD) defined as an estimated glomerular filtration rate of less 

than 60 ml/min/1.73 mq. 

 

To uniform the data extraction in all the centers involved in DARWIN-T2D, an automated software 

draws out data from the same electronic chart system (MyStar Connect [MSC], Me.te.da) (10). The 

specialist diabetes outpatient clinics enrolled in DARWIN-T2D were 46, uniformly distributed in the 

Italian territory, to better represent the diabetic population in Italy (10). 

The patients enrolled in DARWIN-T2D are 281 217, which represent about one fifth of all T2D patients 

attending specialist clinics in Italy, but only 17 285 (6.1%) were included in longitudinal assessments 

(10). 

 

Figure 2: A selection of data contained in the MyStar software, which are present in the DARWIN-T2D study. Figure extracted 

from (10). 

 

 



 

31 

Healthcare Administrative databases (HADs)  

 

The Healthcare Administrative Databases (HADs) are a source of RWD, extracted from databases of the 

National Health System (NHS).  

Italian HADs are composed by (27): 

- Pharmaceutical data, containing the Anatomical Therapeutic Chemical (ATC) classification system 

codes of medications purchased in territorial pharmacy or prescribed by general physicians, and data 

about pharmaceutical assistance services in direct distribution. 

- Hospital discharge forms, reporting the International Classification of Diseases and Related Health 

Problems (ICD-9-CM) codes of the causes of hospitalizations carried out in public hospitals, 

equivalent and private affiliated hospitals. 

- Access to the emergency room, with the causes’ ICD-CM-9 codes. 

- Outpatient services, that shows the codes of specialist services, i.e. visits and laboratory tests, and 

instrumental diagnostics which are provided by the public clinics and private hospital and extra-

hospital specialists; 

- Data about childbirth assistance, vaccinations and any other form of assistance guaranteed by the 

Essential Assistance Levels. 

These data are used retrospectively to conduct medical research, i.e. when the study is planned, both 

expositions and outcomes have been verified in the past. However, HADs are a secondary source of data, 

which means that they were recruited for administrative purpose and not with the aim of conducting 

epidemiological studies. In fact, often information about severity of disease, concomitant diseases, dose 

of prescribed medications, BMI, and blood pressure, are not reported (27). Furthermore, many diagnostic 

procedures are under-reported due to the lack of financial incentive to document them (32). For example, 

Campbell et al. (33) observed that infections, venous thromboembolism, neurologic deficits, and the need 

for re-operation were significantly under-reported in patients undergoing spine surgery by administrative 

databases if compared with a prospective data collection. Moreover, in Italy, only drugs that are 

reimbursable by the NHS are registered, leaving a lack of information for entire classes of drugs. 

HADs are interconnectable sources, that is data from different sources are linked to the same subject by 

means of a unique code that allows to reconstruct the health trajectory experienced by an individual in 

the NHS (27). 
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CHAPTER 2 
 

SIMILAR EFFECTIVENESS OF DAPAGLIFLOZIN AND GLP-1 RECEPTOR AGONISTS 

CONCERNING COMBINED ENDPOINTS IN ROUTINE CLINICAL PRACTICE: A 

MULTICENTRE RETROSPECTIVE STUDY 

 

Introduction 

 

Glucose Lowering Medications (GLMs) are routinely used in the clinical practice for the management 

of T2D patients. However, the choice between the different GLMs have to keep into account the presence 

of atherosclerotic cardiovascular disease (CVD) or chronic kidney disease (CKD) (34). In fact, lots of 

cardiovascular outcome trials (CVOTs) showed improved cardio-renal outcomes if sodium-glucose 

cotransporter-2 inhibitors (SGLT2i) (35,36) or glucagon-like peptide-1 receptor agonists (GLP-1RA) 

(37–39) were used, which are both GLMs. Such CVOTs showed a cardio protective effect for both of 

them, but it seems that GLP-1RAs are more effective in lowering glucose if compared with SGLT2is. 

However, a recent network meta-analysis which compares GLMs, suggested that there is not a significant 

difference in the glycemic control between these two medications (40).  

The cardio-vascular protection of GLMs is mainly due to their potential in lowering Hba1c, BW and 

systolic blood pressure (SBP)(33). In fact, in recent years it has been shown that managing 

simultaneously multiple risk factors (like hba1c, BW and SBP) could improve micro and macro vascular 

outcomes (41). 

The focus in this work is to compare in a RW context the patients that are undergoing to Dapagliflozin 

(SGLT2i) and patients that were initiated to GLP-1RA, to assess differences in the changes in glycemic 

efficacy parameters.  

However, as highlighted in the previous chapter, RWD have lots of issues to address, and appropriate 

statistical approaches are needed. In particular, the absence of randomization makes the comparison 

between the two treatment (GLP-1RA vs SGLT2i) challenging, due to confounding factors.  

To date, the most diffused way to deal with the absence of randomization in RWD, is the potential 

outcome framework (42), with propensity score (PS)-based techniques (43–45). Such methods are able 

to simulate the randomization process that typically occurs in RCTs, being able to balance, on average, 



 

33 

the individual baseline characteristics (46). The PS-based approaches more applied in biomedical 

research are PS matching (PSM) and Inverse Probability of Treatment Weighting (IPTW) (47), which 

reduce the effect of confounding factors. More details about PS-based methods could be found in the 

“Material and Methods” section below.  

 

Material and Methods 

 

Real Word Data: DARWIN-T2D 

 

In this study we used data from DARWIN-T2D, which was described in the previous chapter. 

We compared T2D patients initiated on SGLT2i (Dapagliflozin, at the full dose of 10 mg,) or a GLP-

1RA, which have not been treated with a member of the same drug class in the past and who continued 

to use the drug at the time of follow-up.  Dapagliflozin was chosen among the SGLT2is because it was 

the most widely used in Italy when the study was designed, meanwhile among GLP-1RAs were included 

exenatide and liraglutide. 

The primary endpoint was the proportion of patients with a simultaneous reduction in HbA1c, BW and 

SBP, without thresholds.  

Secondary endpoints were: 

(a) the proportion of patients that had a simultaneously reduction of Hba1c > 0.5%, BW > 2 kg, and 

SBP > 2 mm Hg  

(b) the proportion of patients that achieved specific values at follow up: Hba1c ≤ 0.7%, BW loss > 

3kg and SBP<140 mm Hg 

(c) change in the individual components of the composite endpoints.  

Data about age, sex, BMI, diabetes duration, systolic and diastolic blood pressure (SBP and DBP, 

respectively), smoking status, fasting glucose, HbA1c, complete lipid profile, serum creatinine, 

estimated glomerular filtration rate (eGFR, using the CKD-EPI equation), urinary albumin excretion 

rate (in mg/g of creatinine or equivalent), prior and concomitant GLM and other concomitant 

medications were collected. Then, micro-angiopathy was defined as the presence of at least one 

between retinopathy, neuropathy (somatic or autonomic), nephropathy (CKD stage III or higher or 

micro-/macro-albuminuria). Finally, Macro-angiopathy was defined as the presence of at least one 
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between ischemic heart disease, stroke/transient ischemic attack, peripheral arterial disease, 

revascularization of coronary, carotid or peripheral arteries. 

At the end of follow, i.e. at the date of the first date between 3 and 12 months after baseline up data 

about Hba1c, BW and BP were collected. 

 More details about DARWIN-T2D were reported in Chapter 1. 

 

Statistical analysis 

 

Continuous variables were described as means and standard deviations (SDs) or as medians and inter- 

quantile ranges (IQRs), when the distributions were not Gaussian (evaluated through Kolomogorov-

Smirnov test). Categorical variables were described as frequencies and percentages. 

Comparisons between the two treatment groups (Dapagliflozin vs GLP-1RAs) were performed via 

Student’s t tests or via Chi-squared tests. Comparisons between baseline and end of follow-up 

measurements in continuous variables were performed using the paired two-tailed Student's t test.  

An high amount of missing data are present in DARWIN-T2D (about 50%), so multiple imputation (MI) 

was performed, using the Multiple Imputation by Chained Equation (MICE) algorithm (48–50). In this 

way, five imputed datasets were obtained. Only covariates with less than 40% of missing values were 

included as predictors in the imputation process, including observed outcome values. Outcome variables 

were not imputed, which means that only patients with observed outcome data were retained for the 

analyses. 

I applied multivariable adjustment (MVA) and PS-based methods. 

 In the first one, logistic regression models were used when the outcome was dichotomous, and a linear 

regression model was used with continuous outcomes. The clinical characteristics that differed at 

baseline between the two groups were included as covariates. Kolmogorov–Smirnov tests were 

performed to evaluate if variables were Gaussians, and if p<0.05 they were log-transformed. 

In each of the five imputed datasets, PS was computed including the following baseline covariates: age, 

gender, duration of diabetes, BW, BMI, FPG, HbA1c, SBP and DBP, total and HDL cholesterol, 

triglycerides, eGFR, insulin and metformin therapy, micro-angiopathy and macro-angiopathy.  

PS Matching (PSM) and outcome analyses were then performed in each imputed subset. Finally, 

estimates of the treatment effect were pooled together to obtain the final treatment effect estimate. A 

sensitivity analysis was also performed with IPTW to estimate the Average Treatment Effect (ATE).  
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Statistical analyses were performed using R version 3.4.0 and a two-tailed p value less than 0.05 was 

considered statistically significant. 

 

Propensity Score 

 

Potential outcome framework  is a way to quantify causal effects, introduced in 1974 by Donald Bruce 

Rubin (51). Each subject enrolled in the study has two potential outcomes. Yi (1) is the outcome that the 

ith subject would have experienced if he/she had been treated (Z = 1), and Yi (0) is the outcome that the 

ith subject would have had if he/she had not been treated (Z = 0). It follows that for each subject it is 

possible to observe only one of these potential outcomes Yi (0) and Yi (1), because each subject can only 

be treated or untreated. In mathematical notation, the observed outcome for the ith subject, which is 

indicated with 𝑌𝑖 , is (46): 

𝑌𝑖 =  𝑍𝑖 𝑌𝑖 (1) + (1 − 𝑍𝑖 )𝑌𝑖 (0)           

Furthermore, for each subject the treatment effect is computed as 𝑌𝑖 (1) −  𝑌𝑖 (0), from which follows 

that the average treatment effect (ATE) is defined as E[𝑌𝑖 (1) −  𝑌𝑖 (0)] (46).  

However, in observational studies the treated and the untreated subjects often differ in lots of baseline 

characteristics, due to the absence of randomization. It follows that E[𝑌𝑖(1)|𝑍 = 1] ≠ E[𝑌𝑖(1)] (46). 

Thus, an unbiased estimate of the ATE cannot be computed by directly comparing outcomes between 

treated and untreated groups (46).  

When the outcome is dichotomous, the ATE could be estimated through the marginal Odds Ratio (OR). 

A way of estimating the marginal OR in the potential outcome framework is the PS approach, introduced 

by Rosenbaum and Rubin (52).  

More in detail, PS is defined for each subject as the probability to be assigned to the binary treatment Z, 

conditionally to the observed baseline covariates W = (W1, …, Wn). Mathematically, PS is denoted as 

                    𝑒𝑖 = 𝑃(𝑍𝑖 = 1|𝑾𝒊)                                     

for each subject i in the sample. 

PS is a balancing score, i.e. conditionally on PS, the measured baseline covariates share a similar 

distribution between treated and untreated subjects, resembling a RCT setting (52). 

Rosenbaum and Rubin defined treatment assignment strongly ignorable if (52): 

(a) (𝑌(1), 𝑌(0)) ╨ Z|W, i.e. the treatment Z assignment is independent from the potential outcomes 

conditionally on baseline covariates W or, alternatively, there are not unmeasured confounders; 
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(b) 0 < P(Z=1|W) <1, i.e. each subject has a probability of receiving the treatment Z that lies between 

0 and 1, but it is not exactly 0 or 1. 

These two conditions demonstrate that if treatment assignment is strongly ignorable, conditioning on the 

PS allows to obtain unbiased estimates of ATE (46). However, in RWD often these assumptions are not 

testable, and a biased treatment effect estimate could be obtained via PS methods. 

Typically, the procedure applied to estimate PS is logistic regression, in which treatment status Z is 

regressed on observed baseline characteristics W. 

Generally, PS techniques are advantageous if compared with regression-based approaches for at least 5 

reasons. First, all pre-treatment variables are summarized into a single score (the PS) which reduce the 

dimensionality. Second, PS-based approaches come from the potential outcome framework, which is a 

formal model for causal inference. So, causal questions can be well-defined and explicitly specified. 

Third, PS methods do not require to model the mean for the outcome, which can help avoid bias from 

mis-specification of that model. Fourth, PS-based techniques avoid extrapolating beyond the observed 

data unlike parametric regression modeling for outcomes which extrapolate whenever the treatment and 

control groups are disparate on pretreatment variable. Finally, PS adjustments can be implemented using 

only the pre-treatment covariates and treatment assignments of study participants without any use of the 

outcomes, which eliminates the potential for the choice of model specification for the pre-treatment 

variables to be influenced by its impact on the estimated treatment effect (45). 

Then, one of the PS-based approach involves the matching on the basis of the computed PS values, to 

create paired sets of treated and untreated subjects that share a similar value of the PS (52). When the 

matched sample has been formed, the treatment effect is estimated comparing outcomes between treated 

and untreated patients, miming a RCT setting (46). This method is referred as PS matching (PSM). 

 

Propensity Score Matching (PSM) 

 

The aim of  PSM is to create paired sets of treated and untreated subjects that have a similar value of the 

PS, which means that in average they share similar baseline characteristics, simulating a RCT setting 

(52). When the matched sample has been formed, outcomes between treated and untreated patients are 

compared (46). 
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In this study, PSM was performed with a 1:1 ratio without replacement. This means that once an untreated 

subject has been selected to match a treated subject, he/she cannot be selected anymore to be a match for 

other subjects in the treatment group (46). 

Then, PSM was performed with the nearest neighbour approach with a calliper of 0.15 standard 

deviations of the distribution of the PSs on the logit scale (46). If there were more than one untreated 

subject that had PS values equally close to that of the treated subject, one of these untreated subjects was 

selected randomly. No threshold has been set as maximum acceptable difference between the PS values 

of two matched subjects (46). The MatchIt R package was used  (53). 

When a PS analysis is performed, a crucial point is to evaluate whether the PS model has been adequately 

specified. PS is a balancing score, i.e. in strata of subjects that share the same PS value, the distributions 

of measured baseline covariates W will be quite similar between treated and untreated groups. So, a way 

for assessing whether the PS model has been correctly specified, involves the examination of the 

overlapping distributions of measured baseline covariates W between treated and untreated subjects that 

share the same estimated PS. 

Then, a comparison of the means of continuous covariates and the distribution of the categorical ones 

between treated and untreated subjects has to be performed in the matched sample. The standardized 

mean differences are usually used to compare the treatment groups (46). Usually, a standardized 

difference less than 0.1 is considered acceptable. 

 

Inverse Probability of Treatment Weighting (IPTW) 

 

The second most diffused PS-based approach is the inverse probability of treatment weighting (IPTW), 

a doubly robust (DR) estimator, which means that it remains consistent even if either a model for the 

PS or the outcome is correctly specified (44,54). in IPTW, weights based on the PS value are 

computed, to create a sample in which the distribution of observed baseline covariates W is 

independent of treatment assignment (46).  

More in detail, when we are interested in estimating ATE, weights are computed as follows (46):  

𝑤𝑖 =  
𝑍𝑖

𝑒𝑖
+  

1 − 𝑍𝑖

1 − 𝑒𝑖
 

for each subject i in the sample, where 𝑍𝑖 is 1 if the ith subject is treated and 𝑍𝑖 is 0 if the ith subject is 

not treated, and 𝑒𝑖 is the PS value for the ith subject. In other words, to each subject is assigned a weight 
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that is equal to the inverse of the probability of receiving the treatment that the subject actually 

received.  

Assuming that 𝑌𝑖 is the outcome measured for the ith subject, the estimate of ATE is computed by 

𝐴𝑇𝐸 =  
1

𝑛
 ∑

𝑍𝑖 𝑌𝑖

𝑒𝑖

𝑛
𝑖=1  - 

1

𝑛
∑

(1−𝑍𝑖) 𝑌𝑖

1−𝑒𝑖

𝑛
𝑖=1  

where n is the total number of subjects recruited in the sample. 

Furthermore, the variance estimation must account for the weighted nature of the sample, that requires 

robust variance estimation (46). 

 

Results  

 

From the 281 217 T2D patients recruited in DARWIN-T2D, 17 285 initiated GLMs. Among them, the 

patients that were undergoing Dapagliflozin (a SGLT2i drug) were 2 484, and patients who initiated a 

GLP-1RA medication were 2 247. 

Follow-up data, which were collected between 3-12 month after baseline, were available for 830 patients 

in the Dapagliflozin group and for 811 in the GLP-1RA group.  

The composite outcome (simultaneous reduction of hba1c, BW and SBP) was available for 473 patients 

who initiated Dapagliflozin and for 336 patients undergoing GLP-1RA.  

The flowchart of the study is represented in Figure 3, extracted from (55).  

 

Figure 3: Study flowchart. MVA, multivariable adjustment. PSM, propensity score matching (55). 

 

Baseline characteristics of the study participants are reported in Table 2. Some differences are underlined 

in the whole sample with complete data on the combined endpoint, before that PSM was performed, due 
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to the absence of randomization to the treatment groups. Such differences were in terms of age, diabetes 

duration, BMI, waist circumference, FPG, hba1c, EGFR, and associated therapy.  

After PSM, 231 patients per group were retained (in the first imputed dataset, the other were similar and 

they are reported in the flowchart in Figure 3).  

All the differences between the two treatment groups disappeared after that PSM was performed, and the 

baseline characteristics resulted well balanced, resembling a RCT setting. 

Table 2: . Clinical characteristics of study subjects. Data are presented for the entire cohort before PSM and after PSM. For 

matched groups, data are shown for the first imputed dataset, whereas p-values and standardized difference (D) are shown for 

all imputed dataset pooled together. Only observed data are shown. BMI, body mass index. SBP, systolic blood pressure. 

BDP, diastolic blood pressure. FPG, fasting plasma glucose. HDL, high-density cholesterol. LDL, low-density cholesterol. 

eGFR, estimated glomerular filtration rate. UAER, urinary albumin excretion rate. ACEi, angiotensin converting enzyme 

inhibitors. ARBs, angiotensin receptor blockers.  

 
  Before PSM After PSM 

 Dapagliflozin GLP-1RA p D Dapagliflozin GLP-1RA p D 

Number 473 336 - - 231 231 - - 

Age, years 59.6 ± 9.4 61.6 ± 9.2 0.003 0.212 60.5±9.1 60.4±9.2 0.899 0.030 

Sex male, % 61.1% 54.5% 0.059 0.135 58.4 55.0 0.511 0.014 

Diabetes duration, years 11.9 ± 8.1 9.8 ± 7.0 0.001 0.270 10.3±7.7 9.9±6.8 0.542 0.011 

BMI, kg/m2 33.4 ± 6.0 35.3 ± 5.5 <0.001 0.337 34.7±6.3 34.8±5.6 0.871 0.048 

Waist circumference, cm 113.4 ± 13.2 117.6 ± 12.1 0.003 0.336 116.7±14.1 115.5±11.7 0.520 0.039 

SBP, mm Hg 138.8 ± 18.2 140.6 ± 18.3 0.170 0.098 140.9±18.4 140.0±17.9 0.570 0.009 

DBP, mm Hg 80.4 ± 10.4 80.5 ± 9.1 0.864 0.012 81.2±9.9 80.3±9.3 0.303 0.004 

FPG, mg/dl 171.8 ± 51.3 152.3 ± 32.9 <0.001 0.453 158.9±47.4 153.3±34.3 0.171 0.020 

HbA1c, % 8.6 ± 1.4 7.8 ± 0.8 <0.001 0.721 8.0±1.2 7.9±0.9 0.273 0.056 

Total cholesterol, mg/dl 171.2 ± 36.4 171.3 ± 41.2 0.976 0.002 174.2±35.8 171.3±42.9 0.487 0.032 

HDL cholesterol, mg/dl 45.8 ± 13.4 45.3 ± 11.8 0.622 0.041 46.8±13.4 45.6±12.3 0.371 0.016 

Triglycerides, mg/dl 163.8 ± 99.9 164.6 ± 104.6 0.923 0.008 168.8±117.2 162.6±115.1 0.619 0.001 

LDL cholesterol, mg/dl 93.3 ± 31.3 92.7 ± 35.3 0.838 0.017 94.5±31.5 93.4±37.4 0.770 0.032 

eGFR, mg/min/1.73 m2 89.7 ± 15.7 85.8 ± 17.5 0.006 0.232 86.0±16.1 88.7±17.0 0.136 0.009 

UAER, mg/24h 105.0 ± 335.1 103.4 ± 273.0 0.955 0.005 83.5±241.7 103.1±526.3 0.700 0.023 

Complications             

Microangiopathy, % 36.3 31.3 0.146 0.105 33.0 28.8 0.385 0.003 

Macroangiopathy, % 31.9 32.6 0.853 0.014 34.0 31.6 0.677 0.019 

Associated therapy             

Metformin, % 99.4 89.0 <0.001 0.454 98.3 96.5 0.384 0.015 

Insulin, % 53.8 21.4 <0.001 0.709 30.9 29.4 0.815 0.015 

GLM classes, median 

(range) 

2 (1-4) 

 

2 (1-4) 

 

1.000 

 

0.000 

 

2 (1-4) 

 

2 (1-4) 

 

1.000 

 

0.000 

 Other therapies             

Anti-Platelet, % 45.7 42.3 0.368  0.068 44.8 42.0 0.634 0.080 

Statin, % 64.5 62.0 0.488 0.052 56.1 61.8 0.277 0.017 

ACE/ARBs, % 73.3 72.7 0.842 0.015 75.0 74.4 0.882 0.065 

Beta blockers, % 31.9 32.0 0.978 0.002 33.0 30.0 0.568 0.021 

Alpha blockers, % 7.1 9.0 0.363 0.070 7.1 5.9 0.596 0.049 

Diuretics, % 10.7 13.0 0.346 0.071 11.3 12.6 0.667 0.012 



 

40 

Since outcome data were available only for a half of the cohort, differences between patients with 

observed and with missing outcomes were evaluated. 

They significantly differed in terms of fasting glucose, total and LDL cholesterol, eGFR, and concomitant 

use of insulin and ACE inhibitors or angiotensin receptor blockers (Table 3). This leads thinking that the 

underlying missingness mechanism is not completely at random. 

 

Table 3: Comparison between patients included in the composite outcome analysis and patients excluded from the analysis 

for missing outcome information. BMI, body mass index. SBP, systolic blood pressure. BDP, diastolic blood pressure. FPG, 

fasting plasma glucose. HDL, high-density cholesterol. LDL, low-density cholesterol. eGFR, estimated glomerular filtration 

rate. UAER, urinary albumin excretion rate. ACEi, angiotensin converting enzyme inhibitors. ARBs, angiotensin receptor 

blockers. CCB, calcium channel blockers. 

  Excluded Included Comparison 

  % 

available 

Value % 

available 

Value p D 

Number   809   832     

Age, years 100.0 61.4±9.1 100.0 60.4±9.3 0.039 0.10 

Sex male, % 100.0 57.0 100.0 58.3 0.584 0.03 

Diabetes duration, years 100.0 11.4±7.8 100.0 11.0±7.7 0.259 0.06 

BMI, kg/m2 83.3 34.1±6.0 97.7 34.2±5.9 0.711 0.02 

Waist circumference, cm 30.1 112.7±12.7 38.3 115.4±12.9 0.013 0.21 

SBP, mm Hg 23.7 138.8±19.4 100.0 139.5±18.3 0.608 0.04 

DBP, mm Hg 23.7 81.8±10.7 99.9 80.4±9.9 0.090 0.13 

Fasting glucose, mg/dl 60.9 171.0±49.6 92.1 163.9±45.7 0.009 0.15 

HbA1c, % 85.6 8.2±1.2 100.0 8.2±1.2 0.161 0.07 

Total cholesterol, mg/dl 50.0 178.7±41.5 75.9 171.3±38.5 0.004 0.18 

HDL cholesterol, mg/dl 48.1 45.1±12.7 74.5 45.6±12.7 0.514 0.04 

Triglycerides, mg/dl 49.6 174.2±127.0 75.8 164.1±101.8 0.159 0.09 

LDL cholesterol, mg/dl 46.3 99.3±33.9 72.9 93.0±33.0 0.004 0.19 

eGFR, ml/min/1.73 m2 25.2 82.2±17.8 56.7 87.0±16.6 <0.001 0.27 

UAER, mg/g 21.6 99.5±281.2 35.7 108.1±328.4 0.772 0.03 

Associated therapy 99.9  99.9    

Insulin, %   91.2  95.2 0.001 0.16 

Metformin, %  39.4  40.5 0.665 0.02 

Other therapies 71.7  89.0    

Anti-platelet, %  44.3  44.3 0.991 0.00 

Statin, %  61.4  63.5 0.451 0.04 
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ACEi/ARBs, %  66.5  73.1 0.010 0.14 

CCB, %  22.7  25.0 0.337 0.05 

Beta-blockers, %  30.0  31.9 0.441 0.04 

Diuretics, %  10.3  11.7 0.421 0.04 

Complications       

Microangiopathy, % 88.4 36.7 98.3 34.2 0.301 0.05 

Macroangiopathy, % 80.3 29.5 88.4 32.2 0.279 0.06 

 

 

The median follow-up was 5.9 months (IQR 4.0-6.5 months) in the Dapagliflozin group and it was 6.0 

(IQR 4.4-6.6) months in the GLP-1RA group, without a statistically significant difference. 

In Table 4 results about outcome analyses are reported, according to MVA and PSM approaches.  

In the primary endpoint, no statistically significant results are obtained. In the multivariate analysis, the 

OR was 0.91 (95% CI, 0.64–1.30; P = 0.631) for Dapagliflozin vs GLP-1RA (Figure 4 A). The 

percentage of patients reaching a reduction in HbA1c greater than 0.5%, in BW greater than 2 kg and in 

SBP greater than 2 mm Hg in unadjusted and MVA analyses did not differ between groups (OR, 0.82; 

95% CI,0.53–1.27; P = 0.397) (Figure 4 B). 

 

Table 4: Percentages of patients achieving combined endpoints in the two groups. The 3 composite endpoints are shown and 

data are reported for the unadjusted analysis (percentages observed in the whole cohort), the multivariable adjustment 

(percentages estimated from regression models), and the propensity score matched analysis (percentages observed in matched 

groups). BW, body weight. SBP, systolic blood pressure. OR, odds ratio. Multivariable adjustment included the following 

variables: age, sex, diabetes duration, BMI, fasting plasma glucose, HbA1c, eGFR, concomitant use of metformin and insulin. 

 
Combined endpoint  Dapagliflozin 

(n=473) 

GLP-1RA 

(n=336) 

p OR 

Any reduction in HbA1c, BW, and SBP, %     

Unadjusted 31.3 29.8 0.642 1.05 (0.85-1.30) 

Multivariable adjustment 29.9 31.7 0.631 0.91 (0.64-1.30) 

Propensity score matching (n=229/group) 30.3 30.2 0.760 0.93 (0.61-1.44) 

ΔHbA1c>0.5%; ΔBW>2 kg; ΔSBP>2 mm Hg, %     

Unadjusted 16.9 17.3 0.897 0.98 (0.72-1.33) 

Multivariable adjustment 16.0 18.6 0.397 0.82 (0.53-1.27) 

Propensity score matching (n=229/group) 16.5 18.2 0.561 0.86 (0.53-1.41) 

HbA1c≤7.0%; ΔBW≥3%; SBP <140 mm Hg, %     

Unadjusted 9.5 15.5 0.010 0.61 (0.42-0.89) 

Multivariable adjustment 10.5 14.0 0.187 0.71 (0.44-1.15) 

Propensity score matching (n=229/group) 12.6 17.7 0.183 0.70 (0.41-1.19) 
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A statistically significant result is achieved only evaluating a simultaneous reduction of hba1c ≤ 7.0 %; 

ΔBW ≥ 3 %; SBP < 140 MM HG %, in the unadjusted model, that has been reached by the 9.5% in the 

Dapagliflozin group and by the 15.5% in the GLP-1RA group (p = 0.01) with an OR = 0.61 (95% CI 

0.42-0.89). However, this effect is not still significant in the multivariate analyses (Figure 4 C). In the 

MVA, HbA1c declined more significantly in the GLP-1RA group by 0.32 ± 0.07%; P < 0.001 (Figure 

4D), whereas changes in BW and SBP are not different between groups (Figure 4 E, F).  

PSM analyses lead to similar results, as reported in Table 4 and Figure 4. The proportion of patients that 

simultaneously decline in HbA1c, BW and SBP are not different between the two groups, with a OR= 

0.93; 95% CI,0.61–1.44; P = 0.760 (Figure 4A). The OR for the composite end-point of reduction in 

HbA1c greater than 0.5%, in BW greater than 2kg and in SBP greater than 2 mm Hg was 0.86; 95% CI 

0.53–1.41; P = 0.561 (Figure 4B). Furthermore, the proportion of patients that simultaneously reaching 

a HbA1c ≤ 7.0%, a BW loss of at least 3 Kg and a final SBP ≤ 140 mm Hg is lower in the Dapagliflozin 

group, but the result is not statistically significant (OR = 0.70; 95% CI 0.41-1.19; P =0.183) (Figure 4C). 

Finally, HbA1c declined more in the GLP-1RA group, by 0.29% (95% CI, −0.46; −0.12; P < 0.001) 

(Figure 4D), whereas changes in BW and SBP are not statistically different between Dapagliflozin and 

GLP-1RA groups (Figure 4E, F). 

 

 

Figure 4: Extracted from (55). Comparative effectiveness on combined and individual endpoints. The proportion of patients 

in the unadjusted, multivariable adjusted (MVA), and propensity score matched (PSM) analyses attaining the primary 

combined endpoint of any reduction in HbA1c, body weight, and systolic blood pressure (A), the combined endpoint of a 

reduction of HbA1c >0.5%, body weight >2 kg, and systolic blood pressure >2 mm Hg (B) or the composite target of final 

HbA1c ≤7.0%, body weight loss ≥3%, and systolic blood pressure <140 mm Hg (C). Change from baseline to the end of 

follow-up in HbA1c (D), body weight (E), and systolic blood pressure (F) in the unadjusted, MVA, and PSM analyses. 

*p<0.05 for the indicated comparison. The histograms in panels D through F indicate mean and SEM. 
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We conducted also some sensitivity analyses, to test results stability.  

First, a sensitivity analysis was performed including the prior GLM class number in the PS model, 

because line of therapy could influence the probability of receiving the treatment. However, we do not 

obtain any significant change in the results, if compared with the main outcome analyses (Table 5). 

 

 

 
Table 5: Sensitivity analyses. The number of prior glucose lowering medication (GLM) classes was included in the propensity 

score (PS) model to perform PS matching (PSM). The pooled OR (with 95% C.I.) for each composite endpoint was obtained 

from the 5 imputed datasets and calculated for patients who received Dapagliflozin versus those who received GLP-1RA.  

   

Combined endpoint Dapagliflozin GLP-1RA p OR 

Unadjusted N=473 N=336   

Any reduction in HbA1c, BW, and SBP, % 31.3 29.8 0.642 1.05 (0.85-1.30) 

ΔHbA1c>0.5%; ΔBW>2 kg; ΔSBP>2 mm Hg, % 16.9 17.3 0.897 0.98 (0.72-1.33) 

HbA1c≤7.0%; ΔBW≥3%; SBP <140 mm Hg, % 9.5 15.5 0.010 0.61 (0.42-0.89) 

Multivariable adjustment N=473 N=336   

Any reduction in HbA1c, BW, and SBP, % 29.9 31.7 0.631 0.91 (0.64-1.30) 

ΔHbA1c>0.5%; ΔBW>2 kg; ΔSBP>2 mm Hg, % 16.0 18.6 0.397 0.82 (0.53-1.27) 

HbA1c≤7.0%; ΔBW≥3%; SBP <140 mm Hg, % 10.5 14.0 0.187 0.71 (0.44-1.15) 

Propensity score matching N=229 N=229   

Any reduction in HbA1c, BW, and SBP, % 30.3 30.2 0.760 0.93 (0.61-1.44) 

ΔHbA1c>0.5%; ΔBW>2 kg; ΔSBP>2 mm Hg, % 16.5 18.2 0.561 0.86 (0.53-1.41) 

HbA1c≤7.0%; ΔBW≥3%; SBP <140 mm Hg, % 12.6 17.7 0.183 0.70 (0.41-1.19) 

 

 

 

Secondly, in Table 6 are reported the results performing IPTW, with and without including the prior 

number of GLM classes in the PS model.  

However, also in this case results did not change if compared with the main outcome analyses. 

In Figure 5, balancing properties of PSM were reported. All the characteristics reached a Standardized 

Mean Difference (SMD) < 10%, so an optimal balancement between the Dapagliflozin and GLP-1RA 

groups was reached.  

In the right part, the distribution of PS in the two groups is reported, showing a good overlap in baseline 

clinical characteristics between patients undergoing Dapagliflozin and patients under GLP-1RA. 
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Table 6:  Sensitivity analyses. Inverse probability treatment weighting (IPTW) was used to estimate the average treatment 

effect with or without incorporation of the prior number of GLM classes in the PS. The pooled OR (with 95% C.I.) for each 

composite endpoint was obtained from the 5 imputed datasets and calculated for patients who received Dapagliflozin versus 

those who received GLP-1RA.  

 

Outcome PSM IPTW 

Any reduction in HbA1c, BW, and SBP   

Without prior GLM classes 0.93 (0.61-1.44) 0.93 (0.63-1.39) 

Incorporating prior GLM classes 0.93 (0.60-1.44) 1.05 (0.73-1.52) 

ΔHbA1c>0.5%; ΔBW>2 kg; ΔSBP>2 mm Hg   

Without prior GLM classes 0.86 (0.53-1.41) 0.85 (0.54-1.34) 

Incorporating prior GLM classes 0.74 (0.40-1.35) 0.93 (0.61-1.43) 

HbA1c≤7.0%; ΔBW≥3%; SBP <140 mm Hg   

Without prior GLM classes 0.70 (0.41-1.19) 0.67 (0.37-1.22) 

Incorporating prior GLM classes 0.56 (0.29-1.07) 0.75 (0.37-1.55) 

 

 

Figure 5: Extracted from (55). A. Rebalancing of patient characteristics after propensity score matching. The graph shows the 

standardized difference (STD) for each variable calculated in the dataset before (blue) and after (red) propensity score 

matching (PSM). A STD < 0.10 (dashed line) is indicative of a good match between groups. BMI, body mass index. SBP, 

systolic blood pressure. BDP, diastolic blood pressure. FPG, fasting plasma glucose. HDL, high-density cholesterol. LDL, 

low-density cholesterol. eGFR, estimated glomerular filtration rate. UAER, urinary albumin excretion rate. ACEi, angiotensin 

converting enzyme inhibitors. ARBs, angiotensin receptor blockers. CCB, calcium channel blockers. B. Common support 

between the two groups of patients. Common support refers to the overlap in clinical characteristics between the group of 

patients who received Dapagliflozin and the group of patients who received GLP-1RA. The graph represents the distribution 

of propensity scores in the two groups of treatment in the first imputed dataset. 
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Discussion 

 

GLMs are of fundamental importance for secondary cardiovascular prevention of adverse events in T2D 

patients. However, different classes of GLMs exist, such as SGLT2i and GLP-1RAs. Both of them have 

favorable effects on the control of glycemic and extra-glycemic parameters, but they have not been 

analyzed in RCTs as combined endpoints, in terms of Hba1c, BW and SBP control. 

In this study, we obtained a similar proportion of patients initiating Dapagliflozin, a SGLT2i medication, 

or a GLP-1RA who reached a simultaneous reduction in HbA1c, BW and SBP parameters.  

More in detail, GLP-1RA resulted more effective than Dapagliflozin if we consider the reduction in 

HbA1c by almost 0.3% in both the MVA (95% CI, 0.2%–0.5%) and PSM (95% CI, 0.1%–0.5%) analyses 

(Figure 4D). This result is in line with the DURATION-8 trial (56). 

Then, also when we considered specific thresholds in the composite outcome, we did not obtain 

significant differences between the two treatment groups. A possible explanation of this result, could be 

the fact that the effect of Dapagliflozin on BW and SBP is counterbalanced by the larger effects of GLP-

1RA on HbA1c. Moreover, since the follow-up period of our study was relatively short (maximum 1 

year), we cannot exclude that a difference in the treatment effect can be meet in a longer follow up.  

Finally, we considered proportion of patients simultaneously reaching specific targets, obtaining a trend 

favorable to GLP-1RA, probably due to its greater glycemic control effect.  

Even if in Figure 5 is showed a good overlap of the PS’ support between the two treatment groups, 

important differences were highlighted in the baseline characteristics of the study participant. 

To deal with these confounders, which is a typical problem that occurs when analyzing RWD, we applied 

different statistical approaches: MVA, PSM and IPTW. The first allows using data from all patients but 

it is based on a very strong assumption of linearity between covariates and outcomes. PSM simulates 

instead a quasi-experimental setting and makes no assumption about the relationships between variables 

that enter in the PS model and those in the outcome one. However, PSM restricts the analysis to matched 

patients, excluding a substantial part of data (about 40%), that could lead to biased results. Moreover, it 

is important to notice that the two different approaches give very similar results for all the endpoints 

considered.  

Finally, IPTW analysis was performed as sensitivity analysis, to test the robustness of results. IPTW, 

differently from PSM, allows to retain all the patients included in the sample, reweighted for their 

probability to be assigned to the Dapagliflozin group given their baseline characteristics. Also in this 

case, results obtained through PSM and MVA were confirmed. 
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An important limitation of such statistical approaches is that they are not able to rule out residual 

confounding by unmeasured variables, such as diet and exercise habits, as well as patient preference, 

compliance and socio-economic status.  

Furthermore, MVA and PS-based methods are highly sensitive to misspecification of both treatment and 

outcome models, which often occurs in observational context, so more robust methods are required. In 

fact, it has been shown that if the treatment and/or outcome model is misspecified, the OR estimate is 

biased in the direction of the conditional OR. This aspect it has been deepened in the following chapter. 

Another heavy limitation of this study, is the presence of a very high percentage of missing data, another 

typical issue in RW studies. Missing data in covariates were handled with multiple imputation, thereby 

increasing the uncertainty of the estimates. For what concern outcome data, we decided not to impute 

them, led to exclusion of a big amount of patients from the analysis (about 50%), further limiting 

generalizability of the results. Also this aspect need further investigation, as pointed out in the next 

chapter. 

In conclusion, this study shows that initiation on Dapagliflozin can be as effective as initiation on a GLP-

1RA, in the simultaneous reduction of HbA1c, BW and SBP within routine specialist care. However, 

many issues related to RWD limitations, such as model misspecification and missing outcome data 

remained in this study open matters, that I have faced in the next chapter.  
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CHAPTER 3 

TARGETED MAXIMUM LIKELIHOOD ESTIMATION OF TREATMENT 

EFFECTIVENESS UNDER OUTCOME DATA MISSINGNESS AND MODEL 

MISSPECIFICATION: A SIMULATION STUDY TO ASSESS RESULTS FROM THE 

DARWIN-T2D STUDY 

 

Introduction 

 

In RW studies the absence of randomization in the assignment of treatment, model misspecification, and 

missingness in both covariates and outcome data made the estimation of the marginal (i.e. at the 

population level) treatment effect very challenging. 

When dealing with a dichotomous outcome, the most diffused approach is logistic regression (LR), which 

nevertheless requires lots of assumptions to be satisfied to be appropriately used. In particular, it is 

necessary to correctly specify the regression model, all the confounders must be measured, the 

observations should be independent from each other, it is not allowed multi-collinearity among the 

independent variables, and it is required linearity between the log odds and the independent variables. 

However, when dealing with RWD these assumptions often are not verified or they are not testable, 

leading to a highly biased estimate of the treatment effect of interest. 

Furthermore, LR model approximates the estimate of marginal OR estimating the conditional OR (i.e. at 

the subject level). In this way, we are implicitly assuming homogeneity of the treatment effect in strata 

of subjects’ observed covariates. In other words, it does not consider neither the potential treatment effect 

heterogeneity nor the presence of unmeasured confounders (57). In fact, in a observational study, 

conditional and marginal treatment effects coincide only if there was no unmeasured confounding, the 

true outcome model was known, and the outcome was continuous (46). Instead, if the outcome is 

dichotomous, in a observational setting, even without unmeasured confounding and even if the outcome 

model was correctly specified, the conditional and the marginal ORs do not coincide (46). 

The marginal OR is often approximated with the conditional OR, for example estimated taking advantage 

from the potential outcome framework, through PS-based approaches introduced in the previous chapter. 

However, it has been shown that these methods often lead to biased estimates of the conditional ORs 
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(46,58), because PS-based methods are sensitive to the misspecification of both treatment and outcome 

models, they require lots of assumptions to be verified like the absence of unmeasured confounders, and 

the positivity assumption, and they suffer from missingness (59). 

Lots of different methods have been developed to deal with missing data, both in the independent 

variables and in outcomes. The most diffused approach is the complete case (CC) method, i.e. only 

observations with no missing data were retrieved for the analysis (60). However, this approach leads to 

less precise and more biased estimates. An alternative to CC, is single or multiple imputation (MI), in 

which observed baseline variables are used to impute missing values, through regression-based 

approaches (61). Then, an alternative approach to both CC and MI is inverse probability weighting 

(IPW), which weights each subject with the inverse of the probability of being a CC. However, none of 

these approaches is statistically valid in general, and they can lead to serious bias in the treatment effect 

estimate(61). 

In this study we focused mainly on missingness about dichotomous outcome data, but also on models 

misspecification, in a observational setting. 

The risk of bias due to missingness depends on the reasons why data are missing, that are commonly 

classified as: missing completely at random (MCAR), missing at random (MAR), and missing not at 

random (MNAR) (61). In Table 7, their main characteristics are summarized. 

 

Table 7: Definitions and main features of missing completely at random (MCAR), missing at random (MAR), missing not at 

random (MNAR). 

 
Missing completely at random (MCAR) 

When subjects with missing data are a random sub-sample of the individuals participating in a study, the missing data are 

referred as MCAR (83) (82) (84).  Only in this scenario, CC analysis yields unbiased estimates of the treatment effect (83) 

(82) (84). However, CC analysis is less efficient (i.e. imprecise) because not all the data are used (82). 

Missing at random (MAR) 

When missing data mechanism is not MCAR but it is related to some observed covariates, we referred to it as MAR data 

(83). In this case, performing a CC analysis may increase the bias in the estimate of the treatment effect (82). Rather 

observed data can be used as predictors of the missing outcome data, that can be imputed through regression-based 

approaches. The imprecision of the imputation process can be assessed performing multiple imputation, where multiple 

values are sampled from an estimated distribution and imputed (82). Hence, multiple data sets with different imputed 

outcomes are created. Then, each data set is analyzed separately, and results are pooled together by using standard 

techniques that take into account the variation between the imputed data sets. 

Missing not at random (MNAR) 

In this case, missingness depends by unobserved data or by the unobserved variable itself. With MNAR data, the 

aforementioned approaches to deal with missing data (i.e. CC, MI or IPW) are not suitable and there is no a universal 

method of handling this kind of data properly (82). With MNAR data, bias due to analyses based on MI may be bigger 

than the bias resulting from the CC analysis (83). 
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In general, the most used approaches to deal with missing data, such as CC and MI, yield to unbiased 

estimates only when MCAR or MAR is present. However, there are not rules which state how to correctly 

identify missingness mechanism of our data. When MNAR data are present, analyses result strongly 

biased if they are based on conventional statistical approaches, which instead make MCAR or MAR 

assumptions (62). Furthermore, the consequences of model misspecification, commonly diffused in 

RWD, are more relevant when MNAR data are present (63). 

In recent years, double robust methods have been developed to handle with both model misspecification 

and missingness in outcome data (64). In particular, in this work we applied the Targeted Maximum 

Likelihood Estimator (TMLE) (65) and we compare it with other statistical approaches to estimate the 

marginal treatment effect under model misspecification and non-randomized treatment assignment, in 

particular when missing dichotomous outcome data are generated under MNAR or MAR mechanisms.  

More details about double robust methods and TMLE are given in the next section. 

Both real-world (DARWIN-T2D) and simulated data are analysed. 

 

Material and Methods 

 

In this study, we compared different approaches widely used to estimate marginal OR, both in RW and 

in a simulated setting. The methods applied were:  

(i) covariate adjustment through logistic regression (LR), 

(ii)  PS adjustment,  

(iii) PS matching (PSM),  

(iv) Inverse Probability of Treatment Weighting (IPTW) via PS, 

(v) TMLE. 

The main focus of this study was about the mechanism generating missing data in the outcome, and we 

suppose it of type MNAR or MAR, that are the still less explored and rules on how to deal with them are 

still lacking. Furthermore, as showed in the previous chapter, we observed that in DARWIN-T2D patients 

with observed and missing outcome data differed in many covariates, suggesting a possible MNAR or 

MAR mechanism on outcome data. 

LR and PS-based analyses were performed applying the CC approach. We do not perform MI because it 

has been shown that CC and MI lead to comparable results (66,67). 

More details about PS-based approaches are reported in the previous section, meanwhile TMLE is 

explained in the next paragraph. 
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Targeted Maximum Likelihood Estimator (TMLE) 

 

In 2006 Mark J. van der Laan and Daniel Rubin introduced TMLE, an efficient, double robust (DR), 

semi-parametric, maximum likelihood estimator, which is based on G-computation (65). TMLE includes 

a secondary “targeting” step, which has the aim to optimize the bias-variance tradeoff for the parameter 

of interest (68). 

G-computation algorithm was introduced in 1986 by Robins (69) to estimate causal effect in presence of 

time-dependent confounders affected by a time-varying exposure. In fact, in such scenario, traditional 

regression-based models typically fail. G-computation belongs to the generalized method (G-method) 

family (70), which includes the g-formula, marginal structural models, and structural nested models (71). 

Compared with standard regression-based methods, i.e. linear, logistic or Cox regressions, the G-methods 

provide consistent estimates of contrasts (i.e. ratios or differences) of average potential outcomes under 

less restrictive assumptions (72).  

 In fact, regression-based approaches rely on the strong assumption that the effect measure is constant 

across different levels of the confounders which are included as covariates in the model (73), excluding 

a priori a possible heterogeneity in the treatment effect. The g-formula allows instead to relax this 

hypothesis, thanks to a generalization of standardization. 

G-computation relies on the estimation of the outcome mechanism, specified by E (Y|Z, W). 

Contrariwise, PS methods involve the estimation of the treatment mechanism, defined as P(Z=1|W). 

TMLE involves estimation of both the outcome and the treatment mechanisms, i.e. E (Y|Z, W) and 

P(Z=1|W) (Table 8)  (68). 

 

Table 8: G-computation, Propensity Score, TMLE 

G-computation E (Y|Z, W) 

T
M

L
E

 Propensity Score P(Z=1|W) 

 

TMLE is a DR semi-parametric method (45), which estimate treatment and outcome models taking 

advantages from machine learning (ML) approaches, which do not require strong assumptions on data 

distributions and allow to account for a large number of covariates, even with complex and non-linear 

relationships. Furthermore, it has been shown that the estimation of PS through ML approaches, in the 

case of binary treatment, outperforms simple logistic regression models with iterative variable selection 

(45). 
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DR estimation combines a model for the outcome with weighting to obtain an estimator that yields 

consistent estimates of the treatment effect if either the model for the outcome or the PS model is correct 

but not necessarily both (45). DR estimators do not require that the data-generating distributions are 

correctly identified, and are semi-parametric in this sense (74). 

Between G-methods, we can perform standardization via g-formula and the IPW via the marginal 

structural modeling theory. However, if used individually, standardization requires that the outcome 

model is correctly specified, meanwhile IPW requires a correct specification of the exposure model. DR 

methods combine this two approaches into a single technique that has more relaxed assumptions. In fact, 

DR methods require a correct specification (in the case of parametric regression) of the outcome model 

or the exposure model, but not both. 

TMLE can estimate many different statistical estimands of interest. In this work, our interest was about 

estimating ATE, i.e. the mean difference in outcomes between patients allocated to two different 

treatments, adjusting for confounders. ATE is defined as follows: 

ATE = Ψ = EW [E [Y |Z=1, W] − E [Y|Z=0, W]]. 

TMLE methodology is based on the counterfactual framework discussed in the previous chapter, which 

translates the problem of the estimation of the causal effect in a missing data problem. In fact, for each 

subject we can observe only one of the two potential outcomes. 

Some assumptions are required (75):  

- conditional exchangeability, i.e. there are no unmeasured confounders of the treatment effect on the 

outcome;  

-  positivity assumption, which means that if there are some strata of W in which no observations 

received the treatment Z=z, then we cannot compare the treatment effect at level z; 

- consistency assumption, that means that the observed outcome is equal to the counterfactual outcome 

corresponding to the observed treatment. 

More details about TMLE are reported in the following sections. 

 

Step 1: Initial estimate of the outcome 

 

The first step of TMLE involves the estimation of the expected value of the outcome using treatment and 

confounders as predictors, considering only observations with observed outcome, which we will indicate 

with 𝛥 =  1, with the following equation: 
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𝑄(𝑍, 𝑾) =  𝐸 (𝑌|𝑍, 𝑾, 𝛥 =  1). 

Formally, to estimate this conditional expectation it is possible to use any regression-based approach, 

however it is preferable to use Super Learner (SL) (76), which combine flexible ML models, that allows 

to relax assumptions on the underlying data distributions. In fact, SL is an alternative statistical approach 

based on ML ensemble methods that finds the optimal combination of a collection of algorithms to 

minimize the cross validated risk. A mathematically proven theorem states that SL algorithm performs 

asymptotically as well as the oracle selector, i.e., the best candidate between learner algorithms inserted 

into SL (77) (78). A representation of SL is given in Figure 6, extracted from the paper of M.J. van der 

Laan, in which it was introduced (76). 

 

 

Figure 6: Flow diagram of SL, extracted from (67). 

 

The first step of SL requires to specify a list of L base algorithms, called “base learners”. Then, k-fold 

cross-validation is performed on each of these algorithms and a N x L matrix is obtained with the N 

cross-validated predicted values for each of the L learners. On this matrix, along with the original 

response matrix, a meta-learning algorithm is trained and it is used to generate predictions on the test set. 
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Then, for every observation we can estimate the outcome, under three different scenarios: 

1. If every observation received the treatment they actually received 

�̂�(𝑍, 𝑾) =  �̂�[𝑌|𝑍, 𝑾, 𝛥 =  1]  

2. If every observation received the treatment, whether they actually did or not 

�̂�(1, 𝑾) =  �̂�[𝑌|𝑍 = 1, 𝑾, 𝛥 =  1]  

3. If every observation received the control, whether they actually did or not 

�̂�(0, 𝑾) =  �̂�[𝑌|𝑍 = 0, 𝑾, 𝛥 =  1]  

The average difference between �̂�[𝑌|𝑍 = 1, 𝑾, 𝛥 =  1] and  �̂�[𝑌|𝑍 = 0, 𝑾, 𝛥 =  1] is a possible 

estimation of ATE, called standardization, g-formula estimation, or G-computation. 

𝐴𝑇𝐸𝐺−𝑐𝑜𝑚𝑝
̂  == 𝛹𝐺−𝑐𝑜𝑚𝑝

̂  = 
1

𝑁
  ∑ (�̂�𝑁

𝑖=1 [𝑌|𝑍 = 1, 𝑾, 𝛥 =  1] −  �̂�[𝑌|𝑍 = 0, 𝑾, 𝛥 =  1]). 

 

Both G-computation and TMLE start with the same first step, which involves the estimation of the 

outcome mechanism and the potential outcomes. Then, G-computation computes ATE as the difference 

in the potential outcomes, meanwhile TMLE before computing ATE involves a second step, in which it 

incorporates information from the treatment assignment mechanism (68). 

 

 

Figure 7: Commonalities and differences in the estimation sequence across 3 different estimators for the average treatment 

effect (ATE), extracted from (68). 

 

Step 2: Estimate of the probability of treatment model  

 

In the second step, the probability of receiving the treatment is estimated through SL, conditionally to 

the confounders. Mathematically: 
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g(W) = P(Z=1|W). 

Such exposure mechanism is then used to update the initial estimate of E(Y|Z,W, 𝛥 =  1). 

At this point, we have to compute the so called “clever covariates”, that take advantage of the information 

contained in the PS model and in the missingness mechanism on the outcome model P (Δ = 1 | Z, W) as 

follows: 

H(Z, W) =
𝛥

𝑃(𝛥 = 1 | 𝑍,𝑊)
 (

𝐼(𝑍=1)

𝑃(𝑍 = 1 |𝑊)
− 

𝐼(𝑍=0)

𝑃(𝑍 = 0 |𝑊)
 ), 

were I() states for the indicator function. When this missingness mechanism on outcome is taken into 

account, we will refer to TMLE_MOD. 

 

Step 3: Estimate the fluctuation parameter 

 

Subsequently, the initial outcome regression model is updated, using information about the treatment 

mechanism obtained in step 2, to solve an estimating equation for the efficient influence fit. A logistic 

model is implemented: 

𝑙𝑜𝑔𝑖𝑡 (𝐸(𝑌|𝑍, 𝑾, 𝛥 =  1 ) =  𝑙𝑜𝑔𝑖𝑡 (�̂�(𝑌|𝑍, 𝑾, 𝛥 =  1 ) +  𝜀𝐻(𝑍, 𝑾), 

Where the fluctuation parameter 𝜀 is estimated via a maximum likelihood approach.  

 

Step 4: Update the initial estimates of the expected outcome 

 

At this point, the initial estimates of the expected outcome are updated, using the inverse of the logit 

function, that we will indicate with expit. In this phase, TMLE modifies the initial estimate of E(Y|Z,W) 

in order to get a less biased estimate of the target parameter. 

1. Update the expected outcomes of all observations, given the treatment they actually received and 

their baseline confounders 

�̂�*[Y| Z, W] = expit(logit(�̂�[Y|Z, W]) + 𝜀̂ H(Z, W)). 

2. Update the expected outcomes, conditional on baseline confounders and everyone receiving the 

treatment 

�̂�*[Y| Z = 1, W] = expit(logit(�̂�[Y|Z = 1, W]) + 𝜀̂ H(1, W)). 

3. Update the expected outcomes, conditional on baseline confounders and no one receiving the 

treatment 

�̂�*[Y| Z = 0, W] = expit(logit(�̂�[Y|Z = 0, W]) + 𝜀̂ H(0, W)). 
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Step 5: Compute the statistical estimands of interest and confidence errors  

 

Now it is possible to compute the estimands of interest, that in our case is the ATE, as the mean difference 

in the updated outcome estimates under the two treatments: 

𝐴𝑇𝐸𝑇𝑀𝐿𝐸
̂  = 𝛹𝑇𝑀𝐿�̂�  = 

1

𝑁
  ∑ (�̂�∗𝑁

𝑖=1 [𝑌|𝑍 = 1, 𝑾] −  �̂�∗[𝑌|𝑍 = 0, 𝑾]). 

The efficient influence curve (IC) is then used to compute the Standard Error (SE) and the Wald-type 

95% confidence interval (95% CI) (30, 37). More in detail, the IC is described by the following equation: 

𝐼�̂� = (𝑌 − �̂�∗[𝑌|𝑍, 𝑾]) 𝐻(𝑍, 𝑾) + �̂�∗[𝑌|𝑍 = 1, 𝑾] - �̂�∗[𝑌|𝑍 = 0, 𝑾] - 𝐴𝑇�̂�. 

Based on semiparametric and empirical processes theory the IC of a consistent and asymptotically linear 

estimator comes from the gradient of the pathwise derivative of the target parameter such that 

𝐴𝑇�̂�- ATE = 
1

𝑁
 ∑ 𝐼𝐶𝑖

𝑁
𝑖=1  – 𝑂𝑃(

1

𝑁
). 

 

Following the weak law of the large numbers, the Op in the above equation converges to 0 at a rate of 

1/N as the sample size (N) goes to infinity. 

The IC is defined as a function of the observed data and the data‐generating components that one can 

derive for a given model and target parameter that has mean 0 and finite variance. In sufficient large 

samples, the central limit theorem states that the variance of the estimator is thus the variance of the IC 

divided by N.  

It follows that 

𝑆�̂� = √
𝑣𝑎𝑟(𝐼�̂� )

𝑁
 

Where 𝑣𝑎𝑟(𝐼�̂�) is the sample variance of the estimated IC (79). 

 

In this study, two different analyses were performed using TMLE. In the first (TMLE1), in SL were 

included only the learners included by default in the tmle() function of the tmle package in the R software 

(i.e. LR model with main terms only, LR model obtained from stepwise selection, LR model including 

interaction terms). In the second (TMLE2), in addition to the default learners, the following ones are also 

included: LR model with interaction terms obtained from stepwise procedures, generalized additive 

models (GAMs) (80), random forest (RF) (81) and recursive partitioning and regression trees (RPART) 

(82).  TMLE analyses were performed on both CC data (TMLE CC) and considering the missingness 

mechanism on outcome data (TMLE MOD), using the IPW approach embedded in the TMLE itself, as 

described in step 2. 
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Real World case study: DARWIN-T2D 

 

DARWIN-T2D was used as RWD. The main focus in this work is to compare patients which were 

undergoing Dapagliflozin (which is a SGLT2i drug) and patients that were initiated to a comparator GLM 

in the class of GLP-1RA, to compare the changes in glycemic efficacy parameters, as described more in 

detail in the previous chapter. 

T2D patients initiated on Dapagliflozin or a GLP-1RA were compared to evaluate the proportion of 

patients with a simultaneous reduction in glycated haemoglobin (HbA1c) > 0.5%, body weight (BW) > 

2 kg, and systolic blood pressure (SBP) > 2 mm Hg (55).  

Missing covariate data were imputed through MICE algorithm (48), obtaining 5 imputed datasets. Only 

covariates with less than 40% missingness were included as predictors in the imputation process, 

including also the observed outcome values. However, the outcome variable was not imputed and we 

cannot exclude a priori a possible MNAR mechanism. In fact, as shown in the previous chapter, subjects 

with observed and missing outcome data significantly differ in terms of age, waist circumference, fasting 

glucose, total and LDL cholesterol, eGFR, insulin associated therapy and ACEi/ARBs therapy (55). 

Then, PS-based model was estimated via LR approach in each imputed dataset, considering the following 

baseline covariates: age, sex, duration of diabetes, BW, BMI, FPG, HbA1c, SBP and DBP, total and 

HDL cholesterol, triglycerides, eGFR, insulin and metformin therapy, micro-angiopathy and macro-

angiopathy.  

Finally, outcome analyses were performed on each of the 5 imputed database, and results were pooled 

following Rubin’s rules (83) and the within approach (61) . 

More details about DARWIN-T2D data can be found in the previous chapters. 

 

Simulation study 

 

The most common approach to perform a simulation study in biomedical research is to assume that all 

random variables taken into account are conditionally independent. However, this is a very stringent 

assumption, which do not reflect reality.  

An alternative and more realistic approach, is to construct a probabilistic model with conditional 

independence assumptions. More in detail, in this work data were simulated by defining a directed acyclic 

graph (DAG), as shown in Figure 8, using the simcausal R package (79). 
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The DAG was constructed to reflect the relationships between the main variables in the case study 

(DARWIN-T2D), i.e. sex (w1), age at diagnosis (w2), BMI (w3), LDL cholesterol (w4), insulin use (w5) 

and macro-angiopathy (w6). To establish these relationships from DARWIN-T2D, we used a Bayesian 

network (BN) to obtain the conditional probability distributions of the main variables. More details about 

the theory behind BNs can be found in Chapter 4. Peter-Clark stable algorithm with 100-fold bootstrap 

was applied for the structural learning of the BN (84).  Finally, a more robust BN was obtained by 

averaging the 100 BNs obtained and considering only relationships between variables which were present 

in at least 95% of times (85).  

 

 

Figure 8: Direct acyclic graph (DAG) of the simulation scheme. W are the covariates, Y is a binary outcome, Z is a binary  

treatment. 

 

 

Thus, following the dependencies between variables and collecting the summary statistics of the 

DARWIN-T2D variables, we performed the following simulation process: 

 

w1 ~ Bernoulli (0.6); 

w2 ~ Gaussian (mean = 60, sd = 8); 

w3 ~ Gaussian (mean = 35, sd = 6); 

w4 ~ Gaussian (mean = 90 if w1 = 1 and mean = 97 if w1 = 0, sd = 30), 
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w5 ~ Bernoulli (plogis (- 2 + 0.05 * w2)); 

w6 ~ Bernoulli (plogis (-12 + 0.50 * w3 - w1)); 

Z ~ Bernoulli (plogis (-2 + 0.05 * w3 – 0.20 * w5 + 0.10 * w6)); 

Y ~ Bernoulli (plogis (-3 + Z – 0.05 * w2 + 0.05 * w4 – 0.80 * w1 – 0.20 * w1 * w2)), where plogis 

is the inverse logit function: 1/ log[p/(1p)]. 

 

Since in the study in the previous chapter, we observed that the subjects with observed and missing 

outcome differed in many covariates, we can exclude that a MCAR mechanism is present in the outcome 

data. For this reason, we simulated two different scenarios under MNAR mechanism with 20% and 40% 

of missing data percentage on the outcome. More in detail, when MNAR mechanism was considered, 

the probability of the missingness in Y depends on the Y value itself and, in particular, if Y = 1, we set 

the probability of missingness to 70%.  

The MAR mechanism was also analyzed, because it is not possible to state which kind of missingness 

mechanism is present in observed data. In this case, for each subject, a weighted sum score is computed 

via a linear regression equation of each covariate with the same weight, excluding the outcome variable. 

Then, to each patient is associated a probability of having missing outcome data based on the weighted 

sum score, i.e., subjects with a higher weighted sum score have a higher probability of missing outcome 

data (86). 

The ampute function in the mice R package was used to simulated missingness mechanisms (86). 

In the simulation study, we performed the comparisons between the different methods in the situation 

that both the treatment and outcome models were misspecified, that is the most realistic situation. More 

in detail, in the treatment model Z, w2 and w6 were included as covariates, and w3 and w4 were included 

in the outcome model (Y): 

Y ~  𝛼0Z + 𝛼1 w3 + 𝛼2 w4 

Z ~ 𝛼3w2 + 𝛼4 w6 

The true marginal OR value was 1.66 and it was evaluated on 5 000 000 observations generated through 

the DAG in Figure 8. 

Sensitivity analyses were performed to evaluate the importance of sample size. So, the analyses were 

performed with 1 000 and 5 000 observations. Overall, 1 000 simulations were performed to estimate the 

mean bias, the SE and the 95% nominal coverage intervals (95% NCI).  

The bias was defined as the differences between the true marginal OR and the mean of the 1 000 ORs 

estimated. 
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Results  

 

Real World case study: DARWIN-T2D 

 

From the 281 217 patients with T2D collected in the DARWIN-T2D study, longitudinal data were 

available for 2 484 patients that were undergoing Dapagliflozin and for 2 247 subjects who initiated a 

GLP-1RA medication.  

Follow-up data were collected for 830 patients in the Dapagliflozin group and 811 in the GLP-1RA arm. 

The composite outcome was available for 473 patients who initiated Dapagliflozin and for 336 patients 

undergoing GLP-1RA. Therefore, there was a high percentage of missing outcome data (49%). 

PS matching was performed between 229 subjects in each group. More details about this analysis are 

reported in the previous chapter and in (55). 

In Table 9, results about the estimate of the treatment effect of Dapagliflozin compared to GLP-1RA 

obtained through the different approaches are reported. LR and PS-based methods performed following 

the CC approach, yield similar results: they do not underline any difference between the two treatments. 

On the other hand, TMLE2, both following the CC and the MOD approaches, obtained statistically 

significant results. More in detail, TMLE2 (MOD) gives an estimate of OR = 1.35 with a statistically 

significant 95% CI (1.04 – 1.73). Dapagliflozin seems to be more effective than GLP-1RA in the 

simultaneous reduction of hba1c, BW and SBP. 

 

Table 9: Results of the DARWIN T2D study. Dapagliflozin vs GLP 1RA. OR = odds ratio, 95% CI = 95% confidence interval, 

LR = logistic regression, PS = propensity score, IPTW = inverse probability of treatment weighting, TMLE = targeted 

maximum likelihood estimator, CC = complete case, MOD = Missing Outcome Data. TMLE1: main terms LR, stepwise 

forward and backward model selection, main terms LR and interaction terms; TMLE2: main terms LR, stepwise forward and 

backward model selection, main terms LR and interaction terms, stepwise forward and backward model selection with 

interaction, generalized additive models (GAM), random forest (RF) and recursive partitioning and regression trees (RPART). 

 

 

 

 

 

 

 

 

Method OR (95% CI) 

LR 0.82 (0.53 – 1.27) 

PS matching 0.86 (0.53 – 1.41) 

PS covariate 0.81 (0.52 – 1.26) 

IPTW 0.85 (0.54 – 1.34) 

TMLE 1 (CC) 1.33 (0.91 – 1.96) 

TMLE 2 (CC) 1.53 (1.09 – 2.14) 

TMLE 1 (MOD) 1.34 (0.95 – 1.91) 

TMLE 2 (MOD) 1.35 (1.04 – 1.73) 
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Then, in Table 10 we can analyse the contribution of each single learner selected by SL in TMLE2 

(MOD). We can see that only the LR model with interaction terms was never selected by SL. On the 

other hand, the LR with stepwise and GAM model contribute 51% and 31% of the weight in the optimal 

predictor, respectively.  RF was the algorithm with the highest weight on the prediction of treatment 

assignment (Z model) with 53%, followed by the LR with stepwise procedures (19%), and RPART 

(18%). Finally, the missingness mechanism on the outcome was mainly modelled by the RPART 

algorithm (70%), followed by GAM (21%) and, with a low contribution, by LR (9%). 

 

Table 10: Coefficients of the algorithms selected by the super learner algorithm in TMLE2 (MOD) for the DARWIN T2D 

study 

 Model 

SL algorithms Y Propensity Score Missingness mechanism on Y 

on outcome 
LR 0 0 0.09 

Step 0.51 0.19 0 

Step + interactions 0.12 0.10 0 

LR + interactions 0 0 0 

GAM 0.31 0 0.21 

RF 0.03 0.53 0 

RPART 0.03 0.18 0.70 

 

 

 

Simulation study 

 

Results of the simulation study are reported in Table 11. TMLE resulted as the approach with the smallest 

bias and the smallest SE, with every percentage of missingness on outcome (20% and 40%), and for each 

sample size tested (1 000 and 5 000). 

Furthermore, results showed that including missingness mechanism on outcome data in TMLE (TMLE 

2 MOD) improves the OR estimation if compared with the CC approach. 

Between PS-based methods, IPTW resulted as the best approach, with the lower bias and SE, and the 

higher 95% NC. 

LR, PS matching and PS included as a covariate in the regression model, had comparable performances. 

When simple size increased, bias decreased in all the approaches, as expected.  
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Table 11: Results of the simulation study with different scenarios and the MNAR mechanism on the outcome. OR= odds 

ratio, 95% CI = 95% confidence interval, SE = standard error, 95% NC = 95% nominal coverage interval, MNAR = missing 

not at random, n = sample size, LR = logistic regression, PS = propensity score, IPTW = inverse probability of treatment 

weighting, TMLE = targeted maximum likelihood estimator, CC = complete case, MOD = Missing Outcome Data. TMLE1: 

main terms LR, stepwise forward and backward model selection, main terms LR and interaction terms; TMLE2: main terms 

LR, stepwise forward and backward model selection, main terms LR and interaction terms, stepwise forward and backward 

model selection with interaction terms, generalized additive models (GAM), random forest (RF) and recursive partitioning 

and regression trees (RPART). 

 

 LR PS 

matching 

PS covariate IPTW TMLE1 

(CC) 

TMLE2 

(CC) 

TMLE1 

(MOD) 

TMLE2 

(MOD 

SCENARIO 1: 20% MNAR on Y, n = 1 000 

Mean OR 1.89 1.90 1.88 1.84 1.79 1.79 1.75 1.75 

Mean Bias 0.23 0.25 0.23 0.18 0.13 0.13 0.09 0.09 

SE 0.67 0.84 0.68 0.66 0.58 0.58 0.58 0.57 

95% NC  94.5 93.9 94.0 94.5 94.5 92.4 93.9 91.6 

SCENARIO 2: 40% MNAR on Y, n = 1 000 

Mean OR 2.06 2.07 2.05 2.00 1.97 1.98 1.92 1.94 

Mean Bias 0.40 0.41 0.39 0.34 0.31 0.32 0.26 0.28 

SE 1.30 1.31 1.30 1.23 1.20 1.18 1.15 1.17 

95% NC 94.2 96.0 94.6 95.5 94.9 92.4 94.2 91.2 

SCENARIO 3: 20% MNAR on Y, n = 5 000 

Mean OR 1.78 1.77 1.77 1.74 1.70 1.70 1.66 1.66 

Mean Bias 0.12 0.11 0.11 0.08 0.04 0.04 0.002 0.006 

SE 0.25 0.28 0.25 0.25 0.22 0.22 0.22 0.22 

95% NC 92.0 93.5 92.7 94.6 95.6 94.2 94.6 93.4 

SCENARIO 4: 40% MNAR on Y, n = 5 000  

Mean OR 1.78 1.79 1.78 1.74 1.73 1.73 1.68 1.68 

Mean Bias 0.12 0.13 0.12 0.08 0.07 0.07 0.02 0.02 

SE 0.37 0.43 0.37 0.36 0.35 0.35 0.35 0.35 

95% NC 95.2 95.6 95.1 95.7 95.8 94.8 96.1 95.2 

 

 

The same conclusions were achieved by simulating a MAR mechanism on the outcome, as reported in 

Table 12. However, in this case, differences between CC and MOD approaches when using TMLE are 

less evident, as expected. Also in this case, LR, PS matching and PS used as covariate in a regression 

model had comparable performances, and IPTW resulted the preferable PS-based approach. 

There are no relevant differences in terms of the 95% NCI in the MNAR scenario; however, they are 

slightly higher for TMLE approaches in the MAR scenario reported in Table 12. 
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Table 12: Results of the simulation study with different scenarios and the MAR mechanism on the outcome. OR = odds ratio, 

95% CI = 95% confidence interval, SE = standard error, 95% NC = 95% nominal coverage interval, MAR = missing at 

random, n = sample size, LR = logistic regression, PS = propensity score, IPTW = inverse probability of treatment weighting, 

TMLE = targeted maximum likelihood estimator, CC = complete case, MOD = missing outcome data. TMLE1: main terms 

LR, stepwise forward and backward model selection, main terms LR and interaction terms; TMLE2: main terms LR, stepwise 

forward and backward model selection, main terms LR and interaction terms, stepwise forward and backward model selection 

with interaction terms, generalized additive models (GAM), random forest (RF) and recursive partitioning and regression 

trees (RPART). 

 

 

Discussion 

 

In RWD the absence of randomization, confounding and the high percentage of missing data both in 

dependent and independent variables, are challenging open issues that make necessary the application of 

more advanced ML approaches, which are able to overpass such criticisms, like for example TMLE and 

SL. 

In this chapter, the performances of traditional methods (LR and PS-based approaches) are compared 

with those of TMLE, which is a more advanced ML method which takes advantage of SL, that address 

model misspecification and missingness in the outcome data including non-parametric models. In fact, 

in the previous chapters, we observed that DARWIN-T2D has a big amount of missing outcome data 

 

 

LR PS 

matching 

PS 

covariate 

IPTW TMLE1 

(CC) 

TMLE2 

(CC) 

TMLE1 

(MOD) 

TMLE2 

(MOD) 
SCENARIO 1: 20% MAR on Y, n = 1 000 

Mean OR 2.00 1.99 2.00 1.95 1.79 1.79 1.78 1.78 

Mean Bias 0.35 0.33 0.34 0.29 0.13 0.13 0.12 0.12 

SE 0.56 0.58 0.55 0.51 0.36 0.35 0.35 0.35 

95% NC 87.7 91.3 88.0 90.7 94.0 92.9 94.5 92.0 

SCENARIO 2: 40% MAR on Y, n = 1 000 

Mean OR 2.08 2.06 2.07 2.00 1.82 1.82 1.81 1.80 

Mean Bias 0.42 0.40 0.42 0.34 0.16 0.16 0.15 0.14 

SE 0.69 0.74 0.69 0.63 0.43 0.43 0.44 0.43 

95% NC 88.8 91.2 88.8 92.1 94.1 92.2 93.8 92.0 

SCENARIO 3: 20% MAR on Y, n = 5 000 

Mean OR 1.96 1.93 1.96 1.90 1.76 1.76 1.75 1.75 

Mean Bias 0.30 0.27 0.30 0.24 0.10 0.10 0.09 0.09 

SE 0.35 0.34 0.35 0.30 0.17 0.18 0.17 0.17 

95% NC 60.2 70.8 61.2 72.5 90.4 89.1 90.4 89.3 

SCENARIO 4: 40% MAR on Y, n = 5 000  

Mean OR 2.03 2.00 2.03 1.96 1.80 1.80 1.79 1.79 

Mean Bias 0.37 0.34 0.38 0.30 0.14 0.14 0.13 0.13 

SE 0.44 0.43 0.44 0.37 0.22 0.22 0.22 0.22 

95% NC 56.6 71.3 56.4 72.0 88.2 87.2 88.6 88.4 
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(about 50%) and we showed that the missingness mechanism could be MNAR or MAR, because patients 

with observed and missing outcome data significantly differ in many characteristics. For this reason, we 

mainly focused in this analysis on MNAR and MAR missingness mechanisms on outcome. They are of 

particular interest, because they are the less deepened and studied in literature and it is still unclear how 

to deal with them, even if they suffer more of the consequences of model misspecification if compared 

with MCAR (87).  

In some studies (88,89),  the authors showed that TMLE implemented with SL has the lowest bias if 

compared with misspecified parametric model based methods (like LR or PS-based approaches). 

However, a comparison of how the mechanism of missingness in the outcome variable affects their 

performance is still lacking in literature. 

In this chapter we performed a simulation study, resembling the DARWIN-T2D characteristics taking 

advantage by the BN theory. The simulation study confirmed that TMLE has the lowest bias and SE, 

even when a large amount of missing outcome data was present, both under MNAR and MAR 

mechanisms. 

 Additionally TMLE (MOD), i.e. the one that includes the model about missingness mechanism on 

outcome, showed a better performance than CC, confirming that CC has to be used only when MCAR 

or MAR mechanisms are present (66).  

The 95% NC intervals from the different methods that were applied to our analysis are similar when the 

outcome was affected by MNAR, while the 95% NC is higher for the TMLE when an MAR mechanism 

is considered. 

In DARWIN-T2D, we obtained an opposite association when TMLE was applied, if compared with the 

estimates obtained via traditional methods, like LR or PS-based approaches. More in details, if we look 

at the result obtained via TMLE, we observed that Dapagliflozin simultaneously reduces Hba1c, BW and 

SBP, significantly more than GLP-1RAs. Since there are no RCTs providing background for this 

clinically relevant comparison, such results have a heavy interesting therapeutic implications for routine 

clinical practice.  

Missingness patterns in RW settings may be driven by the characteristics of the different therapies being 

compared, thereby affecting the outcome comparison. We can try to explain the reversing of the OR by 

the fact that when the model is misspecified LR and PS-based methods gave a biased estimate of the 

marginal OR stretching in the direction of the conditional OR (58). When the conditional and marginal 

treatment effects do not coincide and they are in opposite directions (90); we refer to this situation as the 
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non-collapsibility of the OR (91). Furthermore, because of the non-collapsibility of the OR, even a 

correctly specified LR model generally does not produce estimates of the marginal treatment effect (79). 

The strength of TMLE is that algorithms included in SL aids to identify interactions between covariates 

and nonlinearities, which are not detected through traditional approaches and that could contribute to the 

change in direction of the OR. In fact, as sensitivity analysis we applied TMLE also without the 

intervention of the SL algorithm, but using the GLM approach only for the Y, Z and Δ models. In this 

case, we obtained a weaker OR with a non-statistically significant 95% CI (OR = 1.11; 95% CI 0.79 – 

1.69). 

However, TMLE has some limitations. For example, it is a very complex algorithm by a computational 

point of view, which is intensified by SL algorithm.  

Furthermore, a limitation of the study is that only a few scenarios were considered in the simulation 

process, but this choice was justified by the aim of providing a simulation scheme as close as possible to 

DARWIN-T2D characteristics. In this view, we taken advantage of BN theory. However, we made some 

simulations also varying some settings, like the amount of missingness in the outcome or the sample size, 

to test stability and generalizability of our results, obtaining promising insights.  

Results of this study suggest that in observational studies TMLE is able to simultaneously deal with 

misspecification and missingness on outcome data, even under MNAR (or MAR) scenarios. 

Furthermore, TMLE outperforms both the LR model and PS-based methods in terms of bias, SE and 

95% NCI. In fact, traditional approaches require lots of assumptions to be satisfied and they are more 

suitable when MCAR or MAR mechanism on outcome are present but, from observed data, it is not 

possible to state which kind of missingness mechanism is underlying and  we cannot a priori exclude the 

presence of a MNAR mechanism (62), which amplifies the consequences of model misspecification. 

So, the recommendation which arises from this study is to pay more attention to misspecification and to 

mechanism which is underlying the generation of missing outcome data and not a priori excluding MAR 

or MNAR schemes. Furthermore, it is advisable to use simulations which are tailored to the case study 

of interest, to identify which approach is the more adapt to that specific situation.  

In conclusion, our study confirms that TMLE has appealing statistical properties. In fact, it is able to 

simultaneously deal with model misspecification through advanced ML algorithms used by SL and with 

missing outcome data, even under MNAR mechanism. 

This chapter has been submitted as  

Targeted maximum likelihood estimation of treatment effectiveness under outcome data missingness and model 

misspecification: a simulation study to assess results from the DARWIN-T2D study. Sciannameo V, Fadini GP, 

Bottigliengo D, Avogaro A, Baldi I, Gregori D, Berchialla P. American Journal of Epidemiology. 
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CHAPTER 4 
ENROLMENT CRITERIA FOR DIABETES CARDIOVASCULAR OUTCOME TRIALS 

DO NOT INFORM ON GENERALIZABILITY TO CLINICAL PRACTICE: THE CASE OF 

GLUCAGON-LIKE PEPTIDE-1 RECEPTOR AGONISTS 

 

Introduction 

 

In the field of diabetes pharmacotherapy, before marketing authorization approval large cardiovascular 

safety trials (CVOTs) are needed to evaluate the effect of new glucose-lowering medications (GLMs) 

against comparators or placebo (10). Such CVOTs are designed mainly to show the superiority of the 

new treatment in the reduction of major adverse cardiovascular outcome events (MACE) in patients 

affected by T2D. 

Lots of CVOTs, published mainly by The New England Journal of Medicine and by The Lancet, showed 

the efficacy of many drugs belonging to the class of glucagon-like peptide-1 receptor agonists (GLP-

1RAs), in the prevention of cardiovascular complications. For example, the LEADER study showed the 

superiority of liraglutide, the SUSTAIN-6 study highlighted the efficacy of semaglutide, the HARMONY 

study pointed out the superiority of albiglutide and the REWIND study showed the efficacy of 

dulaglutide. All these drugs were compared with placebo, to evaluate the reduction of the rates of three-

point MACE (cardiovascular death, non-fatal myocardial infarction or stroke) (92)  (93) (38) (39) . All 

these prestigious studies shared the same conclusion: GLP-1RAs improve the cardiovascular outcomes 

of T2D patients (94). 

However, the main limitation of such studies is that, to rapidly collect a sufficient number of 

cardiovascular events, patients enrolled in CVOTs are high-risk subjects. So, doubts arise about how 

much these patients are representative of the entire population affected by T2D (95). Furthermore, RCTs 

enroll a very selected group of patients, which are typically more motivated, compliant, and instructed 

in drugs use, free from co-morbidities and younger, if compared with the real world general population 

of T2D patients (10). On the other side, RWD well describe the patients that really may receive a drug 

(10). This lead to questions on how much CVOT results are generalizable to the routinely clinical practice 

setting and how much the differences between patients enrolled in RCTs and real world subjects have an 

impact on the generalizability of trial results. 
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Only a few studies have analyzed what proportion of T2D patients from various real world clinical care 

settings satisfy the I/E criteria of specific CVOTs (96–99). However, none of them analyzed what is the 

proportion of real-world patients corresponding to CVOT populations. 

The aim of this study was to show how much the eligible population of patients differs from those of 

CVOTs, and calculate what proportion of patients from routine care would generate a true CVOT-like 

population. 

 

Material and Methods 

 

Data from the DARWIN-T2D study were used (see previous chapters for more details). 

We extracted data about I/E criteria regarding the following CVOTs on GLP-1RAs, published during 

2015-2019: 

 

- LEADER 

The “Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results” 

(LEADER) trial was initiated in 2010, to evaluate the cardiovascular effect of liraglutide (GLP-

1RA) when added to standard care in T2D patients. 

LEADER is a double-blind trial, where T2D patients with high cardiovascular risk were randomly 

allocated to receive liraglutide or placebo. The primary composite outcome was the first 

occurrence of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal 

stroke. A total of 9 340 patients were included in the study, and the primary outcome occurred in 

significantly fewer patients in the liraglutide group than in the placebo one (hazard ratio, 0.87; 

95% CI 0.78 to 0.97). More details about the LEADER trial can be found in (39).  

 

- SUSTAIN-6  

The “Trial to Evaluate Cardiovascular and Other Long-term Outcomes with Semaglutide in 

Subjects with Type 2 Diabetes” (SUSTAIN-6) was conducted to assess the non-inferiority of 

semaglutide (GLP-1RA) with an extended half-life of approximately 1 week, in comparison with 

placebo, in terms of cardiovascular safety in T2D patients. In this trial, 3 297 T2D patients were 

randomly allocated to a standard-care regimen receiving once-weekly semaglutide (0.5 mg or 1.0 

mg) or to placebo for 104 weeks. The primary composite outcome was the first occurrence of 

cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke, and a hazard ratio of 0.74 
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was obtained, with a 95% CI from 0.58 to 0.95, so the non-inferiority of semaglutide was 

assessed. More details can be found in (38). 

 

- EXSCEL 

The “Exenatide Study of Cardiovascular Event Lowering” (EXSCEL) trial has the main aim of 

assessing the long-term cardiovascular safety and efficacy of exenatide, administered once 

weekly in addition to usual care, in T2D patients who had a wide range of cardiovascular risk. 

14 752 T2D patients were randomly allocated to treatment or placebo group. In the treatment 

group, subcutaneous injections of extended-release exenatide at a dose of 2 mg were 

administered. The primary composite outcome was the first occurrence of death from 

cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. A hazard ratio of 0.91, 

95% CI from 0.83 to 1.00 was obtained. More details about this trial can be found in  (37). 

 

- REWIND  

The “Researching Cardiovascular Events with a Weekly Incretin in Diabetes” (REWIND) trial 

was designed to assess whether the addition of dulaglutide (GLP-1RA) to the anti-hyperglycemic 

regimen of middle-aged and older T2D patients safely reduces the incidence of cardiovascular 

outcomes compared with placebo. REWIND is a multicenter, randomized, double-blind trial 

conducted in 371 sites in 24 countries. Subjects were T2D patients with high cardiovascular risk, 

in fact they were subjects with either a previous cardiovascular event or cardiovascular risk 

factors. The primary outcome was the first occurrence of the composite endpoint of non-fatal 

myocardial infarction, non-fatal stroke, or death from cardiovascular causes and a hazard ratio of 

0.88 was obtained with a 95% CI 0.79 – 0.99. More details can be found in  (92). 

 

-  PIONEER-6 

The “Peptide Innovation for Early Diabetes Treatment” (PIONEER-6) trial was specifically 

designed to investigate if T2D patients treated with oral semaglutide, which registered an excess 

in the cardiovascular risk. PIONEER-6 is randomized, double-blind, placebo-controlled trial. A 

total of 3 183 patients were randomly assigned to receive oral semaglutide or placebo. The 

primary outcome was the first occurrence of a major adverse cardiovascular event (death from 

cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke), and a hazard ratio of 

0.79, 95% CI from 0.57 to 1.11 was found. More details can be found in  (100). 
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- HARMONY   

The main aim of the HARMONY trial is to determine the safety and efficacy of albiglutide (GLP-

1RA) in preventing cardiovascular death, myocardial infarction, or stroke. HARMONY is a 

double-blinded, randomized, placebo controlled trial conducted in 610 sites in 28 countries. 9 463 

participants were enrolled and randomly assigned to groups, with a ratio of 1:1. A hazard ratio of 

0.78, 95% CI 0.68–0.90 was obtained in the analysis of the primary outcome, which indicated 

that albiglutide was superior to placebo in the protection against cardiovascular outcomes. More 

details about HARMONY can be found in  (93). 

 

We adapted their I/E criteria to the availability of data in DARWIN-T2D, as reported in the 

supplementary Table 1, at the end of this chapter. 

Patients in DARWIN-T2D with missing data for key I/E criteria were excluded from the analysis. 

We identify the T2D patients of DARWIN-T2D which could be eligible to be included in each CVOT 

considered, and we compared the average clinical characteristics. 

Finally, we extracted from DARWIN-T2D the largest subgroup of patients with average clinical 

characteristics similar to those of patients enrolled in each CVOTs considered. 

None specific tool was already available to this task, so we developed a novel strategy, which is described 

below. 

 

Statistical analysis 

 

Descriptive statistics were reported, reporting for continuous variables means and standard deviations 

(SDs), meanwhile categorical variables were described via frequencies and percentages.  

To evaluate the similarity between characteristics of groups, standardized mean differences (SMD) were 

used for each variable considered. We defined a good balancement if a SMD<10% was achieved. 

 

Sampling CVOT-like populations 

 

No tool was available to detect the largest subgroup of T2D patients in DARWIN-T2D with clinical 

characteristics in average similar to those of T2D patients enrolled in the CVOTs considered. 

So, in this work, we developed a new strategy, based on the Bayesian Network (BN) theory. 
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More in detail, a BN is a graphical probabilistic model which represents knowledge about an uncertain 

domain, that uses Bayesian inference for probability computations. BNs are represented as direct acyclic 

graph (DAG), where each node corresponds to a unique random variable and conditional probabilities 

between variables which are conditionally dependent were represented as edge (Figure 9) (101).  

 

Figure 9. An example of DAG. 

 

In the example shown in Figure 9, variables A and B are the so called “parents nodes” of the variable C, 

whereas the child of variable C is the variable E. The two variables A and B are marginally independent, 

but they become conditionally dependent, given variable C. 

Each node is associated with a probability function that takes as input a particular set of values for the 

node's parent variables, and gives as output the probability of the variable represented by the node. 

Following the paths specified in the BN, it is possible to obtain a factorized representation of the joint 

probability distribution by considering conditional dependences. If an edge exists between A and B, it 

means that P(B|A) is a factor in the joint probability distribution. 

The joint distribution of a BN is equal to the product of P (node | parents(node)) for all nodes, 

expressed as follows: 

𝑃(𝑋1, … , 𝑋𝑛) =  ∏ 𝑃(𝑋𝑖|𝑋1, … , 𝑋𝑖−1) =  ∏ 𝑃(𝑋𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))

𝑛

𝑖=1

𝑛

𝑖=1

 

where n is the number of random variables taken into account. 

More in details, in our study continuous variables in DARWIN-T2D were categorized into 5 classes, 

according to each CVOT summary statistics, making the assumption of normality of distributions.  
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Observations in DARWIN-T2D with missing data were deleted, because BN is more robust when dealing 

with complete data. 

Then, one BN was constructed on DARWIN-T2D for each CVOT, because categorizations of continuous 

variables in DARWIN-T2D were made according to each CVOT’s summary statistics. In this way, 

conditional probability distributions were obtained, reflecting the conditional dependencies among 

variables. 

The variables included in the construction of BN were the following: age, sex, diabetes duration, hba1c, 

BMI, eGFR, SBP, DBP, heart failure, established cardiovascular events, cardiovascular risk factors. 

The Peter-Clark stable algorithm with 100-fold bootstrap was employed for the structural learning of the 

BN (84). Then, we averaged 100 BNs learned, to obtain a more robust BN dealing with sampling 

variability, considering only relationships among variables obtained in at least 95% of times (85). 

Finally, the set of probabilities for conditional nodes were computed as posterior estimations, whereas 

for unconditional nodes, probabilities were assigned by the computation of the ratio between CVOT and 

DARWIN-T2D frequencies, for each variable category, and then they were normalized to 1. 

In this way, a final probability of inclusion in each CVOT for each patient in DARWIN-T2D was 

computed from the joint probability, which was decomposed into the product of conditional and 

unconditional probabilities through the BNs. 

Subsequently, a random number was generated from a uniform distribution, between the maximum and 

the minimum value of the probability of inclusion, for each CVOT. Then, for every subject in DARWIN-

T2D, if the probability of inclusion was greater than the half of the random number, he/she was included 

in the subsample of the DARWIN-T2D which is similar to the CVOT considered. Then, balancement of 

this group with CVOT was evaluated through SMD, and when all the SMDs were smaller than 10%, 

balancement was judged achieved.  Elsewhere, if almost one variable resulted in a SMD>20%, starting 

from the variable with the higher SMD, 2% of patients with values in the tails of the distribution were 

sampled and removed from the DARWIN-T2D subsample.  

We iteratively repeated this procedure until SMDs were all lower than 20%. 

Finally, we joined together all of these balanced groups and, for each variable the same procedure was 

applied to reach a final SMD<10% for all the variables considered. 

We performed a sensitivity analysis to assess the best thresholds of SMDs, and the choice of the double 

threshold 20% and 10% showed the best performances. 

All of the analyses were performed using R version 3.5.0 (102). 
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Results  

 

From the 281 217 patients with T2D collected in the DARWIN-T2D study, only those with complete 

data were retained for the analysis. 

Among 130 380 patients with available data on GLMs, 6 699 (5.1%) were being treated with a GLP-

1RA (73.8% liraglutide, 23.5% exeOW, 2.7% lixisenatide). 

The numbers of patients in DARWIN-T2D who could be evaluated for CVOT eligibility were reported 

in Table 13. The greatest number was obtained for EXSCEL, meanwhile the smallest resulted when 

SUSTAIN-6 was taken into account, with only 98 725 patients evaluated for CVOT eligibility. 

 

Table 13:  Number of DARWIN-T2D patients evaluated for CVOT eligibility, the proportion of DARWIN-T2D patients after 

applying I/E criteria, and the DARWIN-T2D proportion of patients with CVOT-like characteristics.  

 DARWIN-T2D 

CVOT Evaluated for CVOT 

eligibility 

After applying 

I/E criteria, 

percentages of 

patients eligible 

for CVOTs 

CVOT-like 

EXSCEL 124 164 13.4% 1% 

PIONEER-6 116 553 34.1% 1.8% 

HARMONY 107 040 9.5% 0% 

LEADER 106 606 9.4% 1.2% 

REWIND 105 074 35.8% 7.9% 

SUSTAIN-6 98 725 10.1% 0.5% 

 

After applying the I/E criteria, which are reported in Supplementary Table 1, the percentages of patients 

in DARWIN-T2D eligible for CVOTs ranged from 9.4% (LEADER) to 35.8% (REWIND). Such data 

were reported in Table 13.  

Clinical characteristics of patients treated with GLP-1RA and of those eligible for CVOTs are reported 

in Table 14. 

In Figure 10 A, we can see that the average clinical characteristics of patients eligible for CVOTs 

following the I/E criteria are different from the average features of patients who composed the CVOT 

trials, showing SMDs in general greater than 10% (white dots). 
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Figure 10: Real-world patients and CVOTs. A) For each CVOT, the panels show the absolute standardized mean difference 

(SMD) between the actual trial population (retrieved from respective publications) and real-world patients selected based on 

inclusion/exclusion criteria (I/E) or for being CVOT-like (Like). In each plot, a dashed line indicates the SMD threshold of 

0.1, indicating good balance. Fractions in brackets refer to the number of key clinical characteristics that are matched between 

real-world patients selected by I/E and trial characteristics. By design, all characteristics were balanced between CVOT-like 

patients and the respective CVOT population. B) Proportion of real-world patients eligible for each CVOT based on I/E or 

sampled for being CVOT-like.  

 

As reported in Table 15, patients in CVOTs were in general younger if compared with patients selected 

from the real-world database. Furthermore, despite 80%–100% of patients in LEADER and SUSTAIN-

6 having established cardiovascular disease, applying the I/E criteria to the DARWIN-T2D yielded 

patients with a 70%–80% prevalence of micro-angiopathy (mostly chronic kidney disease) and a lower 

prevalence of macro-angiopathy (40%–50%). Imbalance of other clinical characteristics are reported in 

Table 15.  

Out of 11 key clinical variables that we considered, eligible patients matched the trial characteristics with 

an absolute SMD smaller than 10% for just two or three variables, with the notable exception of 

REWIND. DARWIN-T2D patients eligible for REWIND were matched with the REWIND population 

for 6/11 variables. 
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Patients who were already on a GLP-1RA showed different clinical characteristics when compared with 

both those satisfying CVOT I/E criteria and those actually enrolled in CVOTs.  

We then evaluated what proportion of real-world patients would constitute a population of individuals 

with key average characteristics similar to those enrolled in CVOTs. 

BNs obtained on DARWIN-T2D, following the summary statistics of CVOTs are reported in Figure 11. 

They were used to compute the joint probability of inclusion for each DARWIN-T2D patients in each 

CVOT. The largest datasets of real-world patients yielding CVOT-like populations were 0.5% for 

SUSTAIN-6, 1.0% for EXSCEL, 1.2% for LEADER, 1.8% for PIONEER-6 and 7.9% for REWIND, as 

reported in Table 13. We were not able to obtain a dataset of DARWIN-T2D patients who would match 

the population of the HARMONY study (Figure 10B). 
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Table 14: Clinical characteristics of patients treated with GLP-1RA and of those eligible for CVOTs. 
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Number 6699 10061 9942 16544 37574 39726 10208 

Percentagea 5.1 9.4 10.1 13.4 35.8 34.1 9.5 

Age, years 61.7±9.5 74.2±8.4 74.2±8.5 70.8±8.6 70.8±7.1 73.7±8.3 73.6±9.1 

Sex male, % 54.9 56.5 55.8 67.3 59.0 57.6 68.4 

Diabetes duration, years 11.3±7.5 13.6±9.1 13.6±9.1 15.4±9.8 10.7±8.2 14.3±10.0 17.9±10.

2 
Active smoke, % 19.8 13.5 13.6 17.1 14.3 14.0 16.1 

Body mass index, kg/m2 34.8±6.2 29.1±5.1 29.2±5.2 29.1±4.9 29.8±4.7 29.3±5.2 29.1±4.9 

Waist circumference, cm 114.7±13.6 103.9±12.2 104.1±12.4 104.2±11.9 104.5±11.3 104.5±12.6 104.6±11

.9 
Systolic blood pressure, mm Hg 138.3±18.3 139.1±18.6 139.2±18.7 137.5±18.4 138.4±17.9 138.1±18.7 137.5±18

.6 
Diastolic blood pressure, mm Hg 80.3±9.9 76.9±9.3 77.0±9.4 76.5±9.2 77.8±9.1 76.3±9.5 75.8±9.2 

Heart rate, bpm 78.8±11.9 73.3±11.9 73.5±11.8 71.7±11.6 73.3±11.8 72.8±11.8 70.2±11.

0 
Fasting plasma glucose, mg/dl 151.2±42.7 151.3±36.9 155.6±42.1 150.2±42.2 136.8±33.7 146.4±47.7 160.4±50

.5 
HbA1c, % 7.5±1.1 7.8±0.6 8.0±1.0 7.6±0.8 6.9±0.9 7.4±1.3 8.1±1.0 

Total cholesterol, mg/dl 169.3±37.5 168.2±38.2 169.0±38.8 160.5±38.3 170.0±37.4 166.8±38.8 158.2±39

.6 
HDL cholesterol, mg/dl 45.9±12.6 48.7±13.6 48.4±13.5 47.1±13.6 49.8±13.8 49.0±14.5 45.7±13.

4 
Triglycerides, mg/dl 160.2±87.5 141.5±74.2 144.2±76.5 140.9±85.3 134.6±71.7 137.4±77.6 146.9±88

.5 
LDL cholesterol, mg/dl 91.9±32.3 91.4±32.2 91.9±32.7 85.3±31.7 93.3±32.1 90.5±32.6 83.1±32.

2 
eGFR, ml/min/1.73 m2 87.7±24.1 68.3±21.5 68.5±21.9 73.3±21.6 76.2±19.4 66.7±20.5 68.9±22.

1 
Albumin excretion rate, mg/g 51.5±147.7 59.5±98.7 61.2±109.5 42.5±108.7 45.3±66.0 57.1±155.0 43.4±132

.1 GLMs, %        

Insulin 24.9 25.7 27.8 41.0 14.6 43.3 56.4 

Metformin 85.9 75.2 73.8 67.8 83.4 62.1 59.5 

Sulphonylurea / repaglinide 26.4 52.9 52.0 28.7 32.1 28.0 30.9 

Acarbose 2.0 3.5 2.7 1.8 2.2 2.6 2.4 

Pioglitazione 9.0 5.8 3.5 3.7 4.0 3.7 3.1 

DPP-4 inhibitors 0.2 0.0 0.0 27.6 0.0 0.0 28.0 

GLP-1RA 100.0 0.0 0.0 0.0 0.0 0.0 0.0 

SGLT-2 inhibitors 0.7 5.7 5.4 4.5 3.4 3.6 5.4 
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Other therapies, %        

Anti-platelet agents 46.4 58.5 58.5 74.6 51.3 60.9 84.0 

Statin 62.9 64.3 63.9 76.1 63.4 64.8 79.4 

Renin-angiotensin system blockers 74.5 71.2 71.3 74.0 70.7 72.1 75.9 

Calcium channel blockers 25.6 27.0 27.1 28.6 25.7 27.4 29.4 

Beta-blockers 31.5 36.4 36.6 44.5 32.7 36.9 49.7 

Diuretics 15.8 21.4 21.6 23.7 15.0 25.2 30.5 

Complications, %        

Chronic kidney disease 10.0 40.7 40.7 29.1 20.9 44.9 37.4 

Albuminuria >30 mg/g 37.3 59.0 59.7 33.5 40.7 57.6 32.1 

Retinopathy 15.6 16.1 16.6 24.9 11.4 17.9 31.2 

Peripheral neuropathy 14.8 21.2 21.8 25.9 17.2 23.5 30.4 

Atherosclerosis obliterans 12.4 27.2 27.7 48.3 13.8 26.1 60.9 

Peripheral revascularization 1.2 3.0 3.0 5.2 1.3 2.8 6.4 

Diabetic foot 7.6 13.0 13.6 15.9 10.0 12.4 19.3 

Stroke / Transient ischemic attack 2.2 9.5 9.8 11.3 4.8 9.3 14.4 

Carotid atherosclerosis 39.1 47.5 47.6 51.4 42.1 45.3 54.7 

Ischemic heart disease 8.2 20.9 20.9 44.2 11.7 21.0 56.7 

Coronary revascularization 6.0 13.5 13.5 29.9 7.5 13.6 37.9 

Micro-angiopathy 43.1 85.4 85.6 61.6 56.5 87.1 69.0 

Macroangiopathy 30.4 52.3 52.5 79.8 37.2 50.3 98.2 
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Figure 11: DAGs obtained through BNs in DARWIN-T2D data, based on the summary statistics of the corresponding CVOT reported in the title.
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Table 15: Key clinical characteristics of real-world patients compared to CVOT patients. For each CVOT, we show the 

average clinical characteristics extracted from the respective publications, the characteristics of real-world patients who would 

be recruited into the CVOT based on inclusion / exclusion (I/E) criteria, and the characteristics of real-world patients sampled 

for being CVOT-like (Like). For both subgroups of real-world patients, we calculated the absolute standardized mean 

difference (SMD) as a measure of balance between groups. a SMD≤0.10 is conventionally considered indicative of a good 

balance. BMI, body mass index. SBP, systolic blood pressure. DBP, diastolic blood pressure. CVD, cardiovascular disease. 

eGFR, estimated glomerular filtration rate. N/A, not available. Established CVD and CVD risk factors are defined as described 

in each trial publication and slightly modified as illustrated in table S1. 

 

Variable LEADER I/E SMD Like SMD 

Number 9340 10061  1132  

Age, years 64.3 (7.2) 74.2 (8.4) 1.26 64.6 (7.6) 0.05 

Sex male, % 64.2 56.5 0.16 65.0 0.02 

Diabetes duration 12.8 (8.0) 13.6 (9.1) 0.09 13.5 (8.4) 0.09 

HbA1c, % 8.7 (1.5) 7.8 (0.6) 0.80 8.5 (0.8) 0.10 

BMI, kg/m2 32.5 (6.3) 29.1 (5.1) 0.60 32.7 (5.8) 0.03 

SBP, mm Hg 135.9 (17.7) 139.1 (18.6) 0.18 137.8 (18.7) 0.10 

DBP, mm Hg 77.1 (10.2) 76.9 (9.3) 0.02 78.2 (9.3) 0.10 

Heart failure, % 17.9 2.5 0.53 16.0 0.05 

Established CVD, % 81.4 55.7 0.58 81.4 0.001 

CVD risk factors, % 18.7 28.7 0.24 22.3 0.09 

eGFR, ml/min/1.73 m2 80.4 (21.0) 68.3 (21.5) 0.57 78.0 (26.5) 0.10 

Variable REWIND I/E SMD Like SMD 

Number 9901 37574  7280  

Age, years 66.2 (6.5) 70.8 (7.1) 0.66 66.7 (6.2) 0.08 

Sex male, % 53.9 59.0 0.10 59.3 0.10 

Diabetes duration 10.5 (7.2) 10.7 (8.2) 0.02 10.8 (7.1) 0.05 

HbA1c, % 7.3 (1.1) 6.9 (0.9) 0.42 7.4 (1.2) 0.06 

BMI, kg/m2 32.3 (5.7) 29.8 (4.7) 0.51 31.9 (5.3) 0.10 

SBP, mm Hg 137.0 (17.0) 138.4 (18.0) 0.08 137.2 (15.5) 0.01 

DBP, mm Hg 78.0 (9.9) 77.8 (9.1) 0.02 78.7 (8.1) 0.08 

Heart failure, % 8.7 1.0 0.36 7.3 0.05 

Established CVD, % 31.4 28.2 0.07 30.6 0.02 

CVD risk factors, % 68.6 19.9 1.12 63.8 0.10 

eGFR, ml/min/1.73 m2 75.0 (22.1) 75.2 (21.2) 0.009 77.4 (22.2) 0.10 

Variable SUSTAIN-6 I/E SMD Like SMD 

Number 3297 9942  476  

Age, years 64.6 (7.4) 74.2 (8.5) 1.16 65.1 (6.7) 0.07 

Sex male, % 60.7 55.8 0.10 64.1 0.07 

Diabetes duration 13.9 (8.1) 13.6 (9.1) 0.00 14.5 (6.8) 0.07 

HbA1c, % 8.7 (1.5) 8.0 (1.0) 0.61 8.6 (0.7) 0.08 

BMI, kg/m2 32.8 (6.2) 29.2 (5.2) 0.66 32.8 (5.9) 0.004 

SBP, mm Hg 135.6 (17.2) 139.2 (18.7) 0.20 136.8 (17.5) 0.07 

DBP, mm Hg 77.0 (10.0) 77.0 (9.4) 0.00 77.8 (9.7) 0.08 

Heart failure, % 23.6 2.6 0.65 19.5 0.10 

Established CVD, % 83.0 55.7 0.62 80.5 0.07 

CVD risk factors, % 17.0 29.0 0.29 14.1 0.08 

eGFR, ml/min/1.73 m2 N/A N/A N/A N/A N/A 
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Variable PIONEER-6 I/E SMD Like SMD 

Number 3183 39726  1663  

Age, years 66.0 (7.0) 73.7 (8.3) 0.94 66.6 (7.2) 0.09 

Sex male, % 68.4 57.6 0.23 72.9 0.10 

Diabetes duration 14.9 (8.5) 14.3 (10.0) 0.06 14.0 (8.6) 0.10 

HbA1c, % 8.2 (1.6) 7.4 (1.3) 0.60 8.2 (0.7) 0.01 

BMI, kg/m2 32.3 (6.5) 29.3 (5.2) 0.57 32.0 (3.7) 0.05 

SBP, mm Hg 136.0 (18.0) 138.1 (18.7) 0.11 135.7 (14.0) 0.01 

DBP, mm Hg 74.0 (21.0) 76.3 (9.5) 0.21 77.0 (8.0) 0.10 

Heart failure, % 12.2 2.7 0.37 8.7 0.10 

Established CVD, % 84.7 58.1 0.62 80.7 0.10 

CVD risk factors, % 15.3 27.8 0.31 19.1 0.10 

eGFR, ml/min/1.73 m2 76.0 (10.0) 66.2 (21.3) 0.47 71.6 (26.0) 0.10 

Variable EXSCEL I/E SMD Like SMD 

Number 14752 16544  915  

Age, years 62.0 (16.3) 70.8 (8.6) 0.69 62.3 (5.6) 0.02 

Sex male, % 62.0 67.3 0.11 62.4 0.008 

Diabetes duration 12.0 (7.4) 15.4 (9.8) 0.39 11.5 (6.9) 0.06 

HbA1c, % 8.0 (1.2) 7.6 (0.8) 0.40 7.9 (0.7) 0.10 

BMI, kg/m2 31.8 (5.9) 29.1 (4.9) 0.50 31.8 (5.9) 0.006 

SBP, mm Hg N/A N/A N/A N/A N/A 

DBP, mm Hg N/A N/A N/A N/A N/A 

Heart failure, % 16.2 2.9 0.46 12.6 0.10 

Established CVD, % 73.1 64.5 0.19 72.3 0.02 

CVD risk factors, % 26.9 27.9 0.02 22.3 0.10 

eGFR, ml/min/1.73 m2 76.3 (22.9) 70.5 (25.5) 0.24 78.4 (31.5) 0.09 

Variable HARMONY I/E SMD Like SMD 

Number 9463 10208    

Age, years 64.1 (8.7) 73.6 (9.1) 1.07 N/A N/A 

Sex male, % 69.0 68.4 0.01 N/A N/A 

Diabetes duration 14.1 (8.7) 17.9 (10.3) 0.40 N/A N/A 

HbA1c, % 8.7 (1.5) 8.1 (1.0) 0.47 N/A N/A 

BMI, kg/m2 32.3 (5.9) 29.1 (4.9) 0.59 N/A N/A 

SBP, mm Hg 134.7 (16.5) 137.5 (18.6) 0.16 N/A N/A 

DBP, mm Hg  76.8 (10.1)  75.8 (9.2) 0.10 N/A N/A 

Heart failure, % 20.0 4.3 0.50 N/A N/A 

Established CVD, % 100.0 85.4 0.58 N/A N/A 

CVD risk factors, % 0.0 33.6 1.00 N/A N/A 

eGFR, ml/min/1.73 m2 79.0 (25.5) 68.9 (22.1) 0.42 N/A N/A 
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Discussion 

 

Real-World T2D patients are characterized by clinical features that often significantly differ from those 

of the patients enrolled in CVOTs. At our knowledge, this is the first time that proportions of RW T2D 

patients who have characteristics similar to those enrolled in CVOTs are computed. 

We observed that such proportions are very small, ranging from 0.5% to 7.9%. 

Many CVOTs have shown that some GLP-1RAs have the capacity to reduce the rate of adverse 

cardiovascular outcomes in T2D patients (94).  However, doubts about the generalizability of such 

findings arise, because the populations analysed in CVOTs are in general very different from RW T2D 

patients. In fact, often T2D patients enrolled in CVOTs have higher risk of development of cardiovascular 

events if compared with the RW T2D population, to reduce the time needed to observe the CVD outcome 

of interest. The representativeness of the RW T2D population is an aspect rarely investigated in CVOT 

designs, but it deserves more attention, to understand how much results obtained in CVOTs could be 

generalize to the RW population seen in the clinical practice routine. 

Prior studies examined the proportions of patients from RW databases eligible for CVOTs on GLP-1RAs 

and SGLT-2is, but only applying the I/E criteria. For example, Boye et colleagues (98) reported the 

proportions of US adult T2D  patients which have similar characteristics to patients enrolled in LEADER, 

SUSTAIN-6, ESCEL and REWIND, obtaining results similar to those obtained in our analysis. 

Considering the fact that CVOTs are mainly conducted in US, such small differences between the 

proportions obtained by Boye and those obtained in our study, suggest that geographical and cultural 

factors may have a very small impact. Nicolucci et al (96) observed that RW T2D patients eligible for 

CVOTs on SGLT-2is are different to trial populations in many instances.  

However, no study computed the proportions of RW patients which constitute CVOT-like populations. 

If we look at the GLP-1RA CVOTs, we found many differences between the eligible RW population and 

those enrolled in CVOTs. In this study, we found a high proportion of patients in DARWIN-T2D eligible 

for PIONEER-6, which reflects enrolment criteria that, different to those of EXSCEL, lacked constraint 

on the ratio between patients with established cardiovascular disease and those with multiple 

cardiovascular risk factors. However, the PIONEER-6 eligible subgroup was imbalanced if compared 

with the true PIONEER-6 population.  

We therefore examined what proportion of patients from DARWIN-T2D would generate CVOT-like 

populations, developing a novel approach based on the BN theory, to sample patients from a large RW 

dataset based on given average clinical characteristics.  
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In this way, we found that the greatest subset of patients with CVOT-like characteristics was much 

smaller than the proportion of eligible patients obtained through I/E criteria.  

Furthermore, REWIND was confirmed as the CVOT mostly represented within the T2D population, even 

if only 7.9% of patients in DARWIN-T2D database were REWIND-like. On the contrary, the apparently 

large generalizability of PIONEER-6 based on I/E criteria was not confirmed. 

DARWIN-T2D database has some limitations, which are inherent of observational studies. For example, 

there is a big amount of missing data, both in dependent and independent variables (about 50%), that can 

potentially affect our analysis. Under-reporting is then another issue typical in the RW context, where 

data are collected for clinical purposes and not to conduct medical research. 

In conclusion, our study confirms that CVOT populations are extremely specific and that they are poorly 

represented by RW T2D patients. Furthermore, such results suggest that generalizability of trial 

populations to clinical practice should not be based on I/E criteria only, which can lead to misleading 

conclusions. Observational studies are needed to complement CVOTs findings and they are of 

fundamental importance to evaluate effectiveness of medications in a RW context. 
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Supplementary material 

 

 Supplementary Table 1: I/E criteria and application to the DARWIN-T2D database. 

 

LEADER 

 

Inclusion criteria Applied Note or reason for not applying 

Type 2 diabetes X  

HbA1c ≤9.5% X  

Anti-diabetic drug naïve or treated with one or 

more oral anti-diabetic drugs or treated with human 

NPH insulin or long-acting insulin analogue or 

premixed insulin, alone or in combination with 

OAD(s) 

X  

HbA1c ≥7.0% X  

Prior cardiovascular disease cohort: age ≥50 and ≥1 

of the following criteria: 

Prior MI; Prior stroke or TIA; Prior coronary, 

carotid or peripheral arterial 

revascularization; >50% stenosis of coronary, 

carotid, or lower extremity arteries; History of 

symptomatic CHD documented by positive 

exercise stress test or any cardiac; imaging or 

unstable angina with ECG changes; Asymptomatic 

cardiac ischemia documented by positive nuclear 

imaging test, exercise test or dobutamine stress 

echo; Chronic heart failure NYHA class II-III; 

Chronic renal failure:; eGFR <60 mL/min/1.73m2 

(Modification of Diet in Renal Disease formula); 

eGFR <60 mL/min (Cockcroft-Gault formula) 

X Data on stress or imaging tests not 

available. CKD-EPI eGFR was 

used 

No Prior cardiovascular disease group: Age ≥60 y 

and ≥1 of the following criteria: 

Microalbuminuria or proteinuria; Hypertension 

and left ventricular hypertrophy by ECG or 

imaging; Left ventricular systolic or diastolic 

dysfunction by imaging; Ankle-brachial index <0.9 

X No data on diastolic dysfunction or 

ABI<0.9 

Exclusion criteria Applied Note or reason for not applying 

Type 1 diabetes X  

Calcitonin ≥50 ng/L  No data on calcitonin 

concentrations 

Use of a GLP-1 receptor agonist (exenatide, 

liraglutide or other) or pramlintide or any DPP-4 

inhibitor within the 3 months prior to screening 

X Information on ongoing therapy 

used because no timing 

information was available  
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Use of insulin other than human NPH insulin or 

long-acting insulin analogue or premixed insulin 

within 3 months prior to screening. 

X All patients using rapid-acting 

insulin were excluded 

Acute decompensation of glycemic control X Patients with FPG >400 mg/dl 

were excluded 

Acute coronary or cerebrovascular event in the 

previous 14 days 

 No info available on the timing of 

cardiovascular events 

Currently planned coronary, carotid, or peripheral 

artery revascularization 

 No info on timing of events nor on 

plans to revascularize 

Chronic heart failure (NYHA class IV) X  

Current continuous renal replacement therapy X eGFR<15 ml/min/1.73 m2 

End-stage liver disease  ALT≥3.0 × normal used in place 

History of solid organ transplant or awaiting solid 

organ transplant 

 No info available 

Malignant neoplasm  No info available 

Family or personal history of multiple endocrine 

neoplasia type 2 or familial medullary thyroid 

carcinoma 

 No info available 

Personal history of non-familial medullary thyroid 

carcinoma 

 No info available 

 

SUSTAIN-6 

Inclusion criteria Applied Note or reason for not applying 

Men and women with type 2 diabetes X  

HbA1c ≥7.0% at screening X  

Antidiabetic drug naïve, or treated with one or two 

oral antidiabetic drug(s), or treated with human 

Neutral Protamine Hagedorn (NPH) insulin or 

long-acting insulin analogue or pre-mixed insulin, 

both types of insulin either alone or in combination 

with one or two oral antidiabetic drug(s) 

X All patients using rapid-acting 

insulin were excluded 

Age ≥50 years at screening and clinical evidence of 

cardiovascular disease: prior myocardial 

infarction;  prior stroke or prior transient ischemic 

attack; prior coronary, carotid or peripheral arterial 

revascularization; more than 50% stenosis on 

angiography or imaging of coronary, carotid or 

lower extremities arteries; history of symptomatic 

coronary heart disease documented by e.g. positive 

exercise stress test or any cardiac imaging or 

unstable angina with ECG changes; asymptomatic 

cardiac ischemia documented by positive nuclear 

imaging test or exercise test or stress echo or any 

cardiac imaging; chronic heart failure New York 

Heart Association (NYHA) class II-III; chronic 

X Data on stress or imaging tests not 

available. CKD-EPI eGFR was 

used 
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renal impairment, documented (prior to screening) 

by estimated glomerular filtration rate below 

60 ml/min/1.73 m2 per MDRD 

Or Age ≥60 years at screening and subclinical 

evidence of cardiovascular disease: persistent 

microalbuminuria or proteinuria; hypertension and 

left ventricular hypertrophy by electrocardiogram 

or imaging; left ventricular systolic or diastolic 

dysfunction by imaging; ankle/brachial index less 

than 0.9 

X No data on diastolic dysfunction; 

diagnosis of peripheral arterial 

disease used in place of ABI<0.9 

Exclusion criteria Applied Note or reason for not applying 

Type 1 diabetes X  

Use of other glucagon-like peptide-1 receptor 

agonist or pramlintide within 90 days prior to 

screening 

X Info on ongoing therapy used 

because no timing information was 

available  

Use of any dipeptidyl peptidase-4 inhibitor within 

30 days prior to screening 

X Info on ongoing therapy used 

because no timing information was 

available 

Treatment with insulin, other than basal and pre-

mixed insulin, within 90 days prior to screening 

(except for short-term use) 

X All patients using rapid-acting 

insulin were excluded 

Acute decompensation of glycemic control 

requiring immediate intensification of treatment to 

prevent acute complications of diabetes (e.g. 

diabetes ketoacidosis) within 90 days prior to 

screening 

X Patients with FPG >400 mg/dl 

were excluded 

History of chronic pancreatitis or idiopathic acute 

pancreatitis 

 No info available 

Acute coronary or cerebrovascular event within 90 

days prior to randomization 

 No info on timing of prior 

cardiovascular events 

Currently planned coronary, carotid or peripheral 

artery revascularization 

 No info on the plan to 

revascularize 

Chronic heart failure New York Heart Association 

class IV 

X  

Chronic hemodialysis or chronic peritoneal dialysis X eGFR<15 ml/min/1.73 m2 

End-stage liver disease, defined as the presence of 

acute or chronic liver disease and recent history of 

one or more of the following: ascites, 

encephalopathy, variceal bleeding, bilirubin ≥2.0 

mg/dl, albumin level ≤3.5 g/dl, prothrombin time 

≥4 seconds prolonged, international normalized 

ratio ≥1.7 or prior liver transplant 

 ALT≥3.0 × normal used in place 

A prior solid organ transplant or awaiting solid 

organ transplant 

 No info available 

Diagnosis of malignant neoplasm in the previous 5 

years (except basal cell skin cancer or squamous 

cell skin cancer) 

 No info available 
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Personal or family history of multiple endocrine 

neoplasia type 2 (MEN2) or familial medullary 

thyroid carcinoma 

 No info available 

Personal history of non-familial medullary thyroid 

carcinoma 

 No info available 

Screening calcitonin ≥50 ng/l  No info available 

Any acute condition or exacerbation of chronic 

condition that would in the investigator's opinion 

interfere with the initial trial visit schedule and 

procedures 

 Does not apply in real-world 

Known or suspected hypersensitivity to trial 

products or related product 

 Does not apply in real-world 

Known use of non-prescribed narcotics or illicit 

drugs 

 No info available 

Previous participation in this trial. Participation is 

defined as randomized 

 Does not apply in real-world 

Simultaneous participation in any other clinical 

trial of an investigational agent. Participation in a 

clinical trial with investigational stent(s) is allowed 

 Does not apply in real-world 

Receipt of any investigational medicinal product 

within 30 days prior to screening (Visit 1) or 

according to local requirements, if longer 

 Does not apply in real-world 

Brazil: receipt of any investigational drug within 

one year prior to screening visit (Visit 1), unless 

there is a direct benefit to the research patient at the 

investigator’s discretion 

 Does not apply in real-world 

Any other factor likely to limit protocol compliance 

or reporting of adverse event at the discretion of the 

investigator 

 Does not apply in real-world 

Female of childbearing potential who is pregnant, 

breast-feeding or intends to become pregnant or is 

not using an adequate contraceptive method 

(adequate contraceptive measure as required by 

local regulation or practice) 

X All females of childbearing 

potential excluded. 

 

EXSCEL 

Inclusion criteria Applied Note or reason for not applying 

Patient has type 2 diabetes mellitus X  

Patient will be able to see a usual care provider at 

least twice a year 

 Does not apply in real-world 

Patient has an HbA1c of ≥6.5% and ≤10.0% and is 

currently using one of the following treatment 

regimens: 

- Treatment with up to three (i.e. 0 – 3) oral AHAs 

(concomitant use of DPP-4 inhibitors is permitted) 

X  
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- Insulin therapy, either alone or in combination 

with up to two (i.e. 0 – 2) oral AHAs (use of basal 

and prandial insulins is permitted in any 

combination of individual or premixed insulins) 

Patients with any level of CV risk and meeting all 

other inclusion criteria may be enrolled. 

Recruitment will be constrained such that 

approximately 30% will not have had a prior CV 

event and 70% will have had a prior CV event. 

X A random 30% sample of patients 

without prior CV event was 

selected 

A prior CV event is defined as at least one of the 

following: 

- History of a major clinical manifestation of 

coronary artery disease i.e. myocardial infarction, 

surgical or percutaneous (balloon and/or stent) 

coronary revascularization procedure, or coronary 

angiography showing at least one stenosis ≥50% in 

a major epicardial artery or branch vessel 

- Ischemic cerebrovascular disease, including: 

History of ischemic stroke; strokes not known to be 

hemorrhagic will be allowed as part of this 

criterion; transient ischemic attacks (TIAs) are not 

included; History of carotid arterial disease as 

documented by ≥50% stenosis documented by 

carotid ultrasound, magnetic resonance imaging 

(MRI), or angiography, with or without symptoms 

of neurologic deficit 

- Atherosclerotic peripheral arterial disease, as 

documented by objective evidence such as 

amputation due to vascular disease, current 

symptoms of intermittent claudication confirmed 

by an ankle-brachial pressure index or toe-brachial 

pressure index less than 0.9, or history of surgical 

or percutaneous revascularization procedure 

X Info on imaging and ABI not 

available 

Female patients must not be breast feeding and 

agree to use an effective method of contraception 

or must not otherwise be at risk of becoming 

pregnant 

X No info available on contraception 

All women with childbearing 

potential were excluded 

Patient understands the trial procedures, alternative 

treatments available, the risks involved with the 

trial, and voluntarily agrees to participate by 

providing written informed consent 

 Does not apply to the real world 

Patient agrees to provide permission to obtain all 

medical records necessary for complete data 

ascertainment during the follow-up period, and 

agrees to communication between the trial site and 

the usual care provider in order to facilitate routine 

care 

 Does not apply to the real world 
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Patient is 18 years or older at enrolment X  

Exclusion criteria Applied Note or reason for not applying 

Patient has a diagnosis of type 1 diabetes mellitus, 

or a history of ketoacidosis 

X No information on ketoacidosis 

available 

Patient has a history of (≥2 episodes) of severe 

hypoglycemia within 12 months of enrolment 

 No information on hypoglycaemia 

available 

Patient has ever been treated with an approved or 

investigational GLP-1 receptor agonist e.g., 

BYETTA (exenatide), BYDUREON (EQW), 

VICTOZA (liraglutide), LYXUMIA (lixisenatide), 

albiglutide, taspoglutide or dulaglutide 

X All patient already on GLP-1RA 

were excluded 

Patient is enrolled in another experimental protocol 

which involves the use of an investigational drug or 

device, or an intervention that would interfere with 

the conduct of the trial 

 Does not apply to the real world 

Patient has a planned or anticipated 

revascularization procedure 

 No information available on 

planned revascularization 

Pregnancy or planned pregnancy during the trial 

period 

 No information on pregnancy, 

pregnancy plan or contraception 

Patient has medical history that indicates a life 

expectancy <2 years or might limit the individual’s 

ability to take trial treatments for the duration of the 

trial 

X Patients aged 85 or older were 

excluded 

Patient has a history or current evidence of any 

condition, therapy, laboratory abnormality, or other 

circumstance which, in the opinion of the 

investigator or coordinator, might pose an 

unacceptable risk to the patient, confound the 

results of the trial e.g. if patient cannot comply with 

requirements of the trial, or likely to interfere with 

the patient’s participation for the full 

duration of the trial 

 Does not apply to the real world 

Patient has end-stage renal disease or an estimated 

glomerular filtration rate (eGFR) derived from 

serum creatinine (using the simple MDRD-4 

formula) of <30mL/min/1.73m2 

X CKD-EPI was used 

Patient has a known allergy or intolerance to 

exenatide 

 Does not apply to the real world 

Patient has a history of gastroparesis  Information not available 

Personal or family history of medullary thyroid 

cancer or MEN2 (Multiple Endocrine Neoplasia 

Type 2) or calcitonin level of >40ng/L at baseline 

 Information not available 

Patient has previously been randomized in 

EXSCEL 

 Does not apply to the real world 

Patient has a history of pancreatitis  Information not available 

Is an employee of Amylin Pharmaceuticals, LLC, 

Bristol-Myers Squibb Company, or AstraZeneca. 

 Does not apply to the real world 
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REWIND 

Inclusion criteria Applied Note or reason for not applying 

Type 2 diabetes X  

HbA1c ≤9.5% X  

Stable dose of 0, 1 or 2 oral glucose-lowering drugs 

± basal insulin for ≥3 months 

X No information on the prior 

regimen and dose 

BMI ≥ 23 kg/m2 X  

If age ≥50 years, at least 1 of: prior MI; prior 

ischaemic stroke; coronary revascularization ≥2 

years earlier; carotid or peripheral 

revascularization ≥2 months earlier; unstable 

angina hospitalization; image proven myocardial 

ischaemia; or percutaneous coronary intervention 

X No information on imaging nor on 

the timing 

If age ≥55 years, any of the above or at least 1 of: 

documented myocardial ischaemia by stress test or 

imaging; >50% coronary, carotid or lower 

extremity artery stenosis; ankle–brachial index 

<0.9; eGFR persistently <60 mL/min/1.73 m2; 

hypertension with left ventricular hypertrophy; or 

persistent albuminuria 

X No information on imaging, stress 

tests, ABI. 

If age ≥ 60 years, any of the above or at least 2 of: 

any tobacco use; use of lipid-modifying therapy or 

a documented untreated LDL cholesterol ≥3.4 

mmol/L (130 mg/dL) within the past 6 months; 

HDL cholesterol <1.0 mmol/L (40 mg/dL) for men 

and <1.3 mmol/L (50 mg/dL) for women or 

triglycerides ≥2.3 mmol/L (200 mg/dL) within the 

past 6 months; use of ≥1 blood pressure drug or 

untreated systolic blood pressure ≥ 140 mm Hg or 

diastolic blood pressure ≥ 95 mm Hg; or waist-to-

hip ratio >1.0 (men) and >0.8 (women) 

X Waist-hip ratio substituted with 

waist circumference 

Run-in adherence to study drug = 100%  Does not apply in real-world 

Signed informed consent  Does not apply in real-world 

Exclusion criteria Applied Note or reason for not applying 

Uncontrolled diabetes X Defined as FPG>400 mg/dl 

Severe hypoglycaemia in preceding year  No info on hypoglycamias 

Coronary or cerebrovascular event in preceding 2 

months or plans to revascularize 

 No info on timing of events nor on 

plans to revascularize 

eGFR <15 mL/min/1.73 m2 or on dialysis X  

Gastric bypass or emptying abnormality  Missing information 

Prior pancreatitis/concordant symptoms  Missing information 

Liver disease or ALT ≥3.0 × normal X ALT≥3.0 × normal used 

Family history of/or C-cell hyperplasia or 

medullary thyroid cancer or MEN 2A or 2B or 

calcitonin value ≥20 pg/mL 

 Missing information 
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Unwilling to stop GLP-1 receptor agonist or DPP-

4 inhibitor or weight loss drug 

X Patients on GLP-1RA or DPP-4i 

were excluded 

Cancer within prior 5 years  Missing information 

Pregnant or not using reliable birth control X All females of childbearing 

potential excluded. 

Life expectancy <1 year X Patients aged 85 or older were 

excluded 

 

PIONEER-6 

Inclusion criteria Applied Note or reason for not applying 

Informed consent  Does not apply to the real world 

Male or female diagnosed with type 2 diabetes X  

Age ≥50 years at screening and at least one of the 

following conditions: 

prior myocardial infarction; prior stroke or 

transient ischaemic attack; prior coronary, carotid 

or peripheral arterial revascularization; >50% 

stenosis on angiography or imaging of coronary, 

carotid or lower extremity arteries; history of 

symptomatic coronary heart disease documented 

by e.g. positive exercise stress test or any cardiac 

imaging or unstable angina pectoris with 

electrocardiogram changes; asymptomatic cardiac 

ischaemia documented by positive nuclear imaging 

test or exercise test or stress echo or any cardiac 

imaging; chronic heart failure New York Heart 

Association (NYHA) class II-III; moderate renal 

impairment (estimated glomerular filtration rate 

[eGFR] 30–59 mL/min/1.73 m2) 

X Results of imaging and stress test 

not available; NYHA class not 

available; CKD-EPI equation 

used. 

Or Age ≥60 years at screening and at least one of 

the following risk factors: 

microalbuminuria or proteinuria; hypertension and 

left ventricular hypertrophy by electrocardiogram 

or imaging; left ventricular systolic or diastolic 

dysfunction by imaging; ankle–brachial index <0.9 

X No information on diastolic 

dysfunction; diagnosis of 

peripheral arterial disease was 

used in place of ABI<0.9 

Exclusion criteria Applied Note or reason for not applying 

Current or previous (within 90 days prior to 

screening) treatment with any GLP-1 receptor 

agonist, DPP-4 inhibitor or pramlintide 

X Only current users excluded 

Family or personal history of multiple endocrine 

neoplasia type 2 or medullary thyroid carcinoma 

 No information available 

History of pancreatitis (acute or chronic)  No information available 

History of major surgical procedures involving the 

stomach potentially affecting absorption of trial 

product (e.g. subtotal and total gastrectomy, sleeve 

gastrectomy, gastric bypass surgery) 

 No information available 
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Subjects presently classified as being in NYHA 

class IV heart failure 

X  

Planned coronary, carotid or peripheral artery 

revascularisation known on the day of screening 

 No info on planned 

revascularization available 

Any of the following: myocardial infarction, stroke 

or hospitalisation for unstable angina or transient 

ischaemic attack within the past 60 days prior to 

screening 

 No information on the timing of 

prior cardiovascular events 

available 

Chronic or intermittent haemodialysis or peritoneal 

dialysis or severe renal impairment (corresponding 

to eGFR <30 mL/min/1.73 m2) 

X eGFR <30 mL/min/1.73 m2 

History or presence of malignant neoplasms within 

the last 5 years (except basal and squamous cell 

skin cancer and carcinoma in situ) 

 No information available 

History of diabetic ketoacidosis  No information available 

Proliferative retinopathy or maculopathy requiring 

acute treatment. Verified by fundus photography or 

dilated fundoscopy performed within 90 days prior 

to screening or within the period between screening 

and randomisation 

X All patients with proliferative 

retinopathy and macular edema 

were excluded 

Female who is pregnant, breast-feeding or intends 

to become pregnant or is of childbearing potential 

and not using adequate contraceptive methods 

X All women of childbearing age 

excluded 

Known or suspected hypersensitivity to the trial 

product or related products 

 Does not apply to the real world 

Previous participation in this trial  Does not apply to the real world 

Receipt of any investigational medicinal product 

within 90 days before screening. For Brazil only: 

Participation in other clinical trials within one year 

prior to screening unless there was a direct benefit 

to the research subject at the investigator’s 

discretion 

 Does not apply to the real world 

Participation in another clinical trial of an 

investigational medicinal product. Participation in 

a clinical trial which evaluate stent(s) was allowed 

 Does not apply to the real world 

Any disorder, which in the investigator’s opinion 

might jeopardise the patient’s safety or compliance 

with the protocol 

 Does not apply to the real world 

 

HARMONY 

Inclusion criteria Applied Note or reason for not applying 

Men or women at least 40 years old with a 

diagnosis of type 2 diabetes. 

X  

Established cardiovascular disease, including at 

least 1 of the following: 

X Results of imaging and stress test 

not available; ABI not available.  
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- Coronary artery disease with EITHER of the 

following: Documented history of spontaneous 

myocardial infarction, at least 30 days prior to 

Screening; Documented coronary artery disease 

(CAD) ≥ 50% stenosis in 1 or more major 

epicardial coronary arteries, determined by 

invasive angiography, or history of surgical or 

percutaneous (balloon and/or stent) coronary 

revascularization procedure (at least 30 days prior 

to Screening for percutaneous procedures and at 

least 5 years prior to Screening for coronary artery 

bypass graft (CABG)). 

- Cerebrovascular disease – ANY of the following: 

Documented history of ischaemic stroke, at least 90 

days prior to study entry; Carotid arterial disease 

with 50% stenosis documented by carotid 

ultrasound, magnetic resonance imaging or 

angiography, with or without symptoms of 

neurologic deficit; Carotid vascular procedure (e.g. 

stenting or surgical revascularisation), at least 30 

days prior to Screening;  

- Peripheral arterial disease (PAD) with EITHER of 

the following: intermittent claudication and 

ankle:brachial index < 0.9 in at least one ankle; 

prior non-traumatic amputation, or peripheral 

vascular procedure (e.g. stenting or surgical 

revascularisation), due to peripheral arterial 

ischaemia. 

HbA1c >7.0% (53 mmol/mol) based on the most 

recent documented laboratory assessment 

measured no more than 6 months prior to 

randomization. Local laboratory HbA1c values 

taken as part of usual care are permitted 

X  

Female: subject is eligible to participate if she is not 

pregnant (as confirmed by a negative urine human 

chorionic gonadotrophin (hCG) test for females of 

reproductive potential only), not breastfeeding, and 

at least one of the following conditions applies… 

X All women of childbearing age 

were excluded 

Able and willing to provide informed consent.  Does not apply to the real world 

Exclusion criteria Applied Note or reason for not applying 

eGFR calculated using MDRD formula 

<30mL/min/1.73m2 (based on the most recent 

documented serum creatinine laboratory 

assessment measured no more than 6 months prior 

to randomization. Local laboratory creatinine 

values taken as part of usual care are permitted) or 

renal replacement therapy. 

X CKD-EPI equation was used; no 

timing available 
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Use of a GLP-1 receptor agonist at Screening. X Ongoing use of GLP-1RA 

Severe gastroparesis requiring therapy within 6 

months prior to Screening. 

 No information available 

History of pancreatitis or considered clinically at 

significant risk of developing pancreatitis during 

the course of the study (e.g. due to symptomatic 

gallstones, 

excess alcohol use). 

 No information available 

Personal or family history of medullary carcinoma 

of the thyroid or subject with MEN-2. Personal 

history of pancreatic neuroendocrine tumours. In 

the opinion of the investigator, the subject has a 

medical history which might affect his / her ability 

to remain in the study for its entire duration, or 

which might limit management, such as life 

expectancy of <5 years (e.g. due to active 

malignancy). 

 No information available 

Subject has a medical history which in the opinion 

of the investigator might limit the individual’s 

ability to take trial treatments for the duration of the 

study or to 

otherwise complete the study. 

 Does not apply to the real world 

Breastfeeding, pregnancy, or planning a pregnancy 

during the course of the study. Pregnancy test will 

be required in women of child bearing potential. 

Women who have undergone a sterilisation 

procedure or who are clearly post-menopausal will 

not be required to undergo pregnancy testing. 

Women who have developed spontaneous 

secondary amenorrhoea of 12 months or more 

where post-menopausal status is in doubt, a blood 

sample where FSH >40MU/ml and oestrodiol <40 

pg/mL (<140 pmol/L) are simultaneously 

measured will be considered confirmatory. 

X All women of childbearing age 

were excluded 

Known allergy to any GLP-1 receptor agonist or 

excipients of albiglutide. 

 Does not apply to the real world 

Use of another investigational product within 30 

days or according to local regulations, or currently 

enrolled in a study of an investigational device. 

 Does not apply to the real world 

Any other reason the investigator deems the subject 

to be unsuitable for the study 

 Does not apply to the real world 
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CHAPTER 5 

TRANSPOSITION OF CARDIOVASCULAR OUTCOME TRIAL EFFECTS TO THE 

REAL-WORLD POPULATION OF PATIENTS WITH TYPE 2 DIABETES 

 

Introduction 

 

As it has been discussed in the previous chapter, many cardiovascular outcome trials (CVOTs) have been 

performed to demonstrate the safety of glucose lowering medications (GLMs) administered to T2D 

patients to protect them against cardiovascular events, which are more frequent in T2D patients if 

compared with the general population (95,103).  

Many of these CVOTs showed lower rates of cardiovascular events among patients randomized to 

receive the active GLM added to the standard care if compared to those randomized to assume placebo 

or any comparator (104).  

However, to rapidly collect a sufficient number of cardiovascular events, such trials enroll T2D patients 

with higher cardiovascular risks, if compared with the general population of T2D patients, which can 

really receive a GLM in the real world clinical practice (104). 

Furthermore, in the previous chapter we showed that only a small proportion of RW T2D population 

would satisfy the enrolment criteria of CVOTs, and even smaller proportions have CVOT-like 

characteristics (98,105). 

Consequently, it was raised an intense debate on whether results of CVOTs can be transferred to the 

general real-world population of T2D patients (106,107). So, after that we had assessed the 

generalizability of CVOTs to the general T2D population, successively it naturally arises the question 

about the transposition of the CVOTs effects to the real world T2D population, which has different 

characteristics from that of the trials. 

In this chapter, we transposed the effects of GLP-1RA or SGLT2i registered in some CVOTs to the 

general T2D population of patients recruited in DARWIN-T2D, which were followed under routine 

specialist care and which could potentially be prescribed such medications in the RW routinely clinical 

practice. 
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Material and Methods 

 

Transposition and statistical analysis  

 

The most diffused setting in which transposition of trial effect is performed in literature is when 

individual level data for both the trial and the target population are available. In such situation, which is 

the gold-standard, patients in the trial are weighted by the probability to meet the inclusion criteria and 

an outcome analysis is performed with the weighted trial data (108) (Table 16). 

If instead individual-level data are available for the trial, and aggregated data are present for the target 

population, there exist four different approaches, which are resumed in Table 16 (109). 

Contrariwise, in this study we disposed of individual-level data for DARWIN-T2D, which is the target 

population, and aggregated data for CVOTs. In such situation, no method has already been developed 

(Table 16) (109). So, we cannot apply the golden standard approach described above, i.e. weighting using 

simulated individual data or weighting using the method of moments, because it requires individual-level 

data for the trial, but we used the strata specific trial estimates to transpose the trial effect to the target 

population (110).  

More in detail, we implemented a modified post-stratification approach using aggregated data from 

CVOTs and individual-level data from DARWIN-T2D. More specifically, we implemented an inverse 

approach compared to method 3 in Table 16, which was described previously (97, 98).  

The method that we implemented to transpose the effect of GLMs on the prevention of cardiovascular 

outcomes obtained in CVOTs to DARWIN-T2D, is represented in the flow-chart in Figure 12. 

First, patients from DARWIN-T2D with missing data were excluded because to date no method has been 

validated to apply the transposition approach to multiple imputed datasets. 

Then, for each CVOT considered, we categorized continuous variables in DARWIN-T2D according to 

the stratum-specific HR estimates reported in the CVOTs’ publications. Then, we collected the sub-group 

specific estimates from CVOTs and we used proportions of the categorized variables in DARWIN-T2D 

to compute the transposed treatment effect for the target population, by weighting the average of the 

stratum-specific treatment effects according to proportions of a given characteristic in the target 

population. 
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Table 16: Table modified from Hong 2019 (109). Description of Different Methods for Generalizing a Randomized Clinical 

Trial’s Results to a Target Population. 

 

 

For example, let us consider the “gender” variable. In the REWIND trial 46% of participants were 

female, instead in DARWIN-T2D they were 44%. In REWIND, the stratum-specific HR estimates were 

0.85 (95% C.I. 0.71–1.02) for females and 0.90 (95% C.I. 0.79–1.04) for males. Then, the weighted HR 

estimate for the variable “gender” is computed by the formula 

Transposed  HR  = exp( 
∑ ln(𝐻𝑅𝑖)∗𝑝𝑖

∑ 𝑝𝑖
 ),    𝑖 = 1,2 

where 𝑝𝑖 are the proportion in DARWIN-T2D in the level 𝑖 of the variable. In the example above, the 

transposed HR was obtained as   
ln(0.85)∗0.44+ln(0.90)∗0.56

0.44+0.56
  = - 0.13, that exponentiated leads to a HR = 

0.88 (see Supplementary Table 1). 

Then, standard deviations across strata were pooled together to obtain the 95% confidence interval. 

Such calculation was performed for one characteristic at a time. 

Finally, the unweighted average of the estimated transposed treatment effect of each characteristic was 

used to summarize the post-stratification estimates of treatment effect.  

Analyses were performed using R version 3.5.2. 

Data 

availability 

in CVOT 

Target population 

Individual data Aggregate data 

Individual 

data 

Such situation is the Gold-standard. 

The recommendation is the weighting 

approach using individual data. First, 

probabilities of being eligible for 

CVOT are computed via regression 

approaches and CVOT participants 

are reweighted to reflect the patient 

characteristics in the target 

population. Finally, outcome analyses 

are performed using weighted 

individual-level data of the trial. 

Method 1. Weighting using simulated individual data. To simulate 

individual data based on aggregate data for target population and 

using gold-standard weighting method to perform the outcome 

analysis. 

Method 2. Weighting using the method of moments. To use the 

methods of moments to estimate the weights and then estimating 

treatment effect within the weighted trial’s individual data. 

Method 3. Post-stratification. To compute weighted treatment effect 

estimate by reweighting subgroup-specific treatment effects in 

CVOT based on the distribution of a given effect modifier in the 

target population. 

Method 4. Expected absolute risk reduction. To multiply the 

observed outcome risk in the target population who were unexposed 

to treatment by the relative treatment effect in CVOT to obtain the 

expected risk in the target population if they were exposed to 

placebo. Next, calculating the expected absolute treatment effect in 

target population by subtracting the risk in the target population who 

were unexposed to treatment from the expected risk if the target 

population were exposed to treatment. 

Aggregate 

data 
NONE 
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Figure 12: A flow-chart of the transposition method. The figure illustrates the 3-step procedure used to transpose a cardiovascular outcome trial (CVOT) result to the 

target population. An example from the REWIND study is described in the text. 
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Selection of CVOTs 

 

Since the transposition approach that we used requires stratum-specific estimates of the treatment effect, 

we selected CVOTs which reported hazard ratios for the primary outcome (the 3-point major adverse 

cardiovascular events, which is a composite of non-fatal myocardial infarction, non-fatal stroke, or 

cardiovascular death, identified by the acronyms 3P-MACE) stratified by sub-groups of patients based 

on clinical characteristics of the trial population.  

CVOTs were selected based on literature search, performed by an endocrinologist clinician, and the 

choose was based on whether key information were available. The search string which was used is 

(“cardiovascular” AND “outcome” AND “randomized” AND “trial” AND “type 2 diabetes”). 

The procedure of selection of CVOTs usable for this analysis lead to a list of 9 studies. 

 

- EMPA-REG  

EMPA-REG is a randomized, placebo-controlled CVOT designed with the main aim of studying the 

effects of empagliflozin (SGLT2i), in addition to standard care, on cardiovascular morbidity and 

mortality in T2D patients which have a high cardiovascular risk. 

Patients were randomized to three different groups: treated with empagliflozin 10 mg, treated with 

empagliflozin 25 mg, or treated with placebo (double blind) superimposed upon the standard of care.  

A total of 7 020 participants entered the study. 

The primary composite outcome was death from cardiovascular causes, nonfatal myocardial infarction, 

or nonfatal stroke. A hazard ratio in the empagliflozin group of 0.86 was obtained with a significant 95% 

confidence interval, ranging from 0.74 to 0.99.   

More details about EMPA-REG can be found in Zinman et al 2015 (111) and in Zinman et al 2014 (112). 

 

- TECOS 

In the “Trial Evaluating Cardiovascular Outcomes with Sitagliptin” (TECOS), the study group analyzes 

the long-term effects on cardiovascular events of adding sitagliptin (DPP-4), to usual care in T2D patients 

with cardiovascular diseases. 

TECOS is a randomized, double-blind, placebo controlled study, including 14 671 patients affected by 

T2D.  

The primary cardiovascular outcome was a composite of cardiovascular death, nonfatal myocardial 

infarction, nonfatal stroke, or hospitalization for unstable angina. A hazard ratio of 0.98 was obtained, 
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with a non-significant 95% CI (0.88 to 1.09). So, in this trial authors found that adding sitagliptin to usual 

care in T2D patients with established cardiovascular diseases, did not increase the risk of major adverse 

cardiovascular events, hospitalization for heart failure, or other adverse cardiovascular events.  

More detail about TECOS can be found in Green et al 2015 (113). 

 

- SAVOR-TIMI 

The “Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus 

(SAVOR)– Thrombolysis in Myocardial Infarction (TIMI)” trial was designed with the main aim of 

studying the cardiovascular safety and efficacy of saxagliptin (DPP-4) inhibitor. 16 492 T2D patients 

were randomly assigned to the saxagliptin or to the placebo groups. 

Patients recruited in the trial were T2D patients at high risk of cardiovascular events.  

The primary end point was a composite of cardiovascular death, myocardial infarction, or ischemic 

stroke. A hazard ratio of 1.00 was obtained, with 95% confidence interval from 0.89 to 1.12. So the 

conclusion of SAVOR-TIMI trial was that DPP-4 inhibition with saxagliptin did not change the rate of 

ischemic events, even if the rate of hospitalization for heart failure was increased. 

In conclusion, although saxagliptin improves glycemic control, other drugs are necessary to control the 

cardiovascular risk associated to T2D. 

More details about SAVOR-TIMI trial can be found in (114). 

 

- DECLARE 

The “Dapagliflozin Effect on Cardiovascular Event” (DECLARE) trial was designed to study the 

cardiovascular safety profile of dapagliflozin, a selective inhibitor of sodium–glucose cotransporter 2 

(SGLT2i) which promotes glycosuria in T2D patients. 

17 160 subjects affected y T2D were included in this trial. The selected patients were at high risk for 

atherosclerotic cardiovascular disease, and they were randomized to receive either dapagliflozin or 

placebo, with a ratio of 1:1. 

The primary safety outcome was a composite of major adverse cardiovascular events (MACE), defined 

as cardiovascular death, myocardial infarction, or ischemic stroke. 

Dapagliflozin did not result in a lower rate of MACE (hazard ratio, 0.93; 95% CI, 0.84 to 1.03) but did 

result in a lower rate of cardiovascular death or hospitalization for heart failure (hazard ratio, 0.83; 95% 

CI, 0.73 to 0.95).  
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In conclusion, the DECLARE CVOT found that in T2D patients who were at risk for atherosclerotic 

cardiovascular disease, adding Dapagliflozin to standard care did not result in a higher or lower rate of 

MACE than placebo, but resulted in a lower rate of cardiovascular death or hospitalization for heart 

failure. 

More details about DECLARE trial can be found in Wiviott et al 2018 (35). 

 

The other studies which were selected (SUSTAIN-6, LEADER, EXCEL, REWIND, PIONEER-6), have 

already been described in the previous chapter. 

Other CVOTs have been excluded due to loss of information. For example, CANVAS trial was excluded 

because in the publication, the stratum-specific effect estimates were reported without the numbers of 

patients in each stratum (36). Furthermore, we excluded the HARMONY study because albiglutide has 

never become clinically available. 

 

Target population 

 

We used DARWIN-T2D data as target real world population, because in Italy GLP-1RA and SGLT2i 

can be prescribed only by diabetes specialists.  

DARWIN-T2D includes patients with T2D, which are an unselected population of adults with T2D 

which attend Italian diabetes clinics, that represents about 20% of the entire population with T2D in Italy 

(103, 104).   

More details about DARWIN-T2D dataset can be found in the previous chapters and in Fadini et al (10). 

 

Results  

 

The number of variables for whom stratified effect estimates were reported in publications, ranged from 

a maximum of 28 for EMPA-REG (111) to a minimum of 6 for DECLARE (35). More details on which 

variables were used to transpose the treatment effects to the target population (DARWIN-T2D) are 

reported in Table 17. Since different variables were used to the transpositions, we cannot compare results 

across the different CVOTs taken into account. 
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Table 17: Post-stratification variables. For each cardiovascular outcome trial, we report which variables were used for post-

stratification transposition to the target population. BMI, body mass index. CVD, cardiovascular disease. PAD, peripheral 

arterial disease. MI, myocardial infarction. eGFR, estimated glomerular filtration rate. DPP-4, dipeptidyl peptidase-4. RAS, 

renin angiotensin system. 

 

 

 

E
M

P
A

-R
E

G
 

T
E

C
O

S
 

S
A

V
O

R
-T

IM
I 

S
U

S
T

A
IN

-6
 

L
E

A
D

E
R

 

E
X

S
C

E
L

 

R
E

W
IN

D
 

P
IO

N
E

E
R

-6
 

D
E

C
L

A
R

E
 

Duration of diabetes  X X X X X X  X 

Age X X X X X X X X X 

Sex X X X X X X X X  

HbA1c X X X X X X X X  

BMI X X X X X X X X  

Body weight   X       

Systolic blood pressure X X        

Diastolic blood pressure X X        

Established CVD X   X X X X X  

Prior MI or Stroke X   X   X X  

PAD X         

Previous MI X        X 

Heart failure  X X X X X   X 

CVD risk factors X   X X   X X 

Only cerebrovascular disease X         

eGFR X X  X X X  X X 

Urinary albumin/creatinine ratio X  X       

Anti-diabetic therapy     X     

Insulin X X X X  X    

Metfromin X X X       

Sulphonylurea X X X       

Thiazolidinediones X X X       

DPP-4i X     X    

Anti-hypertive therapy X  X       

RAS blockers  X X       

Calcium channel blockers X X        

Beta blockers X X        

Diuretics X X X       

Aspirin X         

Statin X X X       

Europe X X X X X X X   

Ethnicity X   X X     

White X X X X X X X X  

Number of variables 28 20 18 14 13 12 9 9 6 
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After excluding from DARWIN-T2D patients with missing data in key variables, we obtained a database 

composed by 139 726 patients. In Table 18, a comparison between patients in DARWIN-T2D and in the 

CVOTs (n = 95,816) was reported, from which arises that CVOT population is younger, with a shorter 

diabetes duration, is more obese, and has a two to threefold greater prevalence of cardiovascular disease, 

reflected by more frequent use of cardiovascular medications. Among GLMs, patients enrolled in CVOTs 

had more frequent use of sulphonylurea and insulin. On average, only 41.9% patients enrolled in the 

selected trials were recruited in Europe and 75.0% were white.  

 

Table 18: Clinical characteristics. Data are presented as mean (SD) for continuous variables or as percentage for categorical 

variables. The number of patients with available information for each variable is shown for both populations. 

 Target population CVOTs 

Variable Number Value Number Value 

Duration of diabetes, years 139,700 12.1 (9.4) 71,636 11.7 

Age, years 139,708 68.8 (11.2) 95,816 64.4 

Sex male, % 139,726 57.1 95,816 66.4 

HbA1c, % 

mmol/mol 

132,717 7.3 (1.3) 

56 (9) 

95,816 8.0 

64 
BMI, kg/m2 126,994 29.6 (5.5) 95,816 31.6 

Body weight, kg 128,431 80.8 (17.1) 39,332 89.1 

Systolic blood pressure, mm Hg 104,305 137.2 (18.4) 64,572 135.6 

Diastolic blood pressure, mm Hg 104,226 77.5 (9.5) 47,412 77.3 

Established CVD, % 139,726 28.9 95,816 67.5 

PAD, % 139,726 6.0 53,603 14.4 

Previous MI, % 97,074 11.7 50,820 38.8 

Heart failure, % 139,726 1.4 92,633 13.5 

eGFR, ml/min/1.73 m2 113,593 75.7 (24.5) 83,179 76.7 

Albumin creatinine ratio, mg/g 

(median) 

113,775 22.6 41,064 1.4 

Glucose-lowering therapy, % 139,726 93.3 95,816 95.0 

Insulin, % 130,380 33.5 95,816 39.5 

Metformin, % 130,380 71.3 95,816 77.3 

Sulphonylurea, % 130,380 27.5 95,816 42.5 

Thiazolidinediones, % 130,380 5.0 78,656 4.1 

DPP-4 inhibitors, % 130,080 23.3 95,816 16.3 

SGLT-2 inhibitors, % 130,080 4.4 95,816 13.8 

GLP-1 receptor agonists, % 130,080 5.1 95,816 21.1 

Anti-hypertensive therapy, % 117,632 80.1 37,592 92.3 

RAS blockers, % 117,632 67.0 92,633 79.2 

Calcium channel blockers, % 117,632 25.1 49,080 32.8 

Beta blockers, % 117,632 31.5 92,633 56.7 

Diuretics, % 117,632 19.2 52,263 41.9 

Statin, % 117,632 61.1 95,816 75.3 

Aspirin, % 117,632 50.6 95,816 68.3 
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The substantial difference between the CVOT and the target population was expected and it was analyzed 

in the previous chapter, and it gives the rationale for performing the transposition analysis to a RW 

setting. 

In Figure 13, we can see results about transposition analyses, comparing results obtained in CVOTs and 

those obtained after transposition analysis to DARWIN-T2D. 

After transposition, the estimated HR showed a protective effect for LEADER (39), SUSTAIN-6 (38), 

REWIND (92) and DECLARE (35) (co-primary endpoint of cardiovascular death or hospitalization for 

heart failure). 

The HR for 3P-MACE inpatients randomized to empagliflozin in EMPA-REG was 0.86 (95% C.I. 0.74–

0.99) and changed to 0.88 (95% C.I. 0.74–1.03) when transposed to DARWIN-T2D. 

For each CVOT, subgroup-weighted mean of stratum-specific estimates from CVOTs are given in 

supplementary tables at the end of the chapter. 

The effect on 3p-MACE observed in EXSCEL (37), PIONEER-6 (100) and DECLARE (35)  was not 

significant in the CVOT and remained so after transposition.  

As expected, the transposed estimate of DPP-4i effects using stratum-specific data from TECOS (113) 

or SAVOR-TIMI (114) yielded neutral results also in DARWIN-T2D. 

 

Figure 13: Comparison between observed and transposed effects. The Forest plot reports hazard ratios and 95% confidence 

intervals (C.I.) for 3-point major adverse cardiovascular events (3P-MACE) and the second co-primary endpoint in 

DECLARE in the original cardiovascular outcome trial (CVOTs, black) and after transposition to the target population (red). 

HHF, hospitalization for heat failure; CVD, cardiovascular death. Image extracted from (117) 
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Discussion 

 

In the previous chapter, we showed that patients in DARWIN-T2D database, which reflect RW patients 

with T2D that are seen in routine clinical practice, significantly differ from populations included in 

CVOTs. The same conclusion has been reached in many other publications, even if in these works the 

authors only used the I/E criteria (88, 95, 96). We developed instead a sample procedure to detect the 

largest subgroup in DARWIN-T2D of patients with clinical characteristics in average similar to patients 

enrolled in CVOTs, and even smaller proportions were detected. 

Despite this, the transposition analysis that we performed in this chapter, showed that most of the 

significant results obtained in CVOTs are applicable to the RW T2D population (DARWIN-T2D). 

The doubts about transportability to the general T2D population of the protective effect of some GLM 

drugs arise because CVOTs were conducted on very selected patients, with high risk of developing 

cardiovascular events (105). However, stratified analyses performed in CVOTs showed that there are not 

significantly effect’s modifiers, suggesting a clinical transferability of the findings. Nonetheless, several 

trends of interaction and a few nominally significant interactions between the active treatment and 

stratification variables may yield overall significant effects when transposed to a much different target 

population. 

Prior of this work, there is none attempt to transpose results obtained in CVOTs to a RW population, 

with quantitative estimates. 

The post-stratification transposition approach that we applied is in general used when individual-level 

data are available for CVOT, and aggregated-level data are available for the target population (109). 

However, we applied this approach to individual-level data in the RW population, and aggregated-data 

for the CVOTs. The gold standard approach presented in (109), requires individual-level data from both 

CVOTs and the RW population to compute probabilities of being sampled in the trial and to reweight 

trial participants to reflect the target population of patient characteristics. However, accessing individual 

data of multiple CVOTs sponsored by different companies can be harnessed by conflicts of interest. 

Alternative methods, as the one we used, are subjected to biases and based on some critical assumptions. 

Specifically, this approach requires only categorical variables and it is effective only when a small 

number of variables are taken into account (108). Furthermore, conditional dependencies among 

variables are not considered, and only one variable at a time is taken into account, making the strong 

assumption of no correlation between them, which is not realistic. 
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Another limitation of this approach is that transposed results are heavily influenced by proportions of the 

target population in each stratum (109), but the high percentage of missing data in DARWIN-T2D could 

lead to biased results. 

In general, our results confirm the superiority of active GLM drugs versus placebo for cardiovascular 

protection obtained in CVOTs, even when transposed to a RW population with different characteristics. 

This was true for LEADER, SUSTAIN-6, REWIND and DECLARE.  

Results of EMPA-REG were instead not confirmed. In fact, results lost the statistical significance after 

transposition, probably due to the presence of heterogeneity observed in subgroups of patients stratified 

by age and baseline HbA1c (111), the 2:1 ratio between patients randomized to active treatment 

(empagliflozin) and those randomized to the placebo group, which yields small numbers of patients in 

some strata, and the large number of variables (n=28) that composed strata used for transposition. In fact, 

as sensitivity analysis, we transposed the EMPA-REG result with the same 6 variables which were used 

to transpose DECLARE. In this case, we obtained a HR of 0.85 (95% C.I. 0.70–0.99) for the RW 

population, which is still significant. However, the fact that fully transposed HR for EMPA-REG lost the 

statistical significance does not imply that EMPA-REG results are less generalizable to the target 

population than other CVOT’s, because the observed and transposed HRs were however quite similar.  

It is important to notice that we transposed the CVOT drug’s effects as if all T2D patients included in 

DARWIN-T2D could receive that medication. We did not apply CVOT I/E criteria, because our aim was 

to estimate the treatment effect in an unselected target population. 

In conclusion, despite the limitations described above, we provide the first quantitative estimate about 

the cardiovascular protection by diabetes drugs investigated in CVOTs, and we showed that they could 

be applied to a very different and highly heterogeneous population of patients with T2D seen in routine 

care. 
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Supplementary material  

 

Supplementary Table 2: REWIND. CVOT cardiovascular outcome trial, CVD cardiovascular disease, BMI Body Mass Index, 

MI myocardial infarction, HR hazard ratio, low CI and high CI refer to the low and high 95% confidence interval (CI) limit, 

respectively. 

 

Characteristics CVOT estimates Proportions Sub-group weighted mean of 

stratum-specific CVOT 

estimates  

HR low CI high CI Darwin CVOT HR low CI high 

CI Age < 66 yrs 0.92 0.78 1.09 0.34 0.53 0.88 0.77 0.99 

Age ≥ 66  yrs 0.86 0.74 1.00 0.65 0.47    

Sex: Female 0.85 0.71 1.02 0.44 0.46 0.88 0.76 0.99 

Sex: Male 0.90 0.79 1.04 0.56 0.54    

Duration diabetes < 5 yrs 0.84 0.66 1.06 0.27 0.24 0.88 0.77 0.99 

Duration diabetes in [5,10] 

yrs 

0.89 0.73 1.09 0.22 0.30    

Duration diabetes > 10 yrs 0.90 0.77 1.06 0.51 0.46    

CVD: Yes 0.87 0.74 1.02 0.20 0.31 0.87 0.75 0.99 

CVD: No 0.87 0.74 1.02 0.80 0.63    

Hba1c < 7.2 %  0.90 0.76 1.06 0.29 0.47 0.87 0.76 0.98 

Hba1c ≥ 7.2 % 0.86 0.74 1.00 0.65 0.53    

BMI < 32  kg/m2 0.94 0.81 1.09 0.34 0.54 0.90 0.80 1.01 

BMI ≥ 32 kg/m2 0.82 0.69 0.96 0.14 0.46    

Region: Europe 0.77 0.65 0.90 1.00 0.44 0.77 0.67 0.87 

MI or Stroke: Yes 0.79 0.66 0.96 0.09 0.21 0.92 0.80 1.04 

MI  or Stroke: No 0.93 0.81 1.07 0.91 0.79    

Race: White 0.90 0.79 1.02 1.00 0.76 0.90 0.79 1.01 

          CVOT estimate 0.88 (0.79-0.99) Transposed: 0.87 (0.76-0.98) 
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Supplementary Table 3: SUSTAIN-6. CVOT cardiovascular outcome trial, CVD cardiovascular disease, BMI Body Mass 

Index, MI myocardial infarction, HR hazard ratio, low CI and high CI refer to the low and high 95% confidence interval (CI) 

limit, respectively. 

 

Characteristics CVOT estimates Proportions Sub-group weighted 

mean of stratum-specific 

CVOT estimates 

HR low CI high 

CI 

Darwin CVOT HR low CI high CI 

Sex: Female 0.84 0.54 1.31 0.44 0.39 0.75 0.49 1.00 

Sex: Male 0.68 0.50 0.92 0.56 0.61 

Age < 65 yrs 0.74 0.52 1.05 0.32 0.39 0.73 0.49 0.96 

Age ≥ 65 yrs 0.72 0.51 1.02 0.67 0.48 

BMI < 30 kg/m2 0.58 0.39 0.87 0.29 0.36 0.67 0.42 0.93 

BMI ≥ 30 kg/m2 0.84 0.61 1.16 0.20 0.64 

Hba1c  ≤ 8.5 % 0.72 0.50 1.03 0.45 0.56 0.72 0.47 0.97 

Hba1c > 8.5 % 0.74 0.52 1.04 0.07 0.44 

Duration diabetes ≤ 10 yrs 0.73 0.48 1.12 0.54 0.35 0.73 0.48 0.98 

Duration diabetes > 10 yrs 0.73 0.54 0.99 0.47 0.65 

Egfr  <  60 ml/min/1.73 m2 0.84 0.57 1.25 0.12 0.28 0.72 0.46 0.96 

Egfr  ≥  60 ml/min/1.73 m2 0.67 0.48 0.92 0.33 0.72 

Insulin: No 0.52 0.33 0.81 0.31 0.42 0.65 0.38 0.93 

Insulin: Yes 1.02 0.64 1.62 0.16 0.32 

CVD: Yes 0.72 0.55 0.93 0.20 0.83 0.72 0.49 0.95 

CVD risk factors: Yes 1.00 0.41 2.46 0.10 0.17 1.00 0.63 1.37 

Heart Failure: No 0.64 0.48 0.86 0.98 0.83 0.64 0.39 0.90 

Heart Failure: Yes 1.03 0.64 1.66 0.02 0.17 

MI or stroke = No 0.70 0.47 1.04 0.91 0.59 0.70 0.44 0.97 

MI or stroke = Yes 0.76 0.55 1.05 0.09 0.41 

Region; Europe 0.62 0.34 1.13 1.00 0.19 0.62 0.36 0.88 

Race: White 0.76 0.58 1.00 1.00 0.83 0.76 0.51 1.01 

Ethnicity: Not Hispanic or 

Latinos 

0.74 0.57 0.96 1.00 0.85 0.74 0.50 0.98 

 CVOT estimate: 0.74 (0.58-0.95) Transposed: 0.73 (0.47-0.99) 
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Supplementary Table 4: DECLARE HHF/CVD.  HHF hospitalization for heat failure, CVOT cardiovascular outcome trial, 

MI myocardial infarction, HR hazard ratio, low CI and high CI refer to the low and high 95% confidence interval (CI) limit, 

respectively. 

Characteristics CVOT estimates Proportions Sub-group weighted mean of 

stratum-specific CVOT 

estimates 
HR low CI high CI Darwin CVOT   HR low CI high 

CI Heart Failure: Yes 0.79 0.63 0.99 0.02 0.10 0.84 0.64 1.04 

Heart Failure: No 0.84 0.72 0.99 0.98 0.90    

Age < 65 yrs 0.88 0.72 1.07 0.32 0.54 0.86 0.69 1.04 

Age in [65; 75] yrs 0.77 0.63 0.94 0.31 0.40    

Age ≥ 75 yrs 0.94 0.65 1.36 0.36 0.06    

Egfr  < 60 ml/min/1.73 m2 0.78 0.55 1.09 0.12 0.07 0.83 0.66 1.01 

Egfr in [60; 90) ml/min/1.73 

m2 

0.79 0.66 0.95 0.20 0.45    

Egfr ≥ 90 ml/min/1.73 m2 0.96 0.77 1.19 0.13 0.48    

Duration diabetes < 5 1.08 0.87 1.35 0.32 0.22 0.94 0.81 1.07 

Duration diabetes in [5;10) 1.02 0.83 1.25 0.22 0.28    

Duration diabetes  in [10; 15) 0.94 0.77 1.15 0.17 0.23    

Duration diabetes  in [15; 20) 0.92 0.71 1.18 0.12 0.14    

Duration diabetes ≥20 yrs 0.67 0.52 0.86 0.18 0.13    

Previous MI: No 0.85 0.72 1.00 0.56 0.79 0.85 0.67 1.02 

Previous MI: Yes 0.81 0.65 1.00 0.07 0.21  

 CVOT estimate: 0.83 (0.73-0.95)   Transposed: 0.86 (0.73-0.99) 
 

 

Supplementary Table 5: DECLARE MACE. MACE 3-point major adverse cardiovascular events, CVOT cardiovascular 

outcome trial, MI myocardial infarction, HR hazard ratio, low CI and high CI refer to the low and high 95% confidence 

interval (CI) limit, respectively. 

Characteristics CVOT estimates Proportions Sub-group weighted mean 

of stratum-specific CVOT 

estimates 

HR low CI high CI Darwin CVOT HR low CI hig

h 

CI 
Heart Failure: Yes 1.01 0.81 1.27 0.02 0.10 0.92 0.80 1.0

5 Hear Failure: No 0.92 0.82 1.02 0.98 0.90    

Age < 65 yrs 0.93 0.81 1.08 0.32 0.54 0.91 0.77 1.0

4 Age in [65; 75) yrs 0.97 0.83 1.13 0.31 0.40    

Age ≥ 75 yrs 0.84 0.61 1.15 0.36 0.06    

Egfr < 60 ml/min/1.73 m2 0.92 0.69 1.23 0.12 0.07 0.94 0.81 1.0

7 Egfr in [60; 90) ml/min/1.73 m2 0.95 0.82 1.09 0.20 0.45    

Egfr ≥ 90 ml/min/1.73 m2 0.94 0.80 1.10 0.13 0.48    

Duration diabetes < 5 yrs 1.08 0.87 1.35 0.32 0.22 0.94 0.81 1.0

7 Duration diabetes in [5;10) yrs 1.02 0.83 1.25 0.22 0.28    

Duration diabetes in [10; 15) 

yrs 

0.94 0.77 1.15 0.17 0.23    

Duration diabetes in [15;20) yrs 0.92 0.71 1.18 0.12 0.14    

Duration diabetes ≥ 20 yrs 0.67 0.52 0.86 0.18 0.13    

Previous MI: No 1.00 0.88 1.13 0.56 0.79 0.98 0.85 1.1

2 Previous MI: Yes 0.84 0.72 0.99 0.07 0.21  

 CVOT estimate : 0.93 (0.84-1.03) Transposed: 0.94 (0.84-1.04) 
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Supplementary Table 6: EMPA-REG. CVOT cardiovascular outcome trial, CVD cardiovascular disease, BMI Body Mass 

Index, MI myocardial infarction, SBP systolic Blood Pressure, DBP Diastolic Blood Pressure, HR hazard ratio, low CI and 

high CI refer to the low and high 95% confidence interval (CI) limit, respectively. 

 

Characteristics CVOT estimates Proportions Sub-group weighted mean of 

stratum-specific CVOT 

estimates 

HR low 

CI 

high CI Darwin CV

OT 

HR low CI high 

CI Age < 65 yrs 1.04 0.84 1.29 0.32 0.5

5 

0.80 0.68 0.93 

Age ≥ 65 yrs 0.71 0.59 0.87 0.67 0.4

5 

   

Angiotensing converting: No   0.77 0.56 1.07 0.14 0.1

9 

0.84 0.71 0.97 

Angiotensing converting: Yes 0.88 0.75 1.04 0.27 0.8

1 

   

Antihypertensive: No 0.94 0.45 1.95 0.08 0.0

5 

0.87 0.74 0.99 

Antihypertensive: Yes 0.85 0.73 0.99 0.34 0.9

5 

   

Acetylsalicyclic acid: No 0.80 0.57 1.12 0.22 0.1

7 

0.83 0.71 0.95 

Acetylsalicyclic acid: Yes 0.87 0.74 1.02 0.20 0.8

3 

   

Beta blockers: No 0.90 0.70 1.17 0.29 0.3

5 

0.88 0.75 1.01 

Beta blockers: Yes 0.83 0.70 1.00 0.13 0.6

5 

   

BMI < 30 kg/m2 0.74 0.60 0.91 0.28 0.4

8 

0.83 0.71 0.96 

BMI ≥ 30 kg/m2 0.98 0.80 1.21 0.20 0.5

2 

   

Calcium channel blockers : No 0.87 0.73 1.05 0.31 0.6

7 

0.86 0.73 0.99 

Calcium channel blockers: Yes 0.83 0.65 1.06 0.10 0.3

3 

   

Cerebrovascular disease 1.15 0.74 1.78 0.02 0.1

4 

1.15 1.01 1.29 

CVD risk factors 0.79 0.61 1.04 0.10 0.1

9 

0.79 0.69 0.89 

Diuretics: No 0.83 0.67 1.02 0.34 0.5

7 

0.84 0.72 0.96 

Diuretics: Yes 0.88 0.71 1.07 0.08 0.4

3 

   

Dpp4: No 0.81 0.70 0.95 0.36 0.8

9 

0.90 0.77 1.03 

Dpp4: Yes 1.27 0.81 1.98 0.11 0.1

1 

   

Egfr < 60 ml/min/1.73 m2 0.88 0.69 1.13 0.12 0.2

6 

0.88 0.75 1.00 

Egfr in [60; 90) ml/min/1.73 

m2 

0.76 0.61 0.94 0.20 0.5

2 

   

Egfr  ≥ 90 ml/min/1.73 m2 1.10 0.77 1.57 0.13 0.2

2 

   

Ethnicity: Not 

Hispanic/Latinos 

0.91 0.77 1.07 1.00 0.8

2 

0.91 0.79 1.03 

Region: Europe 1.02 0.81 1.28 1.00 0.4

1 

1.02 0.90 1.14 

Hba1c < 8.5 % 0.76 0.64 0.90 0.44 0.6

9 

0.81 0.69 0.93 

Hba1c ≥ 8.5 % 1.14 0.86 1.50 0.08 0.3

1 

   

Insulin: No 0.79 0.64 0.97 0.31 0.5

2 

0.83 0.71 0.95 

Insulin: Yes 0.93 0.75 1.13 0.16 0.4

8 

   

Metformin: No 0.72 0.56 0.94 0.13 0.2

6 

0.86 0.73 0.98 

Metformin: Yes 0.92 0.77 1.10 0.33 0.7

4 

   

MI or stroke: No 0.88 0.66 1.18 0.91 0.3

5 

0.88 0.75 1.01 

MI or stroke: Yes 0.84 0.71 1.00 0.09 0.6

5 

   

peripheral artery disease  0.94 0.47 1.88 0.06 0.0

9 

0.94 0.77 1.11 

SBP ≥140 mmHg and/or 

DBP ≥90 mmHg 

0.83 0.66 1.03 0.20 0.3

9 

0.83 0.72 0.94 

SBP <140 mmHg and 

DBP <90 mmHg 

0.89 0.73 1.08 0.20 0.6

1 

0.89 0.76 1.02 

Sex: Male 0.87 0.73 1.02 0.56 0.7

1 

0.85 0.73 0.97 

Sex: Female 0.83 0.62 1.11 0.44 0.2

9 

   

Statins: No 0.79 0.59 1.07 0.16 0.2

3 

0.84 072 0.97 
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Statins: Yes 0.88 0.74 1.04 0.26 0.7

7 

   

Sulfonylurea: No 0.85 0.70 1.02 0.34 0.5

7 

0.86 0.73 0.98 

sulfonylurea : Yes 0.87 0.69 1.11 0.13 0.4

3 

   

Thiazolidinediones: No 0.85 0.73 0.98 0.44 0.9

6 

0.86 0.74 0.98 

Thiazolidinediones: Yes 1.13 0.55 2.31 0.02 0.0

4 

   

Albumin creatinine ratio < 30 

mg/g 
0.89 0.72 1.10 0.29 0.5

9 

0.89 0.76 1.02 

Albumin creatinine ratio 30-

300 mg/g 
0.89 0.69 1.16 0.16 0.2

9 

   

Albumin creatinine ratio >300 

mg/g 
0.69 0.49 0.96 0.00 0.1

1 

   

Race: White 0.88 0.74 1.04 1.00 0.7

2 

0.88 0.76 1.00 

 CVOT estimate :  0.86 (0.74-0.99) Transposed: 0.88 (0.74-1.03) 
 

 

Supplementary Table 7: LEADER. CVOT cardiovascular outcome trial, CVD cardiovascular disease, BMI Body Mass Index, 

HR hazard ratio, low CI and high CI refer to the low and high 95% confidence interval (CI) limit, respectively. 

Characteristics CVOT estimates Proportions Sub-group weighted mean of 

stratum-specific CVOT estimates 

HR low CI high CI Darwin CVO

T 

HR low CI high CI 

Sex: Female 0.88 0.72 1.08 0.44 0.36 0.87 0.76 0.98 

Sex: Male 0.86 0.75 0.98 0.56 0.64    

Age < 60 yrs 0.78 0.62 0.97 0.20 0.25 0.87 0.77 0.98 

Age ≥ 60 yrs 0.90 0.79 1.02 0.79 0.75    

BMI < 30 kg/m2 0.96 0.81 1.15 0.29 0.38 0.90 0.79 1.01 

BMI ≥ 30 kg/m2 0.82 0.71 0.94 0.20 0.62    

Hba1c ≤ 8.3 % 0.89 0.76 1.05 0.43 0.51 0.88 0.77 0.99 

Hba1c > 8.3 % 0.84 0.72 0.98 0.09 0.49    

Duration diabetes ≤ 11 yrs 0.82 0.70 0.97 0.58 0.47 0.85 0.75 0.96 

Duration diabetes > 11 yrs 0.90 0.78 1.04 0.42 0.52    

CVD: Yes 0.83 0.74 0.93 0.20 0.81 0.83 0.73 0.93 

CVD Risk factors: Yes 1.20 0.86 1.67 0.10 0.19 1.20 1.06 1.34 

Egfr < 60 ml/min/1.73 m2 0.69 0.57 0.85 0.12 0.23 0.86 0.76 0.98 

Egfr ≥ 60 ml/min/1.73 m2 0.94 0.83 1.07 0.33 0.77    

Heart Failure: No 0.85 0.76 0.96 0.98 0.86 0.85 0.74 0.96 

Heart Failure: Yes 0.94 0.72 1.21 0.02 0.14    

Antidiabetic therapy: 1 oral 0.75 0.58 0.98 0.17 0.19 0.83 0.73 0.94 

Antidiabetic therapy: more than 

1 oral 

0.95 0.78 1.16 0.14 0.32    

Antidiabetic therapy: Insulin 

with oral  

0.89 0.74 1.06 0.09 0.37    

Antidiabetic therapy: Insulin 

without oral  

0.86 0.63 1.17 0.07 0.08    

Antidiabetic therapy: None 0.73 0.42 1.25 0.04 0.04    

Region: Europe 0.82 0.68 0.98 1.00 0.35 0.82 0.72 0.92 

Race: White 0.90 0.80 1.02 1.00 0.77 0.90 0.79 1.01 

Ethnicity: Non-Hispanic 0.89 0.79 1.00 1.00 0.88 0.89 0.78 1.00 

 CVOT estimate : 0.87 (0.78-0.97)   Transposed: 0.88 (0.77-0.99) 
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Supplementary Table 8: PIONEER-6. CVOT cardiovascular outcome trial, CVD cardiovascular disease, BMI Body Mass 

Index, MI myocardial infarction, HR hazard ratio, low CI and high CI refer to the low and high 95% confidence interval (CI) 

limit, respectively.  

 

Characteristics CVOT estimates Proportions Sub-group weighted mean of 

stratum-specific CVOT estimates 

HR low CI high CI Darwin CVOT HR low CI high CI 

Age < 65 yrs 0.51 0.29 0.90 0.26 0.42 0.85 0.66 1.05 

Age ≥ 65 yrs  1.04 0.68 1.59 0.67 0.58    

Egfr < 60 ml/min/1.73 m2 0.74 0.41 1.33 0.12 0.27 0.79 0.60 0.98 

Egfr ≥ 60 ml/min/1.73 m2 0.81 0.54 1.22 0.33 0.73    

Sex: Female 1.16 0.54 2.51 0.44 0.32 0.89 0.69 1.09 

Sex: Male 0.72 0.50 1.05 0.56 0.68    

CVD: Yes 0.83 0.58 1.17 0.20 0.85 0.83 0.65 1.01 

CVD risk factors: Yes 0.51 0.15 1.68 0.10 0.15 0.51 0.25 0.77 

Hba1c < 8.6 % 0.81 0.53 1.24 0.45 0.67 0.80 0.61 0.99 

Hba1c ≥ 8.6 % 0.73 0.42 1.26 0.07 0.32    

BMI < 31 kg/m2 0.61 0.36 1.03 0.32 0.40 0.71 0.52 0.90 

BMI ≥ 31 kg/m2 0.95 0.61 1.48 0.16 0.60    

Race: White 0.83 0.56 1.23 1.00 0.72 0.83 0.64 1.02 

MI or stroke: Yes 0.97 0.64 1.49 0.09 0.45 0.62 0.41 0.82 

MI or stroke: No 0.59 0.34 1.03 0.91 0.54    

 CVOT estimate : 0.79 (0.57-1.11)    Transposed: 0.76 (0.41-1.10) 
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Supplementary Table 9: TECOS. CVOT cardiovascular outcome trial, CVD cardiovascular disease, BMI Body Mass Index, 

MI myocardial infarction, SBP Systolic Blood Pressure, DBP Diastolic Blood Pressure, HR hazard ratio, low CI and high CI 

refer to the low and high 95% confidence interval (CI) limit, respectively.  

 

Characteristics CVOT estimates Proportions Sub-group weighted mean of 

stratum-specific CVOT estimates 

HR low CI high CI Darwin CVOT HR low CI high CI 

Age < 65 yrs  0.95 0.82 1.11 0.32 0.45 0.99 0.87 1.11 

Age ≥ 65 yrs 1.01 0.90 1.15 0.67 0.53    

Sex: Male 0.99 0.88 1.10 0.56 0.71 0.97 0.86 1.09 

Sex: Female 0.95 0.78 1.15 0.44 0.29    

Race: White 0.97 0.87 1.08 1.00 0.68 0.97 0.86 1.08 

Region: Europe 0.95 0.73 1.23 1.00 0.14 0.95 0.83 1.07 

Duration diabetes  < 5 yrs 0.99 0.78 1.26 0.27 0.19 0.99 0.87 1.11 

Duration diabetes is [5; 15) 0.89 0.78 1.02 0.40 0.51    

Duration diabetes ≥ 15 yrs 1.12 0.95 1.32 0.32 0.29    

Sulfonylurea: Yes 0.99 0.86 1.14 0.13 0.45 0.98 0.86 1.09 

Sulfonylurea: No 0.97 0.85 1.10 0.34 0.55    

Metformin: Yes 0.96 0.83 1.04 0.33 0.82 1.01 0.91 1.10 

Metformin: No 1.13 0.93 1.38 0.13 0.18    

Thiazolidinedione: Yes 0.86 0.49 1.49 0.02 0.03 0.97 0.86 1.09 

Thiazolidinedione: No 0.98 0.89 1.08 0.44 0.97    

Insulin: Yes 1.01 0.85 1.21 0.16 0.23 0.98 0.86 1.10 

Insulin: No 0.96 0.89 1.08 0.31 0.77    

Heart Failure: Yes 0.97 0.80 1.17 0.02 0.18 0.99 0.88 1.10 

Heart Failure: No 0.99 0.88 1.10 0.98 0.82    

Hba1c < 7.2 % 0.95 0.83 1.09 0.29 0.52 0.97 0.86 1.09 

Hba1c ≥ 7.2 % 1.00 0.88 1.14 0.23 0.48    

Egfr < 60 ml/min/1.73 m2 0.92 0.78 1.10 0.12 0.23 0.98 0.86 1.10 

Egfr ≥ 60 ml/min/1.73 m2 1.00 0.89 1.12 0.33 0.76    

SBP < 140 mmHg 0.96 0.85 1.09 0.20 0.60 0.98 0.86 1.10 

SBP in [140; 160) mmHg  1.03 0.87 1.23 0.13 0.31    

SBP ≥ 160 mmHg 0.92 0.70 1.23 0.06 0.09    

DBP <90 mmHg 0.98 0.88 1.09 0.34 0.85 0.97 0.85 1.09 

DBP in [90; 100) mmHg 1.08 0.84 1.40 0.04 0.13    

DBP ≥ 100 mmHg 0.51 0.25 1.02 0.01 0.02    

BMI < 30 kg/m2 1.08 0.95 1.24 0.29 0.53 0.99 0.88 1.11 

BMI ≥ 30   0.88 0.76 1.01 0.20 0.46    

Statins: Yes 0.98 0.88 1.10 0.26 0.80 0.97 0.85 1.09 

Statins: No 0.96 0.79 1.16 0.16 0.20    

ACE inhibitors: Yes 1.00 0.90 1.11 0.27 0.79 0.96 0.85 1.08 

ACE inhibitors: No 0.89 0.71 1.11 0.14 0.21    

Diuretics: Yes 0.96 0.84 1.09 0.08 0.41 1.00 0.89 1.11 

Diuretics: No 1.01 0.88 1.15 0.34 0.59    

Calcium channel blockers: Yes 0.93 0.79 1.09 0.10 0.34 0.99 0.88 1.10 

Calcium channel blockers: No 1.01 0.89 1.13 0.31 0.66    

Beta blockers: Yes 0.96 0.85 1.07 0.13 0.64 1.01 0.90 1.13 

Beta blockers: No 1.04 0.87 1.23 0.29 0.36    

 CVOT estimate: 0.98 (0.88-1.09)  Transposed: 0.97 (0.87-1.06) 

 

 

 

 

 

 

 



 

111 

 
Supplementary Table 10: SAVOR-TIMI. CVOT cardiovascular outcome trial, BMI Body Mass Index, HR hazard ratio, Low 

CI and high CI refer to the low and high 95% confidence interval (CI) limit, respectively.  

Characteristics CVOT estimates Proportions Sub-group weighted mean of 

stratum-specific CVOT estimates 

HR low CI high CI Darwin CVOT HR low 

CI 

high CI 

Egfr < 30 ml/min/1.73 m2 0.83 0.49 1.39 0.02 0.02 1.00 0.85 1.15 

Egfr in [30;50) ml/min/1.73 m2 1.02 0.79 1.30 0.05 0.14    

Egfr ≥ 50 ml/min/1.73 m2 1.01 0.88 1.15 0.37 0.84    

Sex: Male 1.01 0.89 1.16 0.56 0.67 0.99 0.84 1.14 

Sex: Female 0.97 0.78 1.20 0.44 0.33    

Race: White 0.98 0.86 1.11 1.00 0.75 0.98 0.84 1.12 

Age < 75 yrs 1.01 0.89 1.15 0.63 0.86 0.99 0.84 1.14 

Age ≥ 75 yrs 0.96 0.75 1.22 0.36 0.14    

Region: Europe 0.96 0.81 1.13 1.00 0.42 0.96 0.82 1.10 

BMI < 30 kg/m2 1.01 0.86 1.19 0.28 0.46 1.00 0.85 1.15 

BMI ≥ 30 kg/m2 0.99 0.85 1.16 0.20 0.53    

Heart Failure: Yes 1.13 0.89 1.43 0.02 0.13 0.97 0.83 1.12 

2Heart Failure: No 0.97 0.85 1.10 0.98 0.87    

Duration diabetes < 5 yrs 1.07 0.82 1.40 0.27 0.24 1.01 0.86 1.16 

Duration diabetes in [5; 10) yrs 1.04 0.81 1.33 0.22 0.24    

Duration diabetes in  [10;15) yrs 0.94 0.74 1.19 0.18 0.21    

Duration diabetes in [15;20) yrs 1.06 0.79 1.41 0.12 0.13    

Duration diabetes ≥20 yrs 0.93 0.74 1.17 0.20 0.18    

Hba1c  < 7 % 1.01 0.78 1.31 0.24 0.25 1.01 0.86 1.15 

Hba1c  in[7; 8) % 0.98 0.80 1.20 0.16 0.33    

Hba1c in [8; 9) % 1.09 0.85 1.39 0.07 0.19    

Hba1c ≥ 9 % 0.95 0.77 1.18 0.05 0.21    

Insulin: Yes 1.03 0.88 1.20 0.16 0.41 0.98 0.84 1.13 

Insulin: No 0.96 0.82 1.13 0.31 0.59    

Sulfonylurea: Yes 0.95 0.79 1.14 0.13 0.40 1.01 0.86 1.15 

Sulfonylurea: No 1.03 0.90 1.19 0.34 0.60    

Metformin: Yes 0.97 0.84 1.13 0.33 0.70 0.99 0.84 1.15 

Metformin: No 1.05 0.88 1.25 0.13 0.30    

Thiazolidinedione: Yes 0.59 0.33 1.04 0.02 0.06 0.99 0.84 1.14 

Thiazolidinedione: No 1.02 0.91 1.15 0.44 0.94    

Micro-albumin creatinine ratio < 30 mg/g 1.07 0.90 1.27 0.29 0.59 1.01 0.85 1.16 

Micro-albumin creatinine ratio in [30; 

300) mg/g 

0.90 0.74 1.09 0.16 0.27    

Micro-albumin creatinine ratio ≥ 300 

mg/g 

0.88 0.68 1.13 0.00 0.10    

Ethnicity: Not hispanic 0.97 0.86 1.10 1.00 0.79 0.97 0.83 1.11 

Weight  < 80 Kg 1.10 0.91 1.33 0.25 0.36 1.05 0.88 1.17 

Weight ≥ 80 Kg 0.95 0.83 1.09 0.24 0.64    

Hypertension: Yes 0.97 0.86 1.10 0.34 0.82 1.00 0.85 1.15 

Hypertension: No 1.14 0.87 1.51 0.08 0.18    

Statins: Yes 0.99 0.87 1.12 0.26 0.78 1.01 0.87 1.15 

Statins: No 1.04 0.80 1.34 0.16 0.22    

ACEi/ARB: Yes 0.98 0.86 1.11 0.27 0.79 1.01 0.87 1.16 

ACEi/ARB: No 1.08 0.85 1.38 0.14 0.21    

Diuretics: Yes 1.02 0.88 1.18 0.08 0.44 0.99 0.84 1.14 

Diuretics: No 0.98 0.82 1.16 0.34 0.56  

 CVOT estimate : 1.00 (0.89-1.12) Transposed: 0.99 (0.87-1.10) 
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Supplementary Table 11: EXCEL. CVOT cardiovascular outcome trial, CVD cardiovascular disease, BMI Body Mass Index, 

HR hazard ratio, low CI and high CI refer to the low and high 95% confidence interval (CI) limit, respectively.  

 

Characteristics CVOT estimates Proportions Sub-group weighted mean of 

stratum-specific CVOT 

estimates 

HR low CI high CI Darwin CVOT HR low CI high CI 

Age < 65 yrs 1.05 0.92 1.21 0.32 0.60 0.87 0.75 0.99 

Age ≥ 65 yrs 0.80 0.71 0.91 0.67 0.40    

Sex: Male 0.94 0.84 1.05 0.56 0.62 0.90 0.79 1.02 

Sex: Female 0.86 0.73 1.03 0.44 0.38    

Race: White 0.95 0.85 1.05 1.00 0.76 0.95 0.84 1.06 

Region: Europe 1.00 0.87 1.15 1.00 0.46 1.00 0.88 1.12 

Duration diabetes < 5 yrs 0.70 0.50 0.97 0.27 0.14 0.87 0.75 0.99 

Duration diabetes in [5;15)  yrs 0.98 0.85 1.12 0.40 0.49    

Duration diabetes ≥  15 yrs 0.90 0.79 1.04 0.32 0.37    

Anti-hyperglycemic oral agent 

therapy: Yes 

0.93 0.84 1.04 0.39 0.85 0.85 0.75 1.00 

Anti-hyperglycemic oral agent 

therapy: No 

0.84 0.69 1.03 0.61 0.15    

Insulin: Yes 0.89 0.78 1.00 0.16 0.46 0.93 0.81 1.05 

Insulin: No 0.95 0.83 1.10 0.31 0.54    

Dpp4: Yes 1.08 0.84 1.39 0.11 0.15 0.93 0.81 1.05 

Dpp4: No 0.89 0.80 0.99 0.36 0.85    

Heart Failure: Yes 0.97 0.81 1.16 0.02 0.16 0.90 0.79 1.01 

Heart Failure: No 0.90 0.81 1.00 0.98 0.84    

Hba1c  < 8 % 0.91 0.80 1.05 0.40 0.49 0.91 0.79 1.03 

Hba1c ≥ 8% 0.91 0.80 1.04 0.12 0.51    

Egfr < 60 ml/min/1.73 m2 1.01 0.86 1.19 0.12 0.22 0.90 0.77 1.02 

Egfr ≥ 60 ml/min/1.73 m2 0.86 0.77 0.97 0.33 0.78    

BMI < 30 kg/m2 0.94 0.79 1.10 0.28 0.36 0.92 0.81 1.03 

BMI ≥ 30 kg/m2 0.89 0.79 1.00 0.20 0.63    

CVD: Yes 0.90 0.82 1.00 0.20 0.73 0.97 0.84 1.10 

CVD: No 0.99 0.77 1.28 0.80 0.27    

 CVOT estimate: 0.92 (0.82-1.02) Transposed: 0.91 (0.83-1.00) 
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CHAPTER 6 
DEEP LEARNING FOR PREDICTING URGENT HOSPITALIZATIONS IN ELDERLY 

POPULATION USING ADMINISTRATIVE ELECTRONIC HEALTH RECORDS 

 

Introduction 

 

The World Health Organization (WHO) pointed out, in a report published in 2011 (118), that  the 

population with more than 65 years is constantly growing from an estimated 524 million in 2010 to nearly 

1.5 billion in 2050. This could heavily affect healthcare system and increasing social costs in the future. 

Often, elderly people are simultaneously affected by at least two chronic morbidities (multi-morbidity), 

which means that lots of different drugs are used (poly-pharmacy) by the same individual in the same 

time, that increases the complexity of managing such kind of patients. Furthermore, it is well known 

from literature that multi-morbidity and poly-pharmacy are risk factors for urgent hospitalizations and 

worsening of the quality of life of elderly people (119–121). Consequently, it is a priority to prevent 

adverse outcomes by early warnings, understanding the pattern of health trajectories over time, defined 

as the dynamic course of the health status of an individual described as a succession of healthcare events, 

like medication prescriptions, diagnoses registered during hospitalizations, and so on. 

Healthcare trajectories of elderly population can be reconstructed from Healthcare Administrative 

Databases (HADs), as described in Chapter 1. 

Even if HADs were originally born for administrative purposes, in the last decades they begun to be used 

to do epidemiological and medical researches too. The greatest part of the studies conducted on HADs, 

perform analyses based on traditional regression-based approaches, such as logistic regression (122), 

support vector machines (123) or random forest (124). However, these approaches are not suitable when 

high dimensional data are available, they are not able to manage irregular time intervals between events 

and they are based on very strong assumptions, often hard to verify (125). 

Furthermore, in the last decades a personalized medicine perspective is being developed, and advanced 

ML techniques help to reach this aim. 

ML and Deep Learning (DL) approaches  (126–128) are able to learn compact representations of 

personalized healthcare trajectories of elderly population, taking advantage from the big amount of data 

available from HADs, such as medication prescriptions and hospitalizations’ diagnoses. 
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For example, Nguyen et colleagues (129) used a Convolutional Neural Network (CNN) to predict the 

probability of readmission, constructing a DL model called Deepr (Deep record). They reconstructed 

healthcare trajectories using diagnoses, clinical procedures and medications extracted directly from 

hospitals’ Electronic Health Records (EHRs). 

Pham et al (130) used instead the Long-Short Term Memory (LSTM) algorithm (131) to construct the 

DeepCare model to predict the onset of diabetes, using EHRs, and taking advantage from the LSTM’s 

attention mechanism.  

In a similar way, Choi et colleagues used a Recurrent Neural Network (RNN) called RETAIN to predict 

heart failure from EHRs (132).  

Successively, Li et al (133) introduced the use of Transformer architecture, i.e. a natural language 

processing (NLP) approach, to predict future diagnoses based on the healthcare trajectory defined as a 

succession of previous diagnoses. The model that was born from this application was named BEHRT, 

which is the union of “BERT”, i.e. the transformer algorithm developed by Google in 2018 (134), applied 

to EHRs. 

Then, very recently, also Rasmy et al (135) applied BERT to structured EHRs, proposing the so called 

MED-BERT. They used data about hospitalizations’ diagnoses, and they used BERT to predict heart 

failure in patients with diabetes and pancreatic cancers on three different cohorts extracted from EHR 

databases in the United States. 

The aim of this study was instead to analyze the healthcare trajectories of elderly population in the 

Piedmont region (Northern Italy) extracted from medication prescriptions and hospitalizations’ 

diagnoses from HADs, to predict urgent hospitalizations 3 months in advance.  

The previous studies applied DL approaches to EHRs, meanwhile we applied BERT to HADs, using 

both medications prescriptions and hospitalization diagnoses, and not only the second ones like in the 

majority of the previously published works.  

Furthermore, at our knowledge, this is the first time medication prescriptions made by general physicians, 

and not drugs prescribed during hospitalizations, were considered in a similar setting. 

Additionally, we tried to understand which type of information, between medication prescriptions, 

hospitalization diagnoses and demographics data, are more informative to predict a future urgent 

hospitalization. 
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Material and Methods 

 

Data source 

 

Data were extracted from the Piedmont Longitudinal Study (PLS), which is a study built through record-

linkage of census data with administrative ones (i.e. hospital discharges, drugs prescriptions, outpatients 

cares, and so on) of the inhabitants of Piedmont region, in the North-West of Italy.  

In this study we considered only subjects aged at least 65 years at the 1st of January 2015, thus resulting 

in a cohort of 1 159 141 people.  

Data about hospital admissions and drug prescriptions occurred between 1st of January 2015 and 31 

December 2018 were collected. Then, age, gender and educational level, used as proxy of socio economic 

status (SES), were also gathered from the 2011 census. 

 

Method: Deep Learning 

 

Artificial Intelligence, Machine Learning, Deep Learning 

 

In the classical programming we are used to have rules and data as input, and we obtain answers as 

output. In ML the inputs are instead data and answers, and the output are rules (Figure 14). 

 

Figure 14: Classical programming vs Machine Learning 

 

ML is a bub-field of Artificial Intelligence (AI), which comprises any technique which enables computers 

to mimic human behavior. More in detail, ML are AI techniques that give computers the ability to learn 

from data by training, without being explicitly programmed to do so (Figure 15Figure 15) (136).  
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Figure 15: Artificial Intelligence, Machine Learning and Deep Learning  

 

ML requires three ingredients: 

1) Input data; 

2) Examples of the expected output; 

3) A way to measure the error made by the algorithm, i.e. the distance between the algorithm’s 

output and the expected one. This error is then used as a feedback signal to adjust the rules 

that the algorithm uses. This is the mechanism through the algorithm learns rules between 

input and output data. 

In other words, the ML algorithm is exposed to examples of pairs of input and output data, from which 

it learns the optimal transformation of input data into meaningful output (136).  

In other words, let us consider the example reported in Figure 16. Let’s suppose that we want an algorithm 

which is able to correctly classify the point’s color, given its coordinates (x, y). In this case, inputs are 

the coordinates of the points, and the outcome is the color of the points. The error could be given by the 

percentage of points being incorrectly classified. The aim of the ML algorithm is to find a new 

representation of the input data which correctly separate the red points from the blue ones. For example, 

after many attempts of data transformation, the algorithm chooses the one that leads to the minimum 

percentage of misclassified points. In particular, the algorithm finds that a coordinate change is the most 

useful representation of the input data and it learns the following rule (136): 

“if x’>0, then the point is blue, otherwise it is red”. 

Figure 16: Example of data transformation, 
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ML has been developed to overcome many weaknesses which occur in classical programming. For 

example, it requires strong assumptions, it has difficulties to deal with long-term dependencies, it requires 

the experts’ ability to define appropriate features, it is not able to deal with irregularities of the intervals 

between two events, and so on. Furthermore, when a big amount of data is available, traditional 

algorithms are not able to increase the performance when the data amount is increasing. Large neural 

networks (NN) are instead able to take advantage as the amount of data increases (Figure 17). 

 

 

Figure 17: Deep learning and big data. 

 

DL is a subfield of ML, and it learns successive layers of representations of data that have an increasingly 

meaning. These layers of successive representation of input data, are learned via neural networks (NN), 

that are models composed by several successive layers.  A simple NN has only one hidden layer, which 

makes only one data transformation to obtain a better representation of the input data. If the hidden layers 

are instead almost two, we refer to that NN as a DL NN (Figure 18). 

 

Figure 18: Simple Neural Network vs Deep Learning Neural Network. 

 



 

118 

Simple NN 

 

The simple architecture behind DL is the artificial neural network (ANN). Each perceptron is composed 

by input data, a hidden layer where computations are performed, and an output layer (Figure 18). 

The first step in a ANN is to compute a weighted sum Z, composed by a bias term b, a weights matrix 

W, and an input matrix X (137). 

𝑍 = 𝑏 + ∑ 𝑊𝑖 𝑿𝒊

𝑛

𝑖=1

 

The output of step 1 is then passed to the activation function g, which is a mathematical function that 

transforms the output to a non-linear format in a desired range, and it is successively passed to the next 

layer. The most used activation functions are the sigmoid, relu, and hyperbolic tangent functions (137). 

 

Figure 19: Simple NN structure. 

 

These computations are performed in each neuron in a NN, including the output layer, and one of this 

passage is called forward propagation. 

 

Understanding how DL works 

 

A supervised DL NN needs to observe several examples of input-output pairs to learn the better input-

to-output mapping via a deep sequence of data transformations (layers), which are expressed through 

numbers called weights or, sometimes, parameters of the layer (136). Weights contain the information 

learned by the NN from the training data, i.e. from the exposure to input-output pairs. Learning means 
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find the optimal set of weights for all the NN layers that allows to the NN to correctly map inputs to their 

outputs. 

First, weights are set completely at random. Then, NN tries to associate an output to each input through 

these values of weights. Obviously, when weights are set completely at random, when the NN tries to 

associates outputs to inputs it makes errors. So, the NN computes the error that it performs, i.e. it 

evaluates through a loss function a distance score, which measures how far is the predicted output from 

the true.  

One example of loss function is the Mean Squared Error (MSE) defined as 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑌𝑖 − 𝑌�̂�)

2

𝑛

𝑖=1

 

where 𝑌�̂� is the predicted output, Y is the true output, and n is the sample size. 

This score is then used as a feedback signal to optimize the weights set, that are changed in order to lower 

the loss score. This procedure is performed by an optimizer, which takes advantage from the 

backpropagation algorithm.  

For example, one algorithm typically used to minimize the loss function is the stochastic gradient descent 

(SGD). When the loss value which measures the mismatch between the output predicted and the true one 

is obtained, the gradient of the loss with regard to the NN weights is computed. Then, weights are moved 

in the opposite direction from the gradient and in this way the loss in reduced.  The amount of change 

during each step of this updating process, is called learning rate, which controls how quickly a NN model 

learns from data. 

If gradient values of a NN are computed via the chain rule (f(g(x)) = f’(g(x)) * g’(x)), a back-propagation 

algorithm is applied. Back-propagation starts with the final loss value and going backward from the last 

layer to the first layer, it applies the chain rule to compute the contribution that each weight had in the 

computation of the loss value. 

Another way of minimizing the loss function is the adaptive moment estimation (Adam) optimizer, which 

is an extension of the SGD, often used in the Natural Language Processing (NLP) context (138). In the 

classical SGD, a single learning rate is maintained throughout the training. Contrariwise, in Adam 

optimizer individual adaptive learning rates are computed for different parameters from estimates of first 

and second moments of the gradients (138). 

The process of learning described above is represented in Figure 20 (136).  
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Figure 20: The process of learning of a DL algorithm. 

 

Subsequently, when the model has been trained, it must be evaluated for its ability to generalize what it 

has learned. 

Data are split into three sets: training, validation, and test sets. The model is trained on training set, then 

it is evaluated on validation set. In this phase, hyper-parameters (i.e. the number of layers, the size of 

layers, the learning rate, etc..) are tuned.  

Finally, the model is tested one final time on the test set, consisting of data that the algorithm has never 

seen (136). 

 

DL on text sequences 

 

In my application, I will consider healthcare trajectories of elderly people with the aim to learn history 

of poly-pharmacy and multi-morbidity using hospitalization diagnoses and medication prescriptions, 

extracted from HADs. More in detail, each ATC code or diagnosis category corresponds to a word in the 

NLP field, one hospitalization or the set of the medical prescriptions made in the same day corresponds 

to a sentence, the entire healthcare trajectory of a subject corresponds to a document. 

So, let’s see more in detail how DL models can process text, i.e. a sequence of words, time-series and, 

more in general, sequence data. In fact, DL is able to understand sequence data and it can produce a basic 

form of natural language understanding. 
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However, when DL is working on text, it is not able to work with input raw text, but it is necessary to 

perform data pre-processing to transform each word of the input raw text into a numeric tensor, through 

the so called process of “vectorization”. Each word is called token, and this process could also be called 

tokenization.  

There exist multiple ways to associate a vector with a token. The most used are the one-hot encoding and 

the token embedding (136). In the first one, a unique integer index is associated with every word and 

then it is turned into a 0-1 vector of size N (the size of the vocabulary). The vector has 1 in the ith position, 

otherwise it is zero, leading to a sparse vector.  Word embeddings are low dimensional dense floating-

point vectors, directly learned from data, jointly with the main task of the training. Furthermore, while 

in one-hot encoding all the words have the same distance between them, in word embedding words with 

a similar meaning have a lower distance if compared with that one of words with different meanings 

(Figure 21) (136). 

 

 

Figure 21: An example of word embedding. 

 

BERT: Bidirectional Encoder Representations from Transformers 

 

In 2019 Jacob Devlin et colleagues (134), members of the Google AI group, developed a new language 

representation model called BERT, which is the acronyms of Bidirectional Encoder Representations from 

Transformers. 

Transformer is a particular DL model which takes advantage from the attention mechanism, that is a 

process that weights differently the influence of distinct parts of the input data (139). Furthermore, the 

attention units produce embeddings for every token, containing information about the token itself and a 

weighted combination of other tokens that the attention mechanism choose as relevant for the task. 

Transformers were developed by Google to handle sequential data, for example for tasks like language 

translations or text summarizations in the NLP context. 
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Transformer is an encoder-decoder architecture, which is represented in  Figure 22. More in detail, in the 

encoder part there are a set of encoding layers that iteratively process the input to generate encodings 

containing information on which part of the input is more relevant, taking advantage from the attention 

mechanism. Then, the input is passed to the decoder part, composed by a set of decoder layers that 

process the input which came from the encoder part, in the opposite direction. More in detail, decoder 

layer extracts from encodings their contextual information and generate the output. Both encoder and 

decoder layers have a feed-forward NN to further process the outputs encoding individually. The first 

encoder layer takes as input the embeddings of the input sequence. Finally, a linear transformation and a 

softmax layer are placed after the last decoder layer, to generate the output probabilities over the 

vocabulary. 

Transformer are semi-supervised learning, i.e. it has a first phase of unsupervised pre-training in which 

the algorithm is used to learn the data structure, followed by a supervised fine-tuning phase with a specific 

task. 

 

Figure 22: The Transformer-model architecture, taken from (139). 

 

More in detail, the unsupervised pre-training is performed via two different mechanisms (134): 

1) Masked Language Modeling (MLM). It randomly selects some words and it masks them. Then, 

BERT learns to predict the original words, taking advantage from the bidirectional context. More 
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in detail, it selected 15% of words randomly, and they were modified according to the following 

probabilities: 

a. 80% of the times  (MASK) 

b. 10% of the times  a random word was substituted 

c. 10% of the times  unchanged  

 

Figure 23: Masked Language Modelling 

 

2) Next Sentence Prediction (NSP).  Given two sentences, BERT learns whether one sentence follows 

the other or not. So, given the sentence A, is sentence B the following? The algorithm answers 

YES/NO. 

 

Figure 24: Next Sentence Prediction. 

 

In the supervised fine-tuning phase, BERT is initialized with the parameters learned in the pre-training 

phase. Then, these parameters are updated using labeled data which are task-specific. 

BERT is a deeply bidirectional transformer, that means that the encoder takes into account the context 

(left and right side) in which a word occurs, being able to give different meanings to the same words. 

 

BERT applied on HADs 

 

Data pre-processing 

 

Medication prescriptions were represented through 4-digits of the Anatomical Therapeutic Chemical 

Classification System (ATC) codes.  
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Diagnoses were collected from the hospital discharges records, through the International Classification 

of Diseases, 9th edition (ICD-9-CM). However, to reduce dimensionality, we grouped diagnoses via the 

Single-level Clinical Classification Software (CCS) for ICD-9-CM (140). 

If one subject died or emigrated outside Piedmont, we removed his/her last 3 months before the date of 

death/emigration. 

Input data are not in a structured form, but they are stored into a text-file as shown in Figure 25. More 

specifically, for each subject it was created one row for each event that occurred in his/her healthcare 

trajectory (one hospitalization or one medication prescription). Each event is a set of ATC and/or ICD-

9-CM codes. In the first row, ATC or diagnoses of the first event are reported. More in detail. for each 

event a new row, which contains the previous events and the new one, is added. Then, to each row was 

added a 0-1 label, which indicates if in the next 3 months an urgent hospitalization (i.e. a non-

programmed hospitalization) occurred.  

 

Figure 25: Input data format. 

 

Furthermore, three numbers indicating age, gender and SES were also added, through a wide-and-deep 

model, i.e. concatenating them to the input of the last BERT layer, whose output is then converted into 

class probabilities for the prediction task (Figure 25 and Figure 26). 

In the training phase we randomly allocated 100 000 samples in the training set, 25 000 in the validation 

set, and 25 000 in the test set.  



 

125 

Due to computational limits, at this stage of the work we were not able to use all the available data. 

To handle un-balancement in the data set, 1:1 random oversampling was performed. 

 

 

Figure 26: Wide and deep model. 

 

Scenarios 

 

Four different scenarios were analyzed, to asses which information (between drugs prescriptions, 

hospitalization diagnoses and demographic data) is more useful to predict urgent hospitalizations in 

elderly subjects. 

 

i. Scenario (1): medications’ prescriptions (ATC7 codes), hospitalizations diagnoses (ICD9CM 

codes) and individual characteristics (IC), i.e. age, gender and SES 

ii. Scenario (2):  medications’ prescriptions (ATC7 codes), and hospitalizations diagnoses 

(ICD9CM codes) 

iii. Scenario (3): hospitalizations diagnoses (ICD9CM codes) and individual characteristics (IC) 

iv. Scenario (4): medications’ prescriptions (ATC7 codes), and individual characteristics (IC). 

 

In each scenario, the goal was to predict a new urgent hospitalization within 3 months from the last event, 

i.e. a hospitalization or a medication prescription according to different scenarios. 

 

The application of BERT to HADs 
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BERT was applied to healthcare trajectories of elderly people to learn history of poly-pharmacy and 

multi-morbidity using hospitalization diagnoses and medication prescriptions, extracted from HADs 

described in Chapter 1.     

Each ATC code or diagnosis category corresponds to a word in the NLP field, one hospitalization or the 

set of the medical prescriptions made in the same day corresponds to a sentence, the entire healthcare 

trajectory of a subject corresponds to a document. 

BERT was pre-trained to learn the data structure, through the original pre-training algorithm of the BERT 

algorithm developed by Google, i.e. MLM and NSP. More in detail, three pre-trainings were conducted 

on the whole sample and in three scenarios aforementioned. First, only hospitalizations’ CCS categories 

were used. Then, only medications’ ATC codes were considered and finally both hospitalizations’ CCS 

categories and medications’ ATC codes were taken into account. 

Furthermore, to qualitatively evaluate the goodness of the embedding, a t-SNE reduction was performed, 

to have a dimensional graphical representation more interpretable. When only medications or only 

diagnoses were taken into account, the top 10 occurring codes and their nearest neighbors in term of 

cosine similarity were represented. When instead both diagnoses and medications were included, the top 

5 medications and the top 5 diagnoses with their nearest neighbors were represented.  

Finally, the attention mechanism enables prediction interpretation. Some examples are reported to show 

how attention weights from transformer layers connect some codes with each other in the pre-trained 

model. 

With respect the original Google’s BERT algorithm, we used a smaller one, to avoid over-fitting. More 

in detail, we used 6 layers, each with 2 attention mechanisms, 512 intermediate layers and 288 hidden 

size layers, in accordance with the work published by Li et colleagues (133). 

The maximum sequence length was 512, and the vocabulary size changed in accordance with the 

considered scenario, to match the number of different medical codes to be considered (plus the special 

words needed by BERT for sentence separation, token masking, etc.). The resulting vocabulary sizes are 

263 (hospitalization diagnoses only), 199 (medication prescriptions only) and 457 (hospitalization 

diagnoses and medication prescriptions). 

Pre-training was performed with the original code by Google, based on the TensorFlow Python library 

(141) using the Adam optimizer for 20 epochs, i.e. the whole data was seen 20 times by the algorithm. 

Furthermore, the learning rate was set to 1e-4, the dropout rate to 0.1 and the batch size to 8, which means 

that 8 samples from the training set will be used to estimate the error gradient before the updating of 

weights. 
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Then, it was performed a fine-tuning in a supervised way to predict urgent hospitalization within 3 

months from the last event, i.e. a hospitalization or a medication prescription, according to each scenario 

considered. 

To import the pre-trained model we used the “hugging-face” Python library, based on PyTorch (142). 

Also in this phase, we used the Adam optimizer but with a smaller learning rate (2e-5), while keeping 

the same dropout rate, epochs, and batch sizes which were selected for pre-training.  

Both pre-training and fine-tuning have been performed on a system equipped with a dual-core Intel Xeon 

processor with 40 cores, 128GB of RAM, 8TB of SSD drive, and an NVIDIA Titan XP GPU with 12GB 

of graphics memory. 

Results of the pre-training phase were reported in terms of accuracy (ACC), i.e. the percentage of 

correctly classified terms.  

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

where TP states for True Positive, TN for True Negative, TP for True Positive, TN for True Negative, 

FP states for False Positive and FN states for False Negative. 

Considering the un-balancement in the outcome, results of the prediction task were instead reported in 

terms of: 

 

i. Precision (PR) 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

ii. Recall (RC) 

𝑅𝐶 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

iii. F1 score (F1) 

𝐹1 =  
2 𝑇𝑃

2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
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iv. Area Under the Receiver Operating Characteristic (AUROC), that gives information about the 

ability of a binary classificator to correctly discriminate between the two classes. More the value 

of AUROC is near 100%, better the classificator is. 

 

 

Results  

 

Results about MLM and NSP accuracies in the pre-training phase of BERT were reported in Table 19, according to different 

scenarios. When only hospitalization diagnoses were considered, the lowest accuracies both in MLM and NSP were reached 

(respectively 92% and 97%). Contrariwise, when both medication prescriptions and hospitalization diagnoses were taken into 

account, the highest accuracies were reported, both in MLM (97%) and in NSP (99%).  

 

Table 19: Pre-training BERT accuracies, according to different scenarios and pre-training methods. Masked Language 

Modelling (MLM) and Next Sentence Prediction (NSP) approaches. 

  

Scenarios MLM accuracy NSP accuracy 

Medications only 94.57 % 99.63 % 

Diagnoses only 92.18 % 97.25 %  

Medications and diagnoses 96.58 % 99.75 % 

 

In Figure 27, the embedding results are shown, according to different scenarios. The embedding clusters 

are potentially reflecting co-occurring conditions and/or the belonging to the same clinical group. 

If we analyze more in details, in Figure 27A we can see some clusters of diagnoses. In particular, the 

leftmost part of the figure presents a cluster composed by diabetes, cancer in urinary organs and 

hypertension complications; in the central part there is the cluster of respiratory diseases grouping 

chronic obstructive pulmonary disease (COPD), asthma and respiratory failure.  Below it, a group formed 

by circulatory diseases and dysrhythmia is represent, but it could be overlapped with respiratory failure; 

on the top of the central part appears a cluster which contains rehabilitation, osteoarthritis, fracture femur 

and connective tissue disease. In the rightmost part of the figure esophagus cancer and orthodontic 

aftercare diagnoses are nearby. 
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A - Diagnoses only 

 
B - Medications only 

 
C - Diagnoses and medications 

 
Figure 27: Top 10 occurring elements and their nearest neighbors embedding visualization, according to scenarios. 
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Furthermore, in Figure 27 B we can see the embedding of the pre-training scenario including medications 

only. In this situation, four clusters have been identified: one in the lower left part, composed by lipid 

modifying agents, anti-arrhythmic agents and reflux drugs; in the center, one composed by anti-

inflammatory/anti-rheumatic, opioids, anti-thrombotic, analgesics/antipyretics and corticosteroids; on 

the top, a cluster of antibiotics and on the most right a cluster of ACE inhibitors and beta-blockers agents. 

Finally, if we consider both medications and diagnoses (Figure 27C), we can see in the bottom left of the 

figure that rehabilitations, osteoarthritis and connective tissue disease are once again nearby. Then, in 

the central part, respiratory failure is represented close to respiratory and dysrhythmia diagnoses; 

meanwhile blood glucose lowering drugs are near diabetes diagnoses. Finally, in the right part of the 

figure, we find two clusters: one groups anti-inflammatory/anti-rheumatic and anti-thrombotic drugs with 

reflux drugs and one composed by beta-lactame/penicillin antibacterial, anti-inflammatory/anti-

rheumatic, quinolone antibacterial drugs and other bacterial infections diagnoses. 

In  

Table 20 we can find results about the prediction task (urgent hospitalization within 3 months). If we 

compare the different scenarios in terms of precision, recall, F1 score and AUROC, the best was the one 

with all the available information, i.e. medication prescriptions, hospitalizations diagnoses and 

demographics characteristics. In fact, in this scenario the algorithm reached good results, with a precision 

of 61%, a recall of 89%, a F1 score of 73% and a AUROC of 97%. 

The worst performance was instead observed when only hospitalization diagnoses and demographic 

characteristics were considered, with a precision of 21%, a recall of 37%, a F1 score of 27% and a 

AUROC of 62%. 

The Scenario 2, i.e. considering medication prescriptions and demographic characteristics showed a 

lower precision and F1 score if compared with the Scenario 1. 

Finally, the Scenario 4 is pretty identical to the Scenario 1, which means that demographic characteristics 

i.e. age, gender and SES, do not help to learn the prediction task. 

 

Table 20: Results of prediction task according to different scenarios. Med=Medications, Diag=diagnoses, Demo= 

demographics (age, SES, gender). 

 

 Precision Recall F1 score AUROC 

Scenario 1: Med + Diag + Demo 61% 89% 73% 97% 

Scenario 2: Med + Demo 51% 89% 65% 97% 

Scenario 3: Diag + Demo 21% 37% 27% 62% 

Scenario 4: Med + Diag 62% 87% 73% 97% 
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In conclusion, two randomly selected examples of attention mechanism graphs are represented in Figure 

28, where healthcare trajectories are plotted against themselves. Links identify relations between events 

that are detected by the attention mechanism. Their thickness represents the strength of the relation 

detected by the attention mechanism. In the selected examples, we can see that the medication 

prescription identified by the ATC7 code H03A, which identify the class of drugs that are grouped into 

“thyroid preparations” class, is linked to the “thyroid disorders” hospitalization diagnosis. Then, in 

Figure 28 B, the calcium channel blockers, with mainly vascular effects (C08C) is linked to “coronary 

atherosclerosis and other heart disease” CCS class.  

 

 
Figure 28:Attention mechanism in the pre-training phase. D= hospitalization diagnoses, M=medications 

 

Discussion 

 

Italy has the biggest proportion in Europe of citizens aged almost 65 years (143). Lots are the 

consequences of ageing in the population on the health care system. In fact, elderly people are often 

affected by multi-morbidity, i.e. they have to deal simultaneously with more than two chronic diseases 

at a time, which make their management more difficult (7). 
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In a report published in 2011, WHO pointed out the necessity of developing advanced models to predict 

the healthcare trajectories of elderly populations, to prevent adverse outcomes improving the 

management of such people, in a context of personalized medicine (144). 

In the last years, lots experiments of application of novel methods to prevent adverse outcomes in elderly 

people have been conducted. One of them concerns the application of BERT to a primary care dataset of 

diagnoses to predict the next diagnoses occurring in the subsequent months (134) (133). The authors used 

a sample of subjects without age restrictions. In particular, they showed that BERT could be applied to 

structured data, and it learns history of the past diseases to predict future diagnoses. 

At our knowledge, we tried for the first time to apply BERT to HADs to learn healthcare trajectories of 

people aged at least 65 years, to predict urgent hospitalizations occurring in the next 3 months. The 

peculiarity of this work is that BERT was applied to HADs and not to primary care databases, as the 

other published works did in this setting. 

We considered both hospitalization diagnoses and medication prescriptions to reconstruct healthcare 

trajectories, and with some ablations studies we tried to understand which information is more useful.  

We obtained promising results, in fact pre-training MLM, NSP, embeddings and attention mechanisms 

suggested that BERT is able to learn from structured HADs, because very satisfying performances in 

terms of ACCs were reached, with values greater than 97% when both medication prescriptions and 

hospitalization diagnoses were used. 

Furthermore, embedding images showed that ATC7 or hospitalization diagnoses codes that often are co-

occurring or share a similar medical meaning (for example anti-inflammatory/anti-rheumatic and 

opioids, or antibiotics) were plotter near in a bi-dimensional space. 

In our experiment, we observed that the most informative data are those about medication prescriptions 

made by a general physician.  Hospitalization diagnoses resulted as the less informative data, probably 

dye to limitations of the hospitalization HADs, in which diagnoses are reported mainly for reimbursement 

purposes (145,146). However, even if hospitalization diagnoses alone are not informative, we found that 

adding them to medication prescriptions helps to improve the performance in the prediction of urgent 

hospitalization within 3 months. However, including demographics information, i.e. age, gender and 

SES, do not improve the performance. A possible explanation could be that probably this information is 

incorporated into the healthcare trajectories themselves or it is overpassed by information related to 

diagnoses and medications. 

BERT is able to accurately predict the real occurrence of urgent hospitalizations within 3 months (89% 

recall), but it tends to produce false positives (61% precision). However, false positives are the least 
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critical type of misclassification for this kind of application, because it is important to ensure that as 

many as possible high risk patients are identified by the algorithm. 

The novelty of this work is the application of the DL algorithm BERT to healthcare HADs, considering 

hospitalization diagnoses extracted from the hospital discharge forms and medication prescriptions made 

by the general physicians, and not data extracted directly from hospitals and clinics as made in previous 

works (130,133,135).  

If used properly HADs can have a key role in epidemiological and medical research (147), and they are 

not yet used enough for these purposes.  

Furthermore, at our knowledge this is the first study in which BERT is applied to an elderly population 

aged more than 65 years, to predict urgent hospitalizations, modelling the healthcare trajectories 

extracting information from secondary care information in administrative sources and results seem to be 

promising. 

In conclusion, our results suggest that BERT can be used not only in NLP setting but it is also able to 

embed medical healthcare trajectories, reconstructed from HADs extracting information about 

hospitalization diagnoses and medication prescriptions made by general physicians. 

This tool could be used for predicting future urgent hospitalizations of elderly population, providing an 

important tool that could help to plan the allocation of healthcare resources in the future and to manage 

diseases in a personalized way, helping also to improve the quality of life of aging population with prompt 

interventions when the probability of urgent hospitalization reaches a critical threshold, suggesting a 

worsening of the healthcare condition of a subject, which need more attention. 
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