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ABSTRACT Different phase-locked loop algorithms applied to three-phase grid voltages implement a closed
control loop based on the Park transform to obtain the grid voltage instantaneous phase and frequency. When
a single-phase grid voltage must be processed, one of the inputs of the Park transform is generated by a
block that, starting from the available voltage, computes an additional signal with the same frequency of
the grid voltage and ideally orthogonal to it. This paper introduces a novel method for the orthogonal signal
generation and gives a detailed analysis of its functioning. Then, after sizing the control loop of the phase-
locked loop, the paper considers different aspects relevant to implementation of the presented orthogonal
signal generation and of the phase-locked loop on a digital signal controller, such as the finite numerical
resolution, the memory usage and the computation time. Finally, the paper checks the comprehensive
performance of the orthogonal signal generation and phase-locked loop pair by experimental tests and
compares the obtained results with those available in the literature.

INDEX TERMS Orthogonal signal generation, phase-locked-loop, phase and frequency estimation.

I. INTRODUCTION
The phase-locked loop (PLL) algorithms are used in several
applications where the instantaneous phase and /or frequency
of a given signal must be estimated in real-time, with short
delay with respect to their variations and with good resilience
against noise or harmonics superimposed to the processed
signal.

Regardless of their different structures and properties, all
the PLLs have three elemental stages [1]. The first one is the
phase detector (PD), in charge of generating the error signal
between the real and the estimated phase. It is followed by the
loop filter (LF), which is often a proportional-integral con-
troller aimed to reduce the phase error to zero. The last stage
is a voltage-controlled oscillator (VCO), which generates at
its output an alternate signal that is synchronized to the signal
applied at the PLL input.

A typical application of the PLL is the interfacing of a
front-end inverter with a three-phase grid. In this case, the
instantaneous phase of the grid voltages must be known to
properly manage the active and reactive power exchange
between the grid and the inverter. Power control is often based
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on the instantaneous power theory [2] that expresses the grid
voltages by means of space vectors in the α, β or in the
d,q reference frames, the first one obtained by applying the
Clarke transform to the grid voltages and the second one
worked out by a subsequent Park transform. In this context,
a common solution is to base the PD on the Park transform,
exploiting the property by which if the phase angle used for
the transform is equal to the instantaneous phase of the α, β
grid voltage space vector, the q component of the d,q grid
voltage space vector is equal to zero. These PLLs are denoted
as synchronous reference frame-PLL (SRF-PLL) [3].

The same approach cannot be adopted straightforwardly
when interfacing with a single-phase grid because the Clarke
transform, which supplies the two orthogonal signals vα and
vβ to the Park transform, can be applied only to three-phase
systems. To face this limitation, two main classes of PD have
been developed [4].

The power-based PLLs have a product-type PD, which
introduces a second harmonic component in the phase error.
To mitigate this disturbance several advanced power-based
PLLs have been designed. The PLL based on a low pass
filter (LPF) [5] requires an LPF with a low cutoff frequency
to remove the second-order harmonic, thus slowing their
transient response. In [6] a notch filter replaces the LPF;
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in this case the notch bandwidth strongly affects the PLL
behavior: a narrow bandwidth gives fast responses but is
weak against grid frequency variations, on the other hand,
a large bandwidth is more robust but slows down the tran-
sient response. In [7] the second harmonic is removed by a
compensation algorithm that uses both the estimated phase
and the generated d,q components of the grid voltage space
vector. An alternative approach makes use of an in-loop
moving average filter [8]. This last solution is used also in
the orthogonal signal generation (OSG) based PLLs [9].

The OSG-PLLs operate as the SRF-PLLs but are endowed
with an additional stage uphill the PD that performs the
OSG to obtain from the single-phase grid voltage a fictitious
orthogonal signal to be used as the second member of the
vα , vβ pair processed by the Park transform [10], [11]. The
simplest OSG method consists of delaying of one quarter of
the period the signal obtained transducing the grid voltage,
other approaches relies on the use of the inverse-Park trans-
form [11], of the Hilbert transform [12], or of discrete-time
filters with complex coefficients [13]. The OSG based on the
second-order generalized integrator (SOGI) PLL [14], [15],
in addition, providing a filtered orthogonal signal for the
β-axis, contributes to reducing the harmonic content of the
α-axis component. Several different solutions based on SOGI
have been successively developed [16], [17]. In [18] an
approach similar to that of the power-based PLL is used to
perform the OSG. In this case, despite the use of a notch
filter, the generated signals track accurately the grid voltage
waveform.

A common feature of the OSG-PLLs is that the Park
transform is applied to the pair of signals vα , vβ , where vα
is ideally in phase with the grid voltage and vβ is orthogonal
to it. This paper presents a different approach by which one
of the outputs of the OSG leads the grid voltage of π /4 and
the other lags it of the same phase. A similar proposal can be
found in [19], but there, differently from the design procedure
described in Section III, the sensitivity to the grid frequency
variations of the filters that generate the vα , vβ pair is not min-
imized; moreover, a more complex architecture is considered,
with additional blocks inserted uphill and downhill the filters
themselves.

The objectives of the paper can be summarized as:
• Presentation of a novel OSG method that reacts to the

variation of the grid frequency in a way somehow comple-
mentary to that of the SOGI. (Section III).
• Design of the LF and the complete control loop of the

PLL in the continuous-time domain and its subsequent dis-
cretization (Sections IV and V).
• Implementation of the OSG-PLL pair in the firmware of a

digital signal controller (DSC) facing the issues arising from
the finite resolution of the CPU, from the limited amount
of available memory, and from the need of minimizing the
computation time (Section VI).
• Experimentation of the PLL based on the presented

OSG method in real operative conditions (Section VII) and

discussion of its performance in comparison with those of
other OSG-PLL pairs found in the literature (Section VIII).

Section II briefly reviews some of the existing OSG meth-
ods with particular attention to the SOGI to make an easier
comparison with the proposed OSGmethod. Conclusions are
reported in Section IX.

II. ORTHOGONAL SIGNAL GENERATION
The different digital OSG methods reviewed in the literature
share the characteristic of generating the orthogonal signals
vα and vβ , with vβ lagging vα , processing the signal vg
obtained by transduction and acquisition of the single-phase
grid voltage. A second common feature of most of the OSG
methods is that the signal vα is, or should be, in phase with
vg so that the output of the PLL, which actually estimates the
phase of vα , ideally gives the phase of the grid voltage.

The simplest way to perform the OSG consists in setting
vα = vg and in taking as samples of vβ the samples of vg
acquired one-quarter of the period before. This entails that
operating at the nominal grid angular frequency ωg,N, the
number of samples of vg to be stored for the implementation
of the OSG is given by (1).

Ns,N =
π

2
1

ωg,N

1
Ts
. (1)

If the sampling period Ts is equal to 100µs [4], from (1)
it derives that Ns,N = 50. If the grid angular frequency ωg
changes, Ns must be adjusted dynamically to maintain the
required phase lag between vα and vβ . Being that ωg is not
known, this adjustment is based on the estimate ωg,e of ωg,
computed by the PLL itself. This method has the disadvan-
tage that any variation occurring on vg affects instantaneously
the signal vα but can be detected on vβ only after a quarter of
the grid period, thus introducing an asymmetry on the signals
processed by the PD and a delay in its response.Moreover, the
grid frequency is inherently a continuous quantity whereas
the delay between the signals vα and vβ , being a multiple
of Ts, takes only discrete values, hence the orthogonality
between vα and vβ is not assured unless both Ns and Ts are
adjusted according to ωg,e.

In the derivative OSGmethod, vg corresponds to vβ and the
latter one is derived to work out vα . Consequently, the phase
estimated by the PLL is π /2 ahead with respect to that of vg.
Even if this offset can be easily compensated, the drawback of
this method is that the derivation amplifies the harmonics of
vg thus affecting the accuracy of the estimate. The insertion
of an LPF in series to the derivative block would attenuate the
effects of the harmonics but will also reduce the phase lead of
vα with respect to vβ of an amount that varies with the actual
grid frequency. An alternative solution consists in considering
vα equal to vg and in obtaining vβ from it by integration. This
approach solves the problem related to the harmonics of vg,
but is sensitive to its offset, if any. Insertion of a high pass
filter would nullify the problem of the offset but at the expense
of the accuracy of the orthogonality between vα and vβ .
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Another OSG method uses a block that implements the
inverse-Park transform to work out vβ processing the grid
phase estimate θg,e and the d,q component of vg. Being the
latter ones not available, their estimated values obtained by
the direct Park transform that constitutes the PD of the PLL
are used. In order to avoid algebraic loops in the OSG-PLL
pair, the vd and vq signals generated by the PD are processed
by two LPFs before entering the inverse-Park transform [10].
The LPFs introduce a delay in the system response.Moreover,
like in the case of the delay-based OSG method, any sudden
variation of vg, and hence of vα , is not immediately reported
in vβ causing a dissymmetry in the processing of the vα , vβ
pair.

A different approach to OSG exploits the property by
which the Hilbert transform of a sinusoidal signal is equal
to the signal itself delayed of π /2 [9], [17]–[20]. The Hilbert
transform is non-causal, but it can be approximated by a finite
impulse response filter applied to the samples of vg. This filter
offers inherently a band-pass behavior that helps in reducing
the effects of offset and distortion of vg. Unfortunately, it is
difficult to design a stable filter [4] and, as can be seen in [10],
it has a satisfactory low-frequency gain only if its order is
rather high so that at least 100 samples of vg should be
processed at every sampling time.

The SOGI method operates by means of two filters Sα and
Sβ that process vg to generate vα and vβ , respectively [11].
The continuous-time transfer function (TF) of the two filters
are

Sα (s) ,
Vα (s)
Vg (s)

=
Keωg,N s

s2 + Keωg,N s+ ω2
g,N

Sβ (s) ,
Vβ (s)
Vg (s)

=
Keω2

g,N

s2 + Keωg,N s+ ω2
g,N

, (2)

where Ke is the filter gain. The Bode diagrams of Sα(jωg) and
Sβ (jωg), obtained with Ke =

√
2, are reported in Fig. 1, using

the red solid line and the blue dashed line, respectively.
The magnitude diagrams show that both the TFs attenu-

ate the high-frequency components of vg, and that Sα(s) is
effective also in reducing its offset. The gains of the two

FIGURE 1. Bode diagrams of Sα(jωg) (red solid line) and of Sβ (jωg) (blue
dashed line).

TFs are equal to 1 at ωg = ωg,N, but if ωg > ωg,N it
results |Sβ (jωg)| < |Sα(jωg)| < 1 and if ωg < ωg,N it is
|Sα(jωg)| < 1 < |Sβ (jωg)|. The two signals vα and vβ are
always mutually orthogonal, but vα leads or lags vg when
ωg < ωg,N or ωg > ωg,N, respectively. Given that the
PLL actually estimates the phase of vα and not that of vg,
these non-idealities introduce oscillations and inaccuracy in
the PLL output wheneverωg 6= ωg,N. This problem is usually
solved by adjusting in real-time the coefficients of the filters
in order to define (2) in terms of ωg,e instead of ωg,N [21].
In some papers the filter gain Ke is adjusted as well [22],
in others, the authors propose to adjust the filters coefficients
using an estimate of ωg obtained by proper algorithms that
operate independently from the PLL, such as in [23], where
delayed samples of vg are processed to work outωg, or in [24]
and [25] that exploit the Teager energy operator to obtain ωg.

These considerations highlight that even if usually the
PLL is designed to compute θg,e, nevertheless the use of
an SRF-PLL requires to generate also ωg,e to adjust the
parameters of the OSG. This characteristic does not entail the
implementation of amore complex PLL scheme because, as it
will be shown in Section IV, the PLL inherently generates
ωg,e to obtain θg,e.

Despite the adjustment of the coefficients, the behavior
of Sα(s) and Sβ (s) is different at angular frequencies higher
or lower than ωg. In the first case, the harmonics of vg are
subjected to different attenuation and this difference becomes
larger and larger as the frequency of the harmonics increase;
in the second case, Sα(s) effectively attenuate any sub-
harmonic and offset added to vg whereas Sβ (s) leaves them
nearly unchanged. This asymmetry in the OSG affects nega-
tively the performance of the PLL. Reference [26] reports a
proposal to get rid of this asymmetry by further processing
of vβ aimed to obtain a signal in phase to vg and with lower
harmonic content. In [27] a higher-order SOGI is presented
that both enforces the symmetry of the OSG and enhances
its high- and low-frequency rejection capability. Higher-order
SOGI is taken as reference in [27], working out the coeffi-
cients of a simpler, lower-order TF that approximates closely
its transient response.

III. TWO ORTHOGONAL SIGNALs GENERATION
The OSG method proposed in this paper is denoted as ‘‘two
orthogonal signals generation’’ (TOSsG) because two signals
are actually generated using the two on-purpose designed
filters Fld and Flg. The first one generates the signal vld that
leads vg by π /4 and the second generates vlg, which lags
vg by the same phase angle. The two signals are mutually
orthogonal and are used as input for the PD of the PLL.

The first requirement for Fld is to give a phase lead ofπ /4 at
the angular frequency ωg,N. The sensitivity of the phase lead
with respect to variations ofωg is minimized by nullifying the
derivative of the filter phase with respect to it at ωg = ωg,N,
i.e. by imposing to have the maximum phase advance of the
filter at ωg = ωg,N.
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The second requirement for the filter is to have unitary gain
at ωg = ωg,N so that vld and vlg have the same amplitude at
the nominal frequency. Both the requirements can be fulfilled
by a filter having TF

Fld (s) = Gld
1+ sτz,ld
1+ sτp,ld

(3)

In order to size the gain and the time constants of (3),
it is convenient to start from the condition concerning the
achievement of the maximum phase advance at ωg = ωg,N.
This condition is expressed by the relation

d
(
arctg(ωgτz,ld )

)
dωg

−
d
(
arctg(ωgτp,ld )

)
dωg

∣∣∣∣∣
ωg=ωg,N

= 0 (4)

From (4) and considering that

d (arctg(ωτ ))
dω

= τ
1

1+ ω2τ 2
(5)

(6) is derived

ω2
g,N =

1
τp,ldτz,ld

(6)

If (6) holds, at ωg = ωg,N the complex quantity Fld(jωg) can
be written in the form

Fld
(
jωg,N

)
=

Gld
1+ τp,ld

τz,ld

(
2+ j

τz,ld − τp,ld
√
τz,ldτp,ld

)
. (7)

Having a phase advance of π /4 at ωg = ωg,N entails that the
real and the imaginary parts of the termwithin the parentheses
in (7) are both positive and equal. From this condition and
from (6), a symmetrical system of equations is derived as{

τp,ldτz,ld =
1

ωg,N2

τp,ld
2
+ τz,ld

2
− 6τp,ldτz,ld = 0.

(8)

Its solution gives the time constants of the Fld filter

τz,ld =

√
2+ 1
ωg,N

τp,ld =

√
2− 1
ωg,N

. (9)

By substituting (9) in (3) and imposing the condition
|Fld(jωg,N)| =1, the gain Gld,N is computed as

Gld,N =

√√√√1+ ω2
g,N τ

2
p,ld

1+ ω2
g,N τ

2
z,ld

=
√
2− 1. (10)

The lag filter Flg is designed following the same procedure
but imposing a negative value to the imaginary part of the
term within parentheses in (7). The time constants and the
gain of Flg result

τz,lg = τp,ldτp,lg = τz,ldGlg,N =
1

Gld,N
. (11)

The Bode diagrams of Fld(jωg) and Flg(jωg) are drawn in
Fig. 2 using the red solid line and the blue dashed line,
respectively.

FIGURE 2. Bode diagrams of Fld(jωg) (red solid line) and of Flg(jωg) (blue
dashed line).

Analysis of the phase diagrams confirms that themaximum
phase deviation appears at ωg = ωg,N and is equal to π /4
for Fld(jωg) and to −π /4 for Flg(jωg). The signals vld and vlg
are orthogonal only when ωg = ωg,N; nevertheless, because
of condition (6), the difference of their relative phase with
respect to π /2 is minimized around ωg = ωg,N and the same
happens with the variation of the phase existing between vld
and vg so that it can be expected that the phase estimate
supplied by a PLL based on TOSsG will be less sensitive to
variations of ωg than that of a PLL based on SOGI.
The amplitude diagrams show that at ωg = ωg,N both

the gains of the filters are unitary, as required, and that,
in the logarithmic scales, the gains vary about linearly as ωg
deviates from ωg,N. In this occurrence, the two gains are no
more equal but, differently the SOGI method, the maximum
difference between them is lower than 20 dB in both the high
and low- frequency ranges. The consequent difference in the
amplitudes of vld and vlg leads to oscillations in θg,e and ωg,e.
Like the SOGI method, the TOSsG exploits ωg,e to adjust the
amplitudes of vld and vlg by multiplying the outputs of the
filters by the tuning coefficients

Tld
(
ωg,e

)
=

1
Gld,N

√√√√1+ ω2
g,eτ

2
p,ld

1+ ω2
g,eτ

2
z,ld

Tlg
(
ωg,e

)
=

1

Tld
(
ωg,e

) , (12)

FIGURE 3. Block diagram of the TOSsG and of the PLL architecture.
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derived from (10). A similar approach applied to the SOGI
can be found [17], where the amplitude of vβ , i.e. the gain of
Sβ (jω) is adjusted according to ωg,e.

It is worth to highlight that, following from (9)-(11), the
parameters of τz,ld, τp,ld, τz,lg, τp,lg, depend only on ωg,N and
that Gld,N and Glg,N are constant. Consequently, the filters do
not need to be redesigned in different implementation of the
TOSsG that operate with the same nominal grid frequency.

IV. PLL DESIGN AND SIZING
The complete architecture of the OSG-PLL pair is shown in
Fig. 3. In the hypotheses of having a purely sinusoidal vg
signal, as in (13),

vg (t) = Vg cos
(
ωgt

)
. (13)

and that ωg is not much different from ωg,N, in steady-state
the outputs of the filters Fld and Flg, respectively multiplied
and divided by the tuning coefficients given by (12), are

vld (t) =
∣∣Fld (jωg)∣∣Tld (ωg,e)Vg cos (ωgt + π4 )

∼= Vg cos
(
ωgt +

π

4

)
vlg (t) =

∣∣Flg (jωg)∣∣
Tld

(
ωg,e

) Vg cos (ωgt − π4 )
∼= Vg cos

(
ωgt −

π

4

)
. (14)

The Park transform uses the estimated phase angle θg,e to
process vld and vlg according to

vd (t) ∼= Vg cos
(
θg +

π

4

)
cos θg,e+Vg sin

(
θg +

π

4

)
sin θg,e

vq (t) ∼=−Vg cos
(
θg+

π

4

)
sin θg,e+Vg sin

(
θg+

π

4

)
cos θg,e,

(15)

obtained denoting with θg the grid voltage instantaneous
phase ωgt and exploiting the equality cos

(
θg − π

/
4
)
=

sin
(
θg + π

/
4
)
.

Using the expressions of cos(·) and sin(·) of the difference
between two angles, in the hypothesis that the error between
θg,e and the actual phase of vld is small, (15) can be approxi-
mated by

vd (t) ∼= Vg cos
[(
θg +

π

4

)
− θg,e

]
∼= Vg

vq (t) ∼= Vg sin
[(
θg +

π

4

)
− θg,e

]
∼=Vg

[(
θg +

π

4

)
− θg,e

]
(16)

From (15) and (16) it derives that in the SRF-PLLs the Park
transform operates both as VCO and as PD.

The amplitude Vg of vg is proportional to that of the grid
voltage and hence, from (16), variations of the latter one act
as variations of the gain of the LF. This influence is avoided
by dividing vq by vd that, in steady-state, is equal to Vg.
During the transients, the division by vd does not assure a
constant gain of the LF and the stability of the PLL control
loop must be verified in more general conditions, as it will

FIGURE 4. Block diagram of the PLL control loop of θg,e.

be done in the next Subsection. The ratio vq/vd is denoted
as vq’ in Fig. 3 and in the following figures. It supplies the
LF and, from (16), is proportional to the difference between
the grid voltage phase augmented of π /4 and the estimated
angle θg,e, thus demonstrating that with the TOSsG the PLL
actually estimates the phase of vld rather than θg. Being the
difference between the two phases known and constant, there
is no difficulty in working out θg by subtracting π /4 from
θg,e. This last operation is not mentioned in the following
discussion to simplify the figures and the equations. With the
given definition of vq’, the control loop built around the LF
can be redrawn as in Fig. 4, where GPLL(s) has been split into
two blocks, according to (17)

GPLL (s) = LF (s)
1
s
. (17)

The phase angle θg has a ramp-like behavior and conse-
quently θg,e can follow it accurately only if GPLL(s) is a type-2
system. From (17), this feature entails that LF(s) must have a
pole in the origin.

The output of LF(s) is integrated to obtain θg,e and hence
it must be equal to ωg,e. In order to speed up the transients of
the control loop, a feedforward contribution equal to ωg,N is
usually added at the output of LF(s).

As explained in the previous Sections, the TOSsG pro-
cesses ωg,e to adjust the gains of the filters Fld and Flg,
therefore the estimation of ωg must be accurate and with-
out disturbances. Given that neither Fld nor Flg effectively
attenuates the high -frequency components of vg, the filtering
action of the pole in the origin of LF(s) is not sufficient to
get rid of the oscillations of ωg,e and must be enhanced with
an additional pole. This modification and the presence of
the integrator downhill LF(s) require an accurate design of
LF(s) itself to ensure an adequate phase margin at the selected
crossover angular frequency

A. DESIGN OF THE LOOP FILTER
According to the previous considerations, LF(s) is expressed
as

LF (s) = KPLL

(
1+ sτz,PLL

)
s
(
1+ sτp,PLL

) , (18)

with the gain KPLL and the time constants τz,PLL and τp,PLL
defined according to the following analysis.
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From (17) and (18), the open-loop transfer function of the
PLL is

GPLL (s) = KPLL

(
1+ sτz,PLL

)
s2
(
1+ sτp,PLL

) . (19)

The presence of the second pole in the TF (18) gives an
additional degree of freedom to design the PLL with respect
to the conventional solutions. One of the degrees of freedom
is used to optimize the ratio between the time constants τz,PLL
and τp,PLL in order to fully exploit the effect of the zero-
pole pair. To this end, their maximum phase advance is set
in correspondence to the crossover angular frequency ωcr of
GPLL(s). This requirement is the same that led to (6) and is
fulfilled if ωcr, τz.PLL and τp,PLL satisfy the relation (20).

ω2
cr =

1
τz,PLLτp,PLL

. (20)

By definition, at ω = ωcr the magnitude of GPLL(jω) is
equal to 1 so that it is

K 2
PLL

(
1+ ω2

crτ
2
z,PLL

)
ω4
cr

(
1+ ω2

crτ
2
p,PLL

) = 1. (21)

After substituting (20) in (21), some manipulations lead to
expression (22)

K 2
PLL

(
τp,PLL+τz,PLL

τp,PLL

)
τ 2z,PLLτ

2
p,PLL(

τp,PLL+τz,PLL
τz,PLL

) = 1. (22)

Using again (20), it gives

KPLL =
ωcr

τz,PLL
, (23)

which links KPLL to the other parameters of LF(s).
It is worth to highlight that at this point of the LF designωcr

has not yet been set and that it will be determined by imposing
the conditions described in the following paragraphs. These
conditions are derived from [21] and are enforced to use the
same PLL control loop in comparing the TOSsG with the
other OSG methods reviewed in that paper.

The closed-loop TF WPLL(s) from θg to θg,e is readily
obtained from (19) and the diagram of Fig. 4. By consider-
ing (20) and (23), WPLL(s) is written in the form

WPLL (s) =
ωcr
τz,PLL

(
1+ sτz,PLL

)
s3 1
ω2
cr τz,PLL

+ s2 + sωcr +
ωcr
τz,PLL

(24)

TABLE 1. Requirements and design parameters of PLL control loop.

FIGURE 5. Root locus of the PLL control loop.

and then as

WPLL (s)=
ωcr
τz,PLL

(
1+ sτz,PLL

)
(s+ωcr )

[
s2 1
ω2
cr τz,PLL

+s
(
1− 1

ωcr τz,PLL

)
+

1
τz,PLL

] .
(25)

From (25) it is possible to work out the damping coefficient
of the second-order termwithin the square brackets. It is given
by

ξPLL =
ωcrτz,PLL − 1

2
. (26)

This coefficient does not correspond to the actual damping
coefficient of WPLL(s) because the derivative effect of the
zero in τz,PLL causes an overshoot in the step response of
WPLL(s) even if ξPLL is equal or even bigger than 1.
An effective filtering action of LF(s) is enforced by

imposing that the magnitude of GPLL(jωg) is less than 1 at
angular frequencies higher than ωg,N. In particular, setting
GPLL(jωB) = G B < 1 at the angular frequency ωB > ωg,N
in rewriting (21) gives the relation

K 2
PLL

(
1+ ω2

Bτ
2
z,PLL

)
ω4
B

(
1+ ω2

B
ω2
cr τ

2
z,PLL

) = G2
B (27)

FIGURE 6. Bode diagrams of GPLL(jωg) (blue dashed line) and WPLL(jωg)
(red solid line) with ξPLL = 0.7.

33398 VOLUME 10, 2022



M. Bertoluzzo et al.: Design and Experimentation of Single-Phase PLL With Novel OSG Method

FIGURE 7. Block diagram of the PLL control loop of ωg,e as derived
from Fig. 4.

and, after some manipulations that involve the use of (23) and
(26), leads to the equation

�3
cr +�

2
crω

2
B (2ξPLL − 1)2 −�crG2

Bω
4
B (2ξPLL − 1)2

−ω6
BG

2
B = 0 (28)

where �cr , ω2
cr .

Application of the Descartes rule of signs shows that (28)
has always one positive solution so that it is possible to find
ωcr for any combination of ξPLL, ωB, and GB. Moreover,
being (28) of degree three in the variable �cr, it would
be possible to express ωcr analytically as a function of
ξPLL, ωB, and GB. Once obtained ωcr, by inversion of (26)
and (20) and using (23), the design parameters of LF(s) are
determined.

The requirements reported in the left column of
Table 1 have been used in designing LF(s), obtaining numer-
ically the design parameters listed in the right column.

Using the parameters of Table 1, the root locus of the PLL
control loop results as reported in Fig. 5. It has three branches
that originates from the poles of GPLL(s), represented by the
blue crosses. One branch moves toward the zero of GPLL(s),
represented by the red circle, whereas the other two are not
limited. All the branches lie completely on the left half of the
complex plane entailing that the PLL control loop is stable for
any value of the loop gain. In particular, when the gain given
by the vd/vq ratio is equal to one, the roots of WPLL(s) lie on
the green stars. The correspondent Bode diagrams of GPLL(s)
and WPLL(s) are reported in Fig. 6 with the blue dashed line
and the red solid line, respectively. The plots show that the
PLL control loop has a phase margin of about 80◦ and that
it exhibits the low pass behavior required to attenuate the

FIGURE 8. Bode diagrams (top) and step responses (bottom) of WPLL(jωg)
with ξPLL = 0.7 (red solid line), of WPLL(jωg) with ξPLL = 2 (green dotted
line) and of W’PLL(jωg) with ξPLL = 0.7 (blue dashed line).

FIGURE 9. Block diagram of the PLL control loop of ωg,e,ro with ZFBP.

oscillations superimposed to the phase estimate due to not
ideal waveform of the grid voltage.

B. GENERATION OF THE ESTIMATED
ANGULAR FREQUENCY
In order to analyze the performance of the PLL control loop
in generating ωg,e, i.e. the estimate of the grid angular fre-
quency, the block diagram shown in Fig. 4 is redrawn in
the form of Fig. 7, considering ωg,e as the output variable
and moving the integrator in the feedback path. A second
integrator is added at the input of the loop to use ωg instead
of θg as the input variable.

For reasons that will be explained in the following para-
graphs, LF(s), defined in (18), has been split into two stages
according to (29)

LF (s) = LF ′ (s)
(
1+ sτz,PLL

)
, (29)

where

LF ′ (s) = KPLL
1

s
(
1+ sτp,PLL

) , (30)

From the analysis of the diagram of Fig. 7, it comes that
the TF from ωg to ωg,e is the same as the TF from θg to θg,e,
given by (24), and consequently its magnitude Bode diagram
and step response are those reported by the red solid lines in
Fig. 6. A magnification of the magnitude Bode diagram of
WPLL(jωg) is reported also in the upper half of Fig. 8 by the
red solid line and the relevant step response is plotted in the
lower half of the figure with the same line and color features.
The magnitude of WPLL(jωg) exhibits an overshoot higher
than 3dB at ωg ≈ 74 rad/s; it is reflected in the step response
that has an overshoot of about 35%.

The overshoot in the step response of WPLL(jωg) can be
reduced by increasing the damping coefficient ξPLL. For
example, the plots drawn with the green dotted lines in
Fig. 8 have been obtained setting ξPLL = 2. Despite this large
damping coefficient, the step response still has an overshoot
higher than 13% and is far from reaching the steady-state
within the time interval considered in the figure.

This behavior can be explained by hypothesizing that ωg is
subjected to a positive step. In the very first instants after the
application of the step, θg,e lags θg so that the only way for
θg,e to reach again θg is that for a while ωg,e exceeds ωg. This
means that the step response of ωg,e has an overshot and that
this overshoot cannot be avoided, otherwise θg,e will never
reach the correct value. The step response of θg,e is equal to
that of ωg,e and consequently it has an unavoidable overshoot
as well.
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FIGURE 10. Comprehensive block diagram of the PLL control loop.

A solution to get rid of the overshoot in ωg,e, reported for
example in [3], and here denoted as ‘‘zero in the feedback
path’’ (ZFBP), consists in considering the output of LF’(s),
denoted as ωg,e,ro, i.e. the estimate of the grid angular fre-
quency with reduced overshoot, instead of ωg,e as an estimate
of the grid angular frequency. The block scheme representing
the TF from ωg to ωg,e,ro is depicted in the diagram of
Fig. 9, obtained from Fig. 7 by considering ωg,e,ro as an
output variable and moving the zero of LF(s) in the feedback
path.

With ZFBP, the open-loop and the closed-loop TFs of
the PLL are still given by (19) and (25), respectively, and
consequently zeros, poles and stability of this loop are not
affected by ZFBP. However, with ZFBP, the TF from ωg to
ωg,e,ro changes from (24) to

W ′PLL (s) =
ωcr
τz,PLL

s3 1
ω2
cr τz,PLL

+ s2 + sωcr +
ωcr
τz,PLL

. (31)

Clearly the denominator remains the same, but the deriva-
tive effect of the zero at the numerator disappears. Conse-
quently, according to the blue dashed line plot in the Fig. 8,
the low pass effect at high frequency is stronger. Indeed, the
slope of the magnitude diagram increases from −40 dB/dec
to −60 dB/dec, and the overshoot nearly disappears with-
out increasing the time needed to reach the steady-state
condition

Introducing the ZFBP approach, the comprehensive block
diagram of the PLL control loop results as depicted in Fig. 10,
obtained from Fig. 4 by decomposing LF(s) according to (29)
and considering ωg,e,ro as additional output variable used
also as input for the computation of the tuning gains Tld
and Tlg.

V. TOSsG AND PLL DISCRETIZATON AND SIMULATION
The filters that implement the TOSsG and the PLL control
loop must be discretized to be coded in the firmware of the
DSC. The discretization of Fld(s) by Tustin’s method leads to
the following expression

Fld (z) = Gld,N

(
1+ 2τz,ld

Ts

)
+ z−1

(
1− 2τz,ld

Ts

)
(
1+ 2τp,ld

Ts

)
+ z−1

(
1− 2τp,ld

Ts

) . (32)

The expression of Flg(z) is the same as (32) provided that
its coefficients are changed according to (11).

FIGURE 11. Block diagram of the discretized PLL control loop with ZFBP.

The discretized version of (30) is

LF ′ (z) = Kp
Ts
2

×

(
1+ z−1

)2(
1+ 2τp,PLL

Ts

)
+ z−1

(
−

4τp,PLL
Ts

)
+ z−2

(
−1+ 2τp,PLL

Ts

) .
(33)

It can be decomposed in the cascade of two discrete TFs, as in

LF ′ (z) =

(
1+ z−1

)
2

LF
′′

(z) , (34)

with

LF
′′

(z) = KpTs

×

(
1+ z−1

)(
1+ 2τp,PLL

Ts

)
+ z−1

(
−

4τp,PLL
Ts

)
+ z−2

(
−1+ 2τp,PLL

Ts

)
(35)

From (34) it comes that actually the output of LF’(z) is
the average value of two subsequent samples of the output of
LF’’(z). From this consideration, an attempt has been made
to simplify the implementation of the PLL by neglecting the
computation of the average value and coding LF’’(z) instead
of LF’ (z) in the DSC firmware.

The discretization of (1+sτz,PLL)/s gives

ZPLL (z) =
Ts
2

(
1+ 2τz,PLL

Ts

)
+ z−1

(
1− 2τz,PLL

Ts

)
(
1− z−1

) . (36)

Starting from Fig. 10 and substituting LF’(s) and
(1+sτz,PLL)/s with LF’’(z) and ZPLL(z), respectively, the
discrete-time block diagram of the PLL reported in Fig. 11 is
obtained.

Analysis of Figs. 3, 10, and 11, and of (35) and (36)
shows that there are direct feed-throughs from the output of
ZPLL(z) to the input of LF’’PLL(z) and from the output of
LF’’PLL(z) to its input through (12) and the Park transform.
The direct feedthroughs cannot be implemented in the control
firmware so that a one-step delay is inserted in each loop.
This operation is represented in Fig. 11 by the z−1 symbols
within the dashed boxes. Given the low cutoff frequency of
the control loop, which is about 16 Hz in the considered case,
and the sampling time of the discrete control system, which
can be considered in the order of 100µs, the effects of the
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TABLE 2. Simulation results.

delay blocks can be neglected and their insertion does not
require to re-design LF(s).

The real-time computation of (12) to adjust the gains of the
TOSsG filters is time-consuming for the DSC and hence the
tuning coefficients Tld(ωg,e) and Tlg(ωg,e) have been com-
puted in advance from (9) and (12) for different values of
ωg,e, and their samples have been stored in a look-up table
(LUT). The output of the LUT is computed performing a
linear interpolation between the two values corresponding
to the LUT’s entries immediately lower and higher than its
actual input.

To test the sensitivity of TOSsG to the grid frequency
variation, two LUTs have been filled considering the grid
frequency fg spanning the interval 45 Hz to 55 Hz: one large
LUT with 101 entries, evenly spaced of 0.1 Hz, and a small
LUT with only 3 entries set at 45 Hz, 50 Hz, and 55 Hz.
The large LUT maintains the amplitude of the two orthog-
onal signals nearly equal to that of vg in all the consid-
ered range of fg; on the contrary, the small LUT satisfies
exactly this condition only at the nominal and at the extreme
frequencies and originates the maximum error at 47.5 Hz
and 52.5 Hz.

The performance of the discrete time PLL has been at first
checked by simulations developed in the Matlab-Simulink
environment setting the sampling time to 100µs. In particular,
the response of the PLL to step changes of fg has been
tested in three different conditions: disabling the TOSsGfilter
adjustment (no-LUT), enabling the real-time adjustment with
the large LUT (l-LUT), and enabling the adjustment with the
small LUT (s-LUT). The frequencies of 47.5 Hz and 52.5 Hz
have been selected as the initial and the final values of the fg
step in order to check the performance of the small LUT in
the worst conditions.

Table 2 reports the settling time of the frequency estimates
fg,e and fg,e,ro within fg·(1±0.005), their overshoot, and their
steady-state peak-to-peak oscillation. In the last two rows of
the table are shown the maximum and the steady-state value
of the phase estimate error.

Analysis of the simulation results confirms that the PLL
based on TOSsG operates correctly and, in the considered
range of frequency, successes in estimating accurately the

FIGURE 12. Response to frequency steps: fg,e (red dotted line), fg,e,ro
(blue solid line) and θg,err (blue solid line) with 64-bit resolution and
large LUT.

phase of vg even when the filters are not tuned. On the
contrary, tuning of the filters is necessary to reduce the oscil-
lations on the estimated frequency but it can be performed
using the small LUT. Finally, the ZFBP solution exerts an
effective action in reducing the oscillations amplitude and the
settling time of fg,es,ro with respect to fg,es.

VI. TOSsG IMPLEMENTATION AND PRELIMINARY TESTS
The TOSsG and the PLL with ZFBP have been implemented
in the firmware of a Texas TMS320F28335 DSC. It has
a clock frequency of 150 MHz and operates with 32-bit
floating-point numbers [29]; if needed, libraries are available
with 64-bit floating-point mathematical routines.

Besides the two LUTs described in the previous Section
and the relevant interpolation routine, in the memory of the
DSC has been stored another LUT for the computation of
the sin(·) and cos(·) functions used in the Park transform.
A section of the memory has been arranged in four arrays,
each with 2048 elements, used to store the samples of the
outputs and of other quantities related to the TOSsG and
the PLL. During the experimental tests, the content of the
arrays has been transferred from the DSC memory to a PC
using the USB connection of the DSC development board and

FIGURE 13. Magnification of the response to a frequency step: fg,e (red
dotted line) and fg,e,ro (blue solid line) with 64-bit resolution and large
LUT (top) and small LUT (bottom).
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has been post-processed in the Matlab environment to check
the TOSsG and PLL performance and to draw the figures
reported in this and in the next Sections.

A preliminary series of tests have been performed to assess
the effects of the finite resolution of the DSC and of the size
of the LUTs used to tune the filters gains. In order to get rid
of all the non-idealities due to the conditioning, acquisition,
and conversion of the grid voltage, the preliminary tests have
been carried out generating the samples of vg by means of
a firmware routine run by the DSC together with those that
implement the TOSsG and the PLL. To this aim, a ramp
counter has been implemented to generate θg and from it,
using the sin(·) LUT, vg has been computed. Sudden varia-
tions of ωg have been obtained by changing the incremental
step of the counter.

The first test has been performed in the best conditions, i.e.
with 64-bit resolution and using the large LUT. Fig. 12 reports
the response to two frequency steps of vg, from 47.5 Hz to
52.5 Hz and then back to 47.5 Hz.

In the upper half of the figure, the frequency estimates
fg,es and fg,es,ro are plotted with the red dotted line and the
blue solid line, respectively. As expected, fg,es,ro exhibits a
much smoother behavior than fg,es, nonetheless they reach
the steady-state condition nearly in the same time. The lower
half of the figure shows the corresponding θg,err expressed in
degrees; it reaches a maximum value of about 17◦.
The upper half of Fig. 13 reports a magnification of the

initial time interval considered in Fig. 12. It shows that at
steady-state fg,es oscillates with a peak to peak amplitude of
about 8 mHz around the correct value, instead, considering
fg,es,ro, the maximum error is about ten times lower. The same
values are found also considering the steady-state condition
at fg = 52.5 Hz. The steady-state average phase error, not
shown in the figures, is about null in both cases, but oscillates
with an amplitude of 0.002◦.
The lower half of Fig. 13 reports the results obtained

performing the same test using the small LUT. With fg =
47.5 Hz it operates in the worst condition, and indeed the
peak to peak amplitude of the oscillation of fg,es increases

FIGURE 14. Magnification of the response to a frequency step: fg,e (red
dotted line) and fg,e,ro (blue solid line) with 32-bit resolution and
small LUT.

FIGURE 15. Experimental setup.

to about 22 mHz whereas for fg,e,ro it reaches 1.8 mHz. The
corresponding average phase error is null but its oscillation
reaches an amplitude of about 0.003◦.

The computation time required to implement the PLL
algorithm with 64-bit resolution resulted nearly equal to the
sampling period, i.e. 100µs, thus not leaving enough time
to implement any useful control application. For this reason,
the performance of the PLL implementation with a 32-bit
resolution has been checked by repeating the test with the
small LUT.

The obtained responses, plotted at the scale of Fig. 12,
are not distinguishable from the previous ones. However,
at a magnification comparable with that of Fig. 13, some
differences can be recognized, as shown in Fig. 14. The
upper half of the figure refers to the steady-state condition
at fg = 47.5 Hz and should be compared with the lower
half of Fig. 13. With the 32-bit resolution the waveform
of the oscillations of fg,es become almost triangular rather
than sinusoidal and their peak to peak amplitude increases
up to 50 mHz; instead, the oscillations of fg,es,ro are still
nearly sinusoidal even if their peak to peak amplitude reaches
6 mHz. The lower half of Fig. 14 refers to steady-state con-
dition at fg = 52.5 Hz and shows that the behavior fg,es and
fg,es,ro is nearly equal to that found at the lower frequency.
Implementation of the PLL algorithm with 32-bit res-

olution reduces the execution time to about 5.7 µs still

FIGURE 16. Waveforms generated by the PSoC and acquired by the
oscilloscope during a test related to a step of vg amplitude.
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FIGURE 17. Experimental response to frequency steps: fg,e (red dotted
line), fg,e,ro (blue solid line), and θerr (blue solid line).

maintaining the precision in the frequency estimate is in the
order of the mHz. For these reasons, the final experimental
tests have been performed with this resolution and using the
small LUT.

VII. FINAL EXPERIMENTAL TESTS
The final tests consisted in five experiments carried out as
far as it was possible in the same conditions and with the
same solicitations reported in [21] in order to perform a
fair comparison with the results of that papers, where the
performance of a total of eight different types of PLL are
reported. In the referenced paper the PLL algorithms were
implemented in a 64-bit microprocessor with a sample time
of 100 µs whereas in this paper the same sample time
is maintained, but the algorithms are implemented with a
32-bit resolution. As shown in the previous Section, this
limitation degrades the performance of the proposed TOSsG
method and of the overall PLL, but in any case, as it will
be demonstrated, the obtained experimental results are com-
parable if not better than those of the algorithms analyzed
in [21].

In these tests, the same conditions that would be met
in a real application, where vg comes from a circuit that

FIGURE 18. Experimental response to amplitude steps: fg,e (red dotted
line), fg,e,ro (blue solid line) and θerr (blue solid line).

FIGURE 19. Experimental response to offset steps: fg,e (red dotted line),
fg,e,ro (blue solid line) and θerr (bottom).

transduces the grid voltage, have been reproduced by gener-
ating vg using the 12-bit DAC of a Cypress PSoC 5LP micro-
controller [30]. The signal vg is then acquired by the DSC by
means of its embedded 12-bit ADC. The development boards
of the PSoC and of the DSC and the relevant connections are
shown in Fig. 15.

The PSoC has been programmed to drive the DAC with an
update frequency of 10 kHz and to generate the sinusoidal
signal vg with a nominal offset of 1.5 V and a maximum
amplitude of 1.5 V to comply with the ratings of the ADC of
the DSC. An LPF, designed according to the PSoC data sheet,
has been connected at the output of the DAC to smoothen the
quantization steps of the generated signal; it is constituted by
the light blue polyester capacitor connected to the Cypress
board. The frequency, amplitude, offset, instantaneous phase
and harmonic content of vg have been controlled indepen-
dently in order to test the PLL algorithm in different condi-
tions. The waveform of vg has been monitored by means of a
digital oscilloscope finding that it is actually sinusoidal with
a frequency accuracy of about ±0.02 Hz. Fig. 16 reports an
example of the waveforms obtained processing byMatlab the
samples of vg acquired by the oscilloscope. The red dotted
stepwise waveform is an auxiliary digital signal generated

FIGURE 20. Experimental response to phase steps: fg,e (red dotted line),
fg,e,ro (blue solid line) and θerr (bottom).
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FIGURE 21. Experimental response to harmonic application: fg,e (red
dotted line), fg,e,ro (blue solid line) and θerr (bottom).

by the PSoC and acquired by the DSC. Its transitions are
synchronized with the variations superimposed to vg and are
used to make easier the post-processing of the samples stored
in the DSC memory.

The first experiment has been performed in the same con-
ditions as Fig. 12, i.e. imposing to vg a stepwise frequency
variation from 47.5 Hz to 52.5 Hz and then back to 47.5 Hz.

The frequency estimate and phase error obtained in this
experiment are reported in Fig. 17. The general behavior of
fg,e, fg,e,ro and θerr is the same as the one reported in Fig. 12 of
the previous Section, with fg,es and fg,es,ro subjected to a max-
imum overshoot of about 1.9 Hz and 0.01 Hz, respectively.
Themaximumphase error is of 16.8◦. Amore careful analysis
reveals that, with respect to results of the preliminary tests,
the oscillations superimposed to fg,es and fg,es,ro increase up
to 0.07 Hz and 12 mHz, respectively. Both the estimated fre-
quencies are about 0.02 Hz higher than the theoretical ones,
but this error falls within the accuracy of the signal generated
by the PSoC. The phase error at steady-state oscillates with
an amplitude of 0.1◦. This error is not significant because, at
the nominal frequency, the actual phase of vg varies of about
1.8◦ within one sampling period.

In the second experiment, the amplitude of vg is subjected
to two sudden steps from Vg,N to 0.6 Vg,N and then back to
Vg,N. As shown in Fig. 18, in this case both the frequency
estimates and the phase error are affected by transient varia-
tion caused by the two amplitude steps but at the steady state
they have the same behavior both for Vg = Vg,N and Vg =

0.6 Vg,N. The maximum frequency estimates errors can be
evaluated in 2.9 Hz for fg,es and 0.6 Hz for fg,es,ro, and happen
in correspondence to the falling step of Vg whilst on the rising
step the frequency estimates errors are 1.9 Hz and 0.4 Hz,
respectively. The maximum phase error is equal to 6.5◦ at the
falling step and to 4.1◦ at the rising step.
The third experiment involved the sum of an offset equal to

0.05 Vg,N to vg and then its removal. The relevant results are
shown in Fig. 19. While the offset is applied, the amplitude
of the oscillation of fg,es increases up to 1.33 Hz and that
of fg,es,ro reaches 0.18 Hz. In both cases these values are
maintained until the offset is removed. The average value of
the frequency estimates is not influenced by the offset and in
this test results of 50.01 Hz. The phase error due to the offset
reaches 1.7◦ and oscillates with about constant amplitude
while the offset is applied. After the removal of the offset,
fg,es, fg,es,ro and θerr reach the steady state in about 31 ms,
61 ms, and 45 ms, respectively.

The fourth experiment consisted in forcing a sudden neg-
ative step of 90◦ to the phase of vg and then a positive step
having equal amplitude. Fig. 20 shows that the two frequency
estimates exhibit a sensible reaction to the phase steps. In this
case, the maximum frequency error for fg,es is of nearly 20 Hz
and its maximum overshoot after recovering the correct value
is about 3.4 Hz. The maximum frequency error for fg,es,ro is
about 8 Hz and its overshoot is 0.3 Hz. The maximum phase
error is obviously 90◦ and after crossing the zero it has a
maximum overshot of 30◦.
In the last experiment, three harmonics have been added to

vg: a 3rd and a 5th harmonic with amplitude 0.05 Vg,N and
a 7th harmonic with amplitude 0.04 Vg,N. Harmonics have
been enabled and disabled abruptly obtaining the responses

TABLE 3. Experimental results comparison.
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FIGURE 22. Performance comparison of TOSsG, Delay, Deri, Park and
SOGI.

FIGURE 23. Performance comparison of TOSsG, DOEC, VTD, CCF and TPFA.

reported in Fig. 21. While the harmonics are enabled both
fg,es and fg,es,ro have a steady oscillation with an amplitude of
about 1 Hz and 0.05 Hz, respectively. At harmonics appearing
and disappearing there is a little overshoot in fg,es,ro that
reaches 0.13 Hz. The same behavior can be recognized also in
θg,es, with a steady oscillation of about 0.5◦ and an overshoot
of 1.2◦.

The outcomes relevant to the frequency and phase esti-
mates of the above described experiments are summarized
in the first two columns of Table 3, which report the results
relevant to fg,es and fg,es,ro, respectively. The other columns
are filled with the data coming from [21] and relevant to the
results obtained from different types of PLLs subjected to the
same five solicitations considered in this paper.

VIII. DISCUSSION
Analysis of Table 3 shows that the proposed OSG-PLL pair
is in the average comparable if not superior to other solutions
found in the literature. Considering separately the outcomes

of five experiments, the following considerations can be
drawn.

• Frequency step: the frequency estimate fg,es has the
smallest overshoot with respect to the other OSG-PLL
pairs and fg,es,ro performs more than ten times better
than fg,es itself. Only the SOGI PLL gives a settling
time lower than that of fg,es but the settling time of
fg,es,ro is lowest among all the considered PLLs. Only
the derivative OSG (Deri) is sensibly superior to the
TOSsG from the point of view of the maximum phase
error whereas the Delay, Park, SOGI, and DC offset
error compensation (DOEC) OSG-PLL pairs have about
the same performance. Instead, variable time delay
(VTD), complex coefficients filter (CCF), and three-
phase frequency-adaptive (TPFA) OSG-PLL pairs are
characterized by higher maximum phase errors.

• Amplitude step: not considering the Deri OSG, which
is unaffected by amplitude steps, it can be seen that
fg,es has average performance from the point of view of
the settling time, being comparable with Delay, VTD,
and CCF. On the other hand, it is slower than DOEC
and TPFA, and more than two times faster than Park and
SOGI. The fg,es,ro estimate, instead, exhibits the shortest
settling time if Deri is not considered. The overshoot of
fg,es is among the highest and is exceeded only by that
relevant to CCF, which has an overshoot more than three
times higher. On the contrary, the overshoot of fg,es,ro is
the lowest among all the considered OSG-PLL pairs but
Deri. The phase estimate has a maximum error that lies
among the highest, being comparable with that of SOGI
and a little smaller than that of Park.

• Offset: when the offset is applied or removed from vg,
the peak-to-peak error of the frequency estimate fg,es
falls in the middle between those of Delay and Deri
OSG-PLL pairs, which perform worse, and those of the
other pairs, which perform better. Instead, the peak-to-
peak error of fg,es,ro exceeds only those of VTD and
TPFA while is more than three times smaller than the
peak-to-peak error of Park, which is the third-best from
this point of view, and nearly 30 times smaller than the
error of Deri, which is the worst. The performance of the
phase estimation is rather poor being the peak-to-peak
error from two to three times higher than the average
of the other OSG-PLL pairs and slightly lower than the
error relevant to CCF, which is the maximum.

• Phase step: both the settling times of fg,es and fg,es,ro
after the application of a phase step are in the average,
with the difference that fg,es settles more slowly than
SOGI and VTD while fg,es,ro settles more quickly than
them. The overshoot of fg,es is in the average and a
little smaller than that of Park and DOEC whereas the
overshoot of fg,es,ro is the minimum among all the con-
sidered OSG-PLL pairs. The corresponding maximum
phase error is in the average and is comparable with that
of SOGI and TPFA.
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• Harmonics: in presence of harmonics the peak-to-peak
error of fg,es is in the average, comparable with those of
Park and DOEC and a little smaller than those of SOGI
and CCF. Also in this case, fg,es,ro performs better than
fg,es and its peak-to-peak error is comparable with that of
the best OSG-PLL pairs. The peak-to-peak phase error
is in the average and falls between those of Park, SOGI
and DOEC, which perform a little better, and those of
Delay and CCF, which perform a little worse.

The spider charts of Figs. 22 and 23 summarize the com-
ments reported above. In each chart the performance of
TOSsG relevant to fg,es,ro and θg,err are compared with those
of other four OSG-PLL pairs specified in the legend. The
axes of the charts, labeled with the letters from ‘a’ to ‘m’ in
correspondence with the rows of Table 3, are linearly scaled
so that the best performance reaches the position furthest
from the origin while the worst is at one tenth of this distance.

IX. CONCLUSION
The paper presented a proposal to enhance the performance of
the single-phase PLL algorithms. It deals with the generation
of the orthogonal signal needed to actually perform the phase
estimate. The proposal has been described in details and
implemented in the firmware of a DSC considering the issues
related to the limited memory and the resolution available
to represent the different quantities manipulated by the PLL
algorithm. The experimental results obtained processing a
signal subjected to steps of frequency, phase, magnitude,
offset, and harmonic content confirm that the proposed algo-
rithm performs as expected and that, in comparison with
other kinds of PLLs, it offers a good estimate of the input
signal angular frequency and phase with low sensitivity to the
different disturbances superimposed to the input signal.
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