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Abstract

The analysis of human motion is a multifaceted topic with crucial appli-
cations in several fields. Medicine, rehabilitation, biomechanics, but also
robotics, logistics, and, lately, an increasing number of industrial scenarios
share the need to quantify how a person is moving.

Starting from laborious manual annotations on images or videos, the
technologies that allow an accurate assessment of human motion have de-
veloped rapidly in the last few decades. The current gold standard makes
use of highly accurate optoelectronic systems capable of tracking the three-
dimensional positions of a set of retroreflective markers with submillimeter
precision. When such markers are applied to specific body landmarks, the
motion of a person can be inferred. To this end, the correct positioning of
the markers is a key step to obtain accurate results. Therefore, such analyses
are typically performed in dedicated laboratories by specialized personnel
with in-depth knowledge of human anatomy.

Although this approach is suitable for medical applications, the advent
of Industry 4.0 first, requiring intelligent networking among the entities
of the production system by means of Cyber-Physical Production Systems
(CPPS), and, more importantly, of Industry 5.0, shifting the focus from the
technology to the well-being of the human operator, brought a new set of re-
quirements for the assessment of human motion. In fact, to ensure safe and
productive collaboration between human operators and robotic devices, the
latter must be constantly aware of the people within their workspace. Thus,
human motion needs to be measured in unconstrained environments, in
real-time, and without impacting the person’s dexterity. To this end, in-
ertial and markerless motion capture (MoCap) are alternative technologies
to estimate the pose of a person without the drawbacks of optoelectronic
systems.
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Inertial systems exploit multiple inertial measurement units (IMUs)
placed in specific parts of the body. Such systems combine the estimated
orientations of each sensor with prior knowledge of a model describing
the analyzed subject to reconstruct their motion. The accuracy of inertial
MoCap is approaching the one of optoelectronic systems, without the need
for dedicated laboratories or specialized personnel. In fact, despite the fact
that the user must wear several sensors, the placement is less strict with
respect to the markers used in optoelectronic MoCap.

Markerless systems, on the other hand, rely on deep learning algorithms
to estimate a person’s pose exploiting one or multiple cameras, without re-
quiring any sensor or marker on the body. However, the achievable accu-
racy is one order of magnitude lower than the one of the other systems at
best.

The next critical advancement in human motion analysis will consist
of developing accurate non-invasive systems. Ideally, a complete MoCap
system should be able to provide highly accurate measurements, without
requiring complex hardware setups nor hindering the freedom of move-
ment in any way, and in real-time. None of the currently available systems
can fulfill all these characteristics.

This work presents the research activities that I conducted during my
Ph.D. in this direction. The main objective of my research was to provide
novel tools and algorithms to maximize the motion estimation accuracy,
support heterogeneous quantities measured/estimated by different sensing
systems, and minimize the number of sensors required on the body. Such
a complex objective required the definition of three macro levels in which
I divided my work: the Sensing level, the Tracking level, and the Modeling
level. The first level aims to seamlessly integrate different sensor typolo-
gies with the developed algorithms. The second focuses on maximizing
the pose estimation accuracy when using a distributed network of sensors.
Finally, the latter enables multimodal sensor fusion of heterogeneous data
by referring all the measured quantities to a common underlying model of
the human.

The Sensing level is the first block of my work. Within this level, I fo-
cused on analyzing, comparing, and selecting state-of-the-art technologies
for the assessment of human motion. The main goal of this level is to pro-
vide a bridge between the raw measured quantities and the developed al-
gorithms, independently of the typology of sensors being used. This was
achieved by defining a common interface used to represent the poses of
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multiple people independently of the input source, the number of mea-
sured (or estimated) marker positions, and the number of measured (or es-
timated) IMU orientations. As a result, all the algorithms developed within
the Tracking and Modeling levels can be used independently of the typol-
ogy or number of sensors employed. This is of paramount importance in
the direction of enabling human MoCap in unconstrained environments,
allowing the system to be adapted to the specific user and scenario.

Within the Tracking level, I developed state-of-the-art tools to enable ro-
bust, accurate, real-time multi-person tracking in distributed sensor net-
works. In fact, typical challenges of single-camera markerless systems (e.g.,
limited fields of view and occlusions) can be overcome by exploiting a dis-
tributed camera network. However, this introduces other types of chal-
lenges, since the input data can be potentially noisy and/or introduce de-
lays. Therefore, the overall problem was divided into four distinct subprob-
lems.

As a result, four modules were developed within this level: the Tracker
module, the Merger module, the Optimizer module, and the Filter module.
The former allows to perform robust frame-by-frame tracking of multiple
people detections obtained by a multi-sensor network. No assumptions
are made about the typology and number of sensors, nor on the number
of people being tracked. The Merger module is used, after the Tracker, to
correctly fuse the (potentially partial) information obtained by each sensor
into a unique enhanced description of the persons’ poses. The Optimizer
module introduces a description of the people being analyzed. It allows to
solve a global optimization problem with the goal of minimizing the body
segments length variability across consecutive frames. Finally, the Filter
module enables smoothing of the estimated motion trajectories by filtering
high-frequency noise. All the aforementioned operations are performed in
real-time. The accuracy increase achieved by the proposed workflow was
assessed in a newly acquired dataset that we plan to release in the near
future.

Finally, at the Modeling level, the information received from either the
Sensing or Tracking levels is used to drive a musculoskeletal model of the
human in real-time. The current gold standard for measuring human mo-
tion in highly accurate biomechanical analyses, in fact, relies on the usage
of a musculoskeletal model of the human to simulate motion via inverse
kinematics optimizations. However, such analyses typically require com-
plex setups (e.g., optoelectronic systems) and extended post-processing of
the recorded motion data.

v



Within this level, protocols considered de-facto standards in the biome-
chanics field were successfully adapted to allow their use in different
contexts. This required several modifications of the original tools used
in biomechanical analyses to achieve real-time performance and enable
inverse kinematics optimizations to be progressed independently of the
sensing system used for the measurements. Indeed, optoelectronic MoCap,
inertial MoCap, markerless MoCap, or any combination of the former can
be used. This is a key feature to enable multimodal sensor fusion, since all
the measured quantities refer to the same underlying model.

The extensive work on sensing, tracking, and modeling converged on
the development of an open-source efficient, flexible, modular framework
for real-time multi-sensor measurement and modeling of human motion.
This required the selection of state-of-the-art tools from both the robotics
and biomechanics communities. The communication between different
sensors and algorithms is based on ROS, an established middleware con-
sidered the de-facto standard for the development of complex distributed
robotics applications. The algorithms developed for real-time inverse kine-
matics optimizations, on the other hand, rely on OpenSim, a well-known
library for biomechanical analyses that includes several already validated
musculoskeletal models.

To conclude, the work developed within my Ph.D. research has the po-
tential to push forward, via a multidisciplinary approach, the state-of-the-
art on accurate unobtrusive assessment of human motion in unconstrained
environments. Indeed, the proposed system has the ability to enable the de-
velopment of a variety of emerging applications, where precise knowledge
of the human pose in unpredictable environments, with a minimal number
of on-body sensors, and in real-time, is a fundamental requirement.
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Sommario

L’analisi del movimento umano rappresenta un argomento poliedrico con
diverse applicazioni in molteplici campi. Medicina, riabilitazione, biomec-
canica, ma anche robotica, logistica e, ultimamente, l’ambiente industriale,
sono accomunati dalla necessità di quantificare come una persona si sta
muovendo.

Inizialmente limitate ad annotazioni manuali su immagini o video, le
tecnologie disponibili per valutare il movimento sono cresciute esponen-
zialmente negli ultimi decenni. Attualmente lo standard di riferimento in
questo ambito consiste nell’uso di sistemi optoelettronici estremamente ac-
curati, in grado di tracciare la posizione nello spazio di una serie di mar-
catori retroriflettenti con precisione submillimetrica. L’applicazione di tali
marcatori in specifici punti del corpo umano permette di stimarne la po-
sa. A tal fine, il corretto posizionamento dei marker è un requisito fonda-
mentale per permettere di ottenere risultati accurati. Pertanto, tali analisi
sono tipicamente condotte da personale specializzato, con una conoscenza
approfondita dell’anatomia umana, in laboratori dedicati.

Sebbene questo approccio sia adatto alle applicazioni mediche, l’avven-
to dell’Industria 4.0, che richiede una comunicazione intelligente tra tutte le
entità del sistema produttivo, e, soprattutto, dell’Industria 5.0, la quale ha
spostato l’attenzione dalla tecnologia al benessere dell’operatore umano, ha
introdotto una nuova serie di requisiti. Infatti, per garantire una collabora-
zione sicura ed efficace tra operatori umani e dispositivi robotici, questi
ultimi devono essere costantemente informati delle persone all’interno del
proprio spazio di lavoro. Di conseguenza, il movimento umano deve esse-
re misurato in ambienti non vincolati, in tempo reale, e senza influire sulla
libertà di movimento della persona. A tal fine, sistemi di motion capture
(MoCap) inerziali e markerless rappresentano tecnologie alternative per ot-
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tenere una stima della posa della persona senza le limitazioni tipiche dei
sistemi optoelettronici.

I sistemi inerziali sfruttano una serie di sensori inerziali (IMU) posizio-
nati in parti specifiche del corpo. Tali sistemi combinano le orientazioni
stimate da ogni sensore con un modello cinematico del soggetto analizzato
per ricostruirne il movimento. La precisione di questi sistemi si avvicina a
quella dei sistemi optoelettronici, senza però la necessità di laboratori dedi-
cati o personale specializzato. Infatti, nonostante richiedano all’utilizzatore
di indossare diversi sensori, il posizionamento è meno rigoroso rispetto a
quello dei marcatori utilizzati nei sistemi optoelettronici.

I sistemi markerless, invece, si basano su algoritmi di deep learning al fi-
ne di stimare la posa di una persona sfruttando una o più telecamere, senza
richiedere alcun sensore o marcatore fisico sul corpo. Tuttavia, la precisio-
ne ottenibile è un ordine di grandezza inferiore rispetto agli altri sistemi,
anche in condizioni ideali.

Il prossimo progresso fondamentale nell’analisi del movimento umano
consisterà nello sviluppo di sistemi accurati ed allo stesso tempo non inva-
sivi. Idealmente, un sistema completo dovrebbe essere in grado di fornire
misurazioni estremamente accurate, in tempo reale, e senza richiedere
complesse configurazioni hardware né ostacolare in alcun modo la libertà
di movimento. Nessuno dei sistemi attualmente disponibili è in grado di
soddisfare tutte queste caratteristiche.

Questo lavoro presenta le attività di ricerca che ho condotto in questa
direzione durante il mio dottorato. Lo scopo principale della mia ricerca
ha riguardato lo sviluppo di nuovi strumenti e algoritmi per massimizzare
l’accuratezza della stima del movimento, supportare dati eterogenei misu-
rati o stimati da diversi sistemi di motion capture, e minimizzare il numero
di sensori richiesti sul corpo. Un obiettivo così complesso ha richiesto la
definizione di tre macro livelli in cui ho suddiviso il mio lavoro: il livello di
Sensing, il livello di Tracking e il livello di Modeling. Il primo livello ha lo sco-
po di integrare, senza soluzione di continuità, diverse tipologie di sensori
con gli algoritmi sviluppati. Il secondo, invece, si concentra sulla massimiz-
zazione dell’accuratezza della stima della posa attraverso l’utilizzo di una
rete distribuita di sensori. Infine, l’ultimo livello consente la fusione di dati
ottenuti da sensori eterogenei, associando tutte le grandezze misurate ad
un unico modello comune dell’essere umano.

Il livello di Sensing rappresenta il blocco iniziale del mio lavoro.
All’interno di questo livello mi sono concentrato sull’analisi, il confronto e
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la selezione di tecnologie all’avanguardia per la stima del movimento uma-
no. L’obiettivo principale di questo livello è fornire un collegamento tra
le grandezze fisiche direttamente misurate e gli algoritmi sviluppati per la
stima della posa, indipendentemente dalla tipologia di sensore utilizzato.
Ciò è stato possibile attraverso la definizione di un’interfaccia comune uti-
lizzata per rappresentare la posa di più persone indipendentemente dalla
sorgente di input, dal numero di marker, e dal numero di IMU. Di conse-
guenza, tutti gli algoritmi sviluppati all’interno dei livelli di Tracking e di
Modeling possono essere utilizzati indipendentemente dalla tipologia o dal
numero di sensori presenti. Questo è di fondamentale importanza al fi-
ne di consentire la stima del movimento umano in ambienti non vincolati,
permettendo al sistema di adattarsi allo specifico utente e scenario.

All’interno del livello di Tracking ho sviluppato strumenti all’avanguar-
dia per abilitare il tracciamento di più persone mediante l’utilizzo di reti
di sensori distribuiti. Tale sistema è robusto, accurato e permette una sti-
ma della posa in tempo reale. Le principali difficoltà tipiche dei sistemi
markerless basati su singola telecamera (ad esempio, campi visivi limita-
ti e occlusioni) possono essere superate sfruttando una rete di telecamere.
Tuttavia, ciò introduce nuove tipologie di problemi, in quanto i dati ricevu-
ti da ogni sensore possono essere potenzialmente rumorosi e/o introdurre
ritardi. Di conseguenza, il problema globale è stato suddiviso in quattro
sottoproblemi distinti.

All’interno di questo livello sono stati sviluppati quattro moduli: il mo-
dulo Tracker, il modulo Merger, il modulo Optimizer e il modulo Filter. Il
primo consente di eseguire il tracciamento frame-by-frame delle pose di
più persone ottenute da una rete multisensore. Il sistema funziona indi-
pendentemente sia dalla tipologia e dal numero di sensori, che dal numero
di persone tracciate. Il modulo Merger viene utilizzato, a valle del Tracker,
per fondere correttamente le informazioni (potenzialmente parziali) ottenu-
te da ogni sensore in un’unica descrizione completa della scena. Il modu-
lo Optimizer, invece, introduce una descrizione delle persone analizzate.
Consente di risolvere un problema di ottimizzazione con l’obiettivo di ri-
durre al minimo la variabilità della lunghezza dei segmenti del corpo tra
frame consecutivi. Infine, il modulo Filter permette il filtraggio delle tra-
iettorie stimate, riducendo il rumore ad alta frequenza. Tutte le precedenti
operazioni vengono eseguite in tempo reale. L’aumento di precisione ot-
tenuto dal sistema proposto è stato valutato su di un dataset recentemente
acquisito che prevediamo di rilasciare nel prossimo futuro.

Infine, nel livello di Modeling, le informazioni ricevute dai livelli di
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Sensing o di Tracking vengono utilizzate per guidare un modello musco-
loscheletrico dell’essere umano in tempo reale. L’attuale standard di riferi-
mento per la misurazione del movimento umano in analisi biomeccaniche
altamente accurate, infatti, si basa sull’uso di un modello muscoloscheletri-
co dell’essere umano per simulare il movimento tramite un approccio di ci-
nematica inversa. Tuttavia, tali analisi richiedono tipicamente configurazio-
ni complesse (ad esempio, sistemi optoelettronici) e un’estesa elaborazione
dei dati grezzi registrati.

All’interno di questo livello, i protocolli considerati standard in ambien-
te biomeccanico sono stati adattati con successo per consentirne l’utilizzo
in contesti diversi. Ciò ha richiesto diverse modifiche agli strumenti ori-
ginali utilizzati in biomeccanica per ottenere prestazioni in tempo reale e
consentire l’esecuzione di ottimizzazioni basate su cinematica inversa indi-
pendentemente dal sistema di misurazione utilizzato. Il sistema sviluppato
permette di utilizzare MoCap di tipo optoelettronico, inerziale, markerless,
o qualsiasi combinazione dei precedenti. Questa è una caratteristica fonda-
mentale per consentire la fusione multimodale di sensori eterogenei, poiché
tutte le grandezze misurate si riferiscono ad un unico modello condiviso.

L’ampio lavoro all’interno dei tre livelli sopracitati ha portato allo svi-
luppo di un framework open-source efficiente, flessibile e modulare per
la misurazione e modellazione multisensore in tempo reale del movimen-
to umano. Ciò ha richiesto la selezione di strumenti all’avanguardia sia
dall’ambito robotico che da quello biomeccanico. Infatti, la comunicazione
tra diversi sensori e algoritmi è basata su ROS, un middleware consolidato
attualmente considerato lo standard di riferimento per lo sviluppo di com-
plesse applicazioni robotiche. Gli algoritmi sviluppati per la stima della
cinematica in tempo reale, invece, si basano su OpenSim, una nota libre-
ria per analisi biomeccaniche che offre numerosi modelli muscoloscheletrici
già validati.

Per concludere, il lavoro sviluppato nell’ambito della mia ricerca di dot-
torato ha le potenzialità di fare avanzare lo stato dell’arte nell’ambito della
stima non invasiva del movimento umano in ambienti non vincolati attra-
verso un approccio multidisciplinare. Il sistema proposto, infatti, consente
lo sviluppo di una varietà di applicazioni emergenti in cui la conoscenza
precisa della posa umana in ambienti imprevedibili, con un numero mini-
mo di sensori sul corpo, e in tempo reale, è un requisito fondamentale.
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1 Introduction

The study of human movement is an intriguing topic that has always im-
pacted many and diverse disciplines. Such a complex subject had a deep
impact on arts, as in the countless works of Leonardo da Vinci driven by his
studies on human anatomy, photography, from the pioneering experiments
of Eadweard Muybridge, considered the first attempts to objectively study
the biomechanics of the human body, and science, with applications rang-
ing from biomechanics, computer vision (CV), action recognition (AR), and
human-robot interaction (HRI) [1].

Human movement involves multiple interacting anatomical systems
(e.g., nerves, muscles, vision, etc.), and precise coordination between such
systems and the limbs. The study of such a complex biomechanical system
resulted, in the 20th century, in the development of a new discipline of
science, namely, biomechanics [2]. At the same time, the increasing atten-
tion on this topic enabled the methods to extract kinematics information
of the body pose from images to rapidly evolve in recent years. Starting
from laborious manual annotations, today human movement is typically
studied by means of automatic optoelectronic systems. Such technology
exploits multiple cameras emitting invisible infrared light to infer the three-
dimensional (3D) positions of passive retroreflective markers attached to
the person’s body [3].

The advent of Industry 4.0 first, requiring intelligent networking
among the entities of the production system by means of Cyber-Physical
Production Systems (CPPS), and, more importantly, of Industry 5.0, shift-
ing the focus from the technology to the well-being of the human operator,
contributed to extend the number of disciplines where knowledge of hu-
man motion is of paramount importance. In fact, to guarantee a safe and

1



1. INTRODUCTION

productive interaction between operators and robots, the latter need to be
(1) aware of the task to perform, (2) aware of the human partner, (3) sym-
biotic in their interactions with humans, and (4) cooperative, to maximize
both productivity and quality of life of the operator. Therefore, collabo-
rative robots must be constantly aware of the humans approaching their
workspace.

The industrial scenario defines three types of HRI:
• Coexistence: humans and robots share the same workspace, but exe-

cute completely separate tasks;

• Cooperation: humans and robots perform different tasks, but with a
shared objective;

• Collaboration: humans and robots actively interact while executing
complex tasks.

The first two scenarios need basic knowledge of the human, like their
real-time centroid’s position in space. However, the third scenario requires
accurate measurement of the operator’s pose and, possibly, of their inten-
tion. Such data must be available in real-time, and without requiring bulky
hardware on the operator’s body, not to hinder their movements [4], [5].

1.1 HUMAN MOTION ANALYSIS: A HISTORICAL OVERVIEW

The first biomechanical studies on human motion were enabled by photog-
raphy and, specifically, by chronophotography. The word chronophotogra-
phy describes several kinds of sequential photography that, at the end of
the 19th century, allowed to represent motion by taking a sequence of pic-
tures delayed by a fixed time [6].

The first and most known attempts on analyzing motion using
chronophotography were from the contemporary experiments of the
English photographer Eadweard Muybridge (1830 – 1904) and of the
French scientist Etienne-Jules Marey (1830 – 1904). Muybridge’s most fa-
mous work, The Horse in Motion (Figure 1.1) aimed to answer a popular
biomechanical question of the period: is there a moment in which all the
four hooves of a trotting horse are off the ground at the same time? Using
an array of 12 cameras positioned beside a barn, Muybridge was able to
take sequential shots of a galloping horse, each delayed by about 40 ms. The
images allowed to answer the question, showing how indeed there is a time
when all the four hooves are simultaneously off the ground. Muybridge
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extensively focused also on human motion (e.g., walking downstairs, box-
ing, walking of children, jumping, etc.), works that are considered the
beginning of biomechanics [1], [2].

Figure 1.1: Muybridge’s The Horse in Motion, 1878.

While Muybridge is known as the pioneer in motion capturing, Marey’s
contribution to human motion analysis also deserves an honorable men-
tion. In fact, he had the pioneering idea to introduce the use of markers
on the subject’s body. Such markers resulted in high-contrast dots or
lines in the acquired images, allowing accurate identification of the body
landmarks of interest (Figure 1.2). This idea will be the basis for the de-
velopment, more than one century later, of marker-based optoelectronic
systems, currently considered the gold standard in human motion analysis.

However, the interest in human motion goes way back in history, more
than 2000 years before Muybridge and Marey’s studies. The first evidence,
in fact, dates back to the ancient Greek philosopher Aristotele (-383 to -321).
His short text, Περὶ πορείας ζῴω [7], is the first known document on biome-
chanics. It describes the gait of various animals, including detailed obser-
vations on human motion, with geometric analyses of the limbs during the
movement. In classical antiquity, in fact, human and animal motion pat-
terns were typically analyzed together, by comparing the first to the latter.

Leonardo da Vinci (1452 – 1519) also showed a strong interest in hu-
man motion, dedicating a large number of his works to the study of human
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Figure 1.2: Marey’s Walk, 1886.

anatomy. His sketchbooks contain, besides extremely detailed models of
the human body, studies on kinematics trees of human motion, precursors
of the kinematic chains used in modern biomechanical models. As an ex-
ample, he analyzed the weight shifting during stair ascend and descend,
concluding that a person’s center of mass needs to always be on top of the
center of the foot on which they are standing [2].

However, it was Giovanni Alfonso Borelli (1608 – 1679) the first person
who applied the analytical methods developed by Galileo Galilei (1564
– 1642) to biology. He found that bones act as levers, while muscles be-
have following mathematical principles. Specifically, he was the first to
understand that such levers magnify motion rather than force, so that the
muscles need to produce a much higher force with respect to the external
one acting on the body. For these reasons, he is often labeled as the father
of biomechanics [8].

1.2 CURRENT STATE OF THE ART

Analyzing human motion consists of retrieving information that defines
the pose of a person. Therefore, the final objective is the estimation of the
angular values that describe each body joint at a specific time frame. This
information is typically used in combination with a musculoskeletal model
of the person being analyzed. These models are composed of rigid bodies
representing the bones, connected by mechanical joints. Representations
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of the body muscles are included in the models, defined as the actuators
needed to contract the limbs by providing the joint torques necessary to
generate movement.

Musculoskeletal models are advanced tools for the assessment of hu-
man motion, enabling accurate analyses of the functional capacity of mus-
cles and the design of specific surgical procedures, among others. A va-
riety of models developed over the years are available in the literature.
Each model can vary the number of degrees of freedom (DoF) and muscle-
tendon actuators, and the mathematics used to simulate muscle activity.
Models can be specialized for the analysis of specific movements (e.g., [9]
for lower limbs, [10] for upper limbs) or allow an analysis of the full-body
motion (e.g., [11]). The set of measured (or, more correctly, estimated)
anatomical joint angles uniquely describes the subject’s kinematics.

If the model incorporates body segment inertial parameters, it is pos-
sible to estimate the motion of the center of mass. Moreover, such data,
together with external measurements of the forces acting on the body
(e.g., ground reaction forces (GRF) measured using force plates placed on
the ground), allow an estimation of the internal dynamics generating the
movement [12]. These analyses are typically the result of inverse kinemat-
ics (IK) optimizations, followed by inverse dynamics (ID) optimizations,
which both consider data describing a specific time frame. It is important to
highlight that accurate estimation of the body kinematics is of paramount
importance, since inaccuracies in the estimation of the kinematics will re-
sult in even larger errors for the estimation of body kinetics [13]. Finally,
by concatenating the results through time (either kinematics, dynamics, or
both), it is possible to reconstruct human motion.

Joint angles can be obtained using direct techniques (i.e., requiring de-
vices affixed on the body) or indirect techniques (i.e., using vision-based
systems) [3]. Direct methods, as the name suggests, are capable of directly
measuring the joint angles. Therefore, a musculoskeletal model is not re-
quired. However, direct methods typically require bulky devices attached
on the subject’s links that connect the joint of interest. This typically lim-
its their use on applications that do not require knowledge of the full-body
kinematics (e.g., to measure the range of motion (RoM) of a specific joint).

Indirect methods, on the other hand, aim to estimate the anatomical
joint angles by directly measuring different quantities (e.g., the movement
of a set of markers applied on the body, or the orientation of an inertial
measurement unit (IMU) attached to the limbs). In this case, to obtain
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information on the joint angles, such data must be applied to a model
specifically scaled to represent the analyzed person. Although indirect
methods are more complex, the technological progress in MoCap, together
with advanced techniques developed in the latest decades, resulted in di-
rect methods being considered as the gold standard for accurately assessing
human motion.

As mentioned earlier, direct methods allow to directly measure the
anatomical joint angles. This is typically achieved by using specifically de-
signed goniometers. Traditional goniometers consist of a protractor with
extending arms. They come in two forms: short arm, for smaller joints,
such as wrist, elbow, and ankle, and long arm, for joints with longer levers,
such as the knee and hip joints. To measure a joint angle, the fulcrum of the
goniometer needs to be precisely aligned to the fulcrum of the joint, with
the stationary arm aligned to the proximal body segment and the extend-
ing arm following the distal body segment [14]. Modern digital goniome-
ters are equipped with an electronic scale that allows real-time streaming
of the measured data, providing more accurate measurements compared to
traditional universal goniometers [15].

Still, goniometers suffer from various limitations. First, to produce
reliable measurements, the alignment of the goniometer on the body seg-
ments must be extremely accurate. This condition is far from being easily
achievable, both due to soft tissue artifacts (STAs) and to inter-subject vari-
ability. Secondly, goniometers can be quite bulky and, therefore, interfere,
both physically and psychologically, with the freedom of movement of the
subject being analyzed. The popularity of these devices mainly depends
on their simplicity of use, and from the advantage of providing direct
measurements of the joint angles without requiring an underlying muscu-
loskeletal model.

However, human motion analysis should ideally be able to provide ac-
curate kinematic information, possibly in real-time, and without limiting
the subject or influencing their motion [16]. In this regard, indirect tech-
niques should be preferred to direct methods, since they are less intrusive,
thus reducing the interference to the subject’s movement [3]. However, in-
direct methods require a model of the human to estimate the anatomical
joint angles from other quantitative measurements of motion acquired by
means of a motion capture (MoCap) system. Although being more complex
with respect to direct methods, the rapid advances in technology of the lat-
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est decades allowed these systems (and, specifically, optoelectronic MoCap)
to gain the role of de-facto standard in human motion analysis. However,
in recent years, attention has been shifting to alternative MoCap systems,
whose accuracy is rapidly increasing.

MoCap systems can be divided into three categories: optoelectronic sys-
tems, requiring a set of retroreflective markers to be applied on the body,
inertial systems, based on a chain of IMUs worn by the subject, and mark-
erless systems, which do not require any sensor or marker on the body and
rely on deep learning algorithms for the estimation of motion.

The current gold standard for MoCap systems consists of marker-based
optoelectronic systems [17]. Optical motion analysis requires the estima-
tion of the pose (which consists of position and orientation) of an object
in space. This technology uses a calibrated network of high-performance
infrared (IR) cameras to track the 3D location of several reflective markers
attached to the body of the subject being analyzed [18]. However, an accu-
rate estimation of a persons’ whole-body pose is an extremely challenging
problem, the human body being a complex, highly articulated entity prone
to self-occlusions. Thus, the structure of the human body is typically
simplified using a series of rigid bodies (bones) connected by mechanical
rotational joints [3], [19]–[21]. A detailed description of the working princi-
ple and characteristics of these systems is given in Section 1.2.1.

When the line of sight between the cameras and the person cannot
be guaranteed, or when motion is captured in unconstrained environ-
ments, wearable sensing based on IMUs is considered the most promising
solution [22]. An IMU consists of a triaxial accelerometer and a triaxial gy-
roscope, used to measure linear accelerations and angular velocities with
respect to a predefined rigid local frame. Modern IMUs often also include
a triaxial magnetometer, to allow measurements of the Earth’s magnetic
field [23]. IMU-based systems have the advantage of being completely self-
contained and independent of artificially generated sources (e.g., the IR
light emitted from the cameras used in optoelectronic MoCap). The main
limitation of such systems is represented by noise and errors in the raw
measurements, which can lead to drifting phenomena in the estimation of
the IMU orientation [24]. Despite the aforementioned limitations, IMUs
are becoming a portable and cost-effective alternative to optical motion
capture systems, and are currently being introduced also in clinical settings
for functional movement quality assessments. A detailed description of
the working principle and characteristics of inertial systems is given in
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Section 1.2.2.

If it is not possible to sensorize the subject by applying markers or
IMUs on their body, markerless MoCap is a promising alternative to the
two aforementioned systems. Such technology exploits one or multiple
cameras (which can capture image information, depth information, or
both) to obtain a 3D view of the scene. The joint locations are estimated
by exploiting deep learning algorithms (e.g., [25]–[28]) without the ne-
cessity of any dedicated sensor on the body. For this reason, markerless
systems are by far the least invasive. The movement of the analyzed sub-
ject is not constrained, and the initial setup time is minimal. Markerless
systems, although they can resolve the drawbacks typical of inertial and
optoelectronic MoCap, suffer from several limitations. The number of
tracked joints is usually limited, resulting in a coarser description of mo-
tion. Moreover, existing methods for estimating 3D human pose from
markerless MoCap are at best one order of magnitude less accurate than
optoelectronic systems [29]. A detailed description of the working prin-
ciple and characteristics of markerless systems is addressed in Section 1.2.3.

1.2.1 OPTOELECTRONIC SYSTEMS

Optoelectronic systems are considered the gold standard for assessing hu-
man motion [17]. They are extensively adopted in the cinema and video
game industries to model virtual characters, and in clinical analyses and
rehabilitation for evaluating a patient’s progression.

Optoelectronic systems rely on a set of high-speed IR cameras, typically
placed on the perimeter of a dedicated laboratory, to synchronously record
the same scene from multiple points of view. Each camera is equipped with
an IR emitter to lighten the field of view. The light is reflected by multiple
retroreflective markers that need to be applied to specific body landmarks.
This allows to obtain high-contrast images, where the markers are seen
as white dots on a black background. The size of each dot depends on
the diameter of the marker, the resolution of the camera, and the distance
between the marker and the camera’s focal point. Typical marker diam-
eters range from 1 mm to 12 mm. While markers are highly reflective in
the IR domain, sunlight also includes a strong component in this domain,
introducing artifacts in the estimation of the marker positions. For this
reason, optoelectronic systems typically allow the manual adjustment of
specific software parameters to minimize the interference of sunlight and
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to avoid detections of phantom markers caused by reflections. However,
optoelectronic systems are not suited for outdoor usage. They are typically
restricted to dedicated laboratories, both because of their sensitivity to
sunlight and because of the care required by the hardware setup.

The working principle of optoelectronic MoCap allows to retrieve
the three-dimensional positions of the detected markers by exploiting
stereophotogrammetry. First, the two-dimensional (2D) position of each
marker is computed, in pixel coordinates, as the centroid of the white dot
representing the marker in the acquired binary image. Then, the 2D marker
coordinates computed by each camera are combined to estimate their 3D
positions with respect to a common fixed reference frame via triangulation.
This requires an accurate prior calibration of the relative poses of each cam-
era with respect to the others, which must be performed before the motion
acquisition. Such computation can nowadays be done in real-time. This
can be achieved since the system extracts the 2D positions of all the markers
seen by each camera and, then, limits the 3D reconstruction to this restricted
set of points.

Ideally, to estimate the 3D position of a marker, two views are sufficient.
However, since markers can be easily occluded during movement, a large
number of cameras (usually ranging from 6 to 12) are typically adopted
to increase the probability of having two (or more) cameras seeing each
marker during the whole recording session. If more than two cameras
are able to detect the same marker, redundancy allows to optimize the
estimated 3D position and, therefore, to increase the overall system’s ac-
curacy [18], [30]–[32]. However, the number of markers should not be
excessive, not to overly restrict natural movements. Increasing the number
of markers can also result in close clusters, where the tracking of each
specific marker becomes challenging [33].

The advancements in technology achieved in the latest decades, and the
many competitors in this field (e.g., Vicon [34], Qualysis [35], and BTS [36]),
allowed optoelectronic systems to reach an accuracy lower than 1 mm on
the reconstruction of 3D marker coordinates [1]. However, reconstructing
human motion introduces additional challenges that reduce the final accu-
racy.

One of the primary and, probably, the most important limitation of opto-
electronic and, in general, indirect systems, is the necessity to assess skeletal
movement from sensory systems applied to the body [21]. In this context,
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the model used to describe the human being consists of a set of rigid bodies
(bones) connected by mechanical frictionless joints. Under these assump-
tions, at least three non-collinear markers are required to fully estimate the
6 degrees of freedom (DoF) of a segment (3 relating to the translation and
3 defining the orientation). Knowing the relative orientations of two linked
segments, the three joint angles describing the joint state can be calculated.
This is possible under the hypothesis that the relative positions between
the markers and the segments to which they are attached remain constant
during the motion. However, this hypothesis is generally not true.

In fact, skin movement relative to the underlying bone is a major source
of errors that limit the accuracy of indirect systems. The errors introduced
by this assumption produce artifacts in the reconstructed motion, known as
STAs [18], [37], [38]. Soft tissue movement introduces systematic and ran-
dom errors with frequencies similar to the ones of real movement, making
them difficult to attenuate through data filtering. These errors alone can ex-
ceed 10 mm for the estimation of anatomical landmarks, leading to inaccu-
racies of 10° in the estimation of the joint angles [39]. However, these effects
can be reduced using advanced techniques, such as increasing the number
of markers attached to each segment, following specifically designed pro-
tocols for the positioning of the markers on the body, and exploiting IK
optimizations for the analysis [31].

Furthermore, the cameras required by the system are highly delicate,
and extremely small movements of the cameras after the calibration pro-
cedure can lead to large errors in the estimation of the positions of the
markers. The correct attachment of markers on the subject’s body is also a
critical and intrusive procedure. It is a time-consuming task that requires
extreme precision and in-depth knowledge of human anatomy, since small
variations in the placement of the markers can induce large variations in
the estimated joint angles [40], [41]. Thus, it depends on a specialized indi-
vidual specifically trained to ensure the correct and consistent positioning
of the markers. However, even in the best-case scenario, day-to-day and
inter-tester variability in marker placement cannot be avoided, thus reduc-
ing the reliability of optoelectronic measurements, especially for motions
in the transverse plane [42], [43].

1.2.2 INERTIAL SYSTEMS

One of the biggest challenges in motion tracking is having an accurate es-
timation with: (1) non-invasive sensors, not to influence their movements,
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(2) non-limited workspaces, to allow measuring subjects in any environ-
ment, and (3) online, to enable real-time feedback and intervention [44]. As
discussed in the previous section, while optoelectronic systems can provide
accurate data, and online, they do require invasive marker placements and
protected laboratories. When the line of sight between the sensors and the
human cannot be ensured, or when motion is to be captured in large or
outdoor spaces, wearable sensing based on IMUs is considered the most
promising solution. In this context, chains of IMUs worn on the body
can be used to overcome the necessity of a protected confined environ-
ment for motion assessment [22]. Moreover, the placement of such sensors
on the body is extremely less strict with respect to optoelectronic MoCap,
allowing for fast setup times without the necessity of specialized personnel.

An IMU is an electronic device that can be used to retrieve estimates of
its orientation, expressed with respect to a fixed reference frame. Initially
bulky and heavy, IMUs have been the subject of extensive research in
navigation and aerospace for decades [45], [46]. In recent years, Micro-
Electro-Mechanical Systems (MEMS) allowed the production of extremely
small and lightweight IMUs, while maintaining their original characteris-
tics. Such dramatic changes resulted in new disciplines taking into account
the use of IMUs, such as robotics and human motion analysis [44], [47].

IMUs include a triaxial accelerometer and a triaxial gyroscope that
are used to measure, respectively, linear accelerations and angular veloc-
ities [23]. However, the integration of the measured linear accelerations
and angular velocities alone does not allow the estimation of an absolute
heading angle [48]. For this reason, IMUs often incorporate an additional
sensor, specifically, a triaxial magnetometer. The magnetometer allows
to estimate the orientation with respect to an Earth-fixed frame, defined
by the orthogonal directions of the gravitational and magnetic fields. To
provide an estimation of the sensor’s orientation, the measured quantities
(linear accelerations, angular velocities, and magnetic fields) are typically
fused by means of sensor fusion algorithms. Several algorithms are avail-
able in the literature, and they mostly rely on Kalman filters (e.g., [49]–[51])
or complementary filters (e.g., [52]–[54]). It is important to note that the
orientation of an IMU is always an estimation resulting from measures
taken in different domains. Furthermore, MEMS sensors are often noisy
and their measurements include errors that can be grouped into two cat-
egories: bias errors (consisting of an unknown zero level) and gain errors
(consisting of an unknown scale factor) [24]. For these reasons, IMUs suffer
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from integration drift phenomena. Small errors in the measurement of
accelerations, angular velocities, and magnetic fields can progressively be
integrated, resulting in increasing errors in the orientation estimation [55].

Systems based on IMUs, however, have the great advantage of being
completely self-contained, so that the measurement entity is constrained
neither in motion nor to any specific environment [53]. Moreover, multiple
IMUs attached to different body parts of a person can be used to estimate
the whole-body motion, based on each sensor’s orientation. As in opto-
electronic MoCap, the estimation of human motion is based on a muscu-
loskeletal model of the person. In fact, the orientation information alone
is not sufficient to describe a person’s pose. However, by connecting each
IMU to its correct segment in the model, it is possible to extract the required
anatomical joint angles. Furthermore, if the estimated orientations are used
to perform an IK optimization1, the effects of drifting on the final results
can be strongly reduced.

However, sensor drift is still an open challenge. Thus, capture sessions
when using inertial MoCap should remain limited, requiring multiple
recalibration of the devices when recording for prolonged periods [56].
To conclude, while such sensors still need to be worn by the user, their
placement is much less strict with respect to the markers required by op-
toelectronic systems and can be placed on top of clothes without sensible
drawbacks on the overall system’s accuracy.

1.2.3 MARKERLESS SYSTEMS

The next critical advancement in human motion analysis will consist of
developing accurate non-invasive systems. An accurate fully-automated,
non-invasive, markerless, and sensorless approach would in fact provide a
major breakthrough for research and analyses in a vast number of fields, as
in medicine, rehabilitation, sports, industry, HRI. While inertial suits are a
promising technology capable of achieving results similar to optical MoCap
systems [57], they still require the subject to wear dedicated hardware on
their body. Markerless MoCap systems, therefore, represent the latest trend
aimed at overcoming such limitations.

Initially originated from the fields of CV and machine learning, such
technology has recently sparked interest also in the biomechanics com-

1Detailed information on IK optimizations can be found in Section 5.3.
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munity, mainly due to the leap in the achieved accuracy enabled by data-
driven approaches. The ability to measure a person’s kinematics without
requiring any marker or sensor on the body, in fact, would highly reduce
the required preparation time, while at the same time not influencing
the recorded motions, both physically and psychologically. One of the
biggest uncertainties, when using optoelectronic and inertial systems, lies
in the impossibility to quantify how the idea of wearing sensors on the
body impacts how the subject will perform the movements [21]. Although
markerless MoCap accuracy is not comparable to optoelectronic systems,
it still represents a valid alternative for a variety of applications where the
application of sensors on the body is simply not feasible (e.g., for clinical
analyses of young children, or to assess motion during particularly delicate
tasks). In these contexts, the trade-off between accuracy and invasiveness
would still lead towards markerless systems.

The estimation of human motion without the aid of any body-mounted
sensor or marker has been an intensive research topic for decades. Many
systems have been developed through the years (e.g., [58], [59], [60]), as
the interest in such a field has gained much attention in the last decade, es-
pecially thanks to the development of portable, easy-to-use, and low-cost
3D MoCap systems (e.g., the Microsoft Kinect, Microsoft Corp., Redmond,
WA, USA [61]). While such systems vary in the number and typology of
cameras used, the number of tracked people, and their real-time perfor-
mance, a common denominator of markerless MoCap is the ability to esti-
mate the joint locations describing the human body, typically by exploiting
deep learning algorithms (e.g., [27], [28], [62]), without the necessity of any
marker on the body.

Despite the improvements achieved in recent years, accurate real-time
assessment of human motion via markerless motion capture is still an open
problem. Common challenges come from background clutters, varying
lighting conditions, limited fields of view (FoVs), and occlusions. More im-
portantly, the greatest challenge depends on the general difficulty of track-
ing the human body, a system characterized by a large number of DoFs and
prone to self-occlusions.

For these reasons, although markerless systems can solve the draw-
backs typical of optoelectronic and inertial MoCap, they still suffer from
several limitations. The number of tracked joints is usually limited. At the
same time, existing methods to estimate the 3D human pose from single
images are still less accurate than other MoCap systems [29]. Despite
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efforts to increase the reliability of vision-based markerless systems (e.g.,
in [63], where the raw estimates of the poses are refined by fitting a hierar-
chical model of the human body having constrained link sizes that can only
slowly vary in time), the accuracy is still one order of magnitude lower than
the one achievable with optoelectronic systems (∼6 cm [64] and ∼1 mm [65]
respectively). For these reasons, markerless motion capture is typically
preferred in applications that do not require a very precise estimation of
human motion (e.g., in human-robot coexistence and human-robot cooper-
ation). However, there is no general consensus on the minimum accuracy
required by MoCap systems, as measurement errors can vary significantly
depending on the experimental setup, the type of motion, and the human
model adopted [3].

Markerless approaches can be divided into two categories: model-
based methods, which include different degrees of a priori knowledge, and
model-free methods, which do not constrain the raw estimates. Current
state-of-the-art approaches for 2D estimation of body poses (i.e., using sin-
gle images or videos as input) do not use human models [66]. In this con-
text, in fact, the inclusion of a human model can be problematic, due to
the nature of the estimated quantities, that are limited to 2D locations of
specific body keypoints. On the other hand, 3D approaches tried to con-
strain the raw estimates by exploiting different typologies of a priori mod-
els. They are typically based either on pictorial structures ([67]) or on 3D
meshes ([68], [69]).

However, such models are often too simplistic and generic, reducing
the number of joints (and, therefore, of DoFs) to reduce the computational
complexity of the detection. For this reason, such models cannot be used
for accurate movement analyses [21].

1.3 RESEARCH OBJECTIVES

In the latest decades, robotic devices have gained a central role both in the
industrial scenario, with the advent of Industry 4.0 first and, more impor-
tantly, Industry 5.0, and in everyday life, where exoskeletons are starting to
help workers and rehabilitation patients to perform their tasks. However,
active collaborations between humans and robots are still limited by the
blindness of robotic devices to human behavior.
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The biomechanics community has developed, through the years, ad-
vanced tools for accurately assessing human motion. However, such sys-
tems are typically used for delicate analyses carried out in protected labo-
ratories. Moreover, many advanced techniques are not suited for real-time
use, requiring extensive post-processing of pre-recorded motion data [70].

This work aims to take a step forward in the direction of adapting such
technologies to everyday living and working environments. The idea is
that the system should adjust to the specific user and scenario, and not
the opposite. To address this important challenge, my research focused on
the development of different algorithms and modules to interface hetero-
geneous sensors, improve the body pose estimation (BPE) accuracy when
exploiting a multi-sensor network, and perform multi-person real-time IK
optimizations based on highly accurate musculoskeletal models of the an-
alyzed subjects. All the work in these three macro areas converged on the
development of a modular framework, namely Hi-ROS (human interaction
in ROS2), with the final goal of enabling accurate and real-time assessment
of multiple people’s motion independently of the sensing devices being
used and of the environments where the acquisitions are progressed. Part
of the framework3 has already been released as open-source under the
Apache v.2 license. Additional modules are planned to be added and re-
leased in the near future.

Such a complex research objective required the adoption of a multilevel
approach. The idea consists of dividing a large problem (i.e., providing
accurate real-time data describing human motion from multiple heteroge-
neous sensors) into smaller subsystems. Each subsystem is considered a
black box, receiving one input and producing one output. Thus, a subsys-
tem does not need to be aware of how its input data was produced, nor of
how its output data will be used by other subsystems.

As a result, my work was conceptually divided into three main levels:
the Sensing level, the Tracking level, and the Modeling level. Three main
characteristics drove the definition of all the modules developed during
my Ph.D. within these levels:

2ROS [71] (Robot Operating System) is a set of software libraries for the development
of advanced distributed robotic systems. Its extensive use within the robotics community
made it gain the role of de-facto standard in this field.

3The code will soon be publicly and freely available under the Apache v.2 license at
github.com/hiros-unipd

15

https://github.com/hiros-unipd


1. INTRODUCTION

1. the usage of standard interfaces for the communication between dif-
ferent sensors and algorithms;

2. the possibility to perform real-time data fusion among multiple sen-
sors;

3. the inclusion of a musculoskeletal model of the analyzed persons,
typically used in biomechanics.

1.3.1 SENSING LEVEL

The Sensing level represents the level at which direct measurements of
physical quantities are acquired. Since the focus of my work is on providing
reliable data describing the body pose of multiple people, such quantities
primarily consist of marker positions and IMU orientations. Both quanti-
ties can be measured directly (i.e., by exploiting an optoelectronic system
or an inertial suit) or estimated (i.e., via markerless MoCap).

The definition of standard interfaces permits to separate the specific
sensor, and, to some extent, also the typology of sensors, from the in-
formation it is producing. At the same time, they allow to treat every
module as a black box, with one input and one output. Thus, each mod-
ule does not need to know how other modules behave, nor from which
module its input data was produced. Moreover, standard interfaces allow
to seamlessly swap different typologies of sensors (e.g., markerless esti-
mated body keypoints, optoelectronic markers, IMUs) without requiring
a specialization of the Tracking and Modeling levels. Indeed, both levels
support any typology of input data, as well as combinations of data (e.g.,
it is possible to employ heterogeneous sensing systems and fuse their in-
formation). This was achieved by defining an efficient structure that can
store both information of multiple people’s poses, as well as information of
raw sensor data (Section 2.4). Detailed information on the Sensing level de-
sign and features, together with an in-depth analysis on the most suitable
typologies of IMUs for human motion estimation are reported in Chapter 3.

1.3.2 TRACKING LEVEL

The second level defined within my research aims to solve two major issues
faced when multiple sensors are used to assess the motion of multiple inter-
acting subjects. First, it ensures the temporal consistency of the estimated
motion. The input from multiple sensors might, in fact, refer to different
time frames, and communication (and/or computation) delays can indeed
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alter the order in which distributed data are received and fused. This can re-
sult in sensible jitter in the estimated poses and, in the worst-case scenario,
in completely wrong estimations of the body poses. Thus, the Tracking level
contains a module specifically designed to correctly order and track the
raw measurements from a generic number of sensors, ensuring temporal
consistency of motion. The module also enables robust real-time temporal
tracking of multiple people’s movements. In this way, it is possible to ex-
tract further information describing the motion, such as linear and angular
velocities and accelerations of each body joint and link.

The Tracking level also allows to fuse body pose data obtained from
multi-sensor networks (e.g., from a distributed camera network). In this
way, it is possible to enhance the limited information that each sensor can
retrieve individually (e.g., partial body poses estimated by each camera in
a camera network can be merged in a single, augmented pose).

This level is conceptually divided into four modules:
1. robust frame-by-frame temporal tracking among the detections of

each sensor in the network;
2. multi-sensor data merging to retrieve more complete information;
3. global optimization of the estimated poses to ensure consistency of

the body dimensions;
4. real-time data smoothing of the estimated motion trajectories.
Detailed information on the Tracking level, together with the accuracy

improvement achieved using the developed framework on a novel multi-
modal dataset that we recently acquired4, are reported in Chapter 4.

1.3.3 MODELING LEVEL

The standard interfaces implemented in the Sensing level allow to seam-
lessly represent heterogeneous sensor measurements. The modules within
the Tracking level, on the other hand, allow multi-sensor fusion of multi-
ple people’s body poses obtained from a network of homogeneous sensors.
However, a correct multimodal fusion of the measurements from heteroge-
neous sensors requires a further level of analysis. In fact, different MoCap
systems produce diverse typologies of data, which are typically referred to
unrelated underlying models. Thus, a direct fusion of their output would
not produce meaningful information.

4The dataset, namely UNIPD-BPE, will be released under the Creative Commons CC0
license in conjunction with the publication of [72].
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To enable the usage of heterogeneous sensors, all the measurements
need to refer to a common model of the human. The Modeling level is
specifically designed to empower the simultaneous use of multiple hetero-
geneous sensors. In fact, where a full-body inertial suit might be too bulky
or expensive, and a large calibrated camera network too difficult to employ,
an optimal subset of IMUs and cameras can represent the best trade-off be-
tween encumbrance, complexity, and accuracy.

For this reason, a key characteristic of my work is the possibility to use
all the supported sensors’ data to drive multiple musculoskeletal models
(one per analyzed subject), in real-time. The use of a common model to
which all data is referred is a key feature to enable the simultaneous usage
of heterogeneous sensors. In this way, it is possible to exploit the advan-
tages of multiple sensing systems, minimizing the effect of their disadvan-
tages when used individually.

As for the Sensing and Tracking levels, also this level is designed to
ensure maximum generality. Thus, the integrated musculoskeletal models
are fully customizable. The number of body segments, joints, and DoFs can
be chosen to comply with the requirements of any application. Moreover,
while the core of my work focuses on enabling an active interaction be-
tween humans and robotic agents, the generality of the developed modules
allows the system to estimate and track the motion of any typology of
articulated objects.

The tool chosen for the development of the Modeling level is
OpenSim [73], an open-source platform for the development of muscu-
loskeletal models and for the simulation of human motion kinematics and
dynamics. With almost 70,000 users, it is one of the most widely used soft-
ware for biomechanical analyses [74]. OpenSim allows to define subject-
specific models that include custom sets of markers and, recently, IMUs.
However, the proposed IK algorithms used to simulate the body movement
are designed for offline analyses of a single subject, expecting input data to
be already acquired and properly post-processed before reconstructing the
motion.

For this reason, the modules developed within the Modeling level re-
quired major modifications of the original OpenSim pipeline to enable real-
time IK optimizations of multiple people’s body poses. The first chal-
lenge to be faced required a redefinition of the original workflow used in
OpenSim to allow real-time feed of motion data. Second, IK optimizations
are typically computationally intensive. In fact, their complexity increases
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proportionally to the complexity of the model being used (i.e., the number
of bones, links, muscles, and constraints included), the number of mark-
ers used, and the number of IMUs used. Thus, an efficient multi-threaded
architecture was defined to achieve real-time performance, while also en-
abling multi-person analyses.

Detailed information on OpenSim’s characteristics, together with the
motivations that led to its selection for the integration of a musculoskele-
tal model of the human within the proposed framework, are reported in
Section 2.2.2. The modifications allowing real-time IK optimizations based
on OpenSim’s tools and a preliminary test case in which marker positions
and IMU orientations are simultaneously used to drive up to four full-body
models, on the other hand, are reported in Chapter 5.

1.4 THESIS ORGANIZATION

The rest of this thesis is organized as follows:
CHAPTER 2 describes the development of Hi-ROS, a modular framework

for real-time assessment of multiple people’s motion, where different
typologies of sensors and BPE algorithms can be integrated in a plug-
and-play fashion. Despite being the final result of my research, the
structure of the developed framework is reported at the beginning of
this dissertation since it allows to better clarify the structure of my
work. After a brief introduction to the topic (Section 2.1), the tools
chosen as a foundation for the framework are presented (Section 2.2).
The first tool consists of ROS, a middleware that rapidly gained the
role of de-facto standard for advanced distributed robotics applica-
tions. It provides high-level tools to simplify the development of com-
plex robotics applications requiring efficient online communication
among distributed sensors. The second tool is OpenSim, an open-
source simulator widely used for biomechanics analyses. OpenSim
supports the definition of custom musculoskeletal models and of-
fers advanced APIs for IK and ID optimizations that can be based
on marker positions or on IMU orientations. The chapter continues
by analyzing the structure of the proposed framework and the role of
each of the three levels in which my work was divided (Section 2.3).
The custom-defined interfaces used for the communication among
each module of the framework are then presented in Section 2.4.
Finally, Section 2.5 draws the final remarks and concludes the chapter.
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CHAPTER 3 describes the Sensing level. After a brief introduction
(Section 3.1), a discussion on the supported sensors is presented. They
are divided into vision-based MoCap (Section 3.2), where the mea-
sured quantities are the positions of a set of markers describing the
pose assumed by the person, and inertial MoCap (Section 3.3), where
motion is assessed by means of a set of IMUs worn on the body.
Subsequently, the development of an efficient open-source driver to
interface and synchronize multiple IMUs within Hi-ROS (and, con-
sequently, ROS) is analyzed in Section 3.4. Section 3.5 reports an in-
depth analysis of the most suited typologies of IMUs for human mo-
tion assessment, while Section 3.6 concludes the chapter.

CHAPTER 4 shifts the focus to the work I developed within the Tracking
level. First, an introduction is proposed describing the main ad-
vantages enabled by the modules defined at this level (Section 4.1).
Second, a newly acquired dataset that we plan to release in the
near future is presented (Section 4.2). The dataset, namely UNIPD-
BPE, contains synchronized RGB, depth, and inertial data recorded
from five Microsoft Azure Kinect cameras [61] and two Xsens MVN
Awinda suits (Xsens Technologies, Enschede, Netherlands) [75]. The
dataset enables the development and testing of different BPE and
tracking algorithms, as well as multimodal sensor fusion approaches,
without the necessity of expensive hardware and bulky acquisition
setups. Section 4.3 describes in detail the modules allowing for real-
time temporal tracking of multiple people using a network of homo-
geneous sensors. The generality of the developed algorithms allows
the user to select any subset of modules. This was made possible by
exploiting the same common message structures for the communica-
tion between all the modules defined in the Tracking level. The same
section also includes an in-depth validation of the proposed system
by reporting the results obtained on the UNIPD-BPE dataset when
tracking up to four interacting people. Finally, conclusions are drawn
in Section 4.4.

CHAPTER 5 presents a detailed description of the Modeling level. After
an initial introduction on the importance of employing a common
model of the human (Section 5.1), an in-depth description of how a
generic musculoskeletal model can be represented in Hi-ROS is pro-
posed (Section 5.2). Then, Section 5.3 describes how the IK optimiza-
tion problem is formalized when using a set of markers or IMUs
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as input. Section 5.4 presents the modifications required to achieve
multi-person IK optimizations and multimodal sensor fusion, while
ensuring real-time performance. A preliminary test case is included
in which marker positions and IMU orientations are used simultane-
ously to drive up to four full-body musculoskeletal models. Both the
marker positions and IMU orientations are estimated via markerless
MoCap, without requiring any physical sensor or marker to be ap-
plied to the person’s body. This choice allowed to stress the proposed
system by including multiple people’s body measurements, while ef-
fectively simulating the usage of heterogeneous sensors. In fact, by ex-
ploiting standard interfaces for the communication between modules,
the developed IK solver algorithm is agnostic to the sensing systems
used as input. Finally, Section 5.5 concludes the chapter summarizing
all the work within this level.

CHAPTER 6 discusses three applications enabled by the Hi-ROS frame-
work. The common denominator of these works resides in Industry
5.0 and, specifically, on HRI. After a brief introduction to the topic
(Section 6.1), the first application is presented (Section 6.2). It focuses
on feedback motion planning in human-robot shared workspaces via
deep reinforcement learning (DRL) [76]. In this work, DRL is used
to train a collaborative robot to re-plan its motion in real-time, based
on the position of the operator. The proposed experiments required
real-time knowledge of the operator’s pose to guarantee their safety
when entering the robot’s workspace. In this regard, Hi-ROS was
used to ensure robust real-time estimation and tracking of the opera-
tor during the entire duration of the experiments. The second work
consists of the development and validation of a platform for the real-
time assessment of workers’ ergonomics (Section 6.3). The platform,
named WEM-Platform (where WEM stands for Worker, Ergonomist,
Manager), allows automatic calculation of various ergonomic indexes
in real-time. The system is designed to support the use of inertial data,
markerless data, or optoelectronic data as input. This was achieved by
exploiting Hi-ROS for the assessment of the body poses. Section 6.4,
finally, presents a system that is currently being implemented in the
Logistics Laboratory of the University of Padova. The goal is to cre-
ate a real-time control loop to give immediate feedback to a manual
operator while performing a series of tasks, based on a set of control
volumes that are built around specific positions on the workstation. In
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this regard, the location and pose of the operator are acquired in real-
time by combining the feeds of multiple cameras, required to cover
the complete working area. Section 6.5, then, concludes the chapter.

CHAPTER 7 draws the conclusions of this dissertation. It summarizes the
aims of my research, the possible uses and applications that can bene-
fit from Hi-ROS, the open research questions, and the future directions
of this work.
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2 Hi-ROS: A Modular Framework for
Human-Robot Interaction

Part of the work presented in this chapter has been published as a scientific paper
[77].
I have made a substantial and principal contribution in the conception and design
of these studies, related software development, analyses and interpretations of the
results, drafting, and critical revision of the final manuscripts.
Co-authors’ permissions for the inclusion of the studies in this dissertation have
been obtained.

2.1 INTRODUCTION

As described in the previous chapter, the main objective of my Ph.D. fo-
cused on the development of different algorithms and modules to interface
heterogeneous sensors, enhance the body pose estimation precision when
exploiting a multi-sensor network, and perform real-time IK optimizations
based on highly accurate musculoskeletal models of the analyzed persons.
All the work in these three macro areas resulted in the development of a
modular framework, namely Hi-ROS, to enable accurate real-time human
motion assessments in everyday living and working environments, with-
out the necessity of a dedicated laboratory and complex setups. Thus, the
framework offers efficient online communication between all the modules
within the three levels defined in Section 1.3, supports the simultaneous
use of multiple heterogeneous sensors, and allows the usage of their data
to drive an accurate musculoskeletal model of the human, in real-time.

This complex goal could only be achieved by adopting a multidisci-
plinary approach. Specifically, the design and development of the differ-
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ent modules present in the framework required to borrow and join state-
of-the-art tools from both the robotics and the biomechanics communities.
The idea was guided by modern sensor fusion approaches where, by fusing
information from multiple sensors, it is possible to maximize the measure-
ment accuracy while minimizing the trade-offs. Similarly, by combining
state-of-the-art tools developed by different scientific disciplines, analogous
results can be achieved.

Efficient real-time communication between multiple distributed sys-
tems is a typical challenge of robotic applications. In fact, every robotic sys-
tem requires interactions between sensors, actuators, and external agents
(e.g., other robots or humans). Several robotic middlewares are available,
all with the primary goal of enabling easy, robust, accurate, and online com-
munication capabilities within heterogeneous agents. However, while the
human is starting to enter the control loop [78]–[80], accurate assessment
of human motion, ideally without requiring dedicated hardware or sensors
on the body, and in real-time, is still an open challenge.

The biomechanics community, on the other hand, has decades of experi-
ence in the analysis of human motion. State-of-the-art tools rely on complex
musculoskeletal models of the human body for simulating motion and es-
timating the internal state of the subject (e.g., the joint angles describing
the body pose, the joint torques required to generate the motion, etc.). In
this regard, the quality of the analysis depends both on the accuracy of the
sensing device, and also on how precisely the model can describe the indi-
vidual subject. While extensive validations are required for the definition of
meaningful anatomical models, this approach allows to perform extremely
accurate assessments of human motion, with errors lower than 2° in the
estimation of the anatomical joint angles [3].

However, the typical workflow used in biomechanics analyses is not
designed to comply with online applications. It requires motion data (typ-
ically the positions of multiple markers applied on the body captured by
means of an optoelectronic system) to be recorded in a dedicated labo-
ratory. Virtual markers are applied to the same locations in the model,
and the pre-recorded marker positions are subsequently used in a simu-
lation aiming to drive the model in the configuration that best matches
the experimental data acquired at each time frame. Before running the
simulation, raw data needs to be properly processed (e.g., by relabeling
wrongly estimated markers and filtering noisy measurements). Moreover,
the IK optimization used to simulate motion is a computationally intensive
procedure. Therefore, such analyses are mostly performed offline.
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Three main characteristics permeated the design of the algorithms I de-
veloped during my Ph.D., as well as the selection of the most appropriate
tools to be used for the development of the modules within each level.

The first characteristic concerns modularity. In fact, one of the most
important features to enable human motion assessment in unconstrained
environments is the ability to easily integrate different sensors in a plug-
and-play fashion. This required the definition of standard interfaces for the
communication among all the modules developed within my work. The
possibility to freely choose the most appropriate MoCap setup (both con-
cerning the typology of sensors being used, as well as the number of sen-
sors) is, in fact, a key aspect for enabling the system to be adaptable to any
use case.

The second requirement lies in the real-time capabilities of the BPE.
While offline analyses are important tools in a variety of fields, the modules
I developed are even more powerful when used to provide real-time results,
thus enabling several typologies of applications where online knowledge
of human motion is a necessary requirement. Thus, efficiency is the sec-
ond feature that guided both the selection of the most suitable tools and the
design choices that shaped the development of Hi-ROS.

Finally, and more importantly, my Ph.D. research was driven by the
strong belief that all the measured quantities need to refer to a common
model of the human in order to be meaningful. As reported in Section 1.2,
the most accurate biomechanical analyses of human motion rely on a mus-
culoskeletal model of the person to describe their movement. Thus, the
measured quantities are not directly used to estimate the motion (i.e., joint
angles are not directly calculated from the orientations of the distal and
proximal segments computed from the marker positions). Instead, they are
used to simulate the motion on the model. The simulation aims to minimize
the error between the measured marker positions (or IMU orientations) at-
tached to the body and the corresponding virtual marker positions (or IMU
orientations) in the model. This approach was shown to be more accurate
with respect to a direct calculation of the pose, minimizing the impact of
measurement noise and soft tissue artifacts [81].

The usage of an anatomical model also enables the use of different
sensors to simultaneously measure heterogeneous quantities describing
the same motion. This is a key feature for enabling multimodal sensor
fusion, since all the data refer to the same model. At the same time, the
use of heterogeneous sensors can contribute to the overall reduction of the
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complexity of the system. As an example, real-time assessment of workers’
ergonomics is gaining more and more interest in the latest years [82]–[84].
In this context, the usage of optoelectronic MoCap is typically not feasible.
However, markerless MoCap and inertial MoCap might also represent
challenges. The first system might struggle to correctly estimate the body
poses, since factories are typically extremely cluttered environments, re-
sulting in strong occlusions in the FoVs of the cameras. On the other hand,
the use of a full-body inertial suit might hinder the worker’s movement
and be uncomfortable to wear for extended periods of time. The optimal
solution in this scenario involves a limited number of cameras to have an
initial (possibly partial) estimate of the pose, coupled with a reduced set
of IMUs on the most crucial body segments to overcome occlusions and
increase the BPE accuracy.

The first two characteristics that drove my work (i.e., modularity and
real-time performance) are typical requirements of advanced robotics
applications. This fact led to the decision of exploiting a robotics middle-
ware (specifically, ROS) for the communication between all the developed
modules. The third characteristic (i.e., the inclusion of a musculoskeletal
model of the human), on the other hand, required the usage of state-of-
the-art tools and libraries borrowed from the biomechanics community
(specifically, OpenSim). The main features of ROS and OpenSim and a
detailed analysis of the motivations that drove their choice are reported
in Section 2.2. Subsequently, Section 2.3 describes in detail the structure
of the Hi-ROS framework that, as my research, was divided into three
main levels: the Sensing level, the Tracking level, and the Modeling level.
In-depth descriptions of each level’s design and scope are reported. Finally,
Section 2.4 concludes the chapter by analyzing the definition process of the
message structures used for the communication between all the modules
developed. The structures were designed with generality and efficiency
in mind. They allow the storage of information on the body poses of any
number of persons, as well as the positions and orientations of a generic
set of markers and/or IMUs used for the motion assessment. Despite the
defined structures being named Skeleton Messages, as their primary usage
is to represent the pose of a person as a set of markers connected by links,
their generality permits to describe the state of any type of articulated
object.
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2.2 SELECTION OF THE TOOLS

The proposed framework relies on two main tools: ROS, from the robotics
community, and OpenSim, from the biomechanics community. They were
chosen to maximize hardware support, flexibility of the developed mod-
ules, real-time performance, and achievable accuracy. Such requirements
lead to the selection of the ROS middleware to handle the communication
among modules and of the OpenSim library for the integration of a muscu-
loskeletal model of the human. This section analyzes the main advantages
enabled by the use of ROS (Section 2.2.1) and OpenSim (Section 2.2.2).

2.2.1 ROS – ROBOT OPERATING SYSTEM

The first problem that was tackled during the development of the Hi-ROS
framework concerned the communication between several typologies of
sensors and different BPE and tracking algorithms, while at the same time
allowing heterogeneous data to be used to drive a model of the human. To
increase the complexity, a further fundamental requirement was to ensure
real-time capabilities of the proposed framework. In this regard, the com-
munication between the levels of the framework, but also between the mod-
ules within each level, needs to be efficient, reliable, and robust. Network
delays, missing or partial data, or sensor failures can, in fact, result in catas-
trophic consequences. In the context of HRI, a delay in the measurement
of the operator’s pose can easily lead to dangerous situations in which the
robot does not have sufficient time to properly react when needed. Missing
or partial data can produce similar results, with the additional criticality
of potentially leading to erroneous estimates of the motion. Thus, not only
can measurements be delayed in time, but an incorrect estimation of motion
might result in the robot performing potentially dangerous actions. Both of
these problems are aggravated in the case of sensor or network failure.

Communication is therefore a key aspect to consider. The definition of
standard interfaces is a necessary step in the direction of guaranteeing a
safe interaction between humans and robotic devices. However, standard
interfaces alone are not sufficient to overcome all of the aforementioned
challenges. In fact, while standard interfaces are a necessary step to allow
efficient exchange of information between nodes, reliability and robustness
are not trivial requirements.

These factors led to the decision of exploiting a middleware for han-
dling the communication between nodes. This choice provides several
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advantages. First, a middleware offers an already validated architecture
to handle the communication among the different components of a dis-
tributed system, ensuring robustness and reliability. In addition, widely
adopted middlewares can rely on the support of large communities of
users. Thus, they are more likely to attract the attention of hardware manu-
facturers, which are more prone to release official drivers to interface their
products within the middleware. In this way, the proposed framework
gains even more flexibility, allowing the use of different sensing devices
and different motion estimation algorithms, while maintaining compatibil-
ity with the modules developed in Hi-ROS.

Bakken et al. [85] defined a middleware as “a layer of software above the
operating system but below the application program that provides a com-
mon programming abstraction across a distributed system”. Middlewares
are designed to manage the complexity and heterogeneity of the hardware,
improve the quality and efficiency of the developed code, and simplify
the development of large distributed systems. The main advantages of
exploiting a middleware and, specifically, a robotics middleware, are soft-
ware modularity, hardware abstraction, platform independence, and, thus,
portability of the developed software. Hentout et al. [86] defined a list of
requirements that an ideal robotics middleware should fulfill:

• license: it is preferable for robotics middlewares to be open-source and
available free of charge;

• operating system: they should be multi-platform to enable their deploy-
ment on different operating systems;

• programming languages: usage of several programming languages
should be supported;

• Usability: middlewares should be easy to use to simplify the devel-
opment of complex distributed applications;

• transparency: middlewares should provide an abstraction layer to hide
hardware heterogeneity and complexity;

• communication: communication libraries offering synchronous and
asynchronous mechanisms should be present;

• efficiency: robotics middlewares should allow efficient use of the hard-
ware components to enable real-time processing;
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• documentation: middlewares should include extensive documentation
and tutorials for explaining their use and spur their adoption.

Several robotics middlewares were developed in the latest decades
(e.g., CORBA [87], OROCOS [88], Miro [89], Player/Stage [90], RT [91],
YARP [92], OpenRAVE [93], ROS [71]), each with slightly different charac-
teristics. Many comparisons have been attempted through the years ([86],
[94], [95]), typically focusing on the open-source nature of the projects, the
support for distributed architectures, the offered hardware interfaces, the
number of included high-level algorithms, the simulation capabilities, and
the support for real-time applications.

However, while such information can be fundamental for the choice of
the most suitable middleware in the short term, when a project is expected
to be carried out over extended periods of time (e.g., several years), differ-
ent aspects acquire increased importance. A critical factor, in this regard, is
the broadness of use of the middleware. In fact, middlewares that can count
on a large community of users are more likely to be actively supported in
the long term. Moreover, in open-source middlewares, a high number of
users and developers directly translates into a high number of developed
and validated modules. Similarly, hardware manufacturers will be more
prone to release the required drivers for a widely used middleware, rather
than for a relatively unadopted one. These factors led to the selection of
ROS as the most suitable middleware for the development of the proposed
framework.

ROS is an open-source meta-operating system for robotic applications.
It fulfills most of the requirements of a middleware, including hardware
abstraction, low-level device control, implementation of commonly used
algorithms, runtime communication between processes, and package man-
agement [96]. The development of ROS began in 2006 at the Kenneth
Salisbury’s Robotics Laboratory of Stanford University from the personal
work of Eric Berger and Keenan Wyrobek. After receiving the first funding
from internal university programs, the project raised the interest of Willow
Garage, a robotics research laboratory and technology incubator. Willow
Garage funded and managed the development of ROS from 2007 to 2013,
the year in which Willow Garage was shut down. In the same year, the
newly created Open Source Robotics Foundation (which changed its name
to Open Robotics in 2017) took the lead in the ROS development. As of
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today, ROS is the de-facto standard for robotics applications, with over
200,000 users worldwide.

ROS can be defined as a peer-to-peer network of concurrent processes.
Each component of the network is represented as a ROS node. Thus, any
process that performs some kind of computation or task is a node in ROS.
Multiple nodes can run concurrently on the same machine or be distributed
in a network. In ROS, each node is independent, can have different inputs
and outputs, and can communicate at runtime with other nodes by passing
messages which are sent and received through dedicated topics. This allows
to separate a complex task into a series of simpler subtasks, where each
subtask consists of a ROS node or even a series of nodes.

A ROS message can contain any type of data structure. Similar to
C++ structs, any number of primitive types (e.g., int, float, bool, etc.) or
nested structures (e.g., arrays, but also any custom-defined message) are
supported. Messages are sent and received through specific topics based
on publish/subscribe semantics. Topics are named buses over which nodes
can exchange messages. A single topic can have any number of concurrent
publishers and subscribers. In general, nodes do not need to know to whom
they are sending messages, or which node published the messages they are
receiving. In fact, communication in ROS is designed to decouple the pro-
duction of information from its consumption. A node will simply publish
the produced messages through a topic. At the same time, any other node
that requires such data will subscribe to the appropriate topic.

The peer-to-peer nature of ROS requires a mechanism to allow nodes
to locate one another. This role is fulfilled by the so-called ROS master.
The master provides name registration services and lookup of all the ac-
tive nodes, updated at runtime. Thus, it provides a dynamic allocation of
connections. Moreover, the master is responsible for managing a parameter
server. The parameter server is a shared, multi-variate dictionary that can
be accessed by all the nodes via network APIs to store and retrieve param-
eters at runtime. ROS also offers additional tools (e.g., packages, services,
bags). The interested reader is referred to the ROS wiki [96].

2.2.2 OPENSIM

As for robotic middlewares, several software platforms are available for
analyzing motion through the use of a musculoskeletal model of the hu-
man. The most used in the biomechanics field are Anybody [97], BoB [98],
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SIMM [99], and OpenSim [73]. Many comparisons can be found in the lit-
erature ([100]–[103]) with the aim of evaluating the precision of the models
proposed by each system, the results of the IK and ID optimizations, and
the ease of use. However, the main characteristics that guided the selection
of the most suitable platform for the development of the proposed frame-
work were the typologies of supported models, the open-source nature of
the project, and the technical implementation of the simulation algorithms.
As a result, the final choice fell on OpenSim, a freely available open-source
software developed and supported by Stanford University. It allows users
to create, share, and analyze musculoskeletal models, supporting both
static and dynamic simulations of movement. With almost 70,000 users
and 4,000 research papers citations, it is one of the most widely used soft-
ware for biomechanical analyses [74].

As mentioned above, OpenSim was chosen for multiple reasons. First, it
already offers several musculoskeletal models of the human developed by
the biomechanics community. Such models can be specifically designed for
localized analyses (e.g., for assessing the shoulder RoM, or gait analyses) or
describe the full-body (e.g., the model developed by Rajagopal et al. [11]).
Most importantly, all the proposed models are validated to ensure their
correctness. Nevertheless, all OpenSim models can be freely modified if
needed. The number of body segments, joints, and DoFs can be altered to
meet the requirements of any application.

The second reason is the open-source nature of the project. OpenSim
is a free library with almost 70,000 users worldwide. The open-source
approach given to the project from its early stages encourages the devel-
opment of third-party extensions that constantly enable new functionali-
ties. Moreover, the complete source code of OpenSim is publicly and freely
available under the Apache v.2 license. This allows to freely dig into the
implementation of all the offered tools and to modify parts of the code
to comply with particularly challenging requirements. At the same time,
open-source software promotes collaboration among users and developers,
allowing to identify possible bugs in the code, as well as to share and pro-
pose modifications aiming to improve and refine the developed algorithms.

Finally, the last and most technical reason concerns the OpenSim imple-
mentation. OpenSim, in fact, is built upon Simbody [104], a well-known
library for large-scale mechanical modeling of any system that can be
represented as bodies interconnected by joints, acted upon by forces, and
restricted by constraints. Both Simbody and OpenSim are entirely written
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in C++, one of the most efficient high-level programming languages. This is
extremely important, especially in the context of employing such libraries
for the real-time assessment of human motion. In fact, while the analyses
performed using OpenSim are not specifically designed for real-time appli-
cations, its architecture makes it a good candidate for usage as a base, with
the required modifications, in online applications.

The typical workflow in OpenSim can be divided into five separate
steps:

1. Defining the model. The first component of any analysis in OpenSim
is the model to be used. Although being primarily used for muscu-
loskeletal simulations, OpenSim models can represent any system of
rigid bodies connected by frictionless joints that are acted upon by
forces to produce motion. In musculoskeletal models, such bodies
represent the geometry and inertial properties of all the human body
segments. Joints, on the other hand, describe the articulations that
connect bodies to form a kinematic chain. A model can also include
internal forces from muscles activation and external forces from inter-
action with the environment. While a large number of already vali-
dated models are available within OpenSim, one of the major goals of
the project is the possibility to freely create and share with the commu-
nity any typology of models (e.g., [105], where the author developed
a musculoskeletal model of the hindlimb and pes of Deinonychus).

2. Importing pre-recorded experimental data. Experimental data used in
OpenSim is usually pre-recorded in a clinical laboratory and prop-
erly processed before use. Typical data include marker trajectories
from optical MoCap, GRF measured using force platforms, and elec-
tromyography (EMG) to measure the muscles’ activity. The recorded
data might need to be converted before usage in specific file formats
supported by OpenSim.

3. Scaling the model. Scaling is one of the most important steps in biome-
chanical analyses. Scaling a generic musculoskeletal model means
modifying its anthropometry, physical dimensions, and mass prop-
erties to match those of the specific subjects who are being analyzed.
Precise scaling of the model is a key factor for maximizing the accu-
racy of IK and ID solvers. This step is necessary since the majority
of musculoskeletal models are based on measurements of multiple
cadaver specimens, to represent the average human. However, the
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scaling step is not required if the adopted model is already subject-
specific.

4. Simulating the movement. Once data is fed to the system and the model
is properly scaled to match the measurements, it is possible to pro-
ceed with the simulation of the movement. Inverse methods are used
to estimate the state of the model (i.e., joint angles, coordinates, joint
moments, muscle activity, etc.) at each time frame. First, an IK opti-
mization allows to estimate joint angles and coordinates of the model.
For each time frame of recorded motion, such data is calculated as the
coordinate values that position the model in a configuration that best
matches the experimental measurements. This is achieved by solving
a weighted least-squares (WLS) problem with the goal of minimizing
the distance between the experimental markers data and the corre-
sponding marker positions defined in the model. Then, if external
forces were measured, it is possible to combine such data with the IK
results to estimate the kinetics of a musculoskeletal model. ID opti-
mizations determine the internal forces and joint torques that caused
the motion. Therefore, in this case, three actors are required: mea-
surements of the external forces (e.g., by using force platforms), joints
accelerations (estimated by double integration of the estimated joint
positions), and the mass properties of the bodies in the model.

5. Analyzing the results. The last step allows to dig into the details of a
simulation. Several analyses are available:

• Body Kinematics. Reports the kinematics state (i.e., positions, ori-
entations, linear and angular velocities, linear and angular accel-
erations) of specified bodies during the whole simulation.

• Point Kinematics. Reports similar data, but referred to any point
defined local to a specific body.

• Muscle Analysis. Reports internal muscle attributes (e.g., fiber
length and velocity, active- and passive-fiber force, etc.) during
the whole simulation.

• Induced Acceleration. Computes the accelerations caused by spe-
cific forces acting on the model, allowing to assess the contribu-
tion of individual muscle forces for the motion generation.

• Force Reporter. Reports all the forces acting on the model, both
measured during the motion and estimated by the ID optimiza-
tion.

As is clear from the aforementioned workflow, OpenSim was specifi-
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cally designed for offline analyses. The motion data used as input needs
to already be recorded and properly processed (e.g., by relabeling wrongly
estimated markers, or filtering the raw measurements) before running the
simulations. For this reason, the original workflow, as well as the imple-
mentation of different algorithms, required substantial modifications to
enable real-time usage of the system within the proposed framework. Such
modifications are described in detail in Section 5.4.

2.3 FRAMEWORK STRUCTURE

All the modules developed within the Hi-ROS framework can be con-
ceptually split into the three levels in which I divided my research: the
Sensing level, the Tracking level, and the Modeling level. Such levels con-
tain algorithms to allow real-time measurements of heterogeneous quanti-
ties, robust multi-sensor fusion and tracking, and modeling of the human.
Figure 2.1 shows a schematic representation of the developed framework.
Different interactions between levels are possible, as the communication
among modules is based on a unique common interface.

• 2D marker positions 
• 3D marker positions 

• Link orientations 
• Confidences 

Body Pose Data

Sensing Level

• Model markers
definition

• Real-time MB-IK 

Marker-based
• Model IMUs

definition
• Real-time OB-IK 

Orientation-based

• Model markers and
IMUs definition 

• Real-time MOB-IK 

Multimodal

Modeling Level

• Frame-by-frame 
• Robust to
occlusions 
• Real-time 

Tracking
• Multi-view 

• Data enhancement 
• Real-time 

Merging

Tracking Level

• Global optimization 
• Limb length
consistency 
• Real-time 

Optimization
• State-space filters 
• Butterworth filters 

• Real-time 

Smoothing

• Linear accelerations 
• Angular velocities 

• Magnetic fields 
• Orientations 

IMU Data
• 2D positions 
• 3D positions 
• Confidences 

Marker Data

Experimental measures Fused  measures

Experimental measures

Figure 2.1: Proposed framework structure. All the possible connections
between levels, here represented as black arrows, rely on a unique common
interface.

The Sensing level (Section 2.3.1) can act as input for both the Tracking
level (Section 2.3.2) and the Modeling level (Section 2.3.3). This allows the
proposed framework to be extremely flexible. When using multiple homo-
geneous sensors to record the motion of multiple persons, the Tracking level
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contains powerful modules to perform a multi-sensor fusion of the partial
measurements of each sensor and real-time temporal tracking of the esti-
mated body poses. It also allows to increase the pose estimation accuracy,
by identifying wrong estimates and merging the partial data measured by
each individual sensor. However, different applications might only rely
on a single sensor (e.g., a single (red-green-blue-depth) RGB-D camera for
estimating a person’s pose via markerless MoCap), without requiring any
type of data fusion. Thus, the Modeling level was designed to support both
the direct output of the Sensing level and the enhanced data obtained by
exploiting the Tracking level. In this regard, the modules developed within
the Modeling level support any typology of input data. Marker positions
(either measured by an optoelectronic system or estimated via markerless
MoCap) and link orientations (either measured by an inertial system or es-
timated via markerless MoCap) can be used, in any combination, to drive
a common subject-specific musculoskeletal model.

2.3.1 SENSING LEVEL

The Sensing level is the foundation of the developed framework. It is de-
fined as the level at which physical quantities are acquired by means of
heterogeneous sensors. Thus, it contains the modules required to commu-
nicate with different types of hardware. The Sensing level is crucial to fulfill,
within the proposed framework, one of the main requirements that drove
the development of robotics middlewares: hardware transparency. As in
robotics middlewares transparency allows to hide hardware heterogeneity
and complexity, the Sensing level provides an analogous abstraction layer
within Hi-ROS. Different types of sensors, but also different MoCap sys-
tems, seamlessly communicate with the Tracking and Modeling levels via
common standard interfaces.

At the current stage, the proposed framework is designed to support
any typology of sensors capable of measuring body kinematics. However,
the selected tools allow to easily integrate new typologies of sensors (e.g.,
force platforms, EMG sensors), if needed. Currently, three main categories
of input data are supported: marker data, IMU data, and body pose data
(Figure 2.1).

Marker data include position, linear velocity, linear acceleration, and
confidence. Positions, velocities, and accelerations can either be 2D or 3D.
While 2D information is not sufficient to allow model-based IK optimiza-
tions, the choice of supporting 2D data was primarily driven to ensure gen-
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erality of the framework and to allow usage of other modules that do not
strictly require 3D data as input. The confidence field, finally, is used to
describe how well a specific marker is being tracked or estimated.

IMU data include orientation, angular velocity, angular acceleration,
confidence, and, possibly, information on the distal and proximal markers
connected by the link where the IMU is positioned. The described sensor
can either be part of an IMU chain or be used individually. Similarly to
markers, the confidence field allows to quantify the quality of the orienta-
tion estimation.

Finally, body pose data contain information useful for describing a per-
son’s motion. It is designed to support body poses described by means of:

• multiple marker positions measured via optical MoCap;
• multiple marker positions estimated via markerless MoCap;
• multiple link orientations measured via inertial MoCap;
• multiple link orientations estimated via markerless MoCap;
• any combination of the aforementioned quantities.

The adoption of standard interfaces allows to treat every module of the
framework as a black box, with one input and one output. Thus, any mod-
ule within the Tracking and Modeling levels can be used regardless of the in-
put source. As an example, marker-based IK optimizations (MB-IK) can be
run independently of the MoCap system being used, the number of mark-
ers employed, and the capture frequency. Similarly, orientation-based IK
optimizations (OB-IK) do not rely on a specific manufacturer of IMUs, nor
on a predefined number of sensors. Finally, standard interfaces allow to
seamlessly combine marker positions and IMU orientations in a single en-
hanced representation of the body pose.

A discussion on the supported sensors within Hi-ROS, with a case study
aimed at determining the most accurate typologies of IMUs for human mo-
tion tracking, are reported in Chapter 3.

2.3.2 TRACKING LEVEL

The second level of this framework aims to fuse multi-sensor measure-
ments while ensuring temporal consistency of the estimated motion. It is
designed to take as input multiple people’s poses estimated by exploiting
a network of homogeneous sensors. No assumptions are made about the
number, typology, and synchronization of the sensors being used, the num-
ber of people being analyzed, and the algorithm used for the estimation of
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the body poses. The Tracking level includes a series of modules to ensure
temporal consistency of the measurements obtained from a distributed net-
work and allow robust real-time multi-people tracking. Moreover, by fus-
ing body pose data obtained from multiple sensors, it is possible to enhance
the partial information that each sensor can retrieve individually, detect
possible incorrect estimates, and increase the overall system’s accuracy.

The Tracking level is divided into four modules:
1. robust frame-by-frame temporal tracking among the detections of

each sensor in the network;
2. multi-sensor data merging to retrieve more complete information;
3. global optimization of each subject’s limb lengths throughout the

whole experiment;
4. real-time data smoothing of the estimated motion trajectories.
The temporal tracking module takes as input multiple body poses esti-

mated from homogeneous sensors and assigns a unique ID to each person
that is kept in time. It ensures the temporal consistency of all the measure-
ments in the network, as well as of the motion trajectory of each detected
person. The merging block, on the other hand, performs a fusion of the
poses estimated by different sensors that describe the same motion. That
is, if redundant body poses are available, the module is in charge of deter-
mining the sensors where the pose is estimated more accurately, discard-
ing possible outliers, and, finally, fusing the clean data. The optimization
module allows to perform a global optimization on the estimated poses to
ensure consistent dimensions of the body segments throughout the whole
acquisition. This node is particularly useful for markerless MoCap systems,
where the detected keypoints describing the estimated body poses can lead
to varying limb lengths, depending on the quality of the input data and
on the precision of the BPE algorithm. Finally, the data smoothing module
allows to perform real-time filtering of any typology of data supported by
the framework (i.e., marker positions, IMU orientations, but also full-body
poses). Both the filter to be used and the desired cutoff frequency can be
freely selected by the user, depending on the typology of movements being
performed and on the application requirements.

Detailed information on the Tracking level, together with the accuracy
improvement achieved using Hi-ROS on a novel multimodal dataset that
we recently acquired, are reported in Chapter 4.
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2.3.3 MODELING LEVEL

As discussed in the introduction of this dissertation, a meaningful fusion
of heterogeneous data needs to rely on a common model of the human. In
fact, since different sensing systems rely on distinct and, possibly, conflict-
ing underlying models, a direct fusion of the measured quantities defining
a person’s body pose is prone to lead to erroneous results. A key feature of
the proposed framework is the possibility to fuse heterogeneous measure-
ments from any number of markers and IMUs for the estimation of human
motion. This can be achieved because all measurements refer to a common
musculoskeletal model of the human.

The Modeling level is specifically designed to enable the simultaneous
use of multiple sensors. The inputs of this level can be either raw mea-
surements acquired within the Sensing level or the refined results of the
Tracking level. The goal of the Modeling level is to provide accurate esti-
mates of human motion by exploiting state-of-the-art tools borrowed from
the biomechanics field, while at the same time ensuring modularity and
real-time performance. In this context, modularity is achieved by exploit-
ing the same common structures for representing both the required input
data, and the output motion estimated by means of an IK optimization.
Real-time capabilities, on the other hand, required sensible modifications
of the original OpenSim workflow. While the definition of the model and,
to some extent, its scaling, do not invalidate the possibility to perform real-
time assessments, the handling of input data and the solver architecture are
not suited for online applications.

In fact, experimental data cannot be pre-recorded, but online commu-
nication between the sensing system and the IK solver needs to be estab-
lished. Similarly, smoothing of the raw measured trajectories, as well as
robust tracking of the detected poses must be automatized. To achieve that,
the Tracking level can be used as an intermediate step between the Sensing
level and the Modeling level. Finally, simulation and analysis of the move-
ment require to be optimized to comply both with the online feed of data,
and to minimize the delay introduced by the IK computation time to pro-
cess each frame. This required the development of a multi-threaded archi-
tecture, where the input frames (i.e., the data describing the positions of
markers and/or orientations of links) are concurrently consumed by multi-
ple threads. In-depth details on the Modeling level, as well as on the afore-
mentioned modifications, will be given in Chapter 5.
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The developed modules support real-time IK optimizations based on
marker positions (MB-IK), IMU orientations (OB-IK), and combinations
of markers and IMUs (marker-and-orientation-based IK, MOB-IK). By en-
abling MOB-IK, sensor fusion is made possible for different combinations
of sensory inputs. This allows, as an example, to obtain accurate motion
data by exploiting a single camera, coupled with any markerless BPE algo-
rithm, and a limited set of IMUs to overcome possible occlusions. The main
advantages of this configuration are the simplicity and cost-effectiveness of
the required hardware, while also maximizing the achievable accuracy.

2.4 DEFINITION OF THE STANDARD INTERFACES

Information describing the pose of multiple persons in Hi-ROS is based on
the concept of a skeleton group. Let a skeleton group (SG) be defined as the
set of skeletons in the scene at time t, expressed with respect to a generic
reference frame F :

SGF
t = {SF

t,n | n ∈ [0, N [} (2.1)

where N is the total number of persons.
Each skeleton (S) is defined as:

SF
t,n = {mF

t,n,p, lFt,n,q | p ∈ [0, P [, q ∈ [0, Q[} (2.2)

It is formed by a set of markers mF
t,n,p and a set of links lFt,n,q. P is the total

number of markers defining the skeleton, while Q is the total number of
links connecting pairs of markers. Each marker mF

t,n,p can contain informa-
tion on its position, linear velocity, and linear acceleration expressed with
respect to F , as well as a confidence value describing how well it is be-
ing detected by the system. Each link lFt,n,q, on the other hand, can contain
information on its orientation, angular velocity, and angular acceleration
expressed with respect to F , its confidence (if available), and the IDs of the
proximal and distal markers connected by the link. The generality of the
definition permits to have markers that are not connected by any link, as
well as links that do not connect any marker. This allows to exploit the
same interfaces also to represent raw measured quantities (i.e., marker po-
sitions and IMU orientations).

All information describing the poses of multiple people is stored in
custom-defined ROS message structures. Such messages are used for com-
munication among the different levels of the framework, as well as among
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submodules. The messages are designed to ensure generality: no assump-
tions are made on the number of markers and/or IMUs defining a pose,
nor on the type of skeleton being used. In fact, the proposed tools are not
limited to describing human motion only, but, depending on the BPE al-
gorithm being used, can potentially track any articulated object or animal.
Each message includes the 3D positions of the measured/estimated mark-
ers defining each persons’ body, as well as the orientations of its links (de-
fined as the segments connecting pairs of markers).

Starting at the highest level, the SkeletonGroup message contains two
fields:

• header: header including publication time and reference frame the
data refer to;

• skeletons[]: vector of Skeletons (S).
Thus, a skeleton group contains all the information describing the poses
of multiple persons referred to a single time frame, specified by the header
field.

The Skeleton message contains nine fields:
• id: ID of the person (if available);
• src_time: timestamp of the input data;
• src_frame: reference frame of the input data;
• max_markers: maximum number of markers that can be present in the

skeleton;
• max_links: maximum number of links that can be present in the skele-

ton;
• confidence: confidence of the estimation (if available);
• bounding_box: smallest bounding box confining all the markers (if

available);
• markers[]: vector of Markers (m);
• links[]: vector of Links (l).
Each Skeleton is composed of a series of markers connected by links.

Markers can represent either a person’s estimated joint centers or actual
markers applied on the body, while links allow to define the body hierarchy.
The src_time and src_frame fields store information on the input source used
for the pose estimation (e.g., the source time of the input image and the cor-
responding camera reference frame, respectively). Finally, the bounding_box
field allows to store information describing the smallest rectangular paral-
lelepiped containing all the markers.

Markers and Links are defined as follows. The Marker message consists
of four fields:
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• id: ID of the marker;
• name: name of the marker (if available);
• confidence: confidence of the estimation (if available);
• center: KinematicState of the marker’s center.
The Link message is similar to the Marker message, but also includes in-

formation on the parent and child marker IDs that form the link. Therefore,
it consists of six fields:

• id: ID of the link;
• name: name of the link (if available);
• parent_marker: ID of the parent marker connected by the link;
• child_marker: ID of the child marker connected by the link;
• confidence: confidence of the estimation (if available);
• center: KinematicState of the link’s center.

Virtual links can also be used. A virtual link does not necessarily corre-
spond to a human body link, and consists of a pure orientation. Thus, it
does not need to connect two specific markers. The advantage of using vir-
tual links allows to seamlessly store raw IMU data without requiring the
definition of new message structures.

To conclude, a KinematicState is defined as:
• pose: position and orientation of the object;
• velocity: linear and angular velocities of the object;
• acceleration: linear and angular accelerations of the object.
The KinematicState can either be used to describe a marker’s position

(thereby leaving the orientation field empty), a link’s orientation (thereby
leaving the position field empty), or a system of reference (using both the
position and orientation fields). Figure 2.2 shows the proposed hierarchy to
represent the poses of a group of persons in Hi-ROS.

2.5 CONCLUSIONS

This chapter described the design and development of Hi-ROS, an open-
source modular framework for real-time assessment of multiple person’s
motion supporting different typologies of sensing systems. Despite being
the final result of my research, the analysis of the framework’s structure al-
lows to better clarify the architecture and the components developed dur-
ing my Ph.D.

After introducing the problem and the three levels in which I decided to
divide my work, the two main tools used for the development of Hi-ROS
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SkeletonGroup

Header header

Skeleton[] skeletons

int32 id

Time src_time

string src_frame

uint32 max_markers

uint32 max_links

float64 confidence

Box bounding_box

KinematicState center

Pose pose

Twist velocity

Accel acceleration

float64 length

float64 height

float64 width

Marker[] markers

int32 id

string name

float64 confidence

KinematicState center

Link[] links

int32 id

string name

int32 parent_marker

int32 child_marker

float64 confidence

KinematicState center

Figure 2.2: SkeletonGroup message organization. The picture reports the
definition and hierarchy of the custom messages used for the communica-
tion between the different nodes of the framework. The bold text represents
custom-defined messages, while the plain text indicates standard ROS mes-
sages.

42



2.5. Conclusions

were presented. The first tool was ROS, a middleware that is currently con-
sidered the de-facto standard for distributed robotic applications. In this
work, ROS was used to enable efficient, reliable, and robust real-time com-
munication between all the modules defined within each level. Moreover,
due to the wide adoption of ROS, a large number of sensors are already
supported, either officially or by means of custom-developed drivers. As
a result, the proposed framework gains even more flexibility, allowing the
use of the developed modules on a variety of sensing devices.

The second tool used in my research was borrowed from the biome-
chanics community. It consisted of OpenSim, a well-known library for
biomechanical analyses. OpenSim includes several already validated mus-
culoskeletal models of the human, as well as efficient libraries to perform
accurate IK optimizations to simulate motion. The open-source nature of
the project allows to freely modify any model and to dig into each algo-
rithm’s implementation. The tools offered by OpenSim were the basis for
enabling real-time multi-person IK optimizations fed by the data measured
(or estimated) by heterogeneous sensors.

The chapter then continued analyzing the structure of the proposed
framework, divided into the Sensing level, the Tracking level, and the
Modeling level. First, an introduction on the sensors supported within the
Sensing level is proposed, together with their different measured/estimated
physical quantities. They consist of marker positions (either measured by
an optoelectronic system or estimated by markerless MoCap) and IMU ori-
entations (either measured by inertial systems or estimated by markerless
MoCap).

The dissertation proceeded by shifting the focus on real-time multi-
person motion analysis in distributed networks of homogeneous sensors.
The Tracking level, in fact, was defined to include all my work on this topic.
It consists of four modules allowing to (1) perform robust temporal track-
ing of the detections obtained by each sensor, (2) merge multi-sensor data to
produce an enhanced description of motion, (3) perform a global optimiza-
tion to ensure consistent limb lengths during the whole acquisition, and (4)
filter high-frequency noise of the estimated trajectories. All the computa-
tion is in real-time, independently of the number of sensors being used and
of the number of people in the scene.

Finally, within the Modeling level, I presented my work to enable multi-
modal real-time IK optimizations of multiple people’s poses. This required
several modifications to the typical workflow used in biomechanical anal-
yses. As a result, the developed system is not dependent on the specific
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hardware used for motion assessment. Moreover, heterogeneous quantities
(i.e., marker positions and IMU orientations) can be combined to concur-
rently drive the motion of a common musculoskeletal model, in real-time.
Finally, multiple people can be analyzed simultaneously, either on the same
machine or by exploiting a distributed network of PCs.

The chapter concludes with a description of the standard interfaces de-
fined within Hi-ROS. They allow to efficiently represent the poses of mul-
tiple people, described by a series of markers connected by links. Such
structures are designed to describe any typology of skeleton, as well as the
raw acquired data. This is a key feature to ensure modularity of the pro-
posed framework and to enable multimodal sensor fusion at the Modeling
level.
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Part of the work presented in this chapter has been published as scientific papers
[106], [107].
I have made a substantial and principal contribution in the conception and design
of these studies, related software development, analyses and interpretations of the
results, drafting, and critical revision of the final manuscripts.
Co-authors’ permissions for the inclusion of the studies in this dissertation have
been obtained.

3.1 INTRODUCTION

The Sensing level is the first level defined within my work. Its objective is to
provide a bridge between the hardware used to measure the physical quan-
tities describing motion and the algorithms used to enhance the motion es-
timation accuracy and to drive a musculoskeletal model of the human. As
presented in Section 1.2, three typologies of MoCap systems can be used for
the estimation of the human pose: optoelectronic systems, inertial systems,
and markerless systems. The measured quantities (or estimated, in the case
of markerless MoCap) consist of the 3D positions of a set of markers placed
on the body and the orientations estimated by a set of IMUs worn by the
subject.

It is important to note that the remainder of this dissertation will pri-
marily focus on markerless and inertial MoCap. This choice depends on
two main reasons. The first resides in the high-level goal of my Ph.D. The
developed framework, in fact, aims to provide accurate motion analysis in
everyday living and working environments, while also providing real-time
results. In this regard, human motion needs to be assessed without the ne-
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cessity of complex and cumbersome setups. Thus, optoelectronic MoCap
should not be the preferred method, since it typically requires delicate hard-
ware that limits its usage to dedicated confined laboratories.

Second, while optoelectronic and markerless systems technologies are
certainly different, the quantities they measure (or estimate) are semanti-
cally identical. In fact, they both describe the pose of a person as a set of
3D marker positions placed in specific parts of the body. Thus, all the work
on markerless MoCap developed in this thesis can easily be used also in
contexts adopting optoelectronic systems.

The remainder of this chapter describes the main characteristics of
the typologies of sensing systems supported by the proposed framework.
They are divided into vision-based MoCap (Section 3.2), with a focus on
the different technologies that allow the acquisition of RGB-D data) and
inertial MoCap (Section 3.3), with a focus on the design and development
of an open-source driver to allow real-time streaming and synchronization
of data from multiple IMUs (Section 3.4). Finally, Section 3.5 analyzes the
characteristics of three IMUs belonging to different market categories, with
the aim of assessing to what extent they can be used for human motion
assessment. In-depth results on their static and dynamic performance, as
well as the impact of drifting phenomena, are reported. The frequency and
amplitude values imposed for the dynamic assessments were specifically
selected to provide good coverage in the bandwidth characterizing the
majority of human movements.

3.2 OPTICAL MOTION CAPTURE

Optical MoCap systems estimate the human pose by relying on data cap-
tured from one or multiple cameras. As analyzed in Section 1.2, optical
motion capture can be divided into two categories: optoelectronic systems,
which measure the 3D positions of a set of retroreflective markers via trian-
gulation, and markerless systems, which estimate the positions of multiple
body keypoints without requiring any marker or sensor worn on the body.

Since the first require delicate hardware, long setup times, and special-
ized personnel, their use is typically confined to dedicated laboratories.
For this reason, the rest of this section will focus on markerless MoCap
and, specifically, on the different typologies of cameras that can be used for
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single- and multi-camera BPE and tracking.

The cameras used in markerless MoCap can be divided into two main
families, depending on whether depth information is produced or not.
RGB (red-green-blue) cameras provide a visualization of the scene by in-
cluding color information for each pixel of an image. Depth cameras, on
the other hand, produce a depth map of the scene describing the distance
between each pixel and the camera’s focal point. When a camera is capable
of sensing both RGB and depth, it is referred to as RGB-D camera. Three
main families of technologies are typically used to generate depth informa-
tion: stereo vision (Section 3.2.1), structured light (Section 3.2.2), and time
of flight, usually referred to as ToF (Section 3.2.3).

3.2.1 STEREO VISION

The driving principle of stereo vision mimics the stereoscopic setup of hu-
man vision to perceive depth [108], [109]. Stereo vision is used to infer
sparse or dense depth maps of the scene by identifying matching pixels in
the images acquired by two or more cameras that capture the same scene
from slightly different angles. Knowing the relative pose of each camera
with respect to the others and the disparity of the pixels in the images, it
is possible to infer the 3D depth of each pixel from the 2D positions using
standard triangulation techniques [110]. Stereo vision systems intrinsically
provide RGB images, thus belonging to the family of RGB-D cameras.

Passive systems rely on the detection of a set of common features in the
images. The main advantage of these systems is the possibility of being de-
ployed both indoors and outdoors. However, passive stereo vision suffers
from unreliable depth estimations in regions that suffer from a low num-
ber of detected features. In fact, automatic estimation and measurement of
accurate inter-image correspondences are complex tasks. The limited mea-
surement accuracy for the depth estimation, coupled with the computa-
tionally intensive signal processing required, hinder the usability of stereo
vision systems in real-time setups [111]. As a result, the aforementioned
difficulties led to the development of active stereo vision systems.

Active systems employ a light source (typically in the IR domain) to
project pseudo-random patterns on the scene. This allows to increase the
number of detectable features and, thus, the accuracy in the depth esti-
mation. The second advantage of active systems relies on their robustness
to varying lighting conditions. Finally, the randomness of the projected
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patterns allows the use of multi-camera setups, since different patterns do
not interfere with each other [112].

3.2.2 STRUCTURED LIGHT

Structured light is a different technology that also belongs to the family of
active methods [113]. Structured light cameras, in fact, infer depth informa-
tion by projecting a known IR light pattern (typically dots or stripes) on the
scene. Differently from active stereo vision, however, in this case, a single
camera is needed to sense the scene. The depth information is estimated
based on the variation of known feature points in the sensed pattern pro-
jected on the scene. The camera, whose pose with respect to the IR projec-
tor must be known, calculates the difference between the original projected
pattern and the distorted pattern observed. This allows to reconstruct the
3D coordinates of the detected feature points, using a method similar to the
one used in stereo vision techniques [114].

Common challenges of these systems come from transparent and highly
reflective objects. While the projected pattern is not distorted by trans-
parent objects, thus not allowing a measurement of the distance, the op-
posite result is obtained with highly reflective bodies. In the last case, in
fact, the pattern is excessively distorted, producing wrong estimates in the
depth estimation. Another problem arises when using multiple cameras
with overlapping FoVs. When the projected pattern is emitted at similar
wavelengths, multiple patterns can compete with each other, causing in-
terference. One possible solution requires hardware synchronization of all
the cameras in the network, allowing to introduce a fixed controlled delay
between each camera’s projector.

Despite the aforementioned limitations, these cameras allow to achieve
high accuracy, especially when the distance between the objects and the
camera is not excessive. However, because of the strong components in
the IR domain of sunlight, structured light sensors do not permit outdoor
usage.

3.2.3 TIME OF FLIGHT

Finally, ToF sensors calculate the distance between a point and the camera
by measuring the phase delay in the IR light reflected from the objects in
the scene [115]–[117]. This technique requires an emitter, used to send the
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light, and a receiver, to measure the time in which the light is reflected back.
Typically, they are combined in a single device.

The light coming from the emitter is diverged to illuminate the whole
FoV, and the time of flight of the reflected light is measured using a 2D array
of photodiodes combined with time-to-digital converters or with time-to-
amplitude circuitry [118]. Then, each pixel’s depth value is estimated by
measuring the phase shift between the incident light and the reflected light.
The range of a ToF camera can be calculated as D = c/2f , where D is the
depth, f is the modulation frequency, and c is the speed of light [119].

As in structured light systems, light is typically emitted in the IR spec-
trum. Thus, the same limitations with respect to outdoors usability apply.
Furthermore, like structured light systems, ToF cameras are sensitive to
interference from other cameras emitting at a similar wavelength. The
advantages of these systems are the high achievable accuracy, and the pos-
sibility to retrieve depth information from surfaces with little to no textures.

As described in Section 2.2, the communication between several typolo-
gies of sensors and all the algorithms developed within my Ph.D. relies on
ROS. ROS represents the data captured by any typology of cameras (either
RGB or RGB-D, and independently of the technology used for the depth es-
timation) using a unique standard message structure. This allows to seam-
lessly swap hardware without requiring any modification on the software
that relies on its measurements. At the same time, this enables the setup of
camera networks using different brands and typologies of sensors.

Furthermore, ROS is widely adopted in the robotics community. For
this reason, ROS drivers to interface a large number of cameras are freely
available (either developed by manufacturers or by third-party develop-
ers)1. In this way, the algorithms developed within my Ph.D. gain even
more flexibility, allowing the use of multiple different sensing devices, as
well as different BPE algorithms, while maintaining compatibility with the
modules defined within Hi-ROS. Figure 3.1 shows three RGB-D cameras
supported in ROS and, consequently, in Hi-ROS, each exploiting different
technologies for the estimation of the depth map.

An in-depth analysis of the work developed on markerless MoCap
and, specifically, on the real-time fusion and tracking of multiple people’s
poses obtained by exploiting a generic network of homogeneous sensors,

1A (non-comprehensive) list of supported sensors is reported in [120].
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(a) (b) (c)

Figure 3.1: Microsoft Azure Kinect [61] (a), Intel RealSense D435 [121] (b),
Orbbec Astra Mini [122] (c) RGB-D cameras. The first exploits a ToF sensor
for the depth estimation, the second active IR stereo vision, and the third
structured light.

is presented in Section 4.3 of this dissertation.

3.3 INERTIAL MOTION CAPTURE

When the line of sight between the sensor and the human cannot be en-
sured, or when motion needs to be captured in large or outdoor spaces,
IMU-based wearable sensing is considered the most promising solu-
tion [22]. IMUs are devices able to detect motion continuously and are
suited for online human motion tracking, requiring neither invasive sen-
sors nor constrained workspaces.

An IMU consists of a triaxial accelerometer and a triaxial gyroscope
used to measure linear accelerations, including gravity, and angular veloc-
ities, with respect to a predefined and rigidly associated local frame [23].
IMUs may also integrate an extra triaxial magnetometer to obtain an abso-
lute estimate of the heading angle. The 3D orientation of the IMU with re-
spect to a global coordinate system can be estimated through sensor fusion
of the sensors’ measurements, by exploiting well-known state-of-the-art al-
gorithms, such as complementary filters [123] or Madgwick’s filter [53].

IMU-based systems have the advantage of being completely self-
contained and independent of artificially generated sources. The measure-
ment entity, in fact, is unconstrained either in motion or in environmen-
tal characteristics [53]. Moreover, the recent integration of onboard MEMS
sensors introduced potential advantages in terms of cost, size, weight, and
energy consumption [124].

MEMS IMUs are small, energy-efficient, and low-cost. Unfortunately,
low-cost MEMS are usually noisy and their measurements include errors
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that can be grouped into two categories: bias errors (consisting of an un-
known zero level) and gain errors (consisting of an unknown scale fac-
tor) [24]. Despite the fact that a large number of recent works aim at mini-
mizing such effects (e.g., [125]–[127]), completely drift-free orientation esti-
mation is still an open problem. Nonetheless, IMUs are becoming a portable
and cost-effective alternative to optical motion capture systems, and are
currently being introduced also in clinical settings for functional movement
quality assessing trials. Inertial-based systems are also very attractive for
online motion analyses, being able to reach high update rates (up to hun-
dreds of Hz) with limited computational resources.

IMUs firmly attached to a human body segment can provide an esti-
mate of its kinematics, either directly [128] or through global optimization
processes, such as IK [129]. In rehabilitation environments, inertial systems
have been used to capture real-world knee RoM for total knee arthroplasty
patients. The method proposed in [130] represents a great step forward in
the monitoring of the patients by continuously examining the RoM of the
knee, using two IMUs rigidly attached to the leg. Finally, in [131] a self-
developed low-cost IMU was used to implement a motion analysis system
applied in a clinical protocol for gait analysis. The accuracy, consistency,
and repeatability were validated by exploiting a robotic system and a mo-
tion capture system as a ground truth.

While the aforementioned works focused on the analysis of specific joint
angles, full-body inertial MoCap requires the usage of several IMUs at-
tached to each body segment. The estimated orientations are then used
as input for an IK optimization to estimate the pose of the analyzed per-
son [57].

However, the usage of multiple (and, possibly, wireless) sensors intro-
duces additional challenges. In fact, the measurements obtained by the
sensors might refer to different time frames, and communication (and/or
computation) delays can indeed alter the order in which distributed data
are received and combined. Therefore, accurate synchronization proce-
dures are required to ensure that each time frame contains consistent data
from all the sensors required by the MoCap system.
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3.4 AN EFFICIENT OPEN-SOURCE DRIVER FOR XSENS

WIRELESS INERTIAL MEASUREMENT UNIT SYSTEMS

One of the most widely adopted IMU systems, both for its reliability and
accuracy, is the MTw Awinda wireless human motion tracker by Xsens.
Figure 3.2 shows an MTw Awinda tracker with its default local coordinate
reference system.

The built-in 3D orientation estimation filter is specifically tuned for the
range of frequencies typical to human motion and can provide online esti-
mates of the sensor’s orientation up to 120 Hz. Data from multiple trackers
connected to the same master PC are time-synchronized within 10 µs [132].
Typical applications where the MTw Awinda can be used are ergonomics,
rehabilitation, biomedical analyses, virtual reality, human-machine interac-
tion, and robotics.

Such applications, however, are increasingly demanding for real-time
and, possibly, open-source solutions to capture human motion. To this
aim, this section describes the development of an efficient open-source C++
driver to interface and synchronize multiple Xsens MTw Awinda trackers
with ROS. The driver2 has been released as open-source and free of charge
under the Apache v.2 license.

Figure 3.2: Xsens MTw Awinda and its default local coordinate reference
system (source: [132]).

Although other implementations of a ROS driver for the Xsens MTw
Awinda are available on GitHub ([133], [134]), they all suffer from ma-
jor limitations. Specifically, the first one depends on legacy software from
Xsens that is no longer available, while the second is a mere variation of one
of Xsens SDK examples, adapted to publish ROS messages. Moreover, the
driver requires Ubuntu 16.04 LTS and ROS Kinetic, which are both 6 years

2The code is publicly and freely available under the Apache v.2 license at
github.com/hiros-unipd/xsens_mtw_wrapper
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old at the time of writing, and incorrectly assumes that the time a packet
is received corresponds to the actual time the packet’s orientation refers to.
As we will analyze in Section 3.4.1.4, this assumption introduces a series of
problems when dealing with the Xsens MTw Awinda IMUs.

The driver proposed in this work was developed to solve all the afore-
mentioned limitations. In fact, both ROS Melodic (Ubuntu 18.04 LTS) and
ROS Noetic (Ubuntu 20.04 LTS) are supported. The driver supports the
maximum number of trackers allowed by the Xsens SDK (i.e., 20 trackers)
connected to the same master PC, and allows to directly stream, through
one or multiple configurable ROS topics, the data obtained from each sen-
sor (raw accelerations, angular velocities, magnetic fields, and estimated
orientations) up to 120 Hz.

Furthermore, the absolute timestamp is calculated for each packet,
which is a feature not directly available within the Xsens SDK. The mes-
sages sent through the network are based on ROS standard messages and
comply with the ROS conventions [135]. This allows the developed driver
to directly interface with any ROS package that supports ROS standard
messages.

Moreover, a synchronization procedure is implemented to guarantee
that no data from a single tracker are missing from each time frame. This is
required when the data are used to compute human motion exploiting an
IK procedure.

By interfacing the MTw Awinda trackers and streaming the sensor read-
ings to the ROS network, this driver pushes forward the development of
applications and tools for a variety of human-robot interaction tasks where
online knowledge of the human pose is crucial.

3.4.1 SYSTEM DESIGN

The proposed driver consists of four main classes:
• WirelessMasterCallback: manage the connection between the trackers

and the wireless master connected to the PC (Section 3.4.1.1);

• MtwCallback: manage the callbacks of each MTw Awinda tracker
(Section 3.4.1.2);

• Synchronizer: synchronize data among different trackers to avoid time
frames with missing packets (Section 3.4.1.3);

• Wrapper: the actual driver implementation (Section 3.4.1.4).
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Figure 3.3 shows the Unified Modeling Language (UML) diagram describ-
ing the proposed driver.

xsens_mtw_wrapper

MTwCallback

+ dataAvailable() : bool

+ newDataAvailable() : bool

+ getLatestPacket() : XsDataPacket*

+ deleteOldestPacket() : void

+ deleteOldestPackets(unsigned long) : void

+ onLiveDataAvailable(XsDevice*, XsDataPacket*) : void

WirelessMasterCallback

+ getWirelessMTws() : XsDeviceSet

+ onConnectivityChanged(XsDevice*, XsConnectivityState) : void

Synchronizer

+ add(XsDataPacket*) : void

+ newFrameAvailable() : bool

+ getLatestFrame() : vector<XsDataPacket*>

+ clearLatestFrame() : void

Wrapper

+ start() : void

+ run() : void

+ configure() : void

+ stop() : void

XsCallback

Figure 3.3: UML diagram of the developed driver. The green color indicates
that the class is part of the Xsens SDK.

3.4.1.1 WirelessMasterCallback

Class WirelessMasterCallback inherits from Xsens’ XsCallback class, which is
used to manage the callbacks of both the wireless master and the single
trackers. It manages the connection and disconnection of trackers on the
master receiver and allows to retrieve the list of connected trackers.

3.4.1.2 MtwCallback

Class MtwCallback also inherits from Xsens’ XsCallback class. It manages
a circular buffer for each tracker which is filled each time a new packet is
available. The maximum size is limited to 300 packets. This means that at
the lowest possible frequency (40 Hz) the buffer can store up to 7.5 s of data,
while at the maximum possible frequency (120 Hz) the buffer can store up
to 2.5 s of data.

In normal conditions, the buffer is never filled, since the data are auto-
matically deleted after being consumed by the Synchronizer, as explained
in detail in the next section. If an anomalous increase in the number of
packets in the buffer occurs, the condition is promptly reported to the user.
This is a symptom of connection issues between the sensor and the master
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receiver and should be avoided by the user by acting on the connection
parameters of the device.

3.4.1.3 Synchronizer

The Xsens communication protocol ensures highly accurate time-
synchronized data sampling (within 10 µs) in all the trackers connected
to the same master. However, some packets can get lost during the trans-
mission.

As an example, assume that two trackers are connected to the same mas-
ter: mtw0 and mtw1. The following situation can occur: mtw0 provides
packets relative to frames 100, 101, 102, 103, while mtw1 provides packets
relative to frames 100 and 103. In this case, we have two partial frames
(101 and 102) that only contain data from tracker mtw0. Partial frames are
potentially destructive for tracking algorithms and might cause inconsis-
tencies and side effects. Therefore, a policy to handle them should always
be selected by the user depending on its application requirements.

For instance, if the user is interested in performing an IK optimization
on the data gathered from the IMUs, most of the available tools do not work
if partial frames occur. While in offline applications such frames can be eas-
ily handled by removing them or filling the missing data during the post-
processing phase, in online applications this is not feasible. For this reason,
an online synchronization procedure must be implemented to ensure that
each time frame contains data from all the trackers.

Class Synchronizer is responsible for avoiding partial frames. Currently,
the driver supports two different synchronization policies: fillPartialFrames
and skipPartialFrames.

Policy fillPartialFrames allows to fill the missing packets by estimating
their values using linear interpolation. Taking the same example as before
as a reference, with this policy, the output would be:

• frame 100: {mtw0: pkt100, mtw1: pkt100};

• frame 101: {mtw0: pkt101, mtw1: ˆpkt101};

• frame 102: {mtw0: pkt102, mtw1: ˆpkt102};

• frame 103: {mtw0: pkt103, mtw1: pkt103}.
Notice that frames 101 and 102 contain packets pkt101 and pkt102 relative to
mtw0 and the interpolated values ˆpkt101 and ˆpkt102 computed from packets
pkt100 and pkt103 relative to mtw1, since the real packets are missing. The
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missing packets’ orientations are calculated by exploiting spherical linear
interpolation, while data from accelerometer, gyroscope, and magnetome-
ter use linear interpolation.

On the other hand, policy skipPartialFrames removes the frames where
one or more packets are missing. Taking the same example as before as a
reference, with this policy the output would be:

• frame 100: {mtw0: pkt100, mtw1: pkt100};

• frame 103: {mtw0: pkt103, mtw1: pkt103}.
Notice that frames 101 and 102 are skipped, because the corresponding
packets from mtw1 are missing.

The two synchronization policies have different trade-offs. Policy
fillPartialFrames allows to obtain higher update rates, close to the nominal
one. The number of skipped frames is minimized, but some frames can
contain data that do not correspond to the real measurements. This syn-
chronization policy should be used when a constant update rate is required,
or when the movements to be analyzed are not excessively fast.

Policy skipPartialFrames guarantees that the data from each published
frame are the most recent one, as well as that the data of each tracker in
the same time frame refer to exactly that frame. However, in this case, the
actual frequency can be slightly lower than the nominal one. Each time a
tracker loses one packet, the full time-frame (i.e., the data from all the other
trackers referring to that frame) is in fact discarded. This synchronization
policy should be used when a constant update rate is not strictly required,
while it is crucial to only have the measured data in each time-frame.

The choice of which synchronization policy should be used is up to the
user. If there is no interest in synchronizing data among the trackers, the
synchronization can be turned off. Further details on other parameters that
the user can modify are given in Section 3.4.1.5.

3.4.1.4 Wrapper

Class Wrapper implements the connection, synchronization, and communi-
cation between the trackers and ROS. It configures both the wrapper’s set-
tings and the trackers’ settings, tries to connect to all the available trackers,
and performs an initial synchronization between the first packets of each
tracker.

The connection of the MTw trackers to the master consists of the follow-
ing steps:
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1. construct an XsControl object required to manage the connection be-
tween the wireless master and the PC;

2. scan all the USB ports on the PC and try to find an attached wireless
master;

3. open the port where the master has been found;

4. construct an XsDevice object that refers to the wireless master;

5. enable the configuration mode on the master;

6. attach a WirelessMasterCallback object to the master;

7. set the desired update rate;

8. set the desired radio channel.
Once the master has been configured, a callback handler for each avail-

able tracker is attached to the master in order to be able to retrieve the data
packets. It is now possible to enter measurement mode, where each tracker
begins to stream its packets.

Since the Xsens MTw Awinda trackers include a triaxial magnetometer,
their orientation is estimated taking into account the magnetometer read-
ings, which might be noisy in environments affected by magnetic distur-
bances. To make the trackers behave like pure IMUs, it is possible to reset
their initial orientation. It is worth noticing that the onboard filter that esti-
mates the orientation will still use the magnetometer, since Xsens does not
give the possibility to modify any parameter of the filter.

Finally, before starting to publish the desired messages through ROS
topics, the initial packets from each tracker are synchronized. This proce-
dure is necessary to assign the correct absolute timestamp to each packet. In
fact, the MTw Awinda trackers, unlike other Xsens trackers (e.g., the MTi se-
ries [136]) do not provide an absolute timestamp with each received packet.
It is possible to calculate the relative timestamp between two packets by
knowing the update rate and the packet IDs, but direct information on the
absolute timestamps is not available. Furthermore, the Xsens communica-
tion protocol tries to minimize the number of packet losses, but it does not
guarantee that packets arrive at a constant rate.

For example, let us have an update rate of 100 Hz, which corresponds
to a δt = 10 ms between two consecutive packets. The following situation
is typical: a train of n packets arrives at the same time from one tracker,
then wait for n · δt s, then the next n packets arrive. By knowing the initial
packet ID and its absolute timestamp, it is possible to assign the correct
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absolute timestamps to all the other packets. However, this information
is not directly available. Since Xsens does not provide official information
on the delay between the actual reading and the arrival of the packet on
the master, we assume that, if n packets arrive at the same time t′, t′ will
correspond to the absolute timestamp relative to the latest packet.

The synchronization procedure stores the initial packets from each con-
nected tracker, finds the latest packet ID from each train of packets, and
assigns the correct timestamp to it. From this point on, the absolute times-
tamp of each packet is calculated with the following formula:

ti = T0 + (pkti − PKT0)/fN (3.1)

where ti is the absolute timestamp of packet i with packet ID pkti, T0 is the
absolute timestamp of the initial packet with packet ID PKT0, and fN is the
nominal update rate selected for the sensors.

Notice that T0 and PKT0 are the same among all sensors. This is valid
because the Xsens protocol guarantees that the same packet ID among dif-
ferent sensors connected to the same master is related to the same time-
frame. With this information, it is now possible to start streaming each
sensor’s data through the ROS network.

The driver loops through each connected tracker and finds if a new data
packet is available. If the user chose not to synchronize data between track-
ers, the absolute timestamp is assigned to the packet, and it is published
immediately. If the user chose to synchronize data between trackers, when
a new packet arrives, it is added to the Synchronizer’s buffer. When the
Synchronizer identifies the presence of a full time-frame, the data relative to
the frame are published. The loop is repeated until a stopping request is
received, and an appropriate shutdown procedure is executed.

The current version of the driver is based on the latest Xsens SDK ver-
sion supporting the MTw Awinda trackers (i.e., Xsens MT SDK v. 4.6.0) and
is freely available at github.com/hiros-unipd/xsens_mtw_wrapper.

3.4.1.5 Parameters

Table 3.1 contains all the parameters that the user can set by modifying file
launch/custom_configuration_example.launch.
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Table 3.1: List of parameters that the user can set in the proposed driver.

Parameter Description

xsens_mtw_node_required Set if the other ROS nodes on the PC
should be killed when the driver is killed

node_name Set the name of the ROS node
tf_prefix Set a prefix to avoid conflicts in the ROS

transforms
desired_update_rate Set the desired update rate

desired_radio_channel Set the desired radio channel
reset_initial_orientation Set if the initial orientation should be re-

set (IMU-like behavior) or not (MIMU
behavior)

enable_custom_labeling Set if custom labels should be assigned
to the trackers. The custom labels can be
defined in file config/sensor_labels.yaml

synchronize Set if data should be synchronized
sync_policy Set the synchronization policy (fill-

PartialFrames or skipPartial-
Frames)

publish_mimu_array Set if a single topic containing all the sen-
sor readings should be published or if a
series of topics for each sensor should be
published

publish_imu Set if the IMU data (accelerometer, mag-
netometer, and orientation as quater-
nion) should be published

publish_mag Set if the magnetometer data should be
published

publish_euler Set if the orientation as Euler angles (roll,
pitch, yaw) should be published

publish_free_acceleration Set if the free acceleration should be pub-
lished

publish_pressure Set if the pressure should be published
publish_tf Set if the orientation as ROS transform

should be published

3.4.2 EXPERIMENTS

A series of experiments have been conducted to assess the performance
of the developed driver. Specifically, the focus has been on the evaluation
of the computational time required to process each packet, and on the
real update rate that can be achieved, which depends on the number of

59



3. SENSING LEVEL

lost packets. The driver has been tested on an Intel Core i7-7500U CPU @
2.70 GHz laptop with 8 GB of RAM.

3.4.2.1 Analysis of the Computational Time

The average computational time required to process one packet has been
evaluated by varying the number of connected trackers, the update rate,
and the synchronization policy. The total time required to process a sin-
gle packet is the sum of the times required to acquire the packet from the
tracker, publish the packet, delete the packet from the buffer, and, if a syn-
chronization policy is chosen, synchronize the data among the trackers:

ttot = tacq + tpub + tdel (+ tsync) (3.2)

The number of connected trackers and the desired update rate do not
affect the average time required to process one packet. The only relevant
parameter, in this case, is the synchronization policy. The results are re-
ported in Table 3.2.

Table 3.2: Computational times required to process one packet with the
implemented synchronization policies. The last row reports the ratio be-
tween the total time required to process one packet and the average time
between two consecutive packets in the worst-case scenario (120 Hz update
rate). Data are presented as mean (SD).

Policy No Synchronization Skip Partial Frames Fill Partial Frames

Acquire 1.90 (0.27) µs 2.10 (0.22) µs 2.15 (0.36) µs
Publish 6.57 (0.93) µs 6.48 (1.22) µs 6.43 (1.07) µs
Delete 1.27 (0.13) µs 1.27 (0.12) µs 2.13 (0.14) µs

Synchronize - 0.27 (0.05) µs 0.63 (0.09) µs

Total 9.74 (1.26) µs 10.12 (1.48) µs 11.34 (1.46) µs
(%) 0.117 (0.015) % 0.121 (0.018) % 0.136 (0.018) %

We can notice how the average times to acquire and publish one packet
do not depend on the synchronization policy and are roughly equal to 2 µs
and 6.5 µs respectively. On the other hand, the average time required to
delete one packet from the buffer is higher when using the fillPartialFrames
policy (2.1 µs versus 1.3 µs). This can be explained by the fact that the
management of the Synchronizer’s internal buffer is more complex with the
fillPartialFrames policy. The deletion of a packet is not as straightforward as
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with the other policy or when no policy is set. Some packets, in fact, cannot
be deleted after being published if the next packet is missing. This check
determines an increase in the average time required to delete a packet.

The average time required to synchronize the data between packets is
also higher when the fillPartialFrames policy is set (0.6 µs versus 0.3 µs). In
general, the overhead required to synchronize the data is approximately
0.3 µs when using the skipPartialFrames policy, and 1.6 µs when using the
fillPartialFrames policy. This can be explained by the fact that the first policy
only has to check if the latest time frame contains data from all the trackers
and, if any packet is missing, it can free its buffer. On the other hand, the
latter policy must store more data in its buffer, since it needs to perform an
interpolation based on the older packets when a missing one is detected.
In the worst-case scenario (that is, with policy fillPartialFrames), the average
time required to process one packet is approximately 11.3 µs.

The last row of Table 3.2 shows the ratio between the total time required
to process one packet and the average time between two consecutive pack-
ets when the update rate is set to 120 Hz, which corresponds to a δt of
8.33 ms. We can see that the computational time required by the driver,
even when the most computationally intensive synchronization procedure
is set, is negligible (0.14 % of the δt).

3.4.2.2 Analysis of the Lost Packets

The necessity of a synchronization procedure comes from the fact that some
packets can get lost during the communication with the master. The cause
of the lost packets does not depend on the driver and appears to be related
to the distance between the trackers and the master.

To assess the impact of the lost packets on the performance of the tracker,
we varied the number of trackers, the update rate, the synchronization pol-
icy, and the distance between the trackers and the master receiver. The
trackers have been kept still at some defined distances (0.1 m, 2 m, 4 m),
without occlusions between the trackers and the master.

The number of connected trackers, the desired update rate, and the syn-
chronization policy does not affect the average number of lost packets. In
this case, the only relevant parameter is the distance between the trackers
and the master receiver. The results are reported in Table 3.3.

We can see how the relative distance between the trackers and the mas-
ter receiver affects the number of lost packets. When the trackers are close
to the master receiver, the number of lost packets is close to 0. When the dis-
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Table 3.3: Number of lost packets at different distances between the trackers
and the master PC.

Distance Lost Packets Received Packets % Lost

0.1 m 10 22767 0.04 %
2 m 474 22722 2.04 %
4 m 477 22736 2.05 %

tance increases above 2 m a plateau can be observed, where approximately
2 % of the packets are lost.

Three scenarios are possible, depending on the synchronization policy
set. Without a synchronization policy, some trackers might be publishing
at their nominal rate, while other trackers might be publishing at a slower
rate, due to the number of packets that are lost in the communication with
the master. In this case, some time frames will have missing data. By aver-
aging the update rates of all the trackers, the result should be close to 98 %
of the nominal rate. If the skipPartialFrames policy is selected, the overall
update rate will not be higher than the update rate of the slowest tracker,
but all the published data will refer to the same time frame, without any
partial frame. Finally, if the fillPartialFrames policy is selected, the overall
update rate will be close to the nominal one, even when some packets are
lost, by estimating missing data when necessary. In this case, to have a
decrease in the update rate, all the trackers connected to the master should
miss the data relative to the same time frame.

3.4.3 FINAL REMARKS

This section presented an efficient open-source C++ driver to interface the
Xsens MTw Awinda trackers with ROS. The key features of the developed
driver are:

1. Possibility to publish data up to 120 Hz through a single ROS topic
containing the readings from all the trackers, or through multiple ROS
topics for each sensor;

2. Assignment of an accurate absolute timestamp to each packet, which
is a feature not available within the Xsens SDK;

3. Online availability of both the raw accelerometers, gyroscopes, and
magnetometers data, as well as each tracker’s estimated orientation;
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4. Integration of two different synchronization policies, which are
needed to avoid partial frames, minimize the number of lost pack-
ets, and guarantee that the data from different trackers are correctly
synchronized.

This last point is necessary for applications that require a constant up-
date rate, or a strict time synchronization among the trackers. The synchro-
nization policy can be set by the user and has a negligible impact on the
performance of the system. In fact, the overhead of the worst-case scenario
(that is, with policy fillPartialFrames) is equal to 1.6 µs, with the total time re-
quired to process a single packet of 11.3 µs. Using the ROS middleware, the
proposed driver enables a variety of applications where online knowledge
of the human pose is required, with a focus on HRI applications, where
ROS is the de-facto standard.

Experiments have been performed to assess the performance of the sys-
tem, both with respect to the computational time required to process each
packet, and with respect to the number of packets lost during the wireless
communication with the master. The results show that the driver is efficient
(the total time required to process a single packet corresponds to approxi-
mately 0.14 % of the time between two consecutive packets) and the packet
losses negligible (2 % of the packets are lost at a distance of 4 m from the
master receiver).

Furthermore, the extensive evaluation of the performance of Xsens
MTw Awinda IMUs reported in [107] and based on the driver proposed
in this section, confirmed the effectiveness of the developed solution to
augment the sensors’ provided information with reliable timestamps.

3.5 ON THE ACCURACY OF IMUS FOR HUMAN MOTION

TRACKING

As stated in the previous sections, IMUs are nowadays becoming a portable
and cost-effective alternative to optical motion capture systems, and are
currently being introduced also in clinical settings for functional movement
quality assessing trials.

However, despite the increased interest in the topic, it is still quite diffi-
cult to understand the performance quality and limitations of many avail-
able mass-market IMUs. It is not uncommon to deal with poorly docu-
mented technical specifications, especially in terms of static/dynamic ac-
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curacy of the proprietary filters or the integrated sensor characteristics.
Moreover, the testing setup and working conditions are not always clearly
detailed. Consequently, identifying which IMU device is the most suitable
for a specific application is non-trivial.

The authors of [137], for example, implemented a new extended Kalman
filter-based algorithm demonstrating better accuracy under dynamic con-
ditions than Xsens’ proprietary filter, which is optimized to track move-
ments in a human-compatible range. The performance of the proposed
method has been evaluated using an optoelectronic motion capture system
as ground truth.

In [138], the authors analyze the performance of another IMU, the
MbientLab MetaMotionR, with respect to a Vicon motion capture system,
using a motorized gimbal to produce some predefined movements.

In this section, a study focused on the analysis of the performance of
three different well-established mass-market IMUs is reported. All the
IMUs used are comparable in terms of size and weight, although their mar-
ket value belongs to different price ranges: the ultra-low-cost InvenSense
MPU-9250 (∼10€), the low-mid-cost MbientLab MetaMotionR (∼90€), and
the high-cost Xsens MTw Awinda (∼400€). The first IMU only provides
the raw data measured from the integrated sensors (triaxial gyroscope, ac-
celerometer, and magnetometer), while the other two also integrate propri-
etary filters for orientation estimation.

To assess the performances of both raw data and orientation estimates,
Madgwick’s filter is used as an unbiased means of comparison. The experi-
mental protocol follows the one proposed in [128], employing a direct drive
servomotor, instead of a robotic manipulator, to move a custom-made 3D
printed socket where the IMUs are firmly attached. This allows simulating
dynamic movements with frequencies and amplitudes compatible with
human motion, evaluating orientation tracking errors under a broad set of
controlled and repeatable conditions. It is useful to note that this robotic
approach is tailored to highlight the performance of the IMU devices, since
there is no source of error except for the ones affecting the servomotor
control, which are found to be negligible.

3.5.1 MATERIALS

In this section, a brief description of each IMU used in the experiments is
provided, focusing on the technological and constructional specifications of
both integrated sensors and orientation estimation algorithms. Figure 3.4
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shows the IMUs used in the experiments with their default local coordinate
reference systems, while the most relevant specifications are resumed in
Table 3.4.

(a) (b) (c)

Figure 3.4: Xsens MTw Awinda (a), InvenSense MPU-9250 (b), MbientLab
MetaMotionR (c) and their default local coordinate reference systems.

Table 3.4: Specifications of the IMUs used in the experiments (sources:
[132], [139], [140]).

Specifications MTw Awinda MPU-9250 MetaMotionR

Interface Wireless 2.4 GHz I2C - SPI Bluetooth LTE 2.4 GHz
Maximum update rate 120 Hz 100 kHz - 20 MHz 100 Hz
Price/Unit [€] ∼400 ∼10 ∼90
Power supply LiPo battery 2.4-3.6 V cabled pinout Li-ion battery
Acc. measurement
range [g]

±16 ±2–16 ±2–16

Gyro. measurement
range [°/s]

±2000 ±250–2000 ±125–2000

Mag. measurement
range [µT]

±190 ±4800 ±1300

Acc. nonlinearity [%FS] 0.5 0.5 0.5
Gyro. nonlinearity
[%FS]

0.1 0.1 0.1

Mag. nonlinearity [%FS] 0.1 N/A 1
Acc. rate noise spectral
density [µg/

√
Hz]

200 300 300

Gyro. rate noise spectral
density [°/s/

√
Hz]

0.01 0.01 0.007

Mag. rate noise spectral
density [µT/

√
Hz]

0.02 N/A N/A
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3.5.1.1 Xsens MTw Awinda

MTw Overview. The MTw (2016) is a miniature wireless IMU incorporating
a 3D accelerometer, a 3D gyroscope, a 3D magnetometer, and a barometer.
An embedded processor handles sampling, buffering, calibration, integra-
tion, and wireless data transmission. Data transmission is implemented
through a patented radio protocol, achieving time synchronization of up
to 20 MTws across the wireless network within 10 µs. The communication
is managed by the Awinda Master station, receiving synchronized data at
up to 120 Hz. The raw sensor measurements are internally calibrated and
sampled at 1 kHz, exploiting Strap Down Integration (SDI) for orientation
and velocity increments computation. Specific information on integrated
sensors is not provided, except for those listed in Table 3.4.

Proprietary Filter. Xsens’ 3 DoF Kalman Filter for human motion (XKF3hm)
is used to estimate the 3D orientation of the IMU in real-time. 3D inertial
data and measured magnetic field are efficiently fused directly on-board.
The continuous integration using SDI captures movements that are short-
term accurate, high-bandwidth, and, due to carefully made assumptions
on the motion dynamics and the sensor characteristics, provides drift-free
orientation estimates. Moreover, long-term accelerations may cause perfor-
mance degradation with respect to roll/pitch angles. The manufacturers
claim that the XKF3hm provides the most accurate heading estimate avail-
able, thanks to the accurate dead-reckoning provided by the SDI and the
implementation of practical application knowledge.

Summarizing, considering roll/pitch static and dynamic accuracies,
values of 0.5° and 0.75° RMS are stated, while 1° and 1.5° RMS for head-
ing angles. Although the stated performances are remarkable, the user is
provided with little to no information regarding operational conditions or
bandwidth ranges where these values can be considered reliable.

3.5.1.2 InvenSense MPU-9250

MPU-9250 Overview. Three 16-bit analog-to-digital converters are avail-
able to digitize the output of each sensor. At the time the product was
developed, the manufacturers stated that it was the world’s smallest 9-axis
motion tracking device.

Each sensor features user-programmable full-scale ranges (Table 3.4) to
adjust performances to different applications’ characteristics. The commu-
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nication with the registers can be performed using both I2C and SPI proto-
cols, the latter being suited for fast applications given its maximum operat-
ing speed of 20 MHz.

An important feature is the presence of an embedded Digital Motion
Processor, which can acquire and process inertial and magnetometer data
from the sensors. The device integrates neither wireless communication
features nor batteries for power supply, therefore, it needs to be cabled to a
voltage source (2.4-3.6 V). The IMU is, however, designed to be low-power-
consuming, as it runs with a 3.5 mA operating current when all 9 motion
sensing axes are enabled.

Drift issues are strongly reduced by the minimal cross-axis sensitivity
between the sensors. The device does not integrate a filter for orienta-
tion estimation, and no information on the accuracy achievable when
employing a specific algorithm is available. Therefore, in this work, only
Madgwick’s filter will be used, on the raw sensor data, to compare the
achievable accuracy with the other IMUs.

3.5.1.3 MbientLab MetaMotionR

MetaMotionR Overview. The MetaMotionR (MMR) (2016) is a wearable
IMU device that includes a BMI160 (3-axis, 16-bit digital accelerometer and
gyroscope), and a BMM150 (3-axis geomagnetic sensor), along with tem-
perature, barometer, and luminosity sensors. It relies on the Bosch 9-axis
sensor fusion software for orientation estimation.

Everything is integrated on a PCB, powered by a 100 mA h lithium-ion
3.7 V battery. The board uses a Bluetooth Low Energy communication pro-
tocol, able to stream data up to 100 Hz. Both BMI160 and BMM150 feature
user-programmable full-scale ranges (Table 3.4). In full operation mode,
the low power consumption is typically 925 µA for the BMI160 and 0.5 mA
for the BMM150.

Proprietary Filter. There are four available onboard sensor fusion algo-
rithms to estimate IMU orientation. For fair comparison and analysis, the
NDOF (9 DoFs) fusion mode was chosen for the experiments, where the
absolute orientation is calculated from accelerometer, gyroscope, and mag-
netometer data, with a maximum transmission rate of 100 Hz.

The algorithm was designed for human motion tracking; therefore, long
accelerations over long periods of time can cause its performance to deteri-
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orate. It automatically performs a background calibration of all sensors, al-
though the manufacturers suggest periodically performing a manual recal-
ibration. Pitch and roll angle drifts are compensated by sensing the Earth’s
gravity, and heading drift is compensated by sensing the Earth’s magnetic
field. Moreover, when the device is in motion, the algorithm ignores the
accelerometer data and relies only on the gyroscope for the estimation of
the pitch and roll angles. Likewise, if the magnetometer data are detected
to be distorted, they will be ignored.

The manufacturers claim that the bias stability is close to the maximum
stability allowed for a consumer electronic device, considering the low cost
of the device. Lastly, the sensor fusion algorithm can automatically detect
if the device is standing still, stopping the integration of the gyroscope data
to prevent drift. As for the MTws, the user is not provided with detailed
information on dynamical operational conditions, bandwidth limitations,
and calibration accuracies.

3.5.2 EXPERIMENTS

3.5.2.1 Experimental Setup

The experimental setup used for this study is shown in Figure 3.5. It
consists of the set of commercial IMUs introduced in Section 3.5.1, a
custom-made 3D printed socket where the IMUs are firmly attached,
and a direct drive servomotor (SGMCS-02BDC41, Yaskawa). The motor
drive (Servopack SGDV-2R8A01B, Yaskawa) is interfaced to a National
Instruments DAQ board for motor control and encoder reading. The servo-
motor is controlled via Simulink, with an accurately tuned PID controller,
capable of following the provided reference signal with a maximum error
of 0.1°.

The IMUs are interfaced with ROS using internally developed
C++/Python real-time drivers (i.e., [106] for Xsens IMUs, unpublished
for the others). These allow to directly stream, on single or multiple
configurable ROS topics, the data obtained from each sensor (raw accelera-
tions, angular velocities, magnetic fields, and estimated orientations) up to
120 Hz. Furthermore, the absolute timestamp is calculated for each packet
received from the IMUs, to retrieve consistent synchronized measurements.
All the software is run on a single desktop PC (Alienware Aurora R8, Dell)
with Ubuntu 18.04 LTS for data acquisition and processing.

68



3.5. On the Accuracy of IMUs for Human Motion Tracking

(a) (b)

Figure 3.5: Experimental setup. (a) Complete setup including direct drive
servomotor, customized socket, and IMUs used for data collection, (b) top
view.

3.5.2.2 Experimental Protocol

The experimental protocol follows the one proposed in [128]. It consists of
static and dynamic validations, precisely under stationary conditions and
during sinusoidal rotations around the following axes, defined with respect
to a global coordinate reference system (Figure 3.5):

• −→a1 = [0, 0, 1]T (horizontal)

• −→a2 = [1, 0, 0]T (vertical)

• −→a3 = [
√

2/2, 0,
√

2/2]T (45°)
These configurations allow to assess IMU performances, respectively,

during attitude, heading, and mixed contemporary attitude and heading
movements. The static performance test comprises a pure static evaluation,
in which the set of IMUs is kept stationary for 10 min to test the performance
of both proprietary and Madgwick’s filters in terms of divergence from a
still position.

Regarding the dynamic evaluation, a set of sinusoidal movements was
generated combining 7 different frequencies (0.18, 0.32, 0.56, 1, 1.78, 3.16
and 5.62 Hz) and 5 different amplitudes (±3, ±6, ±9, ±12 and ±18°), for
a total of 35 experiments. Both the frequency and the amplitude values
were selected to provide good coverage in the bandwidth characterizing
the majority of human movements [128]. Each experiment consists of a
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40 s sinusoidal movement, of which the first and last 10 s are exponentially
smoothed to avoid abrupt movements. The experiment then ends with 20 s
of rest period after the movement is completed. This set of 35 experiments
is repeated 5 times for each axis configuration, to ensure dataset consis-
tency.

3.5.3 RESULTS

Before performing the experiments, each IMU sensor was calibrated fol-
lowing the procedures suggested by the manufacturers, to achieve opti-
mal performance with the proprietary filters, and to collect consistent mea-
surements. Moreover, Madgwick’s filter was tuned accordingly, ensuring
the minimal orientation error on all IMU data. Since no significant dif-
ferences were observed for the results of the 3 configurations defined in
Section 3.5.2.1, the discussion focuses on the 45° configuration, reflecting
all the other cases.

The metric chosen to quantify the accuracy of each IMU is the orienta-
tion error in the quaternion space, defined as:

Φ(qA, qB) = 2 arccos (qA · qB) (3.3)

where Φ defines the length of the shortest path (i.e., a geodesic) connecting
the two quaternions qA and qB on the 4-dimensional hyper-sphere where
they are defined.

To fairly compare the performance over the whole set of experiments,

for each test we computed the RMSE as
√∑N

t=1 Φ(qexp,t,qgt,t)2/N, where qexp,t

and qgt,t represent the orientation obtained by each IMU and the ground
truth orientation, at time t, respectively. We then normalized such value
with respect to the semi-amplitude of the sine movement and finally ex-
pressed it as a percentage (P-RMSE).

The obtained P-RMSE values are reported in Figure 3.6 and Figure 3.7,
while the RMS errors were averaged over the whole set of experiments in
Table 3.5. Experiments with a P-RMSE greater than 50 % were considered
unacceptable and thus discarded, concluding that tracking could not be
achieved under these conditions.

Static Accuracy. To validate the static accuracy, the IMUs were kept still
for 10 min with the servomotor turned off, to avoid any source of distur-
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Figure 3.6: Percentual RMS orientation errors (P-RMSE) for the 45° con-
figuration, averaged among the different trials of each sine amplitude-
frequency combination. Proprietary filters of (a) MTw and (b) MMR.
P-RMSE values higher than 50 % are discarded.

Table 3.5: Average orientation errors (RMSE ± SD) for each setup configu-
ration (°).

IMU Experiment Proprietary Filter Madgwick’s Filter

MMR

Horizontal 0.47 ± 0.22 0.83 ± 0.39
Vertical 0.97 ± 0.46 0.90 ± 0.42
45° 0.83 ± 0.28 1.04 ± 0.49
Overall 0.76 ± 0.32 0.92 ± 0.44

MPU

Horizontal — 1.68 ± 0.73
Vertical — 1.64 ± 0.70
45° — 1.01 ± 0.41
Overall — 1.44 ± 0.62

MTw

Horizontal 0.27 ± 0.09 1.29 ± 0.49
Vertical 0.25 ± 0.09 1.12 ± 0.45
45° 0.26 ± 0.09 1.05 ± 0.39
Overall 0.26 ± 0.09 1.16 ± 0.44

bance. The experiments started after the orientation transitory ended and
convergence to a constant value was achieved.

The drift values computed under these conditions highlight negligible
drifts for all the considered filters, with magnitudes always lower than 2.2×
10−4 °/s. No significant differences can be observed between Madgwick’s
filters (MMR drift = 1.99 × 10−4 °/s, MPU drift = 1.87 × 10−4 °/s, MTw drift
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Figure 3.7: Percentual RMS orientation errors (P-RMSE) for the 45° con-
figuration, averaged among the different trials of each sine amplitude-
frequency combination. Madgwick’s filter on (a) MTw, (b) MMR and (c)
MPU. P-RMSE values higher than 50 % are discarded.

= 1.88 × 10−4 °/s), showing that the sensor measurements of all IMUs are
consistent and reliable.

Regarding the proprietary filters, we observed the lowest drift on the
MMR (3.57 × 10−5 °/s), since the MMR filter detects still positions and
stops integrating the gyroscope measurements, keeping the orientation
locked until movement is recognized. In this way, all the typical sources
of errors that cause orientation estimates to drift are avoided. To conclude,
the MTw’s drift is 2.16 × 10−4 °/s, a value comparable to the ones obtained
through Madgwick’s filter.
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Dynamic Accuracy. The results obtained during the dynamic accuracy as-
sessment were constantly affected by drift, motivating the authors to per-
form further experiments to identify the cause of such phenomena. The
performed investigation characterized the drift as constant in the entire set
of experiments, caused by the vibrations of the controlled motor, having
a frequency content that is way out of the experiments’ range (over 50 Hz
with an assessment bandwidth lower than 6 Hz). These findings motivated
the choice of compensating the drift, being caused by external sources due
to the characteristics of the experimental setup.

The ground of truth is directly computed from the encoder readings by
compensating the initial offset between each IMU’s coordinate system and
the socket’s one. For each experiment, the P-RMSE is computed on the 20 s
of pure sinusoidal motion.

As can be seen in Figure 3.6 and Figure 3.7, the MTw proprietary fil-
ter provides the best results in dynamic conditions, with a P-RMSE always
lower than 10 %, demonstrating to be the most adequate for high-precision
human motion tracking. The computed average drift of 2.61 × 10−4 °/s,
which is almost equal to the one under static conditions, highlights their
robustness to external disturbances and vibrations.

The MMR proprietary filter estimates turned out to be deeply affected
by drift in the dynamic experiments, with a drift in the heading estimates
of ∼ 0.7 °/min. A possible explanation for this behavior could be found
in the documentation, where the manufacturers state that if the magne-
tometer readings are detected to be distorted, they are ignored and the es-
timate relies only on the gyroscope and accelerometer. This hypothesis is
further confirmed by the much lower drift affecting orientations estimated
by Madgwick’s filter on the same raw data. This solution is nevertheless
suitable for relatively slow movement applications (e.g., in motion rehabil-
itation).

Furthermore, a significant performance drop can be observed, inde-
pendently from the adopted configuration, in the following experiments:
⟨1.78 Hz, 12°⟩, ⟨1.78 Hz, 18°⟩, and ⟨3.16 Hz, 6°⟩. The authors explain this
drop as a consequence of an incorrect internal estimate of the gravity vec-
tor, caused by measured free-body linear accelerations comparable with
gravity ones. In the subsequent experiments, where accelerations are even
higher, probably the internal filter disables the accelerometers, causing
a lighter performance degradation than under the conditions mentioned
above (Figure 3.6).

Taking into account the estimates provided by the Madgwick’s filter
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applied to the raw data measured from the three IMUs (Figure 3.7), no
significant differences can be observed for motion frequencies below 1 Hz.
Moreover, in this range of frequencies, no one outperforms the proprietary
filters.

For motion frequencies above 1 Hz, the MPU performs slightly better
than its competitors but, again, the differences are minimal. At the highest
frequency (5.62 Hz) the P-RMSE is always higher than 20 %, but this lack of
accuracy could be due to the low sampling rate of the raw data made avail-
able from the IMUs. Indeed, while internally raw data are sampled and
used to estimate the orientation at high frequency, the same data are made
available at much lower rates (e.g., for the MTw the internal sampling rate
is 1 kHz, while raw data are made available externally only at a maximum
rate of 120 Hz).

Finally, drift assessment under dynamic conditions highlights that
the MTw and the MMR outperform the MPU (drifting respectively of
5.61 × 10−4 °/s, 6.62 × 10−4 °/s, and 2.93 × 10−3 °/s). Moreover, while for the
latter the drift is one order of magnitude higher than under static condi-
tions, for MTw and MMR it is almost the same, showing poor robustness
to vibrations of the MPU.

3.5.4 FINAL REMARKS

This work investigated the potentialities and limits of three IMUs, belong-
ing to different market segments, for human motion tracking applications.
In particular, in increasing order of cost, InvenSense MPU-9250, MbientLab
MetaMotionR, and Xsens MTw Awinda.

A direct driver servomotor moves, following a sinusoidal reference, a
custom-made 3D printed socket where the IMUs are firmly attached, en-
suring repeatability and accuracy. Amplitudes and frequencies of the si-
nusoidal motion are varied within a range compatible with human mo-
tion characteristics. Orientation estimates are compared with the encoder-
provided ground truth in terms of both absolute and percentual RMSE
(P-RMSE). Furthermore, both static and dynamic drifts are assessed. To
compare the performances of the integrated sensors, an open-source
Madgwick’s filter implementation has been employed.

The obtained results show no significant drift on orientation estimates
for all the tested IMUs under static conditions and for the MTw under dy-
namic conditions. On the contrary, limitations are shown in terms of sen-
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sitivity to vibrations, for the MPU, and to magnetic field distortions com-
bined with accelerations comparable with the gravity one, for the MMR.

Under dynamic conditions, the MTw’s proprietary filter outperforms
the competitors during medium and fast movements (i.e., frequencies
higher than 1 Hz). Instead, below that threshold, the performance of pro-
prietary filters is almost the same for MTw and MMR. In contrast, no
significant difference arises from the comparison of orientation estimates
obtained by applying the Madgwick’s filter to the raw data coming from
the different IMUs, highlighting similar performances for all the integrated
sensors.

3.6 CONCLUSIONS

This chapter described my research within the Sensing level. The disser-
tation began with an analysis of the different typologies of sensors used in
the MoCap systems supported in the proposed work. Due to the limitations
of optoelectronic systems, which typically confine their use to specialized
laboratories, the discussion primarily focused on markerless and inertial
MoCap. Thus, two categories of sensors can be identified: RGB/RGB-D
cameras (depending on whether depth information is produced or not) and
IMUs.

First, the different technologies allowing to estimate the depth map of
a scene using one or multiple RGB-D cameras were analyzed. They can be
divided into stereo vision, structured light, and ToF sensors, depending on
the physical phenomenon exploited for the depth estimation.

The focus then shifted to IMUs. While in markerless MoCap a single
camera can be sufficient for basic assessments of motion, inertial MoCap
always requires multiple IMUs to be worn on the body of the analyzed
subject. Therefore, the chapter continued by presenting an efficient imple-
mentation of a driver allowing to interface multiple Xsens MTw Awinda
IMUs with ROS and enabling real-time streaming of their data. The driver
also includes a novel synchronization algorithm to ensure that each time
frame contains consistent data from all the connected IMUs, avoiding pos-
sible partial frames. This is particularly useful when using such data to
perform an IK optimization.

The analysis then shifted to investigating the performance and limits of
three different IMU manufacturers for human motion tracking. A series of
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experiments were carefully designed to mimic the amplitudes and frequen-
cies typical of human movement. The experimental setup consisted of three
IMUs (i.e., Xsens MTw Awinda, MbientLab MetaMotionR, and InvenSense
MPU-9250) firmly attached to a direct drive servomotor controlled to fol-
low specific sinusoidal references. The ground truth was directly computed
from the encoder readings by compensating the initial offset of each IMU’s
coordinate system. The obtained results demonstrated how Xsens outper-
forms the other IMUs at the highest frequencies, while at the lowest fre-
quencies all sensors perform equally. Thus, while expensive sensors allow
for more accurate tracking of fast motion, for slow movements (e.g., in a
rehabilitation context), cheaper sensors are also adequate.
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4 Tracking Level

Part of the work presented in this chapter has been submitted as scientific papers
[72], [77].
I have made a substantial and principal contribution in the conception and design
of these studies, related software development, analyses and interpretations of the
results, drafting, and critical revision of the final manuscripts.
Co-authors’ permissions for the inclusion of the studies in this dissertation have
been obtained.

4.1 INTRODUCTION

As introduced in Section 1.3, the Tracking level unifies my work focused on
accurately tracking multiple people by fusing the data obtained from mul-
tiple sensors in real-time. It is designed to take as input multiple people’s
poses estimated by exploiting a generic network of homogeneous sensors.
No assumptions are made about the number, typology, and synchroniza-
tion of the sensors being used, the number of people being analyzed, and
the algorithm used for the estimation of the body poses.

The Tracking level aims at overcoming several problems arising when a
distributed network of sensors (e.g., a camera network) is used to assess
human motion from multiple viewpoints. Common challenges come from
background clutters, limited FoVs, occlusions (due to the environment, but
also self-occlusions of the human body), and the general difficulty of track-
ing the human body, a system characterized by a large number of DoFs and
prone to self-occlusions.

One possible solution to reduce the impact of the aforementioned limi-
tations consists of exploiting a distributed camera network to acquire data
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of the same scene from multiple viewpoints. By fusing the partial informa-
tion coming from each camera, it is possible to increase stability, accuracy,
and reduce occlusions, allowing to obtain stable 3D reconstructions of the
subjects’ movements.

However, the usage of a multi-camera network introduces additional
levels of complexity. First, different sensors might perceive different num-
bers of people on the scene. In fact, a person visible to a camera might be
fully occluded in another camera’s FoV. Additionally, one (or more) sensors
might fail to accurately estimate the motion of a person. Thus, contrasting
information can be present on the network.

Synchronization is a second important problem. Data obtained from a
distributed system might refer to different time frames. Moreover, the cen-
tral node in charge of fusing the data from each sensor might receive the
packets in the wrong order (e.g., the computation and/or communication
times from one of the sensors might be higher with respect to another, re-
sulting in older packets arriving after more recent ones).

Furthermore, the information obtained from each sensor might refer to
different reference frames. Even when data refer to a unique global ref-
erence frame, the calibration (i.e., the set of poses describing the relative
positions among all the sensors in the network) might not be perfect. Thus,
the same marker describing the same person might be placed in slightly dif-
ferent positions when expressed with respect to the global reference frame.
This can result in sensible jitter in the estimated poses and, in the worst-case
scenario, in completely wrong estimations of the body poses.

Finally, a typical problem in markerless MoCap is the possibility of
having varying body dimensions across consecutive frames. In fact, the
detected markers describing the pose of a person can be noisy, due to sev-
eral factors. The quality of the hardware and of the BPE algorithm being
used, how cluttered the specific environment is, the typology of poses that
are assumed, and the number of interacting people, are all factors affecting
the quality of the estimation. This can result in the estimation of unrealistic
poses, both regarding the values of the anatomical joint angles and the
lengths of the body segments.

My work on this topic tackles the aforementioned challenges by divid-
ing the overall problem (i.e., providing accurate real-time body poses of
multiple people from a generic network of sensors) into four subproblems.
In this regard, four modules were developed to enable:

1. robust tracking of the different poses obtained by each sensor
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(Skeleton Tracker module, Section 4.3.2.1);
2. accurate fusion of the body poses estimated by all the sensors in the

network, after detecting possible wrong estimates (Skeleton Merger
module, Section 4.3.2.2);

3. optimization of the estimated body poses to ensure consistency of
the body dimensions and fix of possible outliers (Skeleton Optimizer,
Section 4.3.2.3);

4. online smoothing of the motion trajectories by filtering high-
frequency noise (Skeleton Filter module, Section 4.3.2.4).

The computation of each of the aforementioned modules is in real-time1.

To assess the performance of the proposed workflow, an extensive
dataset of movements was acquired. Both single-person sequences, con-
taining data from 15 participants performing a set of 12 activities of daily
living (ADLs), and multi-person sequences, including 7 different actions
with two to four persons interacting in a confined area, were recorded.
The multi-person sequences were specifically designed to challenge multi-
people tracking algorithms. Strong occlusions (both partial and full-body)
and multiple people exiting and reentering the cameras’ FoVs are present.

The dataset, namely UNIPD-BPE, includes 13.3 h of high definition RGB
and depth data (corresponding to over 1 400 000 frames) recorded by a cali-
brated RGB-D camera network of five synchronized Azure Kinect cameras.
Furthermore, 3 h of inertial MoCap poses are obtained by exploiting highly
accurate Xsens MVN Awinda full-body suits, corresponding to a total of
over 600 000 frames recorded by each of the 17 IMUs used by each suit.
All the recorded data will be released under the Creative Commons CC0
license in conjunction with the publication of [72].

To this end, Section 4.2 describes in detail all the recorded sequences
available within the UNIPD-BPE dataset, as well as the experimental pro-
tocol used for the acquisitions and synchronization among all the sensors
used. Finally, Section 4.3 proposes an in-depth analysis of the workflow
proposed for real-time multi-sensor and multi-people BPE and tracking.
The section concludes by presenting and discussing the results obtained by
exploiting the Hi-ROS framework on the UNIPD-BPE dataset.

1Detailed analyses of the proposed system’s accuracy, robustness, and real-time per-
formance are reported in Section 4.3.3
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4.2 UNIPD-BPE: SYNCHRONIZED RGB-D AND INERTIAL

DATA FOR MULTIMODAL BODY POSE ESTIMATION AND

TRACKING

As presented in Section 1.2, highly accurate human motion analysis relies
on optoelectronic systems that track small retroreflective markers attached
to the subject’s body. These systems, although extremely accurate, are char-
acterized by high costs and complex setups. Such characteristics constrain
their use to specific applications that are confined in a dedicated laboratory
(e.g., clinical analyses or animation industry MoCap). However, real-time
human pose estimation could benefit a variety of fields, ranging from HRI,
industry, autonomous driving, surveillance, and telerehabilitation. In such
contexts, the deployment of optoelectronic systems is usually not feasible,
and markerless analyses are a promising tool to address this issue.

Markerless BPE has been a topic of intensive research for decades in
the CV community. Despite the improvements achieved in the latest years
thanks to the advances enabled by data-driven approaches [25], [28], [141],
[142], the accurate assessment of human motion without relying on any
sensor or marker attached to the body is still an open challenge. Limited
FoVs of the cameras and occlusions due to the environment, but also self-
occlusions of the human body, limit the accuracy of such systems. One
possible solution to reduce the impact of the aforementioned limitations
consists of exploiting a distributed camera network to acquire data of the
same scene from multiple viewpoints. By fusing the partial information
obtained from each camera, it is possible to reduce the effect of occlusions
and, at the same time, increase the overall system’s accuracy.

In recent years, the development of portable and easy-to-use low-cost
3D cameras (e.g., the Microsoft Kinect) has further pushed the interest in
markerless BPE [143]–[146]. The main advantage of these devices is the
possibility to retrieve real-time synchronized RGB and depth data of the
scene, up to 30 Hz. However, despite the widespread use of such sensors
and the variety of available human motion datasets, only a small number of
public datasets include RGB-D data and even less offer multiple calibrated
RGB-D views. In fact, to the best of the author’s knowledge, a compre-
hensive dataset including complex scenes with multiple people, RGB and
depth data from a significant calibrated RGB-D camera network, together
with ground truth body poses for all the recorded sequences, is still miss-
ing. All the most used markerless MoCap datasets (either focused on BPE

80



4.2. UNIPD-BPE: Synchronized RGB-D and Inertial Data for Multimodal
Body Pose Estimation and Tracking

or on action recognition) lack at least one of the aforementioned features.
HumanEva [147] is one of the first and most used datasets recorded for

benchmarking markerless human pose estimation algorithms. The dataset
includes six ADLs recorded from four different actors using four grayscale
cameras, three RGB cameras, and a marker-based optoelectronic system as
a ground truth. No information on the depth of the scene is available, and
each sequence only involves a single person.

Human3.6M [148], on the other hand, offers depth data of the scene us-
ing a single ToF sensor. Also in this case, ground truth poses are acquired
via marker-based MoCap, while visual data are recorded using four RGB
cameras. The dataset includes a predefined set of 16 ADLs performed by
11 actors. Even in this case, no interactions among subjects are available.

Our previous work, the IAS-Lab Action Dataset [149], was one of the first
to include RGB-D sensors in the acquisition setup. This dataset consists of
15 ADLs performed by 12 people. RGB and depth data are provided, as
well as the persons’ body poses estimated by exploiting a markerless BPE
algorithm. However, data are recorded using a single Kinect v1 camera.
Additionally, no ground-truth poses are available, nor are sequences with
multiple people.

Berkeley MHAD [150] is one of the first datasets to include accelerometers
in the acquisition setup. Eleven ADLs performed by 12 actors are recorded
using marker-based MoCap, 12 RGB cameras, two Kinect v1 cameras, and
six accelerometers. However, similarly to the previous works, the focus
is on estimating single persons’ actions, and no interactions are taken into
account.

TUM Shelf [67] is among the most used datasets for benchmarking
markerless BPE algorithms. It includes five RGB cameras to record a group
of four people disassembling a shelf. Severe occlusions and unbounded
motion of the persons are the main challenges of this dataset. However,
since no other sensing devices are involved, the dataset offers only sparse
manually annotated poses as a ground truth. The same authors also re-
leased the TUM Campus dataset [67]. The particularity of this dataset is that
it is captured outdoors. The recorded scenes depict three people interact-
ing on campus grounds. Similar to TUM Shelf, only three RGB cameras are
used. Thus, the same limitations apply.

CMU Panoptic [151] is a large-scale dataset that includes 480 VGA cam-
eras, 31 HD cameras, and 10 Kinect v2 cameras. A variety of actions (in-
cluding both single-person and multi-person activities) are recorded inside
a custom-built dome accommodating all the hardware. However, since vi-

81



4. TRACKING LEVEL

sion is the only modality used to retrieve data, the recorded poses are only
computed via triangulation based on a 2D BPE algorithm that runs on each
camera, without any external ground truth.

Another public dataset including multiple depth views is the NTU
RGB+D dataset [152]. Forty subjects are recorded performing a set of 60 ac-
tions that include ADLs, mutual activities, and health-related movements.
The sensors used to extract the persons’ poses are three Kinect v2 cameras.
However, since the focus is on the validation of action recognition algo-
rithms, no ground-truth poses are provided, but only labels indicating the
type of actions being performed.

All the aforementioned datasets mainly focused on vision, including
markerless and marker-based MoCap. UTD-MHAD [153], on the other
hand, introduced the use of one IMU, in conjunction with a Kinect v1 cam-
era. Eight subjects are individually recorded while performing a set of 27
predefined actions ranging from sports, hand gestures, ADLs, and training
exercises. Similarly to the previous work, however, the focus is on action
recognition. Thus, the available ground truth is limited to manually anno-
tated labels describing the actions being performed.

Total Capture [154] is a widely used dataset and one of the first to intro-
duce the usage of a full-body inertial suit consisting of 13 IMUs, alongside
eight RGB cameras and marker-based MoCap. Five subjects are recorded
performing a set of five actions selected from RoM activities, walking, act-
ing, running, and freestyle. Ground-truth poses are computed via marker-
based MoCap. However, the dataset does not include interactions among
subjects, and no information on the depth of the scene is available.

AndyData-lab [155], similarly to the previous work, includes data from
marker-based MoCap, a full-body inertial suit, two RGB cameras, while
also adding finger pressure sensors. Since this work focuses on human
motion analysis in industrial settings, 13 subjects are recorded while per-
forming six industrial tasks, including screwing at different heights and
manipulating loads. As in the previous work, neither interactions among
subjects nor information on the depth of the scene are available.

Finally, Human4D [156] includes data from an optoelectronic system
and four Intel RealSense RGB-D cameras (Intel Corp., Santa Clara, CA,
USA). Four actors are recorded, both individually and in pairs, while
performing a set of 14 single-person ADLs and five two-person activities
in a professional MoCap studio. Ground-truth poses are collected via
marker-based MoCap, and both RGB and depth recordings of the scene
are available. However, during the recordings, all actors needed to wear
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a full-body black suit to accommodate the body markers required by the
optoelectronic system during the entire trial. These artificial clothes can
hinder the performance of RGB-based markerless BPE algorithms, po-
tentially decreasing their accuracy, since they do not constitute a realistic
scenario.

This section presents the University of Padova Body Pose Estimation
dataset (UNIPD-BPE), an extensive dataset for multi-sensor BPE contain-
ing a large number of single-person and multi-person sequences with up to
four people interacting. Full-body poses, as well as raw data from each sen-
sor, are recorded both by means of a calibrated network with five RGB-D
cameras (i.e., Microsoft Azure Kinect, Microsoft Corp., Redmond, WA,
USA) and by exploiting up to two highly accurate full-body inertial suits
(i.e., Xsens MVN Awinda, Xsens Technologies, Enschede, Netherlands). All
recorded data will be released under the Creative Commons CC0 license in
conjunction with the publication of [72].

The Azure Kinect is the latest RGB-D camera developed by Microsoft,
with improved performance compared to the previous model (i.e., the
Kinect v2). As demonstrated in [157], the Azure Kinect SD is reduced by
more than 50 % with respect to the Kinect v2, while also achieving a depth
estimation error lower than 11 mm. For these reasons, the Azure Kinect is
a promising device with a wide range of uses including object recognition,
people tracking and detection, and human-computer interaction.

This dataset is the first to include high-definition RGB, depth, and BPE
data from five calibrated Azure Kinect cameras. Videos and point clouds
are recorded both at a resolution of 1920 x1080 pixels @ 30 Hz, and 640 x576
pixels @ 30 Hz (native resolution of the depth sensor). Moreover, all sub-
jects’ body poses are estimated via markerless MoCap by exploiting the
Azure Kinect Body Tracking SDK [158], offering baseline data to develop
and benchmark different BPE and tracking algorithms. The high number
of cameras allows to assess the impact of different camera network config-
urations on the accuracy achieved by markerless BPE algorithms, while the
high-resolution recordings allow to quantify how different image resolu-
tions can impact a specific algorithm.

The UNIPD-BPE dataset also contains full-body inertial MoCap data,
collected by up to two Xsens MVN Awinda suits. Each suit consists of 17
MTw Awinda trackers, including a 3-axis gyroscope, a 3-axis accelerometer,
and a 3-axis magnetometer. As demonstrated in [107], these sensors are
extremely accurate for inertial BPE. Each tracker has a dynamic accuracy
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of 0.75 °RMS for roll and pitch, and 1.5 °RMS for the heading estimation,
constituting a flexible and reliable tool for capturing human motion [159].

The proposed dataset includes both the raw data from each tracker, and
detailed data describing each subject’s body kinematics, computed by ex-
ploiting the MVN Analyze software. Such software combines the data of
all motion trackers with a biomechanical model of the human, allowing to
obtain an accurate and drift-free estimate of the body pose [57]. The hard-
ware/software combination used on this work allowed to record raw IMU
data (estimated orientation, angular velocities, linear accelerations, mag-
netic fields) for all the trackers required by each suit @ 60 Hz, as well as 3D
positions, orientations, velocities, accelerations of the 23 segments defining
the Xsens biomechanical model, anatomical joint angles of 22 joints plus 6
additional joint angles targeted to ergonomic analyses, and the body center
of mass location throughout all the sequences.

No optoelectronic data are included in this dataset because the required
markers attached to the body are highly reflective, resulting in a strong dis-
tortion in the depth of the Kinects, and, consequently, in a poor estimation
of the body pose. While it is possible to properly synchronize the two sys-
tems to avoid interference, this solution still degrades the Azure Kinect’s
performance. Therefore, to ensure maximum accuracy of the recorded
markerless data, we chose to employ an inertial MoCap system in place
of the optoelectronic one. The software used for the estimation of the body
poses (Xsens MVN Analyze), coupled with the chosen hardware (Xsens
MVN Awinda), allows us to obtain an accuracy comparable to state-of-the-
art optoelectronic systems, as demonstrated in [57].

All the cameras and inertial suits used in this work are hardware syn-
chronized (Section 4.2.2.4), while the relative poses of each camera with
respect to the inertial reference frame are calibrated before each sequence
to ensure maximum overlap of the two sensing systems outputs. The pro-
posed setup allowed to record synchronized 3D poses of the persons on
the scene both via Xsens’ IK algorithm (inertial MoCap) and by exploiting
the Azure Kinect Body tracking SDK (markerless MoCap), simultaneously.
The additional raw data (RGB, depth, camera network configuration) al-
low the user to assess the performance of any custom markerless MoCap
algorithm (based on RGB, depth, or both). Further analyses can be pro-
gressed by varying the number of cameras being used and/or their reso-
lution and frame rate. Moreover, raw angular velocities, linear accelera-
tions, magnetic fields, and orientations from each IMU allow to develop
and test multimodal BPE approaches focused on merging visual and iner-
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tial data. Finally, the precise body dimensions of each subject required by
MVN Analyze are provided. They include body height, weight, and seg-
ment lengths measured before the beginning of a recording session. They
were used to scale the Xsens biomechanical model, and also constitute a
ground truth for assessing the markerless BPE accuracy on estimating each
subject’s body dimensions.

The recorded sequences include 15 participants performing a set of
12 ADLs (e.g., walking, sitting, and jogging). The actions were chosen
to present different challenges to BPE algorithms, including different
movement speeds, self-occlusions, and complex body poses. Moreover,
multi-person sequences, with up to four people performing a set of seven
different actions, are provided. Such sequences offer challenging scenarios
where multiple self-occluded persons move and interact in a restricted
space. They allow assessing the accuracy of multi-person tracking al-
gorithms, focused on maintaining frame-by-frame consistent IDs of each
detected person. To this end, the proposed dataset has already been used to
validate our previous work, describing a real-time open-source framework
for multi-camera multi-person tracking [77]. A total of 13.3 h (over 1 400 000
frames) of RGB, depth, and markerless BPE data from five RGB-D cameras
are present in the dataset, while the inertial MoCap system allowed to
record 3 h (over 600 000 frames) of human poses, corresponding to 51.2 h of
raw IMU data from all the sensors used in each suit.

4.2.1 DATA DESCRIPTION

The UNIPD-BPE dataset contains: (1) high definition videos and point
clouds from each RGB-D camera, (2) positions, orientations, and confi-
dences of the body joints estimated via markerless MoCap, (3) raw IMU
data from each tracker used in the inertial suits, (4) full-body kinematics
and anatomical joint angles obtained via inertial MoCap. Table 4.1 summa-
rizes all available data, while Sections 4.2.1.1 and 4.2.1.2 describe in detail
the recordings obtained by each RGB-D camera and by the inertial suits,
respectively.

4.2.1.1 Microsoft Azure Kinect

The camera network used in this work consists of 5 Azure Kinect cameras
(labeled k01, k02, k03, k04, k05). Details on the spatial configuration of the
sensors can be found in Section 4.2.2.1. Each camera includes a 1 MP ToF
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Table 4.1: Content of the UNIPD-BPE dataset.

Source Typology Details

Calibration Transforms Relative poses among cameras

Camera network

Video 1920x1080 pixels @ 30 Hz (native resolution)
Video 640x576 pixels @ 30 Hz (reprojection on the depth)
Depth 640x576 pixels @ 30 Hz (native resolution)
Depth 1920x1080 pixels @ 30 Hz (reprojection on the

RGB)
BPE 3D positions, orientations, confidences of 32 joints

Inertial suit

IMU data Orientations and raw IMU data @ 60 Hz
BPE 3D positions, orientations, velocities, accelerations

of 23 segments
Joint angles Anatomical joint angles of 22 joints
Center of mass 3D position of the person’s center of mass

depth sensor, a 12 MP CMOS rolling shutter RGB sensor, a 6-DoF IMU, and
a 7-microphone circular array. A factory calibration process provides in-
trinsic and extrinsic calibrations of the sensors.

The UNIPD-BPE dataset contains the following data, captured from
each of the 5 cameras:

• video recordings (1920x1080 pixels @ 30 Hz (native resolution) and
640x576 pixels @ 30 Hz (reprojected on the depth));

• depth recordings (1920x1080 pixels @ 30 Hz (reprojected on the RGB)
and 640x576 pixels @ 30 Hz (native resolution));

• 3D positions, orientations, confidences of 32 body joints defined in the
Azure Kinect Body Tracking SDK model (Section 4.2.3.1).

Data are recorded at the maximum frame rate allowed by the system.
The video resolution was chosen to provide high-definition captures, while
also maintaining the dataset size manageable.

4.2.1.2 Xsens MVN Awinda

The Xsens MVN Awinda suit used in this work consists of 17 MTw Awinda
trackers placed on the head, chest, shoulders, upper arms, forearms, hands,
pelvis, thighs, shanks, and feet. Each tracker includes a 3-axis gyroscope, a
3-axis accelerometer, a 3-axis magnetometer, and has a dynamic accuracy of
0.75 °RMS for roll and pitch, and 1.5 °RMS for the heading estimation [159].

Before each sequence, the body model used to estimate the motion was
specifically scaled to each participant’s characteristics. All subjects’ body
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dimensions and general information (sex, age, weight, height) are anno-
tated in dedicated files included in the dataset.

The UNIPD-BPE dataset contains the following data, captured for up to
two subjects simultaneously:

• orientations, angular velocities, linear accelerations, magnetic fields
of 17 MTw Awinda trackers @ 60 Hz;

• 3D positions, orientations, linear and angular velocities, linear and
angular accelerations of 23 body segments defined in the Xsens MVN
Analyze model (Section 4.2.3.2);

• anatomical joint angles (flexion/extension, abduction/adduction, in-
ternal/external rotation) of 22 body joints, plus 6 additional joint an-
gles calculated for ergonomic analyses;

• 3D position of the body center of mass.
Data are recorded at 60 Hz (maximum frame rate allowed by the system)

using the Xsens MVN Analyze software (version 2021.0.1).

4.2.1.3 Dataset Structure

A total of 13.3 h of RGB, depth, and markerless BPE data are present in the
dataset, corresponding to over 1 400 000 frames obtained from a calibrated
network with five RGB-D cameras. The inertial suits, on the other hand,
allowed to record 3 h of inertial MoCap data, corresponding to a total of
over 600 000 frames recorded by each of the 17 IMUs used by every suit.
Figure 4.1 shows an example frame of the available data recorded during a
walking sequence.

The dataset is divided into two folders: single_person, containing all the
sequences where a single subject is recorded, and multi_person, containing
all the sequences with multiple subjects.

Single-Person Sequences. To make the data easily accessible, the single-
person sequences are organized as follows. The single_person folder con-
tains the data recorded from 15 subjects performing the 12 actions described
in Table 4.2, with four repetitions each. Thus, it contains 15 folders, named
sbj<xx>, where <xx> indicates the subject’s ID. Each sbj<xx> folder contains
the data recorded by the cameras, the inertial MoCap data, and a yaml file
(named sbj<xx>_info.yaml) including the subject’s ID, sex, age, weight, and
the body dimensions used for inertial BPE.
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(a) (b)

(c) (d)

Figure 4.1: Sample data during a walking sequence: (a) RGB frame from
k01, (b) RGB frame from k02, (c) depth and markerless pose estimation from
k02, (d) inertial pose estimation from MVN Analyze.

The recorded data are stored in six subfolders: five folders contain-
ing the camera network data, named after the convention k<yy>, where
<yy> indicates the camera’s ID, and one additional folder containing the
inertial suit data, named xsens. Each k<yy> folder contains four repeti-
tions for each of the 12 actions, resulting in 48 files (one per sequence),
named following the convention sbj<xx>_<action_name><zz>.bag, where
<zz> indicates the recorded repetition. For each recorded sequence, the
xsens folder contains three sets of files, named sbj<xx>_<action_name>-
<zz>.(mvnx|bvh|c3d). Each single-person action has an average duration
of approximately 13 s. The complete list of recorded actions is reported in
Table 4.2.

The bag file format indicates a bag file, commonly used in ROS [71] to
store ROS message data. This format was chosen since it allows to store
and distribute heterogeneous streams of synchronized data. By using bag
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Table 4.2: List of actions performed during single-person sequences.

Index Action Name Description

0 t_pose T-pose to be used for calibration purposes
1 n_pose N-pose to be used for calibration purposes
2 walk Walking at self-selected speed
3 squat Squatting
4 bend Bending down
5 sit Sitting on a chair
6 jog Jogging in place
7 jump Jumping in place
8 cross_arms Crossing arms
9 point Pointing to different directions
10 wave Waving hands
11 throw Pretending to throw an object

files, it is also possible to play the recorded data simulating a real-time ac-
quisition. Additionally, the content of a bag file can be exported in different
formats by exploiting one of the many open-source tools developed by the
ROS community (e.g., [160]). ROS bags, in fact, play an important role in
ROS, and a variety of tools have been written to allow storage, processing,
analysis, and visualization of the stored data.

All the bag files in this dataset contain RGB captures and depth point
clouds from each camera, information on the camera network calibration,
positions, orientations, and confidences of each participant’s joints esti-
mated via markerless MoCap.

The mvnx extension (MVN Open XML format) refers to Xsens’ propri-
etary format. It is a human-readable XML format that can be imported into
various software programs, including MATLAB and Microsoft Excel. This
format contains information on sensor data, segment kinematics, and joint
angles, as well as the subject’s body dimensions. The bvh format (BioVision
Hierarchical data) embeds captured motion data in ASCII format and is
typically used in animation applications. It requires a hierarchical struc-
ture, such that only relative joint angles can be exported into this file for-
mat. Finally, c3d (Coordinate 3D) is a format used in optical systems and
only contains 3D point coordinates. Therefore, the stored data are limited
to the bony landmarks calculated from the estimated virtual marker set.

Multi-Person Sequences. Multi-person sequences include the seven actions
described in Table 4.3, repeated with two, three, and four people simulta-
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neously on the scene. The only exception is the action labeled eight, where
the people are walking forming an eight, which required the presence of
four people. The actions were selected to challenge different aspects typical
of markerless BPE. As a result, there are different actions where multiple
people are in close proximity, with partial and/or full occlusions, and with
people exiting and reentering the scene.

Table 4.3: List of actions performed during multi-person sequences.

Index Action Name Description

0 static Static poses to be used for calibration purposes
1 free_static Free movements while remaining in the same place
2 free_dynamic Free movements while changing positions
3 circle Walk in a circle
4 cross Switch positions while walking in a circle
5 in_out Enter and exit from the cameras’ FoVs
6 eight Walk forming an eight

The multi_person folder contains data recorded from all the sequences
including multiple subjects. It contains three folders, named <xx>people,
where xx indicates the number of subjects present in each sequence.
Similarly to the single_person sequences, each folder contains a yaml file
(named <xx>people_info.yaml), the data recorded by the cameras, and the
inertial MoCap data. In this case, however, the yaml file stores the IDs of
all the subjects on the scene. At the beginning of each sequence, in fact,
all the participants stand in front of the master camera (k01). To allow for
the correct assignment of each subject’s body dimensions, the yaml file con-
tains the IDs of all the participants ordered from left to right, as seen by
the master camera. The body dimensions can be retrieved by accessing the
corresponding sbj<zz>_info.yaml file, where <zz> indicates the ID assigned
for the single-person sequences.

The recorded data are stored in six subfolders: five folders containing
the camera network data, named after the convention k<yy>, where <yy>
indicates the camera’s ID, and one additional folder containing the inertial
suit data, named xsens. Each k<yy> folder can contain six or seven files
(depending on the number of people interacting), named following the
convention <xx>people_<action_name>.bag. Each bag file includes the same
typology of data recorded for single-person sequences. In this case, how-
ever, no repetitions are available, since the focus is on providing relevant
data for the assessment of multi-person skeletal tracking, and being each
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sequence the summation of the actions performed by multiple people si-
multaneously. For each recorded sequence, the xsens folder contains six
sets of files, named <xx>people_<action_name>_sbj<yy>.(mvnx|bvh|c3d),
and <xx>people_<action_name>_sbj<zz>.(mvnx|bvh|c3d), being inertial data
available for up to two subjects simultaneously. Each multi-person se-
quence has an average duration of approximately 27.5 s. The complete list
of recorded actions is reported in Table 4.3.

4.2.2 METHODS

This section describes the experimental setup, the methodology used, and
the characteristics of the participants. All data were recorded in a labo-
ratory environment, to allow accurate calibration of the RGB-D camera
network and proper alignment of markerless and inertial MoCap.

4.2.2.1 Experimental Setup

The experimental setup (Figure 4.2) includes five RGB-D cameras and up
to two full-body inertial suits. Each camera is connected to a dedicated
desktop PC, while the IMUs communicate wirelessly to a receiver (Awinda
station) connected to a PC that acts as a master. All PCs are connected to
the same local network. Software time synchronization among PCs is ob-
tained using the NTP protocol [161], whereas sensors synchronization is
performed by exploiting the onboard hardware offered by the two sens-
ing systems. More details on hardware synchronization are reported in
Section 4.2.2.4.

The cameras are placed at a height of 2 m, in the configuration shown in
Figure 4.3. They are approximately placed in a circle with a radius of 3 m.
This allows to cover an area of approximately 4 x4 m where most cameras
have full visibility of the persons in the scene. The pose of each camera
with respect to a common global reference frame was estimated prior to the
recordings using an internally developed calibration algorithm.

The recorded data were acquired using the Microsoft Azure Kinect ROS
Driver2 under ROS Noetic (Ubuntu 20.04 LTS). The driver allows to publish
each person’s detected poses as standard ROS messages. However, it does
not include information on the detection confidence. For this reason, the
driver has been customized to also include information on the estimated

2github.com/microsoft/Azure_Kinect_ROS_Driver
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Figure 4.2: Experimental setup used for the acquisition of the UNIPD-BPE
dataset. The five RGB-D cameras are highlighted in red, while the inertial
suits’ master receiver is highlighted in green.

joints’ confidence in the messages. The mapping between the confidence
levels assigned by the markerless BPE algorithm and the corresponding
values stored in the messages is reported in Table 4.4.

Table 4.4: Azure Kinect Body Tracking SDK confidence mapping.

Confidence Level Description Confidence Value

NONE The joint is out of range (too far
from depth camera)

0

LOW The joint is not observed (likely due
to occlusion), predicted joint pose

1

MEDIUM Medium confidence in joint pose 2
HIGH High confidence in joint pose 3

4.2.2.2 Participants

A total of 15 participants were recruited for data collection (11 men, 4
women). The average age was 23.7 ± 2.7 years (min: 21 years, max: 29 years),
the average weight 65.8 ± 12.7 kg (min: 48 kg, max: 92 kg), and the average
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Figure 4.3: Spatial organization of the sensors used during the acquisitions.
The axes define the global reference frame of both the camera network and
the inertial suits, while the arrow lines indicate the cabled connections re-
quired for the hardware synchronization.

height 1.75 ± 0.11 m (min: 1.57 m, max: 1.98 m). All participants gave writ-
ten informed consent before data collection. Table 4.5 shows in detail each
participant’s characteristics. The ID assigned to each subject is the same
for all experiments. Also in the sequences where multiple people interact,
persons’ IDs correspond to the ones used in their individual sequence.

4.2.2.3 Acquisition Protocol

Before each session, the 17 MTw Awinda trackers were placed on the partic-
ipants’ head, chest, shoulders, upper arms, forearms, hands, pelvis, thighs,
shanks, and feet, following the Xsens protocol. The body model used for the
motion estimation was then specifically scaled to each participant’s charac-
teristics. MVN Analyze was configured in the Single level scenario, since
all tasks were executed on a fixed-level ground, without elevation changes.
The system was then calibrated with the N-pose and walk procedure, and
the world frame aligned with the camera network’s global reference frame.
To maximize the overlap between markerless and inertial BPE, the suit’s
world frame was realigned to the cameras’ global frame before each se-
quence recording.
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Table 4.5: Characteristics of the participants.

ID Sex Age [years] Weight [kg] Height [m]

01 m 22 72 1.75
02 m 22 55 1.70
03 m 21 60 1.65
04 m 22 92 1.90
05 m 21 84 1.81
06 m 22 63 1.72
07 m 22 75 1.98
08 m 22 78 1.88
09 f 23 48 1.65
10 m 28 68 1.75
11 f 23 52 1.57
12 m 27 72 1.75
13 f 29 56 1.70
14 f 24 48 1.58
15 m 27 64 1.79

For single-person sequences, the participants were asked to perform one
of the actions described in Table 4.2 while facing a different cardinal direc-
tion in each repetition. Except for walking, where the start and end posi-
tions were fixed, the participants had maximum freedom regarding how to
perform the actions.

Multi-person sequences include the actions reported in Table 4.3, each
performed with a varying number of subjects ranging from two to four.
Inertial data are recorded for up to two subjects per sequence simultane-
ously. Sensors placement and software configuration are the same as for
single-person sequences.

4.2.2.4 Time Synchronization

This section describes the synchronization procedure followed for the ac-
quisition of the dataset. In fact, since the dataset includes information from
heterogeneous sources and a distributed camera network, all sensors must
be time-synchronized.

Each Azure Kinect camera includes two synchronization ports (Sync in
and Sync out). In this work, all cameras are synchronized through a daisy-
chain configuration (Figure 4.3). To avoid interference among infrared pro-
jectors, the captures were offset from each other by 160 µs, as suggested in
Microsoft’s documentation. Therefore, the maximum delay between two
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cameras in the network is equal to 640 µs, which is negligible with respect
to the maximum frame rate of 30 Hz (< 2 % of the δt between two consecu-
tive frames).

The Xsens MTw Awinda station includes four synchronization ports
(two Sync in and two Sync out). In this work, the Awinda station was used
as a master device to synchronize inertial and markerless MoCap. A custom
cable was built to allow the Awinda station to send synchronization pulses
to the master Kinect (k01 in Figure 4.3). The chosen configuration allowed
Xsens to properly synchronize the Kinect cameras by sending a triggering
signal when a recording session is started. Thus, the Start recording com-
mand in MVN Analyze also triggered the streaming of the camera network
data (RGB frames, depth frames, and markerless body tracking).

4.2.3 BODY JOINT DEFINITIONS AND HIERARCHY

4.2.3.1 Microsoft Azure Kinect Body Tracking

The Microsoft Body Tracking SDK allows to process Azure Kinect captures
to generate body tracking results. A skeleton includes 32 joints. Each
connection (bone) links the parent joint with a child joint. As demonstrated
in [162], the mean joint estimation error has an average value of 8 mm and
a standard deviation of 6 mm in static conditions. Table 4.6 lists the joint
connections. Additional information can be found in [163].

4.2.3.2 Xsens MVN Analyze

The Xsens MVN Analyze software features a scalable biomechanical model
and offers real-time 3D animation, graphs, and data streaming. A skeleton
includes 23 segments connected by 22 joints. As demonstrated in [57], the
inertial body poses show a RMSE lower than 5° for the estimation of the
anatomical joint angles in the sagittal plane. Table 4.7 contains the list of
the body segments defining a skeleton, its joints, and the trackers used to
estimate human motion. Additional information can be found in [164].

4.2.4 FINAL REMARKS

This section presented UNIPD-BPE, an extensive dataset for single- and
multi-person BPE. Single-person sequences include 15 participants per-
forming a set of 12 ADLs, while multi-person sequences include seven ac-
tions with two to four people interacting in a confined area.
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Table 4.6: Azure Kinect Body Tracking joint definitions and hierarchy
(source: [163]).

ID Joint Name Parent Joint ID Joint Name Parent Joint

0 PELVIS - 16 HANDTIP_RIGHT HAND_RIGHT
1 SPINE_NAVAL PELVIS 17 THUMB_RIGHT WRIST_RIGHT
2 SPINE_CHEST SPINE_NAVAL 18 HIP_LEFT PELVIS
3 NECK SPINE_CHEST 19 KNEE_LEFT HIP_LEFT
4 CLAVICLE_LEFT SPINE_CHEST 20 ANKLE_LEFT KNEE_LEFT
5 SHOULDER_LEFT CLAVICLE_LEFT 21 FOOT_LEFT ANKLE_LEFT
6 ELBOW_LEFT SHOULDER_LEFT 22 HIP_RIGHT PELVIS
7 WRIST_LEFT ELBOW_LEFT 23 KNEE_RIGHT HIP_RIGHT
8 HAND_LEFT WRIST_LEFT 24 ANKLE_RIGHT KNEE_RIGHT
9 HANDTIP_LEFT HAND_LEFT 25 FOOT_RIGHT ANKLE_RIGHT
10 THUMB_LEFT WRIST_LEFT 26 HEAD NECK
11 CLAVICLE_RIGHT SPINE_CHEST 27 NOSE HEAD
12 SHOULDER_RIGHT CLAVICLE_RIGHT 28 EYE_LEFT HEAD
13 ELBOW_RIGHT SHOULDER_RIGHT 29 EAR_LEFT HEAD
14 WRIST_RIGHT ELBOW_RIGHT 30 EYE_RIGHT HEAD
15 HAND_RIGHT WRIST_RIGHT 31 EAR_RIGHT HEAD

The dataset includes 13.3 h of high definition RGB and depth data (corre-
sponding to over 1 400 000 frames) recorded by a calibrated RGB-D camera
network of five synchronized Azure Kinect cameras, as well as each sub-
ject’s full-body poses estimated using the Azure Kinect Body Tracking SDK.
This allows to assess the impact of exploiting different numbers and/or
configurations of cameras on the accuracy achieved by markerless BPE al-
gorithms. The provided markerless body poses can be used as a baseline,
while the raw recorded data (RGB, depth, and camera network configura-
tion) allow the dataset user to assess the performance and accuracy of any
custom markerless BPE algorithm (based on RGB, depth, or both).

Furthermore, 3 h of inertial MoCap poses are obtained by exploiting
highly accurate Xsens MVN Awinda full-body suits, corresponding to a
total of over 600 000 frames recorded by each of the 17 IMUs used by every
suit. All sensors are hardware-synchronized, with the Xsens MVN Awinda
system acting as a master to trigger the acquisitions. The relative poses
of each camera with respect to the inertial reference frame are accurately
calibrated before each sequence to ensure the best overlap of the two sys-
tems’ outputs. This allows inertial MoCap estimates to be used to further
investigate the accuracy of different markerless BPE algorithms. Since the
raw IMU data are also available, the dataset can also be used to develop
novel sensor fusion algorithms, aiming at improving the performance of
both markerless MoCap, by increasing the achievable accuracy, and inertial
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Table 4.7: Xsens MVN joint definitions and hierarchy (source: [164]).

ID Segment Label Tracker Joint

0 Pelvis Pelvis jL5S1
1 L5 T8 jL4L3
2 L3 Head jL1T12
3 T12 RightShoulder jT9T8
4 T8 RightUpperArm jT1C7
5 Neck RightForeArm jC1Head
6 Head RightHand jRightC7Shoulder
7 Right Shoulder LeftShoulder jRightShoulder
8 Right Upper Arm LeftUpperArm jRightElbow
9 Right Forearm LeftForeArm jRightWrist
10 Right Hand LeftHand jLeftC7Shoulder
11 Left Shoulder RightUpperLeg jLeftShoulder
12 Left Upper Arm RightLowerLeg jLeftElbow
13 Left Forearm RightFoot jLeftWrist
14 Left Hand LeftUpperLeg jRightHip
15 Right Upper Leg LeftLowerLeg jRightKnee
16 Right Lower Leg LeftFoot jRightAnkle
17 Right Foot - jRightBallFoot
18 Right Toe - jLeftHip
19 Left Upper Leg - jLeftKnee
20 Left Lower Leg - jLeftAnkle
21 Left Foot - jLeftBallFoot
22 Left Toe - -

MoCap, by limiting possible drifting phenomena.
The multi-person sequences offer challenging scenarios where multiple

partially occluded persons move and interact in a restricted space. This al-
lows to investigate the performance of multi-person tracking algorithms,
both regarding the accuracy of the pose estimation in cluttered environ-
ments, and the ability to maintain frame-by-frame consistent IDs of each
detected person in the scene.

The proposed dataset also presents some limitations. Due to the hard-
ware used in the RGB-D camera network, no optoelectronic data could be
included. This would offer an additional source of information, allowing
also to assess the accuracy of inertial MoCap. Moreover, the main focus
of the dataset is on the validation of different BPE algorithms. As a result,
all recordings were acquired in a laboratory environment, with a limited
amount of background clutter, to ensure the best overlap between marker-
less and inertial body poses.
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To conclude, the UNIPD-BPE dataset aims to push forward the devel-
opment of markerless BPE and tracking algorithms, enabling a variety
of applications where unobtrusive accurate knowledge of human motion
is of paramount importance. The dataset in fact includes data both for
single-person RGB- and depth-based human motion estimation, for multi-
person BPE and tracking, and for visual and inertial sensor fusion. The
high-definition videos and point clouds, recorded by five calibrated and
synchronized RGB-D cameras, allow simulating a variety of different sce-
narios (e.g., a pure RGB camera network, a pure depth camera network, an
uncalibrated camera network, etc.). Finally, the included markerless and
inertial body poses are useful for the development and testing of different
multimodal sensor fusion and people tracking algorithms, without the
necessity of expensive hardware and bulky acquisition setups.

4.3 OPEN-SOURCE MULTI-CAMERA SENSOR FUSION FOR

REAL-TIME PEOPLE TRACKING

The ability to recognize and track human movements is of paramount im-
portance in diverse fields, such as surveillance, HRI, telerehabilitation, and
autonomous driving. Moreover, new emerging trends in Industry 4.0 and,
recently, Industry 5.0, such as the use of cobots to support workers in their
tasks ([165], [166]) and the active monitoring of operators to provide on-
line ergonomic feedback ([167], [168]), require real-time knowledge of the
operators’ poses. The usage of inertial suits or optoelectronic systems to
assess motion might not be viable in such contexts due to their high costs
and complex setups, leaving markerless MoCap as the only feasible option.

The estimation of human motion without the aid of any body-mounted
sensor or marker has been an intensive research topic for decades. Despite
the improvements achieved in the latest years thanks to machine learn-
ing and deep learning approaches ([25], [141], [142]), real-time accurate as-
sessment of human motion via markerless MoCap remains an open prob-
lem. Common challenges come from background clutters, limited FoVs,
occlusions, and the general difficulty of tracking the human body, a sys-
tem characterized by a large number of degrees of freedom and prone to
self-occlusions.

One promising technology to mitigate such issues is to exploit a dis-
tributed network of RGB-D cameras that can acquire colored point clouds.

98



4.3. Open-Source Multi-Camera Sensor Fusion for Real-Time People
Tracking

By fusing the partial information coming from each camera, it is possible to
increase stability, accuracy, and reduce occlusions, allowing to obtain stable
3D reconstructions of the subjects’ movements. Thanks to the latest per-
formance improvements for markerless body pose detectors (e.g., [28]), in
combination with relatively high frame rates in recent RGB-D cameras, sim-
pler tracking approaches can achieve high accuracies without the overhead
required by more sophisticated tracking algorithms [169]. In this context,
a promising approach is to take advantage of the tracking-by-detection
paradigm. Each camera is considered an independent detector that extracts
information on the poses of the people being seen. Then, a single tracker
takes as input all the detections and estimates the full trajectories of each
person’s movements via data association.

This section presents my research focused on real-time accurate assess-
ment of human motion in multi-camera networks. The developed mod-
ules offer a series of advanced tools to enhance accuracy and robustness
of markerless BPE when exploiting a calibrated camera network. The pro-
posed workflow was designed with four major features in mind: (1) max-
imum accuracy of the estimated body poses, (2) simplicity of use, (3) real-
time performance, and (4) generality, requiring the least possible number of
assumptions. Thus, no assumptions are made about the typology or num-
ber of sensors that are used, nor about the detection algorithm that extracts
the 3D poses of the persons.

All the developed modules3 will be released under the Apache v.2 li-
cense in conjunction with the publication of [77], and have the potential of
putting the basis to allow accurate human pose estimation and tracking,
without the necessity of any sensor or marker on the body that might hin-
der a person’s movements, and in real-time.

The proposed workflow consists of four main tools: a Skeleton Tracker
node (Section 4.3.2.1), a Skeleton Merger node (Section 4.3.2.2), a Skeleton
Optimizer node (Section 4.3.2.3), and a Skeleton Filter node (Section 4.3.2.4).
Such nodes allow to accurately track all the people in the scene by merg-
ing the data obtained from each detector, optimizing the resulting poses,
and filtering noisy estimates to obtain smooth trajectories, all in real-time.
Figure 4.4 shows an example output of the proposed system while tracking
four people.

3The code will soon be publicly and freely available under the Apache v.2 license at
github.com/hiros-unipd

99

https://github.com/hiros-unipd


4. TRACKING LEVEL

Figure 4.4: Output of the proposed system while tracking four peo-
ple simultaneously. The input detections are obtained by exploiting the
Microsoft Azure Kinect Body Tracking SDK.

Accuracy, robustness, and real-time performance of the system were
evaluated on a public dataset ([72]). The dataset includes multiple se-
quences with different numbers of people interacting. The data provided
include raw RGB and depth recordings obtained from a network composed
of five synchronized Azure Kinect cameras, as well as accurate measure-
ments of the participants’ full-body kinematics via inertial MoCap. Due to
the specific hardware and software used during the acquisitions, inertial
body poses are estimated with an accuracy comparable to that of state-
of-the-art marker-based optoelectronic systems, as demonstrated in [57].
Finally, static pose recordings of the participants and person-specific files
containing their measured body dimensions are also provided, allowing
our system to properly calibrate the optimization node.

4.3.1 RELATED WORK

The release in recent years of affordable low-cost RGB-D sensors, like the
Microsoft Kinect cameras, together with the growing importance of know-
ing operators’ poses in multiple fields, brought increasing attention to
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markerless human BPE and tracking. This resulted in various works that fo-
cused on providing reliable estimates of human pose in real-time (e.g., [28],
[170]–[173]). While single-camera human body tracking has been made eas-
ily accessible by exploiting such tools, an easy-to-use accurate framework
for real-time multi-camera multi-person skeletal fusion and tracking is still
missing.

Multi-camera people tracking systems can be divided into two groups:
works that focus on leveraging 2D information to obtain 3D body poses
and works that rely on RGB-D camera networks to increase the accuracy of
the single camera 3D detections.

4.3.1.1 Estimation of 3D Poses from 2D Data

Most of the works that fall into this category utilize a calibrated network
of RGB cameras to extract 2D body poses of the persons in the same scene
from different viewpoints. Knowing the pose of each camera with respect
to a global reference frame, it is possible to extract the 3D body poses based
on triangulation. However, when dealing with multiple people, a prior
tracking step is required to match the correct 2D points extracted by each
camera with the correct 3D track. That is, multiple detections obtained from
different cameras, but referring to the same person, need to be correctly as-
sociated, allowing to separate the sets of keypoints describing each subject.

Chen et al. [174] proposed an iterative process for estimating 3D poses
from 2D body joints obtained by multiple cameras in real-time. Each cam-
era stream is considered independent and does not require to be synchro-
nized with the other ones. For this reason, the authors proposed an en-
hanced triangulation algorithm that does not require the 2D points of each
view to be acquired simultaneously. Multi-person tracking is achieved by
solving a weighted bipartite graph matching problem, where its affinity
matrix is computed both from 2D and 3D geometric correspondences be-
tween each detection and track.

Reddy et al. [175] also presented a method for 3D pose estimation and
tracking from an arbitrary number of camera feeds. The proposed system
used a 4D convolutional neural network to produce a short time description
of the people to be tracked. Tracking, in this case, is achieved by maximiz-
ing the total score of a cost matrix, where each element is computed as the
inner product between pairs of descriptors. No information on the compu-
tation time is provided.
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Chu et al. [176] tackled the same problem by taking advantage of tem-
poral consistency to match the 2D poses obtained during each time frame
with the previously estimated 3D skeletons. The affinity of a 2D detec-
tion to a 3D track is measured with the geometric constraints of the projec-
tion difference between the 2D pose and the reprojection of the 3D pose in
the specific camera view. Once the affinity matrix is computed, the corre-
sponding weighted bipartite problem is solved in real-time by exploiting
the Hungarian algorithm. The authors also included a preprocessing joints
filter step that allows removing outliers by computing the distance between
each joint’s epipolar line and the corresponding point and comparing it to
a predefined threshold.

The main focus of all previous works is on computing accurate 3D es-
timates of the human pose. However, none of them considers the articu-
lated object being tracked as a person. Including prior information of the
body being tracked (e.g., by requiring a person’s limb lengths not to vary
between consecutive frames) can be a key feature to further increase mark-
erless MoCap accuracy.

In this regard, Bultmann et al. [177] presented a novel method for real-
time estimation of 3D human poses from a multi-camera setup. The 3D
poses are recovered from 2D joints based on triangulation and refined by
exploiting a body model that incorporates prior knowledge of the human
skeleton. Multiple person detections are associated across camera views
based on the epipolar distance of their joints. Then, each 3D skeleton is fur-
ther optimized by exploiting prior information on the typical bone lengths
of the human skeleton. However, such information is not considered as
person-specific; thus, it does not take into account significant differences
that can be present among different persons’ body proportions (e.g., a
child’s proportions greatly differ with respect to an adult’s ones).

4.3.1.2 Enhancement of 3D Poses from 3D Data

Works that rely on RGB-D camera networks do not require triangulation to
compute the 3D poses of the persons in the scene. In this case, the main
benefit from using multiple cameras is the lower sensibility of the whole
system to occlusions. This allows the achievable accuracy to be increased,
since missing information from one sensor might be available from another.

In this context, Moon et al. [178] used multiple Kinect sensors to correct
inaccurate tracking data from a single camera. The developed system ex-
ploits a Kalman filter for real-time 3D human skeleton tracking, where the
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measurement noise vector is adjusted according to the reliability of each
detection. In this case, however, the focus is on data fusion only, since the
system only supports a single person’s body tracking.

Kadkhodamohammadi et al. [179] also proposed a 3D human pose es-
timation system from multi-view synchronized RGB-D images that do not
require prior knowledge of the number of persons in the scene. The multi-
view fusion is solved as an iterative process where, for each time frame,
the two closest skeletons that do not originate from the same view are
merged until no pair of merging candidates are left. Then, a multi-view
energy function is used to drive the body parts towards their optimal loca-
tions. The energy function takes into account how much the estimated body
lengths differ from the average lengths computed during a training phase.
However, such average lengths are computed across their entire training
dataset, thus not being person-specific and suffering from the same limita-
tions as [177]. Additionally, no information is provided on the computation
time required by the optimization step.

Liu et al. [180], on the other hand, presented a work on human action
recognition using a distributed calibrated RGB-D camera network. Even
though the focus is not on multi-camera tracking, the authors proposed the
usage of an information-weighted consensus filter to fuse the 3D skeleton
detected by each camera. However, no tracking is performed, since the
system only supports a single person.

Ryselis et al. [181] also exploited multiple Kinect cameras to monitor key
performance indicators in physical training. To achieve higher accuracy,
the authors used three Kinect devices to provide complete spatial coverage
of the subject. Data fusion in this case is accomplished by calculating the
averages of the joint coordinates estimated by each camera projected in a
global reference frame. Also in this case, however, no tracking is performed,
since the system only supports the analysis of a single subject.

Zhou et al. [182] proposed to integrate a Tobit Kalman filter (TKF) and
a differential evolution (DE) algorithm to improve the accuracy of hu-
man motion estimation. The TKF allows ensuring kinematically admissi-
ble poses, while the DE optimization aims at minimizing the bone length
variability, where the reference lengths are obtained from an initial applica-
tion of the TKF. However, the system supports a single Kinect camera and
only allows the analysis of a single person’s pose. No information on the
computation times required by the system is provided.

A general framework for multi-RGB-D camera systems was proposed
by Fender et al. [183]. The framework can stream and process multiple
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RGB, depth, and skeleton streams in real-time. The authors claim to per-
form skeleton fusion based on distance. To disambiguate the cases in which
the skeletons are properly detected with respect to those in which the skele-
ton is rotated 180°, body estimation is combined with face tracking. Since
skeletal tracking is not the main focus of the framework, no other details are
provided. The framework was planned to be released as open-source, but,
to the best of the author’s knowledge, it is still not available to the public.

Finally, in our previous work ([63]), we presented an improved version
of the OpenPTrack’s skeletal tracking ([60]), an open-source software for
real-time multi-camera people tracking in RGB-D camera networks. The
tracking algorithm was enhanced with an improved version of the Kalman
filter to ensure better temporal consistency of the body poses and an adap-
tation mechanism to avoid fast changes in the skeletons’ limb lengths.
However, the system is dependent on an internally developed human pose
estimation algorithm and only supports specific sensors.

The literature review shows that, although markerless people tracking
has been tackled by exploiting a variety of approaches, most works suffer
from a series of limitations. Among all, real-time performance is typically
omitted, very few open-source implementations are available, and addi-
tional constraints due to the body characteristics are often missing. In
this work, we propose a system that aims to overcome such limitations.
The proposed system is capable of tracking multiple people in real-time,
without requiring any assumptions on the number, typology, and frame
rate of the cameras being used. Information from multiple cameras allows
for the detection of errors in the raw estimated poses and an enhancement
of the overall system accuracy, strongly reducing the impact of occlusions.
Moreover, information on each person’s body dimensions can be fed to the
system to ensure anatomically correct estimates of the poses. Finally, all the
developed tools will soon be released as open-source under the Apache v.2
license in conjunction with the publication of [77].

4.3.2 SYSTEM DESIGN

The tools presented in this work aim at providing robust and reliable 3D
tracking of human motion in real-time via markerless MoCap. To this end,
the proposed system requires a network of N cameras that act as detectors.
No assumptions are made about the number, typology, and frame rate of
the cameras. The only requirement is the extrinsic calibration of the camera
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network. That is, after defining a global reference frame G, the transform
T G
Ci

between each i-th camera Ci and such frame G must be known.
Each camera represents an independent detector, which is in charge of

performing markerless 3D BPE of the people in the scene. No assumptions
are made about the algorithm used. The only requirement to be able to
use a specific detector in the Hi-ROS framework is a bridge in charge of
publishing the detected skeletons as a SkeletonGroup message (Section 2.4).

The proposed multi-sensor fusion workflow consists of four main tools:
1. A Skeleton Tracker node (Section 4.3.2.1) implementing robust skele-

tal tracking of the detections coming from each camera. This node
ensures temporal consistency of the detected skeletons, by assigning
each person a unique ID that is retained in time.

2. A Skeleton Merger node (Section 4.3.2.2) taking as input the tracked
skeletons computed by the Skeleton Tracker and performing a fusion
of the poses seen by all the cameras during the same time frame. The
tool is designed to reduce the flickering obtained when data from a
distributed camera network are merged. The node can properly han-
dle and merge partial skeletons, as long as at least one common key-
point is available.

3. A Skeleton Optimizer node (Section 4.3.2.3) providing a global opti-
mization on each person’s poses. After an initial calibration of the
body dimensions, this tool ensures limb length consistency through-
out the whole experiment, also allowing to detect and remove pos-
sible outliers. This node introduces kinematic constraints on the
tracked body poses, after integrating prior information of the persons’
body dimensions in the system.

4. A Skeleton Filter node (Section 4.3.2.4) containing an efficient real-time
state-space filter that can be used in cascade to any of the previous
nodes. This node requires each skeleton to already have a unique ID
(i.e., some prior form of frame-by-frame tracking must be performed),
in order to obtain the temporal evolution of each person’s pose. The
filter’s cutoff frequency can be manually tuned to obtain smoother
trajectories of the detected keypoints, addressing the needs of differ-
ent applications.

Figure 4.5 shows an overview of the proposed system. The white blocks
represent a generic number of detectors, each running a BPE algorithm
based on its camera’s detections. Then, each detection is expressed as a
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SkeletonGroup and fed to the Skeleton Tracker. The tracked skeletons can be
used as is or fed to Merger, Optimizer, or Filter. The merged skeletons can,
in turn, be the input to the Optimizer, or to the Filter, if the optimization is
not needed by the application.

SkeletonGroup
camera 0

camera 1

camera N

detector

detector

detector

skeleton 
tracker

SkeletonGroup

SkeletonGroup
skeleton 

filter

skeleton 
optimizerSkeletonGroup

SkeletonGroup

SkeletonGroup
skeleton 
merger

SkeletonGroup

Figure 4.5: Overview of the proposed system. The white blocks are inde-
pendent of Hi-ROS, while the blue blocks represent the tools offered by the
proposed system. Merger, Optimizer, and Filter are not mandatory, allowing
for different workflows.

The following sections analyze in detail the four tools developed within
the proposed workflow: Skeleton Tracker (Section 4.3.2.1), Skeleton Merger
(Section 4.3.2.2), Skeleton Optimizer (Section 4.3.2.3), and Skeleton Filter
(Section 4.3.2.4).

4.3.2.1 Skeleton Tracker

The Skeleton Tracker is in charge of taking as input all the camera’s detected
poses and associating each skeleton to the correct track. This is achieved by
solving an assignment problem, where each element of the cost matrix is
computed as the distance between all possible pairs of detected skeletons
at time t and tracked skeletons at time t − 1.

Definitions. Let a skeleton group (SG) be defined as the set of skeletons in
the scene at time t, expressed with respect to a generic reference frame F :

SGF
t = {SF

t,n | n ∈ [0, N [} (4.1)

where N is the total number of people detected.
Each skeleton (S) is defined as:

SF
t,n = {mF

t,n,p, lFt,n,q | p ∈ [0, P [, q ∈ [0, Q[} (4.2)
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where mF
t,n,p is a set of markers and lFt,n,q a set of links. P is the total number

of markers defining the skeleton, while Q is the total number of links con-
necting pairs of markers. Figure 4.6 shows a representation of a possible
skeleton consisting of 21 markers and 20 links.

Figure 4.6: Example of a Skeleton formed by 21 markers (red) connected by
20 links (black).

A skeleton group can represent either the output of a detector (detection
group) or the output of the Skeleton Tracker (track group).

To this end, a detection group (DG) is defined as:

DGF
Ck,t = {DF

Ck,t,j | j ∈ [0, J [} (4.3)

where DF
Ck,t,j defines the j-th skeleton detected by the k-th camera Ck, and J

is the total number of detected skeletons.
Similarly, a track group (T G) is defined as:

T GF
Ck,t = {T F

Ck,t,i | i ∈ [0, I[} (4.4)

where T F
Ck,t,i defines the i-th tracked skeleton having as source camera Ck,

and I is the total number of tracked skeletons.

Tracking Algorithm. Each time the Tracker receives a detection group DGF
Ck,t

from a camera Ck, it checks the reference frame F where the data are ex-
pressed. If F differs from the global reference frame G, then the Tracker

107



4. TRACKING LEVEL

computes the rigid transformation T G
F to express all the data in the global

reference frame:

DGG
Ck,t = T G

F · DGF
Ck,t

= {DG
Ck,t,j = T G

F · DF
Ck,t,j | j ∈ [0, J [}

(4.5)

The transformation matrices T G
Ck

, where Ck indicates each camera’s local
reference frame, are the result of a camera network calibration procedure.

Since in the remainder of the discussion all data will be expressed with
respect to a common global reference frame, the apex G will be omitted to
simplify the notation.

Each time a detection group DGCk,t is received, the Tracker updates the
latest available track group T GCk,t−1 accordingly. Then, the updated track
group T GCk,t is kept in memory to be used when the next detection group
DGCk,t+1 arrives. The update process is divided into three parts:

1. update the detected tracks (skeletons that are present both in DGCk,t

and in T GCk,t−1)

2. add new tracks (skeletons that are present in DGCk,t but were not
present in T GCk,t−1)

3. remove unassociated tracks (skeletons that were present in T GCk,t−1
and are not present in DGCk,t).

The association between detections and tracks is achieved by finding
the optimal solution to an assignment problem, where the cost matrix rep-
resents the distance between each detection DCk,t,j and each track projection
T̂Ck,t,i. The cost matrix ∆t ∈ RI×J is defined as:

∆t = {δt,ij = wl · δl
t,ij + wa · δa

t,ij | i ∈ [0, I[, j ∈ [0, J [} (4.6)

where δl
t,ij represents the linear distance between the marker positions to

associate the i-th track with the j-th detection, δa
t,ij the angular distance be-

tween the link orientations, wl and wa two weights that allow to balance the
two contributions, I the total number of tracks at frame t−1, and J the total
number of detections at frame t. Therefore, δt is a function of both the state
at time t and at time t − 1:

δt,ij = f(TCk,t−1,i,DCk,t,j) = f(T̂Ck,t,i,DCk,t,j) (4.7)

where T̂Ck,t,i defines the predicted pose of the i-th track at time t exploiting
a constant velocity model.
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The linear distances are calculated as:

δl
ij = 1

Nα

∑
k∈K

wk (∥m̂i,k − mj,k∥ + wv · ∥vi,k − vj,k∥) (4.8)

where K are the markers in common between the i-th track and the j-th
detection, m̂i,k is the k-th marker’s position of the predicted track, mj,k the
corresponding marker’s position of the detection, vi,k the last available ve-
locity of the k-th marker of the track, vj,k the corresponding velocity of the
detection, wk the weight associated with the marker, and wv the velocity
weight with respect to the position weight. N represents the number of
markers in common, and its exponent α ≥ 1 allows to prefer track-detection
matches that have a higher number of markers in common. The distance
between two markers ∥m̂i,k − mj,k∥ is calculated as the Euclidean distance
between their positions.

Similarly, the angular distances are calculated as:

δa
ij = 1

Nα

∑
k∈K

wk

(
∥̂li,k − lj,k∥ + wω · ∥ωi,k − ωj,k∥

)
(4.9)

where K, in this case, represents the links in common between the i-th track
and the j-th detection, l̂i,k is the k-th link’s orientation of the predicted track,
lj,k the corresponding link’s orientation of the detection, ωi,k the last avail-
able angular velocity of the k-th link of the track, ωj,k the corresponding
angular velocity of the detection, wk the weight associated with the link,
and wω the velocity weight with respect to the position weight. In this case,
N represents the number of links in common, and its exponent α ≥ 1 allows
to prefer track-detection matches that have a higher number of links in com-
mon. The distance between two links ∥̂li,k − lj,k∥ is calculated as the angle
between the two quaternions defining their orientations along the shortest
path:

dist(q0, q1) = 2 arccos(|q0 · q1|) (4.10)

where q0 and q1 represent the two quaternions describing the links’ orien-
tations.

Each marker/link weight is composed of two terms:

wk = wm/lj,k
· wvi,k

(4.11)

where wm/lj,k
= κm/lj,k

if the markers/links confidences are used (κm/lj,k

represents the confidence of the k-th marker/link of detection j), 1 other-
wise; wvi,k

= (1+∥vi,k∥)−γ , with γ ∈]0, 1[, if the markers/links velocities are
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used, 1 otherwise. In this way, the faster a track’s marker/link is moving
and the lower its distance from the detection is weighted (see Figure 4.7).
This choice allows not to penalize too much the computation of the dis-
tances during fast movements.
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Figure 4.7: Velocity weight plot for different values of γ. Velocity expressed
in m/s for positions, rad/s for orientations.

Once the cost matrix ∆t is filled, the Munkres algorithm [184] computes
the optimal set of associations between detections and tracks to minimize
the total cost (that is, the overall distance between detections and tracks).
At this point, the previous tracks T GCk,t−1 are updated with the new data
from the detections DGCk,t. Velocities and accelerations are updated ac-
cordingly. If some detections were not associated with any track (e.g., the
number of detections at time t is greater than the number of tracks at time
t − 1, or some detections had a too high distance with respect to any track),
then new tracks are initialized. Finally, if some tracks were not associated
with any detection for a certain period of time tm (e.g., the number of tracks
at time t − tm is greater than the number of detections at time t, or some
tracks had a too high distance with respect to any detection), then those
tracks are deleted. This allows to maintain the correct IDs also in case of
brief full-body occlusions.

4.3.2.2 Skeleton Merger

Small errors in the calibration of the camera network, as well as uncertain-
ties in the estimation of body poses, can result in differences in the de-
tected poses depending on the camera and orientation in which a person is
seen. By concatenating the detections from each camera without some form
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of filtering, non-negligible flickering can be seen in the computed tracks.
Kalman or generic low-pass filters are typically used in cascade to skeletal
tracking to obtain smoother trajectories. However, due to the noisy nature
of the input data, this requires extremely low cutoff frequencies to be set,
thus not allowing to correctly track fast movements. To limit the flickering
phenomena without penalizing fast movements, a possible solution is to
merge the tracks describing the same person’s pose seen by different cam-
eras.

The Skeleton Merger node is in charge of fusing the tracked skeletons
obtained by the Skeleton Tracker node. Each received track group T GG

Ck,t is
expressed with respect to the same global reference frame G, and contains
the set of skeletons detected by camera Ck at time t. This node does not
require the cameras to be time-synchronized. In fact, the node determines
the closest set of detections from each detector in time. Hardware time syn-
chronization can lead to more accurate tracked poses, but it is not strictly
required in the proposed system.

Since the cameras are not required to be synchronized, the merged skele-
tons can belong to slightly different time frames. First, the average source
time t is calculated. Then the i-th merged track is computed as:

T t,i =

∑
k∈K

γTCk,t,i
· TCk,t,i∑

k∈K
γTCk,t,i

(4.12)

where TCk,t,i is the i-th track detected by camera Ck at time t, γTCk,t,i
its con-

fidence (if provided by the detector), and K the set of cameras that can see
the track.

However, before computing the merged skeletons, a procedure to detect
outlier markers and/or links is implemented, based on a voting procedure
among all detectors. First, possible flipped detections are identified by com-
paring the pelvis orientations. The detections from each camera are split
into groups. Each group contains detections where the distance between
the pelvis orientations is lower than π/2, where the distance is calculated
following Equation 4.10. If more than one group is present, it is assumed
that the detections from the largest group are correct, while the others are
flipped.

After removing the flipped detections, it is possible to detect outlier es-
timates coming from one or more cameras for each marker and/or link by
following an analogous voting procedure. The orientation distances of the
links are calculated following Equation 4.10, while the position distances of
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the markers are computed using the Euclidean distance between each pair
of markers.

To fuse the skeletons estimated from different cameras, the Skeleton
Merger node constantly maintains a buffer of track groups (which is cleaned
each time a merged skeleton is computed). Merging is triggered if at least
one of the following conditions is met:

1. If the buffer contains a track group with the same source (i.e., the same
detector) as the one from the newly received track group, then all the
elements in the buffer should be merged, before adding the new track
group;

2. If the delta time between the oldest element in the buffer and the
newly received track group is greater than a maximum delta, then all
the elements in the buffer should be merged, before adding the new
track group. The maximum acceptable delta can be set by the user (it
should typically be set equal to the cameras output rate);

3. If, after adding the new track group to the buffer, the number of
tracks to merge is equal to the number of detectors, then the next
track group will necessarily belong to a new time frame, and thus all
the elements in the buffer should be merged.

4.3.2.3 Skeleton Optimizer

The Skeleton Optimizer node allows to further detect and fix outliers present,
and to optimize joint positions/orientations to ensure limb length consis-
tency of the tracked skeletons, after a prior calibration of the tracked
persons. Therefore, the node can be divided into three parts: Calibration,
Outliers Detection and Fix, and, finally, Optimization.

Calibration. The calibration procedure aims to compute the nominal set of
limb lengths for a specific track Ti of a specific person:

Li = {li,j | j ∈ [0, J [} (4.13)

where J is the total number of links defining a skeleton. The procedure is
manually triggered and stores multiple frames of the tracked body poses
in a buffer. Then the average link lengths li,j are computed, as well as the
corresponding SDs σli,j

. The SDs σli,j
are an indication of the calibration
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quality. If one or more SDs are higher than a maximum threshold, then
the calibration quality is considered too low, and a new calibration should
be performed. Once proper calibration data are computed for a person,
it is possible to save the results for future use (e.g., in a following session
involving the same subject). Then, such data can be loaded without the
necessity to recalibrate the same person twice.

Outliers Detection and Fix. If calibration data are present, it is possible to
further detect and fix outliers present in the tracked poses. A typical prob-
lem in markerless body tracking is the possibility to have non-negligible
link length variability between consecutive time frames. Knowing the cor-
rect body dimensions of the tracked person makes it is possible to detect
the markers that are being estimated in a wrong position.

For each tracked skeleton Tt,i where calibration data are present, the
length of each link is compared with the correct one obtained from the
calibration. If such a difference is greater than a maximum threshold, then
the distal marker forming the link is considered an outlier. If an outlier is
detected, the system attempts to overwrite the position of the distal marker
with the position of the same marker estimated in the previous frame. This
is useful to minimize missing data between consecutive frames. If such a
marker was not present in the previous frame, then the marker is discarded.

Optimization. Once the highest sources of error are removed (i.e., the
markers considered as outliers), the whole skeleton undergoes an optimiza-
tion procedure to minimize limb length variability. Such optimization aims
at minimizing an energy cost that takes into account both the limb length
variability and the overall marker/link distances.

For each pair of markers mj,p, mj,d that form a link lj , the energy cost of
the length error is defined as:

Ej,l = (∥m∗
j,p − m∗

j,d∥ − lj)2 (4.14)

where m∗
j,p and m∗

j,d are the positions of the markers after optimization,
and lj is the length of the j-th link computed during the calibration.

The energy cost of the marker position errors is defined as:

Ej,p = ∥m∗
j,p − mj,p∥2 + ∥m∗

j,d − mj,d∥2 (4.15)
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Finally, the energy cost of the link orientation errors is defined following
Equation 4.10 as:

Ej,o = dist(l∗
j , lj)2 (4.16)

where l∗
j is the orientation of the link after optimization.

The total energy for each pair of markers forming a link is defined as:

Ej =
√

wj,l · Ej,l + wj,p · Ej,p + wj,o · Ej,o (4.17)

The three weights used are then defined as:

wj,l =

∣∣∣∥mj,p − mj,c∥ − lj

∣∣∣
L

wj,p = 1 − wj,l

2
wj,o = 1 − wj,l − wj,p

(4.18)

where L is the maximum acceptable length error (links with errors greater
than L are considered outliers). In this way, the higher the length error, the
stronger the optimization will be, while maintaining the original marker
positions and link orientations when the link length error is small. Finally,
the total energy cost relative to the whole skeleton consists of the summa-
tion of all the energies related to each link:

E =
J∑

j=0
Ej (4.19)

The global optimization problem that allows the minimization of the total
energy cost is solved by exploiting the Levenberg-Marquardt algorithm
implemented in the Ceres Solver library [185].

4.3.2.4 Skeleton Filter

Highly accurate biomechanical analyses of human movement typically re-
quire a filtering step in a post-processing phase to enhance the raw acquired
data. For this reason, the proposed system includes a state-of-the-art real-
time state-space filter to allow smoothing of the tracked bodies’ trajectories.

The filter included in this work is based on an open-source implementa-
tion released by Pizzolato et al. [186] under the Apache v.2 license. The filter
has been adapted to be used on SkeletonGroup messages. Changes in the
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number of markers or links between consecutive frames are correctly han-
dled, and a custom low-pass filter is implemented for the link orientations.
The cutoff frequency can be freely selected. Typical cutoff frequencies in
biomechanics range between 6-10 Hz [12].

4.3.3 EXPERIMENTS

The accuracy, robustness, and real-time performance of the developed sys-
tem were assessed on a public dataset [72]. The dataset includes RGB-
D and markerless MoCap data of multiple sequences with up to four
people interacting, recorded using a calibrated network consisting of five
Azure Kinect cameras. Single-person sequences are characterized by spe-
cific ADLs (e.g., sitting, walking, jogging, waving hands, etc.), while multi-
person sequences contain movements that led the participants to overlap
multiple times during the experiments. The dataset also includes body
poses estimated by exploiting full-body Xsens MVN Awinda inertial suits
for up to two people simultaneously.

No optoelectronic data are present due to the fact that the required
markers attached to the body are highly reflective in the infrared domain,
resulting in a strong distortion in the Kinects’ depth and, consequently, in
a poor estimation of body poses. However, the software used for the esti-
mation of the body poses via inertial MoCap (that is, Xsens MVN Analyze)
allowed to obtain an accuracy comparable to that of state-of-the-art opto-
electronic systems, as demonstrated in [57].

To assess the accuracy of the proposed system, the markerless MoCap
data retrieved from the dataset were converted into SkeletonGroup messages
and used as input for the Skeleton Tracker as depicted in Figure 4.5. We
then compared the inertial body poses to the ones obtained by exploiting
different configurations of the proposed nodes:

1. configuration T: using the Skeleton Tracker only, which purely com-
bines the raw detections from each camera;

2. configuration TMF: using Tracker, Merger, and Filter, thus avoiding the
limb length optimization step;

3. configuration TMOF: exploiting the full pipeline, consisting of Tracker,
Merger, Optimizer, and Filter.

To compare the accuracies obtained by the three configurations ana-
lyzed, we calculated the RMSE and the SD between the estimated joint an-
gles that define the pose of a person. Let qGD and qGP be two quaternions
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that describe, respectively, the orientations of a distal segment and a prox-
imal segment, expressed with respect to the same reference frame G. The
rotation of the joint connecting the two segments can be calculated as:

qP
D = qG∗

P ⊗ qGD (4.20)

where ⊗ indicates the quaternion multiplication, and ∗ the complex conju-
gate. The joint angles are then obtained by computing the corresponding
Euler angles, following the zxy sequence [187]. The International Society of
Biomechanics (ISB) defines flexion/extension (FE) as the rotation about the
z axis, abduction/adduction (ABD) about the x axis, and internal/external
(IER) rotation about the y axis ([188], [189]).

Joint angles were preferred to keypoint positions due to the fact that
a direct comparison between keypoint distances could lead to erroneous
results. This depends on two main factors: a) the two systems (markerless
MoCap and inertial MoCap) place their keypoints in different positions on
the body, and b) inertial suits can suffer from drift phenomena, leading
to increasing errors in the absolute positions of the analyzed persons over
time. However, the impact of drifting on the estimation of the joint angles
is negligible [57].

The dataset used in this work is split into two sections: single-person
sequences and multi-person sequences. Single-person sequences include
the following actions: bending, crossing arms, jogging, jumping, N-pose,
pointing, sitting, squatting, T-pose, throwing, walking, and waving. Multi-
person sequences, on the other hand, include the following actions: people
walking in a circle, people crossing, walking forming and eight, free dy-
namic movements, free static movements, entering/exiting from the scene,
and static poses. More details can be found in Section 4.2. Out of the 19 dif-
ferent actions, we decided to remove N-pose, T-pose, and static sequences
from our analysis since they are present for calibration purposes, and focus
the analysis on active movements only. Table 4.8 describes all the actions
taken into account for the accuracy assessment of the proposed system.

For each recorded frame, we extracted the values of the following joint
angles: left/right shoulder FE, left/right elbow FE, left/right hip FE, and
left/right knee FE. The choice was driven by the fact that such angles are
the among the most informative, being the ones with the highest ranges
of motion during typical movements, and can describe well the pose of a
person. Only FE is taken into account due to the fact that ABD and IER can-
not be estimated with high accuracy even by dedicated systems. Similarly,
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Table 4.8: List of single-person and multi-person actions used for the ex-
periments.

N
people Action Description

1 walk Walking at self-selected speed
1 squat Squatting
1 bend Bending down
1 sit Sitting on a chair
1 jog Jogging in place
1 jump Jumping in place
1 cross_arms Crossing arms
1 point Pointing to different directions
1 wave Waving hands
1 throw Pretending to throw an object

2 - 4 free_static Free movements while in the same place
2 - 4 free_dynamic Free movements while changing positions
2 - 4 circle Walk in a circle
2 - 4 cross Switch positions while walking in a circle
2 - 4 in_out Enter and exit from the cameras field of view

4 eight Walk forming an eight

the Azure Kinect Body Tracking SDK estimates of such angles are generally
very noisy.

For each action (including one, two, three, or four people), we calcu-
lated the mean RMSE and the SD of all the eight joint angles taken into
account. Table 4.10 details the obtained results. The table outlines the
accuracies achieved using configuration T, TMF, and TMOF, as well as
the improvement gains obtained when using TMF and TMOF with re-
spect to pure tracking when compared to the results provided by inertial
MoCap. The accuracy analysis is divided between single-person sequences
(Section 4.3.3.1) and multi-person sequences (Section 4.3.3.2). The robust-
ness of the proposed system is discussed in Section 4.3.3.3, while real-time
performance is analyzed in Section 4.3.3.4.

4.3.3.1 Single-Person Sequences

The raw output of the Azure Kinect Body Tracking SDK shows a mean
RMSE between the values of the anatomical joint angles computed from
the estimated body poses and the ones calculated by MVN Analyze of
18.77 ± 15.23° across all single-person sequences. The RMSE is reduced by
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21.74 % when also including Merger and Filter, going from 18.77° to 14.69°.
However, the highest and most important improvement in accuracy can be
observed in the SD, with a decrease of 34.54 %, going from 15.23° to 9.97°. In
fact, it is important to mention that some joint angles show a constant delta
between inertial and markerless data. This can be noticed mainly on the
upper part of the body and appears to be caused by a systematic shift in the
positioning of the elbow keypoints from the Azure Kinect Body Tracking
SDK algorithm used in the dataset. For this reason, better insight on the ac-
curacy improvement obtained when exploiting the full proposed pipeline
is obtained by comparing the SDs of the errors, rather than the RMSE. The
SD can, in fact, be seen as the RMSE after compensating the shift, as well as
a measurement of the signal noise. Thus, the SD allows to quantify the joint
angles estimation errors after compensating such shift.

When also including the Optimizer, the improvement with respect to
pure tracking is still of 21.74 % on the RMSE and 34.60 % on the SD, which
is slightly better with respect to the TMF case. This behavior can be ex-
plained by two possible causes. The first is that the raw estimated body
keypoints are already placed in positions such that the body dimensions
do not change much between consecutive frames; thus, the effect of the
Optimizer on the final poses is minimal. The second reason is that the link
lengths do not directly influence the estimation of a joint angle. As seen
in Equation 4.20, only the relative orientation of the distal and proximal
links contributes to the final value of the angle. Thus, the accuracy of the
estimated joint angles might remain substantially unchanged, while at the
same time the estimated keypoint positions can be more consistent and re-
spect the person’s body dimensions throughout the whole experiment.

When analyzing specific actions, we can see that walking and waving are
the most accurate, achieving an accuracy of 6.45° and 6.08°, and the ones
with the highest error reductions (44.44 % and 53.65 % respectively). This
means that, in these sequences, the impact of Merger, Optimizer, and Filter
is maximized, allowing the correct detection and fix of flipped detections
and outliers. Pointing, on the other hand, is the most challenging action.
This can be explained by the fact that during the pointing sequences there
is one arm that is constantly occluding important parts of the body, such as
the chest and/or the shoulder, creating difficulties in the correct estimation
of the pose and, at the same time, limiting the impact of outlier detection.
It is worth noting that such poses are also critical with respect to inertial
MoCap. In fact, the shoulder joint kinematics is typically the most difficult
to estimate correctly [190]. Therefore, the highest errors in the pointing se-
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quences may also be caused by errors in the poses estimated by the inertial
suit. Walking and waving, on the other hand, are more accurately tracked by
the camera network, being occlusions minimal.

As depicted in Figure 4.8, showing an example of joint angles estimated
using the inertial suit and the complete pipeline (TMOF) during a wave se-
quence (shoulders and elbows) and during a jog sequence (hips and knees),
the estimates of the two systems are extremely similar, even in challenging
actions as jogging.

Figure 4.8: Joint angles calculated by Xsens MVN Analyze (in blue) and by
the proposed system (in orange). Shoulder and elbow angles refer to a wave
sequence, while hip and knee angles refer to a jog sequence.

Before discussing multi-person sequences, it is important to perform a
more in-depth analysis of the Skeleton Optimizer. In fact, while its impact
is overshadowed by the Merger when using state-of-the-art hardware and
granting optimal views of the persons on the scene, the Optimizer is a pow-
erful tool, designed to be used in the most challenging scenarios. When
less accurate hardware is adopted, resulting in a noisy estimated depth,
or if the tracked persons are far from the sensors, the estimated keypoint
positions can lead to significantly varying limb lengths. Although the data
recorded in the dataset do not suffer from these problems, the same cannot
be ensured in different scenarios. When this is the case, the Optimizer
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allows to minimize the impact of erroneous estimates and to guarantee
meaningful body poses even in the most challenging scenarios.

4.3.3.2 Multi-Person Sequences

Multi-person sequences show similar errors with respect to the single-
person ones (Table 4.10). However, the average error for the sequences
with two persons is even lower than the errors obtained in single-person
sequences. The reason behind this can be explained by the fact that the in-
creased difficulty arising from the higher number of people present in the
scene is compensated for by the different typologies of actions being per-
formed.

As depicted in Table 4.10, all three configurations show the same be-
havior, depending on the number of people in the scene, where the errors
slightly increase as the number of persons in the scene increases. This was
expected and is dependent on the fact that the more people are tracked in
the same confined space, the more occlusions will be present. When a body
is partially occluded, erroneous estimations of part of the body keypoints
might occur.

Another source of error in markerless MoCap comes from the fact that
it is easier for a detected skeleton to be completely occluded by others and,
as a result, to be considered as a new person when it reappears. The Azure
Kinect Body tracking SDK tends to spawn new skeletons in an incorrect
pose, resulting in temporary errors during the first few frames. However,
the Tracker is still able to assign the correct IDs even in these cases.

In multi-person sequences, the errors obtained from pure tracking with
respect to inertial MoCap start from 16.74 ± 13.38° when tracking two per-
sons, increase to 17.39 ± 13.94° when three persons are present, and reach
17.80 ± 14.43° with four people in the scene. The same trend is obtained
when using TMF and TMOF. The accuracy improvement with respect to
raw tracking decreases as the number of people increases. With two peo-
ple in the scene, the RMSE is reduced by 19.24 % when using TMF and by
18.88 % when using TMOF, while the SD is reduced by 31.84 % (TMF) and
31.32 % (TMOF). With three people in the scene, the RMSE is reduced by
15.76 % when using TMF and by 15.41 % when using TMOF, while the SD
is reduced by 26.47 % (TMF) and 25.90 % (TMOF). Finally, with four peo-
ple in the scene, the RMSE is reduced by 13.31 % when using TMF and by
13.03 % when using TMOF, while the SD is reduced by 20.51 % (TMF) and
20.03 % (TMOF). Here, the results of the Optimizer are slightly less accurate
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than those of the Merger. As in single-person sequences, the difference is
negligible, since the different positions of the keypoints after the optimiza-
tion do not directly impact the estimation of the joint angles.

The smaller improvement with respect to single-person sequences may
be due to the fact that, overall, a lower number of Kinects are seeing the
persons at each time frame. Although this difference does not affect the
pure tracking accuracy (configuration T), which consists only of the associ-
ation of the raw detections obtained by each camera, this affects Merger and
Optimizer. In fact, outlier filtering can be less effective when a lower num-
ber of cameras can see the persons in the scene. However, the increase in
accuracy is still significant, with a 20 % error reduction when using TMOF
with respect to T in the worst-case scenario.

When analyzing single actions, in TMF and TMO we can notice a
consistent behavior among the different sequences, where free_static is typ-
ically the most accurate action (with errors ranging from 8.05° to 10.43°)
and in_out is the least accurate one (with errors ranging from 11.66° to
12.08°). This was expected since during free_static sequences people are
standing in the same place during the whole experiment, whereas in in_out
sequences people are constantly exiting and reentering the acquisition area.
However, in the T configuration, the behavior is almost inverted. In this
case, the in_out sequences are typically among the most accurate, while
the highest errors occur in less demanding sequences, such as free_static
and free_dynamic. A possible explanation for this is the presence of flipped
detections. In fact, as introduced in Section 4.3.2, it is possible for one or
more Kinects to detect a body pose flipped by 180°. If such a person is mov-
ing, there is a high chance that the pose will be fixed after a few frames.
However, if the person is standing still, the orientation of the detection
might remain flipped throughout the whole experiment. In this sense, the
fact that people are constantly moving in in_out sequences helps to reduce
the impact of such flipped detections. On the contrary, in the free_static
and free_dynamic sequences, this cannot happen. The same behavior is not
present in the TMF and TMOF configurations. In fact, Merger and Optimizer
are designed to correctly detect and remove both flipped detections and
outlier markers/links.

4.3.3.3 Robustness

When tracking multiple people, it is important to be able to assign a consis-
tent ID to each person throughout the whole experiment. Extreme proxim-
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ity of two or more persons, as well as awkward poses, can cause tracking
algorithms to switch the assigned IDs. In order to assess the robustness of
the proposed system on assigning consistent IDs to all the tracked people,
the output of multi-person sequences was manually checked. The tracked
skeletons (and their IDs) were projected onto the point cloud obtained by
merging the five Kinects (Figure 4.4). The correctness of each ID was then
manually controlled for all the analyzed sequences.

The IDs were correctly assigned to each participant, independently of
the number of people present in the scene and of the proximity of the
tracked people. There are some cases, especially in in_out sequences, where
some persons exit from the FoV of all the cameras for small windows of
time. Then, when a person reenters the scene, the system gives them a new
ID. However, even in these cases, the IDs are correctly assigned and kept
by each track during the time windows in which they are visible to at least
one camera. It is worth noticing that cross and eight sequences are extremely
challenging in this regard, since people are constantly moving across each
other, while also being partially occluded to one or more cameras. We can
conclude that the proposed system is robust and allows to correctly track
all the persons in the scene.

4.3.3.4 Real-time Performance

The average computation time required to process a single frame was mea-
sured for all the nodes of the proposed system (i.e., tracking time, merging
time, optimizing time, and filtering time). Table 4.9 reports the computa-
tion times obtained when varying the number of people tracked. The tests
were run on an Intel Core i7-1165G7 CPU @ 2.80 GHz laptop with 16 GB of
RAM.

As expected, the results show that the optimization is by far the most de-
manding task, ranging from 4.16 ms when a single person is being tracked
to 8.33 ms when tracking four people. Tracking, merging, and filtering times
are negligible, requiring respectively 0.19 ms, 0.55 ms, and 0.11 ms to track
one person, and 0.86 ms, 0.88 ms, and 0.21 ms to track four people.

Table 4.9 also reports estimates of the computation times required to
track more than four people. Such data are calculated by assuming a linear
trend between the number of people being tracked and the computation
time required by each node. It is important to note that the total time to
process each frame is not equal to the sum of the computation times of all
nodes. In fact, each node runs in parallel. Therefore, taking the four people
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Table 4.9: Computation times required to process a single frame. Times to
track one to four people are calculated on the dataset trials, while times to
track five and ten people are estimated from the previous ones assuming
a linear trend between the number of tracked people and the computation
time required. Data are presented as mean (SD).

N
people

Tracker
[ms]

Merger
[ms]

Optimizer
[ms]

Filter
[ms]

1 0.19 (0.05) 0.55 (0.08) 4.16 (0.95) 0.11 (0.03)
2 0.37 (0.14) 0.71 (0.28) 6.44 (2.13) 0.17 (0.06)
3 0.63 (0.26) 0.85 (0.43) 7.52 (3.10) 0.19 (0.08)
4 0.86 (0.39) 0.88 (0.55) 8.33 (3.76) 0.21 (0.10)

5 1.08 1.03 10.01 0.25
10 2.22 1.59 16.81 0.40

scenario as an example, the average time required to process each frame
would be equal to 8.33 ms (the time required by the most computationally
intensive node), which corresponds to a theoretical maximum frame rate of
∼120 Hz. On the other hand, the average delay between input detections
and output tracks corresponds to the sum of the times of all the nodes. In
this case, it would be equal to 10.28 ms.

Finally, since the usage of Merger, Optimizer, and Filter is optional, faster
performance can be obtained by removing the Optimizer, with the down-
side of not guaranteeing consistent limb lengths during the experiments.
We can see that when tracking ten people, the computation time required
by the Optimizer is 16.81 ms, corresponding to a maximum frame rate of
∼59 Hz. However, without the Optimizer, the computation time required
for each frame would decrease to 2.22 ms, allowing to reach a maximum
frequency of ∼450 Hz.

4.3.4 FINAL REMARKS

This section analyzed the modules I developed during my Ph.D. within the
Tracking level. The proposed system offers a series of tools to perform real-
time multi-camera multi-person tracking, consisting of four modules:

1. a Skeleton Tracker node to perform pure frame-by-frame tracking of the
detected body poses;

2. a Skeleton Merger node to fuse detections from multiple cameras and
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detect possible outliers;

3. a Skeleton Optimizer node to perform a global optimization to ensure
consistency of each person’s body dimensions;

4. a Skeleton Filter node to perform real-time filtering of the estimated
markers poses and links orientations.

All the developed nodes communicate with each other by means of efficient
custom-defined messages (Section 2.4).

The accuracy, robustness, and real-time performance of the proposed
system were assessed on a public dataset ([72]). The dataset includes a vari-
ety of sequences with up to four people interacting, recorded by exploiting
a calibrated camera network consisting of five Azure Kinect cameras. Body
poses are captured for up to two people simultaneously using an accurate
inertial MoCap suit (Xsens MVN Awinda).

The results show that, by exploiting the proposed system, it is possible
to reduce BPE errors by up to 34.60 % when compared to a pure tracking-by-
detection approach. When increasing the number of people in the scene, the
system is still capable of reducing the estimation errors by 31.84 % with two
persons, by 26.47 % with three persons, and by 20.51 % with four persons.
Robustness analyses show that correct IDs are assigned to each tracked per-
son in all the dataset sequences. Even during periods of close proximity of
two or more people, no ID switch is reported.

Real-time performance was also analyzed by reporting the computa-
tional time required by each node to process a frame. The complete pipeline
is able to produce real-time results, reaching 240 Hz when tracking a single
person, or 120 Hz when tracking four people. Finally, the Optimizer shows a
computation time ranging from 4.16 to 8.33 ms, since multiple iterations are
typically needed to converge to the optimal solution.

The analyses performed suffer from two limitations. The first one is
the possibility of having inertial body kinematics data only for up to two
persons simultaneously. This is a limitation of the dataset, where the in-
ertial suits were not available for more people. For this reason, the results
reported in Table 4.10 for multi-person sequences are always obtained by
comparing the joint angles of two subjects only. In sequences with more
than two people interacting, it is not possible to know the inertial poses of
the other persons. Another limitation depends on the nature of the body
poses estimated by exploiting inertial suits. By using inertial suits, in fact,
it is not possible to directly compare the Euclidean distances between the
keypoints estimated using the two MoCap systems. Consequently, all the
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analyses were conducted on the joint angles describing the poses, rather
than on the estimated body keypoints.

Future work aims to exploit raw inertial data (i.e., raw IMU orien-
tations), together with markerless MoCap, as input to drive a common
musculoskeletal model of the persons being analyzed. This should allow to
further improve the system’s accuracy, while also minimizing the drifting
phenomena that are typical of pure inertial MoCap systems. This approach
will also allow to directly compare both the estimated joint angles, as well
as the estimated body keypoints, since they are defined on the same shared
model.

4.4 CONCLUSIONS

This chapter presented my research within the Tracking level. The contribu-
tion in this regard was twofold. In fact, the main focus was on presenting
novel algorithms for real-time multi-person BPE and tracking in distributed
networks of homogeneous sensors. However, to properly assess the per-
formance of the proposed system, an extensive dataset of movements was
acquired.

The dataset, namely UNIPD-BPE, contains synchronized RGB-D and
inertial data describing the motion of up to four interacting people. The
acquisition setup included five Microsoft Azure Kinect cameras, used to
record high definition videos, depth, and markerless BPE data from multi-
ple viewpoints, and two Xsens MVN Awinda full-body inertial suits to pro-
vide accurate poses of the subjects, as well as raw data from the 17 IMUs
required by each suit. The dataset contains both single- and multi-person
sequences. Single-person sequences include 15 participants performing a
set of 12 ADLs, while multi-person sequences include seven actions per-
formed by up to four interacting people. The recorded sequences aim to
push forward the development of markerless BPE and tracking algorithms,
as well as multimodal sensor fusion approaches, enabling a variety of ap-
plications where accurate and unobtrusive knowledge of human motion is
of paramount importance.

After presenting the UNIPD-BPE dataset, the chapter analyzed the four
modules developed within this level, allowing real-time temporal tracking
of multiple people using a network of homogeneous sensors. They con-
sist of: (1) a Skeleton Tracker to perform pure frame-by-frame tracking of the
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detected persons; (2) a Skeleton Merger to fuse the detections from multi-
ple cameras, resulting in an enhanced description of the body poses; (3) a
Skeleton Optimizer to perform a global optimization to ensure consistency of
each person’s body dimensions; and (4) a Skeleton Filter to perform real-time
smoothing of the estimated marker positions and link orientations. No as-
sumptions are made about the number of sensors that are used, nor about
the number of people who are tracked. Moreover, the generality of the de-
veloped algorithms allows the user to select different subsets of modules,
depending on the specific application requirements.

The results obtained in the UNIPD-BPE dataset showed how the pro-
posed system is robust, being able to correctly assign consistent IDs to each
tracked person in all the dataset sequences. At the same time, the devel-
oped modules allow to reduce BPE errors by up to 35 % when compared to
a pure tracking-by-detection approach. Finally, all the proposed algorithms
are efficient, ensuring real-time performance even when large numbers of
people are present in the scene. The results clearly showed how the de-
veloped system has the potential of putting the basis to allow accurate and
robust multi-person pose estimation and tracking, without the necessity of
any sensor or marker on the body, and in real-time.
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5 Modeling Level

5.1 INTRODUCTION

The last part of my research aimed at bringing together all the work de-
fined within the Sensing and Tracking levels. The Sensing level (Chapter 3)
allowed to exploit different typologies of sensors for the measurement
of human motion. The standard interfaces used for the communication
among all the modules are defined within this level. The Tracking level
(Chapter 4), on the other hand, focused on multi-sensor fusion among a
network of homogeneous sensors (e.g., a camera network). The developed
modules allow to ensure temporal consistency of the data obtained from
a distributed sensing system while accurately tracking multiple people in
real-time. Additional modules are proposed for enhancing the measured
motion by merging partial information from different sensors, optimizing
the body poses to respect anthropometric constraints, and performing real-
time smoothing of the motion trajectories.

However, to fuse data obtained from heterogeneous sources (e.g.,
marker positions estimated by optoelectronic systems and IMU orienta-
tions), all of the measured quantities need to refer to a common underly-
ing model of the subject being analyzed. Thus, the third and last level of
my research is the Modeling level. The work within this level aims to adapt
state-of-the-art biomechanics techniques to allow their use in everyday liv-
ing and working environments. As a result, the Modeling level allows rep-
resenting motion by means of a musculoskeletal model of the human. The
contribution of this level is twofold.
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5. MODELING LEVEL

First, using the estimated body poses1 to drive a musculoskeletal model
should allow to increase the achievable accuracy, minimizing the impact
of diverse sources of errors inherent in all the three classes of MoCap sys-
tems. In fact, errors due to STAs, typical of optoelectronic systems, can
be strongly reduced by using the measured marker positions to simulate
motion via an IK procedure [3]. Similarly, drifting phenomena can lead
to increasing errors in the orientation estimation of an IMU. However, by
employing multiple IMUs to simulate motion in a musculoskeletal model,
the impact of drifting in the final estimation of the pose can be minimized,
allowing for more stable results in the long term [191]. Finally, markerless
systems suffer from estimation noise. Moreover, markerless BPE might pro-
vide wrong estimations of the body keypoints describing a person’s pose,
caused by challenging lighting conditions, cluttered environments, or un-
conventional body poses [192]. In this regard, the use of a model allows to
ensure consistency in the estimated body dimensions, as well as to mini-
mize the impact of a wrong keypoint detection on the full-body pose.

Second, the integration of a musculoskeletal model is a key feature that
enables the simultaneous use of heterogeneous sensors for the assessment
of human motion. In fact, my research was driven by the strong idea
that proper multimodal sensor fusion must be performed at the Modeling
level. Different sensors, MoCap systems, BPE algorithms typically rely
on unrelated underlying models (if any). Therefore, a direct fusion of the
measured quantities defining a person’s body pose is prone to lead to er-
roneous results. However, by properly defining a unique musculoskeletal
model that includes all the measured quantities (i.e., measured/estimated
marker positions and measured/estimated IMU orientations), it is possible
to actively use all the available data, independently of their source, with a
common final goal.

The remainder of the chapter analyzes the main characteristics of the
musculoskeletal models used in this work (Section 5.2). While real-time
accurate assessment of human motion is the primary goal of my Ph.D.,
the generality of the selected tools and of the implementations allow to
represent and track the motion of any articulated object. The chosen ap-
proach relies on an IK optimization with the goal of driving the model

1Such poses can either be the ones directly measured within the Sensing level or the
enhanced poses obtained from multi-sensor networks. In fact, the Measuring level can
communicate with both the Sensing and Tracking levels (Figure 2.1).
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in the configuration that best matches the experimental data at each time
frame. Section 5.3 describes the mathematical principles behind marker-
and orientation-based IK optimizations. Finally, Section 5.4 analyzes the
modified workflow and the implementation choices to enable real-time
multi-person MOB-IK optimizations, allowing to use both markers and
IMUs jointly. Preliminary results on the performance achieved using the
set of marker positions and link orientations estimated by the Azure Kinect
Body Tracking SDK on a full-body musculoskeletal model with 32 DoFs
are included.

5.2 DEFINITION OF THE MODEL

As analyzed in Section 2.2, OpenSim was the final choice for the represen-
tation of a musculoskeletal model in my research. An OpenSim model can
represent humans, animals, or, generally, any articulated object. It relies
on the concept of components, where each component of the model corre-
sponds to a specific part of the described physical system. Such compo-
nents can be combined to generate or simulate movement. Seven classes
of components cooperate for the definition of a model: reference frames,
bodies, joints, constraints, contact geometry, markers, and controllers.

Bodies and joints allow to describe a model’s skeletal system. Bodies rep-
resent rigid segments (each with its own reference frame), while joints define
how pairs of bodies can move with respect to each other. In this regard,
constraints can be used to limit a joint’s RoM. Forces, either measured or
generated by a controller, permit to describe motion dynamics. Muscles are
modeled as specialized forces that act at multiple points in the connected
bodies. Finally, a model can be associated with a specific contact geometry,
as well as with a generic set of markers defined locally to any rigid body.

A short description of the principal components that define any
OpenSim model will be presented. Not to deviate from the main subject of
this dissertation, only the components used to define the model’s skeleton
and, thus, to perform an IK optimization (i.e., bodies, joints, constraints,
and markers) will be analyzed. For additional information on the other
components, the interested reader is referred to the OpenSim documenta-
tion [193].

Bodies. Bodies are the primary building block of an OpenSim model. They
are used to represent rigid entities in the model that must be connected to
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5. MODELING LEVEL

other bodies by means of a joint. Thus, each body owns the joint that con-
nects it to its parent body. Figure 5.1 shows a representation of two generic
bodies P and C in OpenSim, connected by a joint J . Mathematically, a body
in the model represents a moving reference frame with a certain center of
mass and inertia. Its motion depends on the motion of its parent body and
on the properties of the joint that connects them. A body can include sev-
eral properties (e.g., its unique name, a mesh file representing its geometry,
its mass, the position of its center of mass, and an inertia). Finally, each
model automatically defines a special body: the Ground. The Ground body
is the root of the model and represents the global reference frame in which
the experimental data are expressed.

parent 
body 

P

child 
body 

C P

Ground body

≈

P0

C

C0

joint 
J

Figure 5.1: Representation of two bodies in OpenSim, described by their
reference frames P0 and C0, connected by a joint J . The joint describes
the relationship between two additional reference frames P and C, defined
local to the respective bodies. In the example, the parent body is connected
to the Ground body.

Joints. Joints are used to describe the relationships between pairs of bod-
ies. Specifically, a joint defines the kinematic relationship between two
generic frames affixed to the parent and child bodies. This is possible by
defining a constant transform between the joint frame and the body frame.
Several types of joints are available:

• Weld Joint: no DoFs, parent and child bodies are fused together;
• Pin Joint: one rotation DoF;
• Slider Joint: one translation DoF;
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5.2. Definition of the Model

• Ball Joint: three rotation DoFs;
• Ellipsoid Joint: three rotation DoFs and coupled translations such that

the movement of the child body traces an ellipsoid about the joint
center;

• Free Joint: three rotation DoFs and three translation DoFs;
• Custom Joint: user-specific DoFs and constraints. Custom joints allow

replicating all the aforementioned classes of joints, while also intro-
ducing kinematic constraints.

Constraints. Constraints are used in OpenSim to limit the movement be-
tween two adjacent bodies. Three different typologies of constraints are
supported for the definition of a joint: Point constraints, Weld constraints,
and Coordinate coupler constraints. Point constraints are used to fix a point
described with respect to two bodies. Thus, no relative rotations between
the two bodies are allowed. Weld constraints, on the other hand, fix both
the relative locations and orientations of two bodies. Thus, no relative mo-
tion is allowed. Finally, coordinate coupler constraints allow the user to de-
fine custom constraints. They relate the generalized coordinates of a joint to
any other coordinate in the model. Thus, the user must provide a function
describing the relation between the two coordinates.

Markers. Markers are a necessary component to perform IK simulations
of motion in the model. OpenSim allows the definition of a virtual set of
markers in the model. The virtual marker set must match the experimental
marker set used for the data acquisition. Markers can be defined local to
any body in the model. Thus, a marker is described by its unique name, the
body on which is attached, and its location on the body. Multiple markers
can be attached to the same body.

Several already defined and validated models are freely available within
OpenSim. While the majority describe the human body (or specific parts of
the body), the generality of the aforementioned components allowed the
community to design a variety of different models, not necessarily limited
to human motion analysis. Moreover, the open-source nature of the project
results in the possibility to freely alter any available model, if needed.

This is a key feature of OpenSim, since the creation of new accurate hu-
man models ex nihilo is a complex task that requires in-depth knowledge
of human anatomy. Furthermore, new models should be thoroughly vali-
dated (possibly with large groups of subjects) to assess their correctness in
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describing human motion. For these reasons, the majority of the studies on
human motion rely on already validated models.

However, generic models cannot be directly used to describe a person’s
movement. In fact, their body dimensions are typically calculated from
the averaged anatomical measurements of multiple cadaver specimens [11],
[194], [195]. Thus, before analyzing motion, a generic model requires to be
scaled.

Scaling is used to alter the anthropometric characteristics of a model
to match a specific subject. It is typically performed by comparing exper-
imental marker data recorded during a static trial to the virtual markers
defined in the generic model. A static trial consists of a short recording
where the subject is standing in a known static pose. Scaling is then per-
formed by comparing the measured distances of pairs of markers and the
corresponding distances in the model. The dimension of the body segment
in the model where the pair of markers is placed is linearly scaled such
that the distance between the virtual markers matches the measured one.
The scaling factors computed in this step are also used to scale mass and
inertia, as well as any element attached to the body segments (e.g., muscles
and wrapping objects).

5.3 INVERSE KINEMATICS FOR BIOMECHANICAL

MODELING

In robotics, the IK problem consists of determining the joint variables of
a kinematic chain that correspond to a given pose of the end-effector. As
opposed to forward kinematics (FK), where the pose of the end-effector is
uniquely determined by the state of each joint, IK introduces several crit-
icalities. The equations are in general non-linear. Thus, a closed-form so-
lution might not be possible. For this reason, multiple solutions may ex-
ist (potentially an infinite number of solutions). It is also possible to have
no admissible solutions. Nonetheless, the IK problem is of crucial impor-
tance to transform a desired end-effector motion specification into the cor-
responding required joint space motions [196].

Similarly, the IK tools developed in OpenSim take as input the experi-
mental data describing a certain motion and, for each time frame, compute
the joint angle values that position the model in the configuration that best
matches the experimental data. In this regard, the best match consists of
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5.3. Inverse Kinematics for Biomechanical Modeling

the pose that minimizes the sum of the WLS errors between the virtual
experimental markers, IMUs, and/or coordinates in the model.

OpenSim requires three input files to solve IK problems (Figure 5.2).
First, a model file describing the analyzed subject must be provided. A
model consists of an .osim file, which follows the XML syntax rules with a
specific grammar, where all its properties are stored. When using generic
models, it is crucial to scale the model before the analysis to generate a
subject-specific version of the model. The second input consists of a .trc file
containing all the experimental data recorded during the motion. Finally,
an .xml setup file specifying the settings to use for the IK is the third and
last required input. It contains the weights to be assigned to each mark-
er/IMU, the specific model to be used, the path of the file containing the
trial’s recordings, the time range over which the IK problem will be solved,
and the desired accuracy of the solution (i.e., the number of significant dig-
its to which the solution can be trusted).

The output of an IK optimization is a motion file (.mot) containing the
generalized coordinates (i.e., the estimated anatomical joint angles and/or
translations) describing the model’s motion at each recorded time frame.

ik_setup_file.xml

model_file.osim

offline 
IKinput_data.trc joint_angles.mot

Figure 5.2: Input and output files required for an IK optimization in
OpenSim. The green blocks represent files, while the red block represents
an offline operation.

Typically, IK analyses are driven by experimental marker data measured
by means of highly accurate optoelectronic MoCap systems. However,
as discussed in Section 1.2, such systems require delicate hardware and
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trained personnel. This typically limits their use in specialized laboratory
environments.

Due to the latest advances in IMU technology, wearable sensing based
on a chain of IMUs worn on the body is considered a valid alternative
to optical MoCap [22]. Thus, OpenSim recently introduced the support
for orientation-based IK analyses [191] that exploit inertial data instead of
markers, inspired by the preceding work of Tagliapietra et al. [129].

The rest of this section analyzes the mathematical principles of MB-IK
optimizations (Section 5.3.1) and OB-IK optimizations (Section 5.3.2). The
modifications required to allow the usage of OpenSim’s musculoskeletal
models within Hi-ROS, achieve real-time performance, enable the simulta-
neous use of markers and IMUs, and perform multi-person IK optimiza-
tions are discussed in Section 5.4.

5.3.1 MARKER-BASED INVERSE KINEMATICS

The mathematical problem defined in IK optimizations requires two inputs,
and a third optional one.

The first input is the description of a model representing the analyzed
entity. As discussed in the previous section, human motion analyses typi-
cally rely on generic anatomical models. Thus, proper scaling is required to
match the model characteristics to those of the specific analyzed subject.

The second input in IK optimizations is the data collected during the
trial. In the case of MB-IK, such data consists of a set of trajectories express-
ing the motion of multiple retroreflective markers applied on the body.

Finally, it is possible to include in the analysis an optional set of known
coordinate values. They can represent a subset of joint angles obtained by
exploiting an external system (e.g., from built-in MoCap IK), or by using
direct techniques (e.g., by using a goniometer). Thus, the angular values
assumed by such joints, while contributing to the definition of the body
pose, need not to be altered by the optimizer.

The aforementioned inputs are fed to the IK solver, which aims to esti-
mate the set on joint angles that position the model in the admissible con-
figuration (i.e., among the configurations that comply with all the defined
model constraints) that best matches the experimental data. This consists of
minimizing the overall distance between each experimental marker’s posi-
tion and the corresponding virtual marker on the model.

Figure 5.3 shows an example model to describe full-body motions. The
model, created by Rajagopal et al. [11], has 23 bodies (not counting ground),
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23 joints, and 32 DoFs. Since the usage of any model for IK optimizations
requires the definition of a set of markers, 32 markers were placed on the
model. Their locations correspond to the body keypoints estimated by the
Azure Kinect Body Tracking SDK.

(a) (b)

Figure 5.3: Full-body model including the marker positions estimated via
markerless MoCap by the Azure Kinect Body Tracking SDK. Markers are
represented as pink spheres. (a) Frontal view, (b) side view.

It is important to note that the IK tools solve a separate optimization
problem for each recorded time frame. Thus, the poses assumed in older
frames do not influence the results of the following frames.2 The de-
sign choices allowing real-time performance, which will be described in
Section 5.4, directly depended on the frame-by-frame nature of the opti-
mization.

Mathematically, MB-IK is formalized as the solution of a WLS problem,
2Actually, the solution at the previous time frame can be used as an initial guess for

the optimization of the current frame. While this might allow for faster convergence to the
optimal solution, the estimated joint angles do not directly depend on the previous pose.
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with the goal of minimizing the following cost function at each time step:

fM(q) =
∑

i∈M wi∥xexp
i − xi(q)∥2∑

i∈M wi

+
∑

j∈C wj(qexp
j − qj)2∑

j∈C wj

(5.1)

where q is the vector of generalized coordinates (i.e., the joint angles de-
scribing the pose), xexp

i the experimental position of the i-th marker among
the set of markers M, xi(q) the position of the corresponding model marker
depending on q, qexp

j the a priori value of the j-th coordinate among a set of
coordinates C, and qj the corresponding value obtained from the optimiza-
tion. Finally, wi and wj are weighting coefficients associated with each i-th
marker and j-th known coordinate, respectively. Thus, in Equation 5.1, the
first term represents the marker errors, while the second term accounts for
the known coordinate errors.

Marker errors consist of the squared Euclidean distance between the
measured marker position and the one assumed by the corresponding
marker in the model when it is positioned using the generalized coordi-
nates computed by the optimization. The weight wi is used to specify how
strongly the i-th marker’s error should contribute to the total cost.

On the other hand, coordinate errors are defined as the squared dif-
ference between the experimental coordinate values and the joint angles
computed by the IK optimization. Similarly to markers, each j-th coor-
dinate has a weight wj associated with it to represent how strongly that
coordinate’s error should be minimized.

5.3.2 ORIENTATION-BASED INVERSE KINEMATICS

A similar approach can be used to estimate motion by exploiting a set of
IMUs on the body, in place of the markers used in MB-IK.

However, in this case, additional challenges arise. First, by only mea-
suring orientations, it is not possible to scale a model to represent a specific
subject’s anthropometric characteristics. This does not represent a problem
for the estimation of the anatomical joint angles, since the length of two
adjacent rigid bodies does not affect their orientation. However, while the
estimated pose will correctly describe the subject’s motion, the underly-
ing model will not represent the specific person (i.e., segment and muscle
lengths, mass, and inertia will have incorrect values).

Second, each IMU’s orientation needs to be correctly mapped to the ori-
entation of the corresponding virtual IMU in the model. Thus, a procedure
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is required to compute a constant offset between the raw experimental
orientation measured3 by an IMU and the orientation of the corresponding
virtual IMU. The virtual IMUs of the model are then offset by this constant
value before running the IK optimization. To provide correct results, the
subject must assume a known static pose during this initial procedure.
While scaling is optional, the offset estimation is a required and important
step before proceeding with the OB-IK. Imprecise offset values can, in fact,
lead to extremely inaccurate estimates of the motion.

Before analyzing the mathematical formulation of the OB-IK problem, it
is important to clarify how a virtual IMU can be defined in the model. The
careful reader probably noticed that the components of a model presented
in Section 5.2 do not include IMUs.

In OpenSim, a virtual IMU is represented by a Physical Offset Frame.
Physical offset frames can be attached to any body of the model, and they
specify a constant transform between the object they are representing and
the body frame on which they are attached. To this end, the offset esti-
mation procedure is used to determine the orientation that defines this
transform. Figure 5.4 shows the same model depicted in Figure 5.3 where,
instead of placing markers, 18 virtual IMUs are defined. To visualize their
positions and orientations in the model, they are represented here as or-
ange cuboids.

As in MB-IK, OB-IK also solves a separate optimization problem for
each recorded time frame. The WLS problem to be solved, in this case, aims
at minimizing the distance between each experimental orientation and the
corresponding virtual orientation in the model. Such a distance is quanti-
fied based on the angle value described using the axis-angle representation
of a 3D orientation.

Let RG
Ei

be the rotation matrix describing the orientation of the i-th ex-
perimental IMU and RG

Vi
the rotation matrix of the corresponding virtual

IMU in the model, both expressed with respect to the same global reference
frame G. The relative orientation of Vi with respect to Ei is computed as:

REi
Vi

= (RG
Ei

)T · RG
Vi

(5.2)
3It is important to note that, in this context, the word “measure” is being abused. While

IMUs can only estimate their orientation, based on direct measures of linear accelerations,
angular velocities, and, possibly, magnetic fields, their primary use is, indeed, to provide
orientation data.
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(a) (b)

Figure 5.4: Full-body model including the link orientations estimated via
markerless MoCap by the Azure Kinect Body Tracking SDK. Orientations
are used as fictional IMUs, here represented as orange cuboids. (a) Frontal
view, (b) side view.

The angle θi describing the rotation in the axis-angle representation of
REi

Vi
is defined as:

θi = arccos
(

Tr(REi
Vi

) − 1
2

)
(5.3)

where the Tr(·) operator indicates the trace of a matrix.
Then, the optimization is formalized as the solution of a WLS problem,

with the goal of minimizing the following cost function at each time step:

fO(q) =
∑

i∈I wi · θi(q)2∑
i∈I wi

(5.4)

where q is the vector of generalized coordinates (i.e., the joint angles
describing the pose), θi(q) the distance between the i-th experimental IMU
and the corresponding virtual IMU among the set of IMUs I, and wi the
weight used to specify how strongly the i-th IMU’s error should contribute
to the total cost.
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5.4 REAL-TIME MARKER-AND-ORIENTATION-BASED

INVERSE KINEMATICS

This section analyzes the design and implementation of the multi-
threaded architecture enabling real-time IK optimizations within Hi-ROS.
First, the mathematical principles behind multimodal IK are presented
(Section 5.4.1). The cost functions used in classical MB-IK and OB-IK op-
timizations were combined to allow the simultaneous use of marker posi-
tions and IMU orientations to drive a common musculoskeletal model.

Then, Section 5.4.2 describes the methodology used to achieve real-time
performance, enable multimodal sensor fusion of heterogeneous quantities,
and support multi-person IK optimizations. Finally, a case study exploiting
a set of marker positions and link orientations estimated via markerless
MoCap is proposed. The BPE algorithm used consists of the Azure Kinect
Body Tracking SDK, since it is able to estimate both the positions of a set of
keypoints describing multiple people’s poses, and the orientations of their
links. Such orientations are then used as fictional IMUs applied on specific
body segments. This choice was made to stress the developed system by
including a high number of markers and IMUs in the model used for the
simulation of motion, as well as to provide test cases with multiple inter-
acting people.

5.4.1 MULTIMODAL INVERSE KINEMATICS

The introduction of a musculoskeletal model of the human within the
Modeling level required relevant modifications to the original methodology
used in OpenSim (Section 5.3). First, to enable multimodal sensor fusion,
the possibility of simultaneously using marker and orientation data on the
same model is required. This can be achieved by defining a cost function
that includes both the terms of Equations 5.1 and 5.4.

Thus, in a MOB-IK optimization, the cost function to be minimized at
each time step is defined as:

f(q) = wM · fM(q) + wO · fO(q)

= wM

(∑
i∈M wi∥xexp

i − xi(q)∥2∑
i∈M wi

+
∑

j∈C wj(qexp
j − qj)2∑

j∈C wj

)
+

+ wO

(∑
i∈I wi · θi(q)2∑

i∈I wi

) (5.5)
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where fM(q) is the cost function relative to MB-IK, fO(q) the cost function
relative to OB-IK, and wM and wO two weights that allow to specify how
strongly the marker positions should contribute to the total cost with re-
spect to the IMU orientations.

Figure 5.5 shows the same full-body model presented in the previous
sections, including the 32 markers used for the MB-IK and the 18 IMUs
used for the OB-IK. The model represents the joint positions and link
orientations that are estimated via markerless MoCap on RGB-D data by
exploiting the Azure Kinect Body Tracking SDK.

(a) (b)

Figure 5.5: Full-body model including the marker positions and the link
orientations estimated via markerless MoCap by the Azure Kinect Body
Tracking SDK. Markers are represented as pink spheres, while orientations
are used as fictional IMUs, here represented as orange cuboids. (a) Frontal
view, (b) side view.

5.4.2 REAL-TIME MULTI-PERSON INVERSE KINEMATICS

Although the aforementioned adjustments enable multimodal fusion of
heterogeneous sensors, additional modifications are necessary to allow
online sensor-independent feed of data, multi-person analyses, and real-
time performance of the IK optimization. As introduced in Section 5.3,
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OpenSim’s IK tools solve a separate optimization problem for each
recorded time frame. Thus, multiple frames can be analyzed concurrently
by exploiting a multi-threaded architecture.

The developed system aims to expand the real-time implementation
proposed in [197], where the authors interfaced a Vicon optoelectronic
system with OpenSim to perform real-time IK and ID optimizations. To
this end, this dissertation presents a revised multi-threaded architecture
for concurrently solving multiple IK optimizations. Furthermore, the pro-
posed algorithms support the simultaneous use of marker positions and
IMU orientations to drive a common musculoskeletal model, allowing to
perform multimodal sensor fusion of heterogeneous quantities indepen-
dently of the specific hardware used for the motion assessment. Finally, the
developed system expands the capabilities of classical IK approaches by
enabling real-time assessments of multiple people’s poses, not limiting the
analysis to single-person activities.

The proposed multi-threaded architecture follows the programming de-
sign pattern of producers-consumers [198]. Producers are responsible for
adding data to a shared buffer, while consumers access and modify such
data. Only one entity can access the buffer’s data at any given time.

Figure 5.6 shows a schematic representation of the developed software
architecture. As we can see from the scheme, the input and output files con-
taining the recorded measures are now replaced with SkeletonGroup mes-
sages4 that can be exchanged at runtime among modules. To achieve this,
the original IK tools provided by OpenSim were adapted to take their input
from a memory buffer, instead of requiring pre-recorded data to be stored
in a .trc file. In Figure 5.6, two separate queues are represented for the in-
put and output data. This was chosen for clarity reasons, not to clutter the
scheme excessively. However, the actual software implementation makes
use of a unique queue, where each element allows to store both the mea-
sured quantities and the estimated body poses.

Each time a new message is received, it is added to the shared queue.
One of the available threads takes ownership of the first unconsumed el-
ement in the queue and runs a single-frame IK optimization. Depending
on the data stored in the message and on the musculoskeletal model being
used, either a MB-IK optimization (Equation 5.1), an OB-IK optimization

4A detailed description of how a SkeletonGroup is defined within Hi-ROS is reported in
Section 2.4
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imu0 
msg

imuN 
msg

mk0 
msg

mkM 
msg

skeleton_group 
msg

skeleton_group @ t0

skeleton_group @ t1

skeleton_group @ tn

...

...
...

joint_angles @ t0

joint_angles @ t0

joint_angles @ t0

...

mob_ik_thread0

mob_ik_thread1

mob_ik_threadK

skeleton_group 
msg

...

Skeleton Group Queue Joint Angles Queue

model_file.osim

Figure 5.6: Real-time MOB-IK architecture. Input markers and IMUs are
represented within a unique SkeletonGroup message and pushed into an or-
dered queue which can be accessed by multiple IK solver threads. The es-
timated joint angles are then re-converted into a SkeletonGroup. The orange
boxes represent online messages, the blue boxes real-time operations, and
the green box an offline file.

(Equation 5.4), or a MOB-IK optimization (Equation 5.5) can be progressed.
As soon as the IK results are computed, an additional publisher thread
converts the estimated joint angles describing the body pose back into a
SkeletonGroup message and publishes the results for online consumption.

The .xml setup file used in the original OpenSim workflow to store the
IK solver settings (Figure 5.2) is no longer necessary. In the proposed im-
plementation, all the configuration parameters can be set and modified via
the ROS parameter server5. The only required file is the description of the
model to be used, which must be known prior to the analysis. Such a model
can either already be scaled to match the specific analyzed subject, or online
scaling can be progressed. In the last case, input data containing 3D marker
positions are required.

The developed IK solver module is implemented as a ROS node. As a
result, multiple solvers – one per tracked person – can be spawned and run
concurrently on the same machine. Each solver performs an IK optimiza-
tion of the specific subject assigned to it. The implementation choices also
allow to split the computation among distributed PCs, if needed.

5In-depth analysis of the ROS capabilities, including a detailed description of what the
parameter server represents in ROS, are presented in Section 2.2.1
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5.4.2.1 Multi-Thread Architecture

As presented in Section 2.2.2, one of the reasons that guided the choice
of OpenSim concerned its implementation. In fact, both OpenSim and
Simbody, a well-known library for large-scale mechanical modeling on
which OpenSim is based, are entirely written in C++, one of the most ef-
ficient high-level programming languages. This is extremely important,
especially in the context of employing such libraries for the real-time as-
sessment of human motion.

In this work, a multi-thread architecture was developed to maximize
the achievable framerate of IK optimizations. Each thread works asyn-
chronously from the others to solve a single-frame IK problem. To avoid
multiple threads to access and modify the same element in the shared
queue, this work relies on the concept of monitors [199]. Monitors are a
natural generalization of the objects of object-oriented programming, that
encapsulate data and operation declarations within a class. Unlike classes,
however, in monitors only one process can execute an operation on a spe-
cific object at any one time. Monitors are used to provide a structured con-
current programming primitive that centralizes the responsibility for cor-
rectness into the module itself [198].

The multi-thread problem tackled in this work can be represented as a
modified producers-consumers problem, with 1 producer and n + 1 con-
sumers, where n is the number of IK solver threads to be spawned. The
producer consists of the subscriber to the ROS topic where the measured
markers and/or IMUs are published as a SkeletonGroup message. Each time
a new message is received, the producer appends the data to the shared
buffer and signals the presence of the new element to the consumers.

The buffer is implemented as an infinite singly-linked queue. Each
node of the queue contains four elements: the measured quantities (i.e.,
marker positions and/or IMU orientations), the joint angles that will de-
scribe the model’s pose after the IK optimization, a Boolean value indicat-
ing if the IK has already been solved, and a pointer to the next element
of the queue. When the producer appends a new element, it updates the
pointer of the previous last element of the queue, adds the new node, ini-
tializes its Boolean value to false, and signals the presence of a new element
to the consumers.

Two different typologies of consumers have access to the queue: n IK
solvers and 1 ROS publisher. A configurable number n of IK solvers con-
sumes the first available non-processed elements of the queue. Each solver
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processes a single time frame and performs a single-frame IK optimiza-
tion. This is possible since OpenSim’s IK tools solve a separate optimiza-
tion problem for each time sample. Thus, the results of each frame do not
depend on the output of the previous frames.

When a frame is processed by one of the solvers, the corresponding joint
angle values are updated in the node, the Boolean variable indicating if the
element was correctly processed is set to true, and the presence of a new
processed frame is signaled to the publisher. Then, the publisher checks
whether the oldest element in the queue is already processed or not. If it is
not processed, the publisher waits until a new element is processed. This is
necessary since different frames might require varying computation times.
For this reason, depending on the input data frequency and on the available
computational resources, it is possible for a newer frame to be processed
before one of the older frames.

The developed architecture allows to publish all the input frames in the
correct order. The publisher waits until the oldest element is processed,
then converts the joint angles describing the body pose into a SkeletonGroup
message, publishes it in a dedicated topic, and removes the element from
the queue.

5.4.2.2 Preliminary Results

Preliminary results were obtained by using a full-body musculoskeletal
model to simulate motion from markerless motion capture data. To this
end, the data recorded in the UNIPD-BPE dataset (Section 4.2) were used
as input for the IK optimization. First, the separate outputs of the five Azure
Kinect cameras used in the dataset were merged by exploiting the tracking
pipeline presented in Section 4.3. This resulted in a set of measurements
that contain, at each time frame, the 3D positions of 32 markers placed in
specific landmarks on the body and the orientations of 18 links connected
by pairs of markers. In fact, the Azure Kinect Body Tracking SDK permits
to estimate both these quantities from RGB-D data. Details on the positions
of the markers and the hierarchy defining the estimated link orientations
are reported in Section 4.2.3.1.

In this work, the estimated orientations were considered as virtual IMUs
placed in the corresponding body segments. This allowed to simulate the
deployment of heterogeneous MoCap systems (e.g., an optoelectronic sys-
tem to measure the marker positions and an inertial system to obtain the
IMU orientations). In fact, the main objective of this analysis was to assess
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the real-time performance of the proposed system in complex scenarios
(e.g., when a high number of markers and/or IMUs are used, or when mul-
tiple people are tracked). The data estimated exploiting markerless MoCap
in the UNIPD-BPE dataset allowed to test the developed algorithms while
simultaneously tracking the poses of four interacting people, each de-
scribed by a large set of markers and IMUs. It is important to note that, by
exploiting standard interfaces for the communication between modules,
the developed IK solver algorithm is agnostic to the sensing systems used
as input. As a result, marker positions estimated using optoelectronic
MoCap or via markerless MoCap are represented within Hi-ROS using
a unique structure (and the same holds for IMU orientations). Thus, by
exploiting a unique system to feed both marker positions and IMU orienta-
tions, the computation was not simplified. On the contrary, this allowed to
effectively simulate the usage of a high number of heterogeneous sensors,
while at the same time providing data describing multiple interacting peo-
ple.

The full-body musculoskeletal model developed by Rajagopal et al. [11]
(32 DoFs) was used in the experiments. The virtual markers and IMUs in
the model depicted in Figure 5.5 are specifically positioned to match the
marker positions and link orientations estimated by the Azure Kinect Body
Tracking SDK.

However, before motion estimation, the model needs to be scaled to
match the individual anthropometric characteristics of each subject. To this
end, the marker positions estimated during the first 2 s of the trials are used.
Once the models are properly scaled, the estimated markers and IMUs are
fed to the multi-thread MOB-IK solver module and processed online.

Performance was assessed on a desktop PC equipped with a 16-core
Intel Core i9-9900K CPU @ 3.60 GHz and 64 GB of RAM. The same motion
data were used as input, while the number of threads was varied between
1 and 32. The experiments were repeated in different test cases, in which
one, two, three, or four subjects were analyzed. The solver accuracy was
set to 1 × 10−4 across all the experiments. The results are visualized in
Figure 5.7 and reported (up to 16 threads) in Table 5.1.

Focusing on single-person analyses, the single-thread implementation,
with this specific configuration (i.e., musculoskeltal model, number of
DoFs, number of markers, number of IMUs, solver accuracy) requires on
average 17.23 ms per frame, allowing a maximum frequency of 58.06 Hz.
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Figure 5.7: Maximum achievable framerate when varying the number of
IK solver threads and the number of analyzed subjects using the full-body
model from [11]. A set of 32 markers and 18 IMUs corresponding to the
output of the Azure Kinect Body Tracking SDK was manually defined. The
shaded areas indicate ±1 SD.

We can notice an almost linear increase in the achievable framerate up to
8 threads. Then, there is still a slight increase up to 16 threads, where a
throughput of 311.82 Hz is obtained, followed by a slow decrease with a
higher number of threads. This was expected since the number of proces-
sor cores of the PC used for the experiments is 16. Thus, a higher number
of threads does not produce a substantial performance increase.

Nonetheless, the developed architecture allows for a performance ∼5.4
times faster than that of the original single-thread implementation. In addi-
tion, online input data can be obtained by any typology of MoCap system
by simply representing the measured quantities as a SkeletonGroup message.

Proceeding with the analysis, we can notice a reduced performance gain
in the range between 8 and 16 threads. This is explained by the fact that, de-
spite each thread running in parallel, the access to the shared resource (i.e.,
the queue containing the input frames) is regulated by the monitor, prevent-
ing multiple threads from accessing the same element at once. Although
the time required by each thread to process one frame does not depend
on the total number of threads, the additional time to protect the access to
the shared resources increases proportionally to the number of consumers.
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Table 5.1: Maximum achievable framerate for different numbers of IK
solver threads and analyzed subjects using the full-body model from [11],
where 32 markers and 18 IMUs were defined. Bold values indicate the high-
est framerates. Data are presented as mean (SD).

# Threads Framerate [Hz]
1 person 2 persons 3 persons 4 persons

1 58.06 (0.48) 57.60 (0.61) 57.31 (0.70) 56.34 (0.51)
2 104.11 (0.85) 103.59 (1.02) 95.41 (1.74) 86.99 (1.05)
3 148.07 (1.41) 136.64 (2.32) 115.07 (13.20) 90.25 (10.83)
4 191.59 (1.88) 163.12 (1.50) 117.98 (10.98) 90.76 (1.58)
5 227.49 (3.22) 165.44 (10.03) 119.11 (2.90) 88.50 (4.73)
6 252.59 (4.14) 166.88 (6.54) 116.78 (2.43) 86.59 (4.05)
7 275.82 (4.88) 168.63 (6.22) 114.18 (4.64) 84.52 (5.42)
8 293.00 (4.81) 169.34 (3.32) 113.13 (4.49) 83.46 (4.43)
9 294.81 (4.16) 167.65 (2.77) 111.16 (3.99) 82.37 (4.57)

10 297.73 (5.18) 165.75 (3.00) 109.90 (3.27) 81.62 (5.64)
11 299.04 (5.13) 164.37 (5.48) 108.52 (5.84) 79.86 (2.98)
12 301.15 (3.76) 165.67 (5.41) 107.73 (3.48) 79.07 (3.87)
13 304.58 (6.50) 161.77 (8.26) 106.82 (4.06) 79.27 (4.17)
14 307.15 (8.47) 161.63 (7.12) 106.17 (6.02) 78.97 (4.39)
15 311.04 (8.52) 159.40 (6.18) 105.24 (4.84) 78.52 (3.58)
16 311.82 (6.25) 158.03 (3.87) 105.49 (5.32) 79.16 (5.28)

When the number of threads exceeds the number of processor cores, no per-
formance gain can be obtained. On the contrary, the performance degrades,
due to the increased time required to control the access to the buffer. Thus,
the overall throughput of the system gradually starts to decrease.

Finally, it is worth analyzing the delay introduced by the IK optimiza-
tion. While multiple input frames can be processed in parallel, the time
required by each IK solver in the developed multi-thread architecture is
independent of the number of threads. Thus, each frame will always re-
quire on average 17.23 ms to be processed, introducing an approximately
constant delay between the motion measurement and the IK result. These
values, however, are well within the range to consider a system as real-
time [200].

The performances obtained when analyzing multiple subjects confirm
the previous analysis. Multi-person assessments were conducted by run-
ning multiple IK solvers on the same PC used in the single-person ex-
periments. From Table 5.1, we can notice how the highest framerates are
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achieved with 8 threads when tracking 2 people, 5 threads when tracking
3 people, and 4 threads when tracking 4 people. This was expected, since
the reported number of threads corresponds to the threads spawned for the
analysis of each subject. Thus, peak performance, similarly to the single-
person case, is always achieved with a total number of threads not greater
than the number of processor cores (in this case, 16).

Finally, we can notice how the performance decrease is almost propor-
tional to the number of analyzed subjects. However, taking as an exam-
ple the two-person case, when using 8 threads it was possible to achieve
169.34 Hz per subject, resulting in an overall throughput of 338.68 Hz, which
is slightly higher than the single-person case with 16 threads. This can be
explained by the fact that, with two persons, two independent queues
are present. Thus, the time required to protect the access to the shared
resources is lower than in the single-person case, where a double number
of threads need to have access to the same queue.

5.5 CONCLUSIONS

This chapter analyzed the typical workflow used in state-of-the-art biome-
chanical analyzes, together with the novel methodologies and algorithms
I developed to enable real-time multimodal IK optimizations of multiple
people’s poses.

The first part of the chapter was dedicated to presenting how the mus-
culoskeletal models exploited in this work are defined. Despite being pri-
marily used for human motion assessments, such models allow to represent
any system of rigid bodies connected by joints, allowing maximum flexibil-
ity of the proposed algorithms.

Then, the mathematical principles behind MB-IK and OB-IK optimiza-
tions were analyzed. The procedure is formalized as a WLS optimization
problem with the goal of minimizing the distance between all the experi-
mental marker positions (or IMU orientations) and the corresponding vir-
tual markers (or IMUs) defined in the model. However, the algorithms
used to simulate the body movement are designed for offline analyses of
single subjects, expecting input data to be already acquired and properly
post-processed before reconstructing the motion.

Thus, the dissertation advanced by discussing the modifications re-
quired to enable simultaneous feed of heterogeneous quantities and real-
time multi-person analyses. First, the modified WLS problem accepting
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both marker positions and IMU orientations was formalized. Subsequently,
the architecture defined to enable real-time multimodal assessments was
presented. The proposed multi-threaded system follows the programming
design pattern of producers-consumers. A single producer (the ROS sub-
scriber to the SkeletonGroup messages describing the persons’ poses) is re-
sponsible for adding data to a shared buffer, while multiple consumers (the
IK solver threads) access and modify such data. Multiple instances of IK
solvers can run concurrently on the same machine, or in a distributed net-
work of PCs, allowing to assess the motion of any number of subjects in
real-time.

In this regard, the performances of the developed system were assessed
by varying the number of spawned threads for the analyses of up to four
people simultaneously. The results showed how the IK optimizations were
able to achieve consistent real-time performance, with a maximum fram-
erate of 312 Hz when analyzing one person’s motion, and 91 Hz with four
persons on the scene.

To conclude, my work within the Modeling level has the potential to
push forward, via a multidisciplinary approach, the state-of-the-art on ac-
curate unobtrusive assessment of human motion in unconstrained environ-
ments. Indeed, it enables to maximize the BPE accuracy with the simultane-
ous use of heterogeneous data and, at the same time, it allows to seamlessly
select the optimal subset of sensors to be used. As a result, the proposed al-
gorithms have the ability to enable the development of a variety of emerg-
ing applications, requiring precise knowledge of multiple people’s poses,
with a minimal number of on-body sensors, and in real-time.
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6 Applications Enabled by Hi-ROS

Part of the work presented in this chapter has been published or submitted as
scientific papers [168], [201], [202].
I have made a substantial and principal contribution in the conception and design
of these studies, related software development, analyses and interpretations of the
results, drafting, and critical revision of the final manuscripts.
Co-authors’ permissions for the inclusion of the studies in this dissertation have
been obtained.

6.1 INTRODUCTION

The effectiveness of the proposed framework is demonstrated through
three case studies enabled by Hi-ROS in the contexts of Industry 5.0 and
HRI. The first application (Section 6.2) aims to train a cobot to perform a
task in a shared workspace, while efficiently avoiding a human operator,
without the necessity of stopping its motion. In the performed experiments,
Hi-ROS is used to estimate the real-time pose of the operator, feeding such
information to the cobot. To ensure the safety of the human, the estimation
must be accurate and, at the same time, robust, throughout the whole trial.
The obtained results show how the robot is capable of correctly perceiving
and avoiding the person.

The second application (Section 6.3) consists of the development of a
platform for real-time ergonomic analyses and training. The platform al-
lows to calculate multiple ergonomic scores in real-time based on the pose
assumed by the worker. In addition, such analysis can be performed for
multiple people simultaneously. The platform is designed to support any
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typology of MoCap system. This characteristic was achieved by exploiting
the Hi-ROS framework for the assessment of the body poses.

Finally, the third application (Section 6.4), which is currently under
development, aims to create a real-time control loop to give immediate
feedback to a manual operator while performing a series of tasks. The
proposed system is based on a set of control volumes that are built around
specific positions on the workstation. In this regard, the location and pose
of the operator are acquired in real-time by combining the feeds of multiple
RGB-D cameras, required to cover the complete working area.

6.2 FEEDBACK MOTION PLANNING IN HUMAN-ROBOT

SHARED WORKSPACES VIA DEEP REINFORCEMENT

LEARNING

This work investigates the usage of a feedback motion planner based on
DRL for human-robot coexistence (i.e., humans and robots share the same
workspace, but execute separate tasks) in industrial contexts. In partic-
ular, the focus is on tasks in which humans and industrial manipulators
share the workspace while operating parallel tasks without synchroniza-
tion. The proposed approach models the feedback motion planning prob-
lem as a Markov Decision Process and applies DRL to learn a policy capable
of well approximating the optimal feedback motion planner, defined by the
reward function. The reward function takes into account three objectives:
(1) reaching the target position, (2) avoiding collisions, and (3) minimizing
the required actions.

Human-task independence and subject independence are obtained by
training the DRL with a pseudo-random occupancy volume that models the
human occupancy in the workspace. In this way, different body dimensions
can be represented by varying the size of the occupancy volume describing
the operator’s location. This allows to address the problem of describing
a large set of possible human tasks, including the high variance in their
execution and of different persons’ anthropometric characteristics.

Detailed analyses of the design of the DRL policy, as well as of the
developed simulated environment to train the robotic agent, go beyond the
scope of this dissertation. Therefore, the rest of this section will focus on the
experimental validation of the proposed methodology and, specifically, on
how the human operator is perceived by the robot for online re-planning
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of its motion.

The experimental setup consists of a 1.2 x0.6 m area that can be reached
by the manipulator, defined within a 2.5 x1.0 m workspace where the hu-
man operator can freely move. An RGB-D camera (Microsoft Kinect v2) is
integrated into the system and its pose with respect to the reference frame
of the robot calibrated using the system proposed in [203]. For each trial,
the target to be reached by the robot is defined by placing an AprilTag
marker [204] at a random location within the goal space region. The pose of
the operator is estimated via markerless MoCap by exploiting the modules
presented in Section 4.3. This allowed to obtain robust accurate BPE and
tracking of the human pose (including absolute position and velocity of the
body centroid), in real-time, at a frequency of 30 Hz (maximum framerate
of the Kinect).

Specifically, OpenPose [28] is used as detector. The 2D raw detec-
tions are acquired and reprojected in real-time by exploiting the depth
map estimated by the Kinect camera to obtain a 3D representation of the
operator’s pose. The pose is then expressed with respect to the global
reference frame defined in the initial calibration of the experimental setup.
Finally, a safety bounding volume is defined, from the full-body pose, as
the minimum volume containing all the 3D keypoints of the tracked per-
son. The computation is based on an SVD approach, which computes the
minimum-volume bounding box. The 3D absolute position and velocity
of the volume’s centroid, together with the radius of the cylindrical safety
volume containing the human, are then fed to the robot in real-time.

During the experimental runs, the developed framework allowed to ac-
curately track the operator’s pose and feed such information to the robot
in real-time, without missing frames. This was a key element in this work,
since communication delays, or wrong estimations of the pose, would have
led to an incorrect planning of the robot motion, with the risk of having a
collision with the human operator.

The obtained results showed how the developed policy was able to
correctly avoid the operator, even in the experiments where the human
actively interfered with the robot. This is an additional demonstration of
the Hi-ROS framework’s capabilities. In fact, the agent (i.e., the robot) was
trained in a simulated environment, with ideal knowledge of the operator’s
pose, without delays or measurement noise. When shifting from simulated
to real environment, there was no degradation of the performance. Thus,
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we can conclude that the modules developed within my research were
able to provide accurate markerless motion data, in real-time, and with
negligible delays.

6.3 A REAL-TIME PLATFORM FOR FULL-BODY ERGONOMIC

ASSESSMENT AND FEEDBACK IN MANUFACTURING

AND LOGISTICS SYSTEMS

While the first applications focused on providing information on human
movement to a robotic agent in the context of HRI, this second case study
aims to ensure the well-being and safety of a worker by monitoring and
analyzing their ergonomics during assembly, manufacturing, and picking
operations. Specifically, this section presents an innovative digital platform
for ergonomics that provides real-time ergonomic assessments, posture
feedback to workers, and productivity key performance indicators.

In its current state, the proposed system, namely WEM-Platform, eval-
uates eight NIOSH angles (National Institute for Occupational Safety and
Health [205]) and four ergonomic risk indexes: RULA (Rapid Upper Limb
Assessment [206]), REBA (Rapid Entire Body Assessment [207]), OWAS
(Ovako Working posture Assessment System [208]), and PERA (Postural
Ergonomic Risk Assessment [209]). They were selected for their versatil-
ity and extensive use in manual assembly environments. Moreover, their
computation is mainly based on the postures assumed while performing
the tasks, requiring only few additional information to be manually added
in the software before each analysis. For these reasons, they represent an
appropriate set of ergonomic indexes to be computed in real-time from the
anatomical joint angles estimated by any typology of MoCap systems.

As in the previous section, the implementation details of the platform
will be omitted from this dissertation, while focusing on the perception of
the human required as input by the system. In-depth information on the
choices behind the WEM-Platform design can be found in [168].

The WEM-Platform is designed to accept any typology of hardware that
allows a real-time estimation of the operator’s pose. The only requirement
is an interpreter for its input. The possibility to use any MoCap system
solution based on markerless MoCap, inertial MoCap, or optoelectronic
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MoCap, allows the system to be extremely flexible and to comply with any
environment, thus not limiting the monitoring and feedback capabilities to
mere laboratory setups. This was achieved by exploiting Hi-ROS as the
interface between the specific sensing device and the developed platform.

The validity of the proposed system was assessed with a laboratory
case study focused on the assembly of medium-sized objects (Figure 6.1).
To this end, a volunteer was involved in the assembly process of a bedside
table. Only the assembly process for the bedside table frame was taken
into account, as the drawers were considered as already sub-assembled
components. His pose was estimated in real-time using an inertial suit
(Xsens MVN Awinda), and communication with the WEM-Platform was
achieved by exploiting the standard interfaces defined within Hi-ROS in
Section 2.4. This allowed to compute and feed to the developed platform
the set of anatomical joint angles required for the computation of the four
aforementioned ergonomic indexes.

Figure 6.1: Experimental setup used for the assessment of the WEM-
Platform. The volunteer is wearing a full-body Xsens MVN Awinda inertial
suit while assembling a bedside table.

To assess the accuracy of the computation, 10 frames were extracted
from the 7 min cycle time required for the assembly. The frames were se-
lected to represent activities characterized by a high level of repeatability.
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The ergonomic scores relative to such frames were then compared with
those obtained both by computing ergonomic indexes with traditional post-
processed video recording evaluations by an expert and by exploiting the
Siemens Jack software [210], a well-known commercial simulation tool for
ergonomic assessments.

The results for the proposed platform were particularly promising,
showing an average difference of 1.6 % between the scores computed
in real-time by the WEM-Platform and those calculated by the expert.
Similarly, between the WEM-Platform scores and those computed by the
Siemens Jack software, the average difference was equal to 3.2 %. Thus, the
scores computed with the proposed platform agreed with the analyses of
both an expert and the Jack software. In addition, the WEM-Platform was
able to provide multiple ergonomic indexes, and in real-time.

In few cases, the scores evaluated by the WEM-Platform were slightly
higher than the manually calculated ones. This discrepancy occurred when
the anatomical joint angles were close to an index threshold1. In fact, while
the observer may wrongly classify an angle, with the high precision in the
joint angle estimation obtained within Hi-ROS, the angle always falls into
the correct range. Indeed, a few degrees (or even tens of degrees) can have
a remarkable impact on the final score.

The obtained results show how Hi-ROS could successfully enable
accurate ergonomic evaluations in unconstrained environments and in
real-time. The proposed application was able to correctly compute four
ergonomic risk indexes and eight NIOSH angles in real-time, as well as to
provide visual feedback to the workers describing their postural risks in-
dependently of the technology used to assess human motion. Furthermore,
the design choices behind the framework I developed within my Ph.D. re-
cently allowed to extend the WEM-Platform capabilities to support real-time
ergonomics evaluation and feedback in multi-manned assembly stations.

1The overall ergonomic scores combine the results of several subscores that depend
on the specific range in which a certain joint angle falls. Interested readers are referred to
[206]–[209].
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6.4 A CLOSED-LOOP CONTROL FOR MANUAL ASSEMBLY

MONITORING

Finally, the third application aims to create a real-time control loop to give
immediate feedback to a manual operator while performing a series of
tasks. The system is currently being implemented on a manual worksta-
tion at the Logistics Laboratory of the University of Padova.

In this case, the real-time location and pose of the operator are required
to understand the typology and order of tasks being performed, based on
a set of control volumes built around specific positions within the worksta-
tion.

The experimental setup will include a network of RGB-D cameras (Intel
RealSense, Intel Corp., Santa Clara, CA, USA [121]) to estimate the pose of
the operator using markerless MoCap. This will take advantage of all the
Hi-ROS modules proposed within the Tracking level (Section 4.3). The real-
time full-body poses will then be combined with a set of control volumes
that are built around specific positions on the workstation (e.g., in the stor-
age bins where the picking operations are performed). In this way, it will
be possible to check whether a specific body part is located in a certain area
(e.g., when the wrists approach the workbench dedicated to an assembly
task, to indicate the onset of the task).

The approach relying on control volumes can also be applied to check
the correctness of the task sequence of particular assembly operations. As
an example, it will be possible to detect if the operator is picking an item
from the wrong box, or if a required task was omitted.

Ideally, as soon as an error is detected, some sort of feedback will be
immediately provided to the operator. The best solution is currently being
discussed, as different approaches are possible. As an example, feedback
could be achieved by prompting a message on a screen mounted on the
workstation, through augmented reality, or by means of the vibration of a
bracelet.

The final target of the complete multi-camera tracking and feedback
system is to allow accurate monitoring of the tasks performed in the entire
workstation. Thus, the assessment of human motion needs to be performed
within several square meters of walking area in a cluttered environment
affected by strong occlusions (e.g., workstations, racks, semi-assembled
products, etc.). The final setup could also be used to study the learning
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curves of different operators aided by the proposed control loop. At the
same time, it will be possible to compare the obtained results with the
curves of traditional learning approaches.

6.5 CONCLUSIONS

This chapter presented three applications enabled by the algorithms devel-
oped within my Ph.D. While focusing on different topics, all the applica-
tions belong to the HRI and Industry 5.0 contexts and require accurate real-
time data describing one or multiple people’s body poses. The obtained
results demonstrated the effectiveness of the Hi-ROS framework when em-
ploying different sensing systems in heterogeneous scenarios.

The first application investigated the usage of a feedback motion plan-
ner based on DRL in human-robot shared workspaces. The system
was designed for applications where humans and robots share the same
workspace, but execute parallel asynchronous tasks. The goal consisted in
training a collaborative robot to re-plan its motion, in real-time, to avoid
possible collisions with a human operator while reaching a predefined tar-
get. In this work, Hi-ROS was used to obtain robust accurate real-time BPE
and tracking of the operator’s pose, by exploiting a Kinect v2 RGB-D cam-
era. During the experimental runs, the developed framework was able to
correctly track the operator’s pose and feed this information to the robot,
without missing frames. This was a key element in this work, since de-
lays or wrong pose estimations would have led to incorrect planning of the
robot motion, with possible collision with the human.

The focus then shifted to ensuring the operator’s well-being, with the
development and validation of a platform for the real-time assessment of
workers’ ergonomics. The proposed platform allows to evaluate several er-
gonomic indexes (i.e., RULA, REBA, OWAS, and PERA) in real-time, while
also providing visual feedback on the correctness of the assumed poses to
one or multiple workers. The system supports different typologies of sens-
ing systems for the real-time estimation of the body poses. This was easily
achieved by exploiting Hi-ROS as the interface between the specific sens-
ing device and the developed ergonomic tools. The results obtained in the
proposed case study, consisting of the assembly process of a bedside table,
showed how the developed platform was able to accurately compute the
aforementioned indexes throughout the whole task.
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Finally, the third work presented a system that is currently being imple-
mented in the Logistics Laboratory of the University of Padova. The goal, in
this case, is to give a worker immediate feedback describing how the set of
assigned tasks is being performed. To achieve that, a real-time control loop
is being designed based on a set of control volumes defined at specific loca-
tions within the workstation. This will require the operator’s full-body pose
to be estimated within several square meters of walking area in a cluttered
environment affected by strong occlusions. To this end, all the modules de-
veloped within the Tracking level of this dissertation will be used. This will
allow to provide to the operator a feedback (i.e., by prompting a message
on a screen mounted on the workstation, through augmented reality, or by
means of the vibration of a bracelet) to signal possible inaccuracies in the
task sequence as soon as an error is detected.
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7 Final Discussion

The core objective of the research activities that I conducted during my
Ph.D. aimed at taking a step forward on enabling accurate assessment of
human motion in unconstrained environments and in real-time. To ad-
dress this complex challenge, my work focused on the definition and imple-
mentation of novel algorithms and methodologies to seamlessly interface
heterogeneous sensors, enhance the body pose estimation precision when
exploiting multi-sensor networks, and perform real-time IK optimizations
based on highly accurate musculoskeletal models of the analyzed persons.
The extensive work on these directions converged on the development of an
open-source efficient, flexible, modular framework, namely Hi-ROS, with
the final goal of enabling accurate and real-time assessment of human mo-
tion independently of the employed sensing devices and of the environ-
ments where the acquisitions are progressed.

This required an in-depth investigation of the characteristics of different
state-of-the-art technologies for the assessment of human motion, which led
to the definition of common interfaces to enable the usage of the developed
tools on heterogeneous quantities measured/estimated by different sensing
systems. The choices driving the definition of how a person is represented
within Hi-ROS aimed at maximizing the proposed framework’s flexibility.
In fact, the number and typology of sensors can easily be modified during
the execution of the final application itself, without requiring any modifi-
cation of the software enabling the estimation of the body pose. Thus, the
maintenance and upgrade times of a system can be markedly reduced. This
key feature enables the usage of the proposed tools in different scenarios,
since both the hardware and the software components can be easily tuned
to the specific needs.

My work proceeded with the development of novel algorithms for ro-
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bust multi-person tracking in distributed camera networks. Several chal-
lenges arising from the aforementioned setups were identified and solved
to maximize the achievable accuracy while maintaining real-time perfor-
mance.

Finally, the last contribution of my research allowed to adapt state-of-
the-art methodologies borrowed from the biomechanics community to en-
able their usage in any application benefiting from real-time knowledge
of how one (or multiple) persons are behaving. In this regard, highly ac-
curate musculoskeletal models describing the human body are included
in the framework and used to simulate motion based on different physi-
cal quantities measured (or estimated) by any typology of MoCap system.
This is the last key feature required to maximize the flexibility of the tools
developed within my Ph.D. It allows to seamlessly select the optimal sub-
set of sensors to be used, as well as to perform robust multimodal sensor
fusion among heterogeneous quantities since all the data refer to the same
underlying model.

The correctness and effectiveness of the developed tools were proven in
three distinct applications. The first focused on online safe re-planning of
a manipulator in human-robot shared workspaces to ensure the operator’s
safety. The second addressed multi-person real-time ergonomic assessment
and feedback for the prevention of work-related musculoskeletal disorders.
Finally, the third application, which is currently under development, aims
to create a real-time control loop to provide immediate feedback to a man-
ual operator while performing a generic set of tasks.

These initial test cases clearly demonstrate the flexibility of the pro-
posed tools. Thus, the developed framework has the potential to enable a
variety of new emerging applications requiring precise knowledge of the
human pose in unpredictable environments, with a minimal number of
on-body sensors, and in real-time.

7.1 SUMMARY

My Ph.D. research aimed to push forward, via a multidisciplinary ap-
proach, the state-of-the-art in accurate, real-time, and unobtrusive assess-
ment of human motion in unconstrained environments. To achieve this
complex objective, I divided my work into three macro levels: the Sensing
level, to seamlessly integrate heterogeneous sensors within the proposed
framework; the Tracking level, to maximize the accuracy in distributed
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multi-sensor networks; and the Modeling level, to enable multimodal sen-
sor fusion via musculoskeletal modeling.

Chapter 1 presented the current challenges in the assessment of human
motion, as well as the solutions proposed within my Ph.D. After an initial
overview of the research scenario, the available technologies are analyzed,
with a focus on their characteristics and limitations. Human MoCap sys-
tems can be divided into three categories: optoelectronic systems, requiring
a set of retroreflective markers to be applied on the body; inertial systems,
based on a chain of IMUs worn by the subject; and markerless systems,
which do not require any sensor or marker on the body and rely on deep
learning algorithms for the estimation of motion.

The first gained the role of the de-facto standard in biomechanical analy-
ses, due to their submillimeter precision. However, optoelectronic systems
require delicate hardware and specialized personnel for the correct posi-
tioning of the markers on the body. Therefore, they are typically confined
to dedicated laboratories, preventing extensive use in unconstrained envi-
ronments.

Inertial systems, on the other hand, exploit multiple IMUs worn on the
body and combine the estimated orientations with a personalized model of
the subject to reconstruct their motion. Despite their accuracy approaching
that of optoelectronic systems without the necessity of dedicated laborato-
ries or specialized personnel, inertial MoCap still requires several sensors
to be applied to the body. This, especially during prolonged sessions, can
cause discomfort and limit the user’s dexterity.

Finally, markerless MoCap does not require any sensor or marker on the
body. Such systems rely on deep learning algorithms for the estimation of
the body poses based on RGB or depth information of the scene. However,
the achievable accuracy is at best one order of magnitude lower than that
of the other systems.

None of the aforementioned systems is able to provide highly accurate
measurements, without requiring complex hardware setups nor hindering
the freedom of movement in any way, and in real-time. Thus, my research
followed two parallel but interlaced directions: maximize the sensorless ac-
curacy, and minimize the number of required sensors. The two approaches
can be combined to identify the best trade-off between the required preci-
sion and the maximum number of sensors allowed by the specific applica-
tion.

To this end, the rest of the chapter analyzed how my research was orga-
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nized, introducing the three macro levels that I defined within my research:
the Sensing level, the Tracking level, and the Modeling level.

Before investigating the design choices made within the three aforemen-
tioned levels, an additional preliminary analysis is required. In fact, all the
work developed in my Ph.D. required the selection and use of state-of-the-
art tools borrowed from the robotics and biomechanics communities. The
definition of such tools, together with a detailed analysis of their character-
istics, were reported in Chapter 2.

The first tool consists of ROS, a middleware that rapidly gained the role
of the de-facto standard for advanced distributed robotics applications. ROS
provides high-level tools to simplify the development of complex robotics
applications requiring efficient online communication among distributed
sensors. In this work, ROS was selected to enable efficient, reliable, and
robust communication between all the different hardware and software
components defined in the proposed framework. Furthermore, due to the
widespread usage of ROS, a large number of hardware manufacturers re-
lease official drivers to interface their products with the middleware. As a
result, several different brands of sensors (as well as combinations of sen-
sors) can be seamlessly used within the proposed framework, resulting in
great flexibility of the developed tools.

The algorithms developed for real-time model-based IK optimizations,
on the other hand, rely on OpenSim, a well-known library for biomechan-
ical analyses. OpenSim was chosen for multiple reasons. First, it includes
several already validated musculoskeletal models. This is a key feature of
OpenSim, as the creation of new accurate human models ex nihilo is a com-
plex task that requires a deep understanding of human anatomy. The sec-
ond reason is the open-source nature of the project, which allows modifying
any model, as well as the source code of its libraries, to alter the developed
algorithms to comply with different application requirements. Finally, the
last motivation is the reliability, precision, and efficiency of the tools pro-
vided for IK optimizations. In fact, this was a necessary requirement to
achieve real-time performance of the developed algorithms.

The chapter continued by analyzing the structure of the proposed
framework, which mimics the three levels on which I divided my research.
First, the typologies of sensors supported in the Sensing level and the
common interfaces defined for the representation of a person’s pose were
presented. Then, an analysis of the main challenges faced in multi-sensor
networks was reported, together with the characteristics of the modules
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developed within the Tracking level to tackle such problems. Finally, a
description of the workflow typically used in biomechanical analyses, with
the modified methodology proposed within the Modeling level to enable
real-time IK optimizations was presented.

After describing the structure and characteristics of the developed
framework, Chapter 3 dived into the details of the Sensing level. This chap-
ter focused on the different typologies of sensors that can be used to mea-
sure physical quantities describing a person’s pose. Specifically, marker
positions placed on specific body landmarks and IMU orientations attached
to the body segments. Such quantities can be measured by optoelectronic
systems (markers) and inertial MoCap (IMUs), or estimated via markerless
BPE.

Due to the limitations of optoelectronic systems, which typically confine
their usage to specialized laboratories, the dissertation primarily focused on
markerless and inertial MoCap. To this end, the different typologies of cam-
eras supported within Hi-ROS were analyzed. They are divided into RGB
and RGB-D cameras, depending on whether depth information is produced
or not. Special attention was given to the different technologies used to es-
timate the depth of the scene, divided into stereo vision, structured light,
and ToF sensors.

The focus then shifted to the usage of IMUs for the assessment of human
motion. While in markerless MoCap a single camera can be sufficient to es-
timate the full-body motion of a person, inertial MoCap requires several
sensors. However, the usage of multiple (and, possibly, wireless) sensors
introduces new challenges. In fact, the measurements might refer to differ-
ent time frames, and communication (and/or computation) delays can in-
deed alter the order in which distributed data are received and combined.
To this end, an efficient implementation of a driver was proposed to in-
terface multiple Xsens MTw Awinda IMUs within Hi-ROS. The developed
software also includes an accurate synchronization algorithm to ensure that
each time frame contains consistent data from all the sensors required by
the MoCap system.

Finally, an in-depth investigation of the performance of three different
manufacturers of IMUs (i.e., Xsens, MbientLab, and InvenSense) for hu-
man motion tracking was proposed. A direct driver servomotor was used
to move the IMUs following sinusoidal references at specific amplitudes
and frequencies, carefully defined to mimic the characteristics and RoM
of human movements. The results showed that Xsens outperforms the
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other IMUs at the highest frequencies, while at the lowest frequencies all
sensors perform equally. This means that for slow movements (e.g., in a
rehabilitation context), cheaper sensors can be adequate.

The work within the Tracking level was presented in Chapter 4. The
contribution of this chapter was twofold. In fact, the main focus was on
presenting my research on the enhancement of multiple people’s poses ob-
tained from a distributed multi-sensor network in real-time. However, to
properly assess the performance of the proposed system, a novel extensive
dataset of movements was acquired.

The dataset, namely UNIPD-BPE, contains synchronized RGB, depth,
and inertial data of several sequences with up to four interacting people,
recorded from five Microsoft Azure Kinect cameras and two Xsens MVN
Awinda full-body suits. Single-person sequences include 15 participants
performing a set of 12 ADLs, while multi-person sequences include seven
actions with two to four persons interacting in a confined area. The multi-
person sequences offer challenging scenarios where multiple (partially or
fully) occluded persons move and interact in a restricted space. The dataset
aims to push forward the development of multi-people and multi-sensor
markerless BPE and tracking algorithms, as well as multimodal sensor fu-
sion, without the necessity of expensive hardware and bulky acquisition
setups.

The chapter continued with a detailed description of the algorithms I
developed to allow real-time temporal tracking of multiple people using a
network of homogeneous sensors. The proposed system consists of four
modules: (1) a Skeleton Tracker to perform pure frame-by-frame tracking of
the detected body poses; (2) a Skeleton Merger to fuse detections from multi-
ple cameras and detect possible outliers; (3) a Skeleton Optimizer to perform
a global optimization to ensure consistency of each person’s body dimen-
sions; and (4) a Skeleton Filter to perform real-time filtering of the estimated
marker positions and link orientations. No assumptions are made about
the typology or number of sensors being used, nor about the detection al-
gorithm that extracts the 3D poses of the persons.

Robustness, accuracy, and real-time performance were evaluated in the
UNIPD-BPE dataset. The results showed that, by exploiting the proposed
methodology, it was possible to reduce BPE errors by up to 35 % when
compared to a pure tracking-by-detection approach. At the same time, the
system was able to assign correct IDs to each tracked person, even during
periods of close proximity of two or more people. Finally, the system was
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proven to be efficient and suited for real-time applications, requiring 8.3 ms
per frame to track four people.

Chapter 5 concluded the analysis of the three macro levels on which I
divided my research by analyzing the Modeling level. The work within this
level is fundamental to enable the simultaneous use of heterogeneous sen-
sors for the assessment of human motion. In fact, my Ph.D. was driven by
the strong idea that proper multimodal sensor fusion must be performed at
the Modeling level. Different sensors, MoCap systems, and BPE algorithms
typically rely on unrelated models (if any). Therefore, a direct fusion of
their measured quantities is prone to lead to erroneous results. However,
by defining a unique underlying model, it is possible to actively use all the
available data, independently of their source, with a common final goal.

To this end, the chapter included a detailed analysis of how a generic
musculoskeletal model can be represented in Hi-ROS using OpenSim.
Although being primarily used for musculoskeletal simulations, OpenSim
models can represent any system of rigid bodies connected by frictionless
joints that are acted upon by forces to produce motion.

The discussion advanced by analyzing the mathematical principles be-
hind IK simulations. Depending on the measured (or estimated) quantities
(i.e., marker positions or IMU orientations), the procedure is formalized
as a WLS optimization problem with the goal of minimizing the distance
between an experimental marker (or IMU) and the corresponding virtual
marker (or IMU) in the model.

To enable an online sensor-independent feed of data and real-time per-
formance of the IK optimization, the original methodology used in biome-
chanics required several modifications. First, the input data, typically pre-
recorded and stored in a dedicated file, are now fed to the solver at runtime
by means of custom-defined ROS messages. The definition of the structures
used for the communication among all the modules developed within my
research, described in Section 2.4, allows to use a unique representation in-
dependently of the typology or number of sensors employed. Moreover,
any combination of sensing systems can be used or changed without re-
quiring any modification of the developed software.

Real-time performance, on the other hand, was achieved by exploit-
ing the concurrent programming design pattern of producers-consumers.
Multiple threads have access to a shared queue, allowing them to run mul-
tiple IK optimizations simultaneously. Furthermore, the developed archi-
tecture maintains real-time capabilities while also enabling multi-person IK
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optimizations.
In fact, preliminary tests showed how the proposed system was able to

achieve 312 Hz when using a full-body model with 32 DoFs, driven by a
set of 32 markers and 18 IMUs, 169 Hz when tracking two persons, 119 Hz
when tracking three persons, and 91 Hz when tracking four persons on the
same machine. Furthermore, the developed system can run on a distributed
network of PCs, attaining even faster framerates, if needed.

This work has the potential to enable all the characteristics of the ideal
MoCap system: providing highly accurate measurements of multiple peo-
ple’s poses, without requiring complex hardware setups nor hindering
the freedom of movement in any way, and in real-time. In this regard,
the optimal solution might involve a limited number of cameras to have
an initial (possibly partial) estimate of the pose, coupled with a reduced
set of IMUs on the most crucial body segments to overcome occlusions
and increase the BPE accuracy. In fact, by properly fusing information
from heterogeneous sensors (e.g., from markerless and inertial MoCap),
it is possible to maximize the advantages of the employed systems while
minimizing their weaknesses.

Finally, the algorithms, methodologies, and tools developed within my
Ph.D. were effectively applied in three collaborations in the contexts of HRI
and Industry 5.0, presented in Chapter 6.

The first application focuses on feedback motion planning in human-
robot shared workspaces via DRL. In this work, a collaborative robot is
trained to re-plan its motion online with the goal of avoiding possible col-
lisions with a human operator. In particular, the focus is on tasks in which
humans and manipulators share the same workspace while operating in
parallel, without synchronization. The proposed experiments, which re-
quired robust and accurate real-time knowledge of the operator’s pose to
guarantee their safety, showed a success rate close to 90 %. In this regard,
Hi-ROS was used to ensure real-time estimation and tracking of the opera-
tor’s motion throughout the whole duration of the experiments.

The second work consists of the development and validation of a plat-
form for real-time assessment of workers’ ergonomics. This innovative
platform allows to evaluate a set of ergonomic indexes (i.e., RULA, REBA,
OWAS, and PERA) and to provide visual feedback to workers regarding
posture and physical fatigue metrics in real-time. While the performed val-
idation exploited inertial MoCap for the assessment of the operator’s pose,
the system is designed to support the use of any MoCap system as input.
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This was achieved by exploiting Hi-ROS for the assessment of the body
poses.

Finally, the third and last work, currently under development, aims
to give real-time feedback to a worker while performing a generic set of
assigned tasks. The goal is to create a real-time control loop to give imme-
diate feedback to a manual operator based on a set of control volumes that
are built around specific positions on the workstation. In this regard, the
location and pose of the operator are acquired in real-time by exploiting
the modules developed within the Tracking level to combine the feeds of
multiple RGB-D cameras, required to cover the entire working area.

7.2 FUTURE WORKS

The work presented in this dissertation analyzed the current state of the art
and the major challenges in the assessment of human motion. Particular
importance was given to maximizing the pose estimation accuracy while
minimizing the intrusiveness of the required hardware and providing real-
time results. The proposed methodologies and algorithms converged on
the development of an open-source efficient modular framework, with the
aim of laying the basis for new challenging applications where real-time
knowledge of the human pose in everyday living and working environ-
ments is fundamental. Based on the results obtained during my work,
together with the insight gained with several collaborations within the HRI
and Industry 5.0 contexts, new challenges and possible directions arise for
future research.

One of the primary goals of my work consisted in combining the output
of heterogeneous MoCap systems to allow the selection and minimization
of the sensors to be worn on the body, depending on the specific application
and environment. The motivation behind this stands on the maximization
of the user’s comfort, without limiting their dexterity, and enabling the mo-
tion assessment to be conducted in unconstrained environments.

However, similar results might be achieved by following a different di-
rection. The idea, in this sense, is to minimize the intrusiveness of the sens-
ing system not by decreasing the number of intrusive sensors, but by reduc-
ing the bulkiness of each sensor. To this end, smart textiles systems (STS) are
a promising technology. Smart textiles are “intelligent” fabrics that embed
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different typologies of sensors to perceive environmental stimuli, which can
be mechanical, chemical, biological, thermal, among others [211].

The interest in STS has grown rapidly in recent years. Proesmans et
al. [212] proposed an open-source, wireless, and modular piezoresistive
smart textile to measure the mechanical stress of the cloth in which it is
embedded. Seoane et al. [213], on the other hand, developed a prototype
sensorized textile with integrated textile electrodes to obtain electrocardio-
gram (ECG) recordings. Finally, Kang et al. [214] developed a conductive
yarn to embed multiple IMUs on a smart shirt used to monitor the sitting
posture of the user. Although the aforementioned examples show the flex-
ibility of STS, the number of applications including smart textiles is bound
to grow, with sensorized garments embedding also electroencephalogram
(EEG) sensors, respiratory sensors, pulse oximeters, temperature sensors,
etc. [215].

Current applications embedding IMUs are limited to the estimation of
reduced sets of joint angles. Future applications should try to maximize the
number of embedded IMUs in shirts and trousers, and use the estimated
orientations as input for an OB-IK optimization to estimate the full-body
pose. In fact, one of the main limitations of inertial MoCap systems is the
need to apply several sensors on the clothes, which can cause discomfort
during prolonged MoCap sessions. In a recent study [216], 18 participants
were involved in evaluating the usability of an STS compared to a commer-
cial inertial system. The results showed how the majority of the participants
indicated that they would prefer to wear a smart textile system to an iner-
tial system, principally due to its usability. Thus, a full-body smart textile
inertial suit would constitute a breakthrough for non-intrusive MoCap sys-
tems.

To this end, the work proposed in this dissertation has the potential
to enable the use of such technologies for accurate real-time full-body
assessments. In fact, despite the different characteristics of the hardware,
STS produce similar outputs with respect to currently available MoCap
systems (e.g., a smart textile shirt embedding multiple IMUs will estimate
the same quantities of an inertial suit). Since the algorithms developed
in my research support different sensors’ outputs combined in a common
musculoskeletal model of the human, STS can be seamlessly integrated in
the proposed framework.

At the current stage of development, Hi-ROS does not yet support ID
optimizations. Such analyses, in fact, require other typologies of sensors
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(e.g., force platforms to measure GRFs, or EMG sensors to measure the
muscles’ activation) to estimate the internal joint torques. These technolo-
gies are extremely delicate, thus limiting their use to confined dedicated
laboratories. For this reason, it was chosen not to include (yet) such sensors
in the proposed framework.

However, new STS embedding EMG sensors have the potential of en-
abling in-depth analyses in unconstrained environments. Furthermore, re-
cent works focusing on the integration of force sensors in shoe soles are
showing promising results [217], [218]. In this regard, the integration of
such sensors and, as a result, of real-time ID optimizations should be one of
the next steps in extending the proposed framework.

This would be particularly interesting in the industrial scenario to
monitor the fatigue of an operator during their shifts. In fact, while
extensive work has been (and is still being) conducted on ergonomic as-
sessments [219], the mere pose of the worker in this context is not sufficient
to provide a full view of their physical condition. Future applications
should investigate the usage of heterogeneous sensors (e.g., vision/inertial
MoCap, EMG sensors, force sensors) to monitor and/or estimate additional
quantities describing the operator’s fatigue.

Within the Modeling level, the workflow on pure OB-IK currently re-
quires an initial calibration to define the relative orientations between each
IMU and the corresponding virtual IMU in the body. In this sense, the
user needs to assume a known static pose during a calibration trial (typi-
cally, a neutral pose in which all the anatomical joint angles are equal to 0°).
However, the pose assumed by the person will never perfectly match the
one defined in the model, resulting in subsequent pose estimation errors
whose magnitude depends on how close the initial pose could match the
ideal one.

Multimodal sensor fusion, in this context, could allow to minimize such
errors. Future research should strive to simplify the initial calibration pro-
cess by exploiting the pose estimated, as an example, by a single RGB-D
camera as the initial pose on which the IMU orientations are matched.

Furthermore, it would be interesting to evaluate how different config-
urations of cameras and IMUs affect the achievable accuracy of MOB-IK
optimizations. Within the Modeling level, the main research question to an-
swer was whether it was possible to perform multi-person IK optimizations
in real-time, while at the same time enabling multimodal sensor fusion of
heterogeneous sensing systems. Thus, the focus was not on assessing the
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achievable accuracy, but on quantifying the real-time capabilities of the
proposed system. In fact, the accuracy primarily depends on the quality
of the specific sensors being used, rather than on the IK algorithm, which
has already been validated by means of several biomechanical analyses
(e.g., [197], [220], [221]). However, it would be interesting to compare how
different sensing setups (and, specifically, different numbers of sensors) im-
pact the overall precision of the pose estimation. An thorough assessment
will be required to define the minimum number of cameras and IMUs that
allow to achieve adequate accuracy without hindering the user’s dexterity.

Proper scaling of a generic musculoskeletal model and, specifically, the
correct positioning of the virtual markers and IMUs on the model is still an
open challenge. The common approach in biomechanics, in fact, consists of
performing a linear scaling of generic models retrieved from human spec-
imens to match the individual anthropometric characteristics of each sub-
ject. Therefore, the estimated quantities (e.g., joint angles and moments) are
not based on a suitable subject-specific model, which limits the accuracy of
the simulated motion kinematics and dynamics [222].

Although novel approaches that combine statistical shape methods with
medical imaging databases have the potential to create fully subject-specific
anatomical models [223], the correct placement of markers (both in the
model and in the subject’s body) remains fundamental. With IMUs, this
problem is not as strict, since the main source of errors is not the relative
position between an IMU and its body segment, but the relative orienta-
tion. Thus, the main research problem in OB-IK optimizations consists of
maximizing the accuracy of the initial calibration.

The markers used in MB-IK, on the other hand, must perfectly match
their virtual and real positions. This is one of the main reasons why spe-
cialized personnel are needed for optoelectronic analyses.

In markerless MoCap, the estimated markers are automatically placed
on the subject’s body by the BPE algorithm. However, different people have
different weights, heights, and physical structures. As a result, some mark-
ers (e.g., the chest) may be placed in slightly different locations, depending
on the person being analyzed. In this regard, it would be interesting to in-
vestigate an automatic placement procedure of the virtual markers in the
model, after the initial scaling of the model dimensions.

A possible solution might divide the scaling procedure into two sepa-
rate steps. First, the mesh describing the body of the analyzed subject is
extracted from the depth, and the different parts of the body are segmented.

174



7.3. Conclusions

This would allow to perform the actual scaling of the model to match the
user’s anthropometric characteristics. Once the model is scaled, the esti-
mated marker positions could be compared to the virtual markers’ ones,
and the latter altered, within an acceptable range, to minimize the residual
error obtained within an IK optimization performed on the calibration trial.
This would allow to optimize the placement of the virtual markers on the
model, enabling a subject-specific marker set.

7.3 CONCLUSIONS

This thesis focused on providing accurate assessment of multi-person mo-
tion in complex environments, with minimal intrusiveness of the required
hardware, and in real-time. To achieve this complex goal, an in-depth anal-
ysis of the currently available MoCap systems was progressed. The require-
ments of an ideal system, along with the limitations of the current technolo-
gies, allowed to define three macro levels in which the overall problem was
divided. The extensive work on sensing, tracking, and modeling resulted
in the development of an open-source efficient modular framework where
different typologies of sensors can be integrated in a plug-and-play fash-
ion. Particular attention was given to distributed sensors networks (e.g.,
camera networks) to maximize the achievable accuracy while overcoming
the several challenges typical of such setups. Finally, new methodologies
to enable the real-time performance of state-of-the-art biomechanical ap-
proaches were successfully adapted in the context of Industry 5.0 and HRI.
By exploiting a common musculoskeletal model of the human, multimodal
sensor fusion of heterogeneous quantities was achieved.

To conclude, the work developed within my Ph.D. research aimed to
push forward, via a multidisciplinary approach, the state-of-the-art on ac-
curate unobtrusive assessment of human motion in everyday living and
working environments. The developed algorithms and methodologies per-
mit to compare different sensor configurations on the fly, allowing to fine-
tune the performance (both with regard to the required accuracy and to the
maximum setup complexity) to respect the requirements of any typology of
application. Moreover, modularity permeated the design of all the modules
defined within the three levels of my research. This allows to modify the
employed MoCap setups without requiring any modification on the soft-
ware used for real-time assessment of motion. To this end, the proposed
work has the potential to enable the development of a variety of emerging
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applications, where precise knowledge of multiple people’s poses in uncon-
strained environments, with a minimal number of on-body sensors, and in
real-time, is a fundamental requirement.
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Damaševičius, “Multiple Kinect Based System to Monitor and
Analyze Key Performance Indicators of Physical Training”, Human-
Centric Computing and Information Sciences, vol. 10, no. 1, pp. 1–22,
2020.

[182] L. Zhou, N. Lannan, G. Fan, and J. Hausselle, “Human
Motion Enhancement via Joint Optimization of Kinematic
and Anthropometric Constraints”, EAI Endorsed Transactions on
Bioengineering and Bioinformatics, vol. 1, e1, 2021.

[183] A. Fender and J. Müller, “Velt: A Framework for Multi RGB-D
Camera Systems”, in Proceedings of the 2018 ACM International
Conference on Interactive Surfaces and Spaces, 2018, pp. 73–83.

194



BIBLIOGRAPHY

[184] J. Munkres, “Algorithms for the Assignment and Transportation
Problems”, Journal of the Society for Industrial and Applied Mathematics,
vol. 5, no. 1, pp. 32–38, 1957.

[185] S. Agarwal, K. Mierle, and T. C. S. Team, Ceres Solver, version 2.1,
Mar. 2022. [Online]. Available: https : / / github . com / ceres -
solver/ceres-solver.

[186] C. Pizzolato, D. G. Lloyd, M. Sartori, et al., “CEINMS: A Toolbox
to Investigate the Influence of Different Neural Control Solutions
on the Prediction of Muscle Excitation and Joint Moments During
Dynamic Motor Tasks”, Journal of Biomechanics, vol. 48, no. 14,
pp. 3929–3936, 2015.

[187] J. Diebel, “Representing Attitude: Euler Angles, Unit Quaternions,
and Rotation Vectors”, Matrix, vol. 58, no. 15-16, pp. 1–35, 2006.

[188] G. Wu, S. Siegler, P. Allard, et al., “ISB Recommendation on
Definitions of Joint Coordinate System of Various Joints for the
Reporting of Human Joint Motion — Part I: Ankle, Hip, and Spine”,
Journal of Biomechanics, vol. 35, no. 4, pp. 543–548, 2002.

[189] G. Wu, F. C. van der Helm, H. (DirkJan) Veeger, et al., “ISB
Recommendation on Definitions of Joint Coordinate Systems of
Various Joints for the Reporting of Human Joint Motion — Part II:
Shoulder, Elbow, Wrist and Hand”, Journal of Biomechanics, vol. 38,
no. 5, pp. 981–992, 2005.

[190] M. Jackson, B. Michaud, P. Tétreault, and M. Begon, “Improvements
in Measuring Shoulder Joint Kinematics”, Journal of Biomechanics,
vol. 45, no. 12, pp. 2180–2183, 2012.

[191] M. Al Borno, J. O’Day, V. Ibarra, et al., “OpenSense: An Open-
Source Toolbox for Inertial-Measurement-Unit-Based Measurement
of Lower Extremity Kinematics Over Long Durations”, Journal of
Neuroengineering and Rehabilitation, vol. 19, no. 1, pp. 1–11, 2022.

[192] N. Sarafianos, B. Boteanu, B. Ionescu, and I. A. Kakadiaris, “3D
Human Pose Estimation: A Review of the Literature and Analysis
of Covariates”, Computer Vision and Image Understanding, vol. 152,
pp. 1–20, 2016.

[193] OpenSim Documentation, https : / / simtk - confluence .
stanford . edu / display / OpenSim / Documentation, Accessed:
May 2022.

195

https://github.com/ceres-solver/ceres-solver
https://github.com/ceres-solver/ceres-solver
https://simtk-confluence.stanford.edu/display/OpenSim/Documentation
https://simtk-confluence.stanford.edu/display/OpenSim/Documentation


BIBLIOGRAPHY

[194] M. G. Pandy, K. Sasaki, and S. Kim, “A Three-Dimensional
Musculoskeletal Model of the Human Knee JoInternational Part 1:
Theoretical Construction”, Computer Methods in Biomechanics and Bio
Medical Engineering, vol. 1, no. 2, pp. 87–108, 1997.

[195] M. Mirakhorlo, J. M. Visser, B. Goislard de Monsabert, F. Van
der Helm, H. Maas, and H. Veeger, “Anatomical Parameters for
Musculoskeletal Modeling of the Hand and Wrist”, International
Biomechanics, vol. 3, no. 1, pp. 40–49, 2016.

[196] B. Siciliano, O. Khatib, and T. Kröger, Springer Handbook of Robotics.
Springer, 2008, vol. 200.

[197] C. Pizzolato, M. Reggiani, L. Modenese, and D. G. Lloyd, “Real-
Time Inverse Kinematics and Inverse Dynamics for Lower Limb
Applications Using OpenSim”, Computer Methods in Biomechanics
and Biomedical Engineering, vol. 20, no. 4, pp. 436–445, 2017.

[198] M. Ben-Ari, Principles of Concurrent and Distributed Programming, 2nd
Edition. Addison-Wesley, 2006.

[199] P. A. Buhr, M. Fortier, and M. H. Coffin, “Monitor Classification”,
ACM Computing Surveys (CSUR), vol. 27, no. 1, pp. 63–107, 1995.

[200] O. A. Kannape and O. Blanke, “Self in Motion: Sensorimotor and
Cognitive Mechanisms in Gait Agency”, Journal of Neurophysiology,
vol. 110, no. 8, pp. 1837–1847, 2013.

[201] G. Nicola, L. Tagliapietra, M. Guidolin, S. Ghidoni, and N.
Pedrocchi, “Feedback Motion Planning in Human-Robot Shared
Workspace via Deep Reinforcement Learning”, IEEE Transactions on
Automation Science and Engineering, [submitted - under review].

[202] N. Berti, S. Finco, M. Guidolin, M. Reggiani, and D. Battini,
“Real-Time Postural Training Effects on Single and Multi-Person
Ergonomic Risk Scores”, IFAC-PapersOnLine, [accepted].

[203] R. Y. Tsai, R. K. Lenz, et al., “A New Technique for Fully Autonomous
and Efficient 3D Robotics Hand/Eye Calibration”, IEEE Transactions
on Robotics and Automation, vol. 5, no. 3, pp. 345–358, 1989.

[204] E. Olson, “AprilTag: A Robust and Flexible Visual Fiducial System”,
in 2011 IEEE International Conference on Robotics and Automation,
IEEE, 2011, pp. 3400–3407.

196



BIBLIOGRAPHY

[205] T. R. Waters, V. Putz-Anderson, A. Garg, and L. J. Fine, “Revised
NIOSH Equation for the Design and Evaluation of Manual Lifting
Tasks”, Ergonomics, vol. 36, no. 7, pp. 749–776, 1993.

[206] L. McAtamney and E. N. Corlett, “RULA: A Survey Method for
the Investigation of Work-Related Upper Limb Disorders”, Applied
Ergonomics, vol. 24, no. 2, pp. 91–99, 1993.

[207] S. Hignett and L. McAtamney, “Rapid Entire Body Assessment
(REBA)”, Applied Ergonomics, vol. 31, no. 2, pp. 201–205, 2000.

[208] O. Karhu, P. Kansi, and I. Kuorinka, “Correcting Working Postures
in Industry: A Practical Method for Analysis”, Applied Ergonomics,
vol. 8, no. 4, pp. 199–201, 1977.

[209] D. S. Chander and M. P. Cavatorta, “An Observational Method for
Postural Ergonomic Risk Assessment (PERA)”, International Journal
of Industrial Ergonomics, vol. 57, pp. 32–41, 2017.

[210] M. Hovanec, P. Korba, and M. Šolc, “Tecnomatix for Successful
Application in the Area of Simulation Manufacturing and
Ergonomics”, 15th International SGEM Geoconference on Informatics,
Albena, 2015.

[211] X. Tao, Smart Fibres, Fabrics and Clothing: Fundamentals and
Applications. Woodhead Publishing Limited, 2001.

[212] R. Proesmans, A. Verleysen, R. Vleugels, P. Veske, V.-L. De Gusseme,
and F. Wyffels, “Modular Piezoresistive Smart Textile for State
Estimation of Cloths”, Sensors, vol. 22, no. 1, p. 222, 2021.

[213] F. Seoane, A. Soroudi, K. Lu, et al., “Textile-Friendly Interconnection
Between Wearable Measurement Instrumentation and Sensorized
Garments — Initial Performance Evaluation for Electrocardiogram
Recordings”, Sensors, vol. 19, no. 20, p. 4426, 2019.

[214] S.-W. Kang, H. Choi, H.-I. Park, et al., “The Development of an IMU
Integrated Clothes for Postural Monitoring Using Conductive Yarn
and Interconnecting Technology”, Sensors, vol. 17, no. 11, p. 2560,
2017.

[215] A. Angelucci, M. Cavicchioli, I. A. Cintorrino, et al., “Smart Textiles
and Sensorized Garments for Physiological Monitoring: A Review
of Available Solutions and Techniques”, Sensors, vol. 21, no. 3, p. 814,
2021.

197



BIBLIOGRAPHY

[216] M. I. Mokhlespour Esfahani and M. A. Nussbaum, “Preferred
Placement and Usability of a Smart Textile System vs. Inertial
Measurement Units for Activity Monitoring”, Sensors, vol. 18, no. 8,
p. 2501, 2018.

[217] S. Muzaffar and I. A. M. Elfadel, “Shoe-Integrated, Force Sensor
Design for Continuous Body Weight Monitoring”, Sensors, vol. 20,
no. 12, p. 3339, 2020.

[218] M. A. Wahid, S. Saragih, D. B. Wibowo, and I. Haryanto, “Simple
Insole for Dynamic Foot Plantar Measurement in Walking Gait
Analysis Using Force Sensitive Resistor”, International Research
Journal of Innovations in Engineering and Technology, vol. 5, no. 11,
p. 57, 2021.

[219] M. Joshi and V. Deshpande, “A Systematic Review of Comparative
Studies on Ergonomic Assessment Techniques”, International Journal
of Industrial Ergonomics, vol. 74, p. 102 865, 2019.

[220] U. Trinler and R. Baker, “Estimated Landmark Calibration of
Biomechanical Models for Inverse Kinematics”, Medical Engineering
& Physics, vol. 51, pp. 79–83, 2018.

[221] P. Puchaud, C. Sauret, A. Muller, et al., “Accuracy and Kinematics
Consistency of Marker-Based Scaling Approaches on a Lower
Limb Model: A Comparative Study With Imagery Data”, Computer
Methods in Biomechanics and Biomedical Engineering, vol. 23, no. 3,
pp. 114–125, 2020.

[222] P. Gerus, M. Sartori, T. F. Besier, et al., “Subject-Specific Knee Joint
Geometry Improves Predictions of Medial Tibiofemoral Contact
Forces”, Journal of Biomechanics, vol. 46, no. 16, pp. 2778–2786, 2013.

[223] J. Fernandez, J. Zhang, T. Heidlauf, et al., “Multiscale
Musculoskeletal Modelling, Data - Model Fusion and
Electromyography-Informed Modelling”, Interface Focus, vol. 6,
no. 2, p. 20 150 084, 2016.

198


	1 Introduction
	1.1 Human Motion Analysis: A Historical Overview
	1.2 Current State of the Art
	1.2.1 Optoelectronic Systems
	1.2.2 Inertial Systems
	1.2.3 Markerless Systems

	1.3 Research Objectives
	1.3.1 Sensing Level
	1.3.2 Tracking Level
	1.3.3 Modeling Level

	1.4 Thesis Organization

	2 Hi-ROS: A Modular Framework for Human-Robot Interaction
	2.1 Introduction
	2.2 Selection of the Tools
	2.2.1 ROS – Robot Operating System
	2.2.2 OpenSim

	2.3 Framework Structure
	2.3.1 Sensing Level
	2.3.2 Tracking Level
	2.3.3 Modeling Level

	2.4 Definition of the Standard Interfaces
	2.5 Conclusions

	3 Sensing Level
	3.1 Introduction
	3.2 Optical Motion Capture
	3.2.1 Stereo Vision
	3.2.2 Structured Light
	3.2.3 Time of Flight

	3.3 Inertial Motion Capture
	3.4 An Efficient Open-Source Driver for Xsens Wireless Inertial Measurement Unit Systems
	3.4.1 System Design
	3.4.2 Experiments
	3.4.3 Final Remarks

	3.5 On the Accuracy of IMUs for Human Motion Tracking
	3.5.1 Materials
	3.5.2 Experiments
	3.5.3 Results
	3.5.4 Final Remarks

	3.6 Conclusions

	4 Tracking Level
	4.1 Introduction
	4.2 UNIPD-BPE: Synchronized RGB-D and Inertial Data for Multimodal Body Pose Estimation and Tracking
	4.2.1 Data Description
	4.2.2 Methods
	4.2.3 Body Joint Definitions and Hierarchy
	4.2.4 Final Remarks

	4.3 Open-Source Multi-Camera Sensor Fusion for Real-Time People Tracking
	4.3.1 Related Work
	4.3.2 System Design
	4.3.3 Experiments
	4.3.4 Final Remarks

	4.4 Conclusions

	5 Modeling Level
	5.1 Introduction
	5.2 Definition of the Model
	5.3 Inverse Kinematics for Biomechanical Modeling
	5.3.1 Marker-Based Inverse Kinematics
	5.3.2 Orientation-Based Inverse Kinematics

	5.4 Real-time Marker-and-Orientation-Based Inverse Kinematics
	5.4.1 Multimodal Inverse Kinematics
	5.4.2 Real-Time Multi-Person Inverse Kinematics

	5.5 Conclusions

	6 Applications Enabled by Hi-ROS
	6.1 Introduction
	6.2 Feedback Motion Planning in Human-robot Shared Workspaces via Deep Reinforcement Learning
	6.3 A Real-Time Platform for Full-Body Ergonomic Assessment and Feedback in Manufacturing and Logistics Systems
	6.4 A Closed-Loop Control for Manual Assembly Monitoring
	6.5 Conclusions

	7 Final Discussion
	7.1 Summary
	7.2 Future Works
	7.3 Conclusions

	Bibliography

