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Abstract. The J. C. Willems–Coppel–Shayman geometric characterization of solutions of the
algebraic Riccati equation (ARE) is extended to asymmetric Riccati differential equations with time-
varying coefficients. The coefficients do not need to satisfy any definiteness, periodicity, or system-
theoretic condition. More precisely, given any two solutions X1(t) and X2(t) of such equation on a
given interval [t0, t1], we show how to construct a family of solutions of the same equation of the
form X(t) = (I − π(t))X1(t) + π(t)X2(t), where π is a suitable matrix-valued function. Even when
specialized to the case of X1 and X2 equilibrium solutions of a symmetric equation with constant
coefficients, our results considerably extend the classical ones, as no further assumption is made on
the pair X1, X2 and on the coefficient matrices.
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1. Families of solutions of the RDE. Consider the asymmetric Riccati dif-
ferential equation (RDE)

Ẋ = AX +XB +XPX +Q,(1.1)

where X is m × n and A,B, P,Q are continuous, matrix-valued functions with real
entries on [t0, t1] of dimension m×m,n×n, n×m, and m×n, respectively. As is well
known, the symmetric version of (1.1), i.e., when n = m, B = AT , P = PT , Q = QT ,
plays a central role in many fields of applied mathematics, including optimal control
and estimation, and has therefore been intensively studied. General Riccati equations
such as (1.1) arise in the theory of differential games [3], in state-space solutions to
H∞ problems [10], in polynomial factorization [5], in problems of feedback control [1],
and in the singular perturbation of boundary value problems [4]; see the introductions
of [17, 3, 12] for further information. A further example is provided by equation (1.7)
below, which is asymmetric even when (1.1) is symmetric.

All through this paper, X1 and X2 denote two fixed but arbitrary solutions of
(1.1) on the time interval [t0, t1]. Moreover, let ∆12 := X2 −X1. There exists a one-
to-one correspondence between solutions of (1.1) and solutions of the homogeneous
Riccati equation

∆̇ = AX1∆ + ∆BX1 + ∆P∆,(1.2)

where AX1 := A+X1P and BX1 := B+PX1, given by X ↔ ∆ = X −X1. Thus, all
results below concerning solutions of (1.1) may also be viewed as results concerning
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solutions of (1.2), where the roles of X1 and X2 are played by the zero solution and
∆12, respectively.

Jan Willems’ classification of solutions of the ARE [23] was used in [14] to classify
all output-induced minimal stochastic realizations of a given process. In [2, Theorem
8.3], this classification was extended to the nonstationary case. Its implications for the
RDE, however, were not pursued there. Jan Willems’ original derivation of the geo-
metric parametrization of solutions of the ARE relied on first establishing a similarity
relation involving two “extreme” closed-loop matrices [23, Lemma 8]. The latter re-
sult was generalized to the symmetric, nonsingular (i.e., ∆12 invertible), time-varying
situation in [18, Theorem 5.5]. It can indeed be extended to our very general setting,
and its consequences are far reaching.

LEMMA 1.1. Let X be any solution of (1.1) on [t0, t1] and let ∆i := X − Xi,
i = 1, 2. Let φ(·, ·) and ψ(·, ·) be the transition matrices corresponding to AX :=
A + XP and −BX := −(B + PX), respectively. Let φi(·, ·) and ψi(·, ·), i = 1, 2, be
the transition matrices corresponding to AXi := A+XiP and −BXi := −(B+PXi),
respectively. Then, for i = 1, 2 and for all s and t in [t0, t1], we have

∆i(t)ψi(t, s) = φ(t, s)∆i(s),(1.3)
∆i(t)ψ(t, s) = φi(t, s)∆i(s).(1.4)

Proof. Notice that ∆i satisfies

∆̇i = AXi∆i + ∆iBXi + ∆iP∆i(1.5)
= AX∆i + ∆iBXi = AXi∆i + ∆iBX .

From (1.5) it follows that

∂(∆i(t)ψi(t, s))
∂t

= ∆̇i(t)ψi(t, s) + ∆i(t)
∂ψi(t, s)

∂t

= ∆̇i(t)ψi(t, s)−∆i(t)BXiψi(t, s) = AX(t)∆i(t)ψi(t, s).

Hence, both sides of (1.3) satisfy

∂W (t, s)
∂t

= AX(t)W (t, s).

Since they coincide for s = t, they coincide everywhere. Exchanging the roles of X
and Xi, we get (1.4) from (1.3).

COROLLARY 1.2. ∆i(t), i = 1, 2, has constant rank on [t0, t1].
Proof. By (1.3), ∆i(t) = φ(t, t0)∆i(t0)ψi(t0, t).
COROLLARY 1.3. Let X be any solution of (1.1) on [t0, t1], and let i = 1, 2.

Suppose that ker ∆12(t0) ⊆ ker ∆i(t0). Then ker ∆12(t) ⊆ ker ∆i(t) for all t ∈ [t0, t1].
Proof. Let x ∈ Rn be such that ∆12(t)x = 0. By (1.3), we get ∆12(t0)ψi(t0, t)x =

0. Thus, ψi(t0, t)x is in the kernel of ∆12(t0). By hypothesis, ∆i(t0)ψi(t0, t)x = 0.
The latter implies φ(t, t0)∆i(t0)ψi(t0, t)x = 0. Using equation (1.3) again, we get
∆i(t)x = 0.

Obviously, the above result holds true if t0 is replaced by any other time s in
[t0, t1]. Let us agree that all through the paper π(t) denotes an m×m matrix function
on [t0, t1].

THEOREM 1.4. The matrix function X(t) = (I − π(t))X1(t) + π(t)X2(t) is a
solution of (1.1) on [t0, t1] if and only if π(t) is a C1 function satisfying

π̇∆12 = [AX1π − πAX1 − π∆12P (I − π)]∆12.(1.6)
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Conversely, let X(t) be a solution of (1.1) on [t0, t1] with ker ∆12(t0) ⊆ ker ∆1(t0)
where ∆1 = X −X1. Then there exists a C1 function π(t) satisfying (1.6) such that
X(t) = (I − π(t))X1(t) + π(t)X2(t). Moreover, if Rank∆12(t0) = m, (1.6) may be
replaced by the auxiliary Riccati differential equation (ARDE)

π̇ = AX1π − πAX1 − π∆12P (I − π),(1.7)

and there is a one-to-one correspondence between solutions of (1.1) and solutions of
(1.7).

Proof. Let R(X) := AX+XB+XPX+Q. If X(t) = (I−π(t))X1(t)+π(t)X2(t),
we get

R(X) = A[(I − π)X1 + πX2] + [(I − π)X1 + πX2]B
+[(I − π)X1 + πX2]P [(I − π)X1 + πX2] +Q

= (I − π)R(X1) + πR(X2)− (I − π)AX1 − (I − π)X1PX1 − πAX2

−πX2PX2 +A(I − π)X1 +AπX2 + [(I − π)X1 + πX2]P [(I − π)X1 + πX2]
= (I − π)R(X1) + πR(X2)− πA∆12 +Aπ∆12

−(I − π)X1PπX1 − πX2P (I − π)X2 + πX2P (I − π)X1 + (I − π)X1PπX2

= (I − π)R(X1) + πR(X2) + [−πA+Aπ + (I − π)X1Pπ − πX2P (I − π)]∆12

= (I − π)R(X1) + πR(X2)
+[−πA+Aπ + (I − π)X1Pπ − π∆12P (I − π)− πX1P (I − π)]∆12

= (I − π)R(X1) + πR(X2) + [AX1π − πAX1 − π∆12P (I − π)]∆12.

If π is of class C1, it then follows that X is a solution of (1.1) if and only if (1.6) holds.
Conversely, suppose that X is a solution of (1.1) on [t0, t1] such that ker ∆12(t0) ⊆
ker ∆1(t0). By Corollary 1.3, the inclusion ker ∆12(t) ⊆ ker ∆i(t) holds for all t ∈
[t0, t1]. Then there exist m×m-valued matrix functions Z(t) such that

∆1(t) = Z(t)∆12(t)(1.8)

for all t ∈ [t0, t1]. Notice that (1.8) already implies that X(t) = (I − Z(t))X1(t) +
Z(t)X2(t). Thus, the proof of the converse will be complete if we can show that
among the functions Z satisfying (1.8) there is at least one Z̃ of class C1. In that
case, we can take π = Z̃. To this end, notice that, in view of Lemma 1.1, any function
Z satisfying (1.8) also satisfies

∆1(t)ψ2(t, t0) = Z(t)φ1(t, t0)∆12(t0).(1.9)

This leads us to introduce the function Z̃ defined by

Z̃(t) = ∆1(t)ψ2(t, t0)∆#
12(t0)φ1(t0, t),

where ∆#
12(t0) denotes the Moore–Penrose pseudoinverse of ∆12(t0). The function Z̃

is clearly continuously differentiable. We show next that indeed Z̃ satisfies ∆1(t) =
Z̃(t)∆12(t). Observe that the latter is equivalent to

∆1(t)[I − ψ2(t, t0)∆#
12(t0)φ1(t0, t)∆12(t)] = 0.(1.10)

Now let Z be any function satisfying (1.8). Using (1.9) in (1.10), we see that the
latter is equivalent to

Z(t)φ1(t, t0)∆12(t0)ψ2(t0, t)[I − ψ2(t, t0)∆#
12(t0)φ1(t0, t)∆12(t)] = 0.
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Obtaining ∆12(t) from Lemma 1.1 and using properties of transition matrices, it can
be verified that the latter equation is in turn equivalent to

Z(t)φ1(t, t0)∆12(t0)[I −∆#
12(t0)∆12(t0)]ψ2(t0, t) = 0.(1.11)

Because of ∆(I −∆#∆) = 0, the preceding identity (1.11) is valid. Finally, suppose
that Rank∆12(t0) = m. By Corollary 1.2 the same is true for ∆12(t), t ∈ [t0, t1].
The one-to-one map between the solution sets of (1.1) and (1.7) is then given by
π(t) := [X(t)−X1(t)]∆−R12 (t), where ∆−R12 denotes any right inverse of ∆12.

Remark 1.5. Obviously, in Theorem 1.4 (and in the following), we could have con-
sidered combinations of the form X(t) = X1(t)(I−σ(t))+X2(t)σ(t). The assumption
for the converse part would then read ker ∆12(t0)T ⊆ ker ∆1(t0)T . Equation (1.6)
would be replaced by the equation

∆12σ̇ = ∆12[σBX1 −BX1σ − (I − σ)P∆12σ].

Remark 1.6. Notice that if π1 and π2 are two C1 functions generating the same
solution X of (1.1) on [t0, t1], i.e., X(t) = X1(t) + π1(t)∆12(t) = X1(t) + π2(t)∆12(t),
then necessarily [π1(t)− π2(t)]∆12(t) = 0 for all t in [t0, t1]. If ∆12(t0) admits a right
inverse, then π1 = π2.

At first sight, the correspondence between solutions of (1.1) and solutions of (1.6)
or (1.7) established by Theorem 1.4 appears rather disappointing. Indeed, in the
best case, we still have to deal with an asymmetric Riccati equation, the ARDE,
with the only apparent advantage that π, AX1 , and ∆12P are all square m × m-
dimensional. Notice that solutions X1 and X2 of (1.1) correspond to the equilibrium
solutions zero and identity, respectively, of (1.6) and (1.7). Nevertheless, the power
of this connection will shortly be apparent. Indeed, (1.6) and (1.7) lend themselves
naturally to a geometric characterization of a subclass of their solutions; see Theorems
2.3 and 2.5 below.

We conclude this section with a result relating different φ transition matrices.
This result, which will not be needed in what follows, appears to be of interest for
nonstationary stochastic realization [2]. Indeed, it extends a result for feedback ma-
trices corresponding to different solutions of the symmetric ARE that was applied to
stationary stochastic realization in [11, Lemma 4.1].

PROPOSITION 1.7. Let X be any solution of (1.1) on [t0, t1]. If X(t) −X1(t) =
∆1(t) = π(t)∆12(t) on [t0, t1] for some function π, we have, in the notation of Lemma
1.1,

{φ(t, s)π(s)− π(t)φ2(t, s)}∆12(s) = 0,(1.12)
{φ(t, s)(I − π(s))− (I − π(t))φ1(t, s)}∆12(s) = 0.(1.13)

If π is projection valued, it follows that

(I − π(t))φ(t, s)π(s)∆12(s) = 0,(1.14)
π(t)φ(t, s)(I − π(s))∆12(s) = 0.(1.15)

If, moreover, π is C1, the latter gives

(I − π)(π̇ −AXπ)∆12 = 0,(1.16)
π(π̇ +AX(I − π))∆12 = 0.(1.17)
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Proof. Employing (1.3) twice, once for X and once for X2, we get

φ(t, s)π(s)∆12(s) = φ(t, s)∆1(s) = ∆1(t)ψ1(t, s)

= π(t)∆12(t)ψ1(t, s) = π(t)φ2(t, s)∆12(s),

which is (1.12). Similarly, (1.13) is established. If π is a C1, projection-valued func-
tion, differentiating (1.14) and the equation π(t) = π(t)2 with respect to t, we get
[(I−π(t))AX − π̇(t)]φ(t, s)π(s)∆12(s) = 0 and π̇(t)π(t) = (I−π(t))π̇(t), respectively.
Evaluating the first at s = t and then using the second, we get (1.16). Similarly, we
get (1.17) from (1.15).

2. Geometric results. The first step in establishing a geometric characteri-
zation of certain families of solutions of (1.1) consists of rewriting (1.6) and (1.7).
Simply rearranging terms, we get that these equations are equivalent to

[π̇ − (I − π)AX1π + πAX2(I − π)]∆12 = 0,(2.1)
π̇ − (I − π)AX1π + πAX2(I − π) = 0,(2.2)

where AX2 := A+X2P = AX1 + ∆12P .
LEMMA 2.1. If π is a projection for all times, i.e., π(t) = π(t)2 for t in [t0, t1],

then it satisfies (2.1) if and only if it satisfies the system of equations

(I − π)[π̇ −AX1π]∆12 = 0,(2.3)
π[(I − π̇)−AX2(I − π)]∆12 = 0.(2.4)

Proof. Multiplying (2.1) on the left first by (I − π) and then by π, we get (2.3)
and (2.4), respectively. Conversely, obtaining ππ̇∆12 from (2.4) and plugging it into
(2.3), we get (2.1).

Remark 2.2. Equations (2.3), (2.4) can be obtained from (1.16), (1.17), observing
that

(I − π)AX1 = (I − π)AX ,
πAX2 = πAX .

Equations (2.1), (2.2), (2.3), (2.4) enjoy a certain symmetry. Indeed, they are invariant
under the permutation π ↔ (I−π), X1 ↔ X2. Lemma 2.1 above singles out a subclass
of solutions of (2.1) and, by Theorem 1.4, of (1.1). This subclass may also be described
as the solutions on [t0, t1] of the following implicit system:

[0, I − π, π]π̇∆12 = [π − π2, (I − π)AX1π∆12,−πAX2(I − π)∆12].(2.5)

The following result provides a geometric characterization of the projection-valued
solutions of (2.1). The question of existence of such solutions will be addressed in
Theorem 2.7 below.

THEOREM 2.3. Let X(t) = (I − π(t))X1(t) + π(t)X2(t) be a solution of (1.1) on
[t0, t1]. Let M(t) := π(t)∆12(t)Rn and N(t) := (I − π(t))∆12(t)Rn. Then, for s and
t in [t0, t1],we have

M(t) = φ1(t, s)M(s),(2.6)
N(t) = φ2(t, s)N(s).(2.7)
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Moreover, we also have

M(t) = φ(t, s)M(s),(2.8)
N(t) = φ(t, s)N(s).(2.9)

Conversely, Let {M(t)} and {N(t)}, t ∈ [t0, t1], be two families of subspaces of Rm

providing a direct sum decomposition of ∆12(t)Rn. Let π be a C1 function such that
π(t)x = x ∀x ∈ M(t) and π(t)y = 0 ∀y ∈ N(t). If (2.6), (2.7) hold for all s and t
in [t0, t1], then X(t) = (I − π(t))X1(t) + π(t)X2(t) is a solution of the RDE (1.1) on
[t0, t1].

Proof. By Lemma 1.1, ∆1(t) = φ1(t, s)∆1(s)ψ(s, t). Replacing ∆1(t) with
π(t)∆12(t), we get π(t)∆12(t)Rn = φ1(t, s)π(s)∆12(s)Rn, namely (2.6) holds. For-
mula (2.7) is proven similarly. Lemma 1.1 also gives ∆1(t) = φ(t, s)∆1(s)ψ1(s, t). The
same argument as above then gives (2.8). Similarly, (2.9) is established. To prove the
converse, notice that (2.6), (2.7) imply

[I − π(t)]φ1(t, s)π(s)∆12(s) = 0,(2.10)
π(t)φ2(t, s)[I − π(s)]∆12(s) = 0.(2.11)

Evaluating the derivatives of (2.10) and (2.11) with respect to t on the diagonal t = s,
we get (2.3) and (2.4). The latter imply that (1.6) holds, and consequently X is a
solution of (1.1).

Remark 2.4. Notice that the first half of the theorem holds for any solution X
of (1.1) of the form X(t) = (I − π(t))X1(t) + π(t)X2(t), namely even when π is not
projection valued. In that case, however, the spaces M(t) and N(t) do not need to
form a direct sum. Observing once more thatX−X1 = π∆12 andX2−X = (I−π)∆12,
we also see that the spaces M(t) and N(t) are uniquely determined by the solution X
and do not depend on the particular projection π used in the definition.

In the important case where ∆12 has full row rank, Theorem 2.3 reads as follows.
THEOREM 2.5. Assume that ∆12(t0) has full row rank. Let X(t) = (I−π(t))X1(t)+

π(t)X2(t) be a solution of (1.1) on [t0, t1]. Let M(t) and N(t) denote the range of
π(t) and the range of (I − π(t)), respectively. Then, for s and t in [t0, t1], relations
(2.6), (2.7), (2.8) and (2.9) hold true. Conversely, let π(·) be a C1, projection-valued
function on [t0, t1], and let M(t) and N(t) denote the range of π(t) and the range of
(I − π(t)), respectively. If the propagation relations (2.6) and (2.7) hold for all s and
t in [t0, t1], then X(t) = (I − π(t))X1(t) + π(t)X2(t) is a solution of the RDE (1.1)
on the same time interval.

Theorems 2.3 and 2.5 provide the desired geometric characterization of a subclass
of solutions of the ARDE (2.2) and, consequently, of the RDE (1.1). Notice that, in
the case m = n, Remark 2.4 gives that the first half of Theorem 2.5 applies to any
solution of (1.1) on [t0, t1]. Indeed, in this case, ∆12(t) is invertible at all times,
and ker ∆12(t) ⊆ ker ∆1(t) is trivially satisfied. Hence, any solution X of (1.1) can
be expressed as X(t) = (I − π(t))X1(t) + π(t)X2(t). For the purpose of immediate
comparison, we state below Jan Willems’ classical result; cf. also [6, 19, 20, 21, 13]
(the latter should also be compared with Theorems 3.3 and 4.2 below).

THEOREM 2.6. In equation (1.1), let n = m, B = AT , P = PT , Q = QT .
Suppose moreover that P is negative semidefinite and that the pair (A,P ) is reachable.
Let X− and X+ denote two symmetric equilibrium solutions of (1.1) such that the
corresponding closed-loop matrices A− := A + X−P and A+ := A + X+P have all
their eigenvalues in the closed right and left half-planes, respectively. Suppose that
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∆ := X+−X− is positive definite. Then X is another symmetric equilibrium solution
of (1.1) if and only if it can be expressed as

X = (I − π)X− + πX+

where π projects onto an A−-invariant subspace and I − π projects onto an A+-
invariant subspace.

We now turn to the question of existence of projection-valued solutions of (2.2)
((1.7)) (equivalently, of solutions of the implicit system (2.5) if ∆12(t0) has full row
rank). The following remarkable result basically says that (2.2) is a projection-
preserving differential equation.

THEOREM 2.7. Let π be a solution of (2.2) on [t0, t1]. Suppose that π(t0) is a
projection. Then π(t) is a projection for all t in [t0, t1].

Proof. Let us rewrite (2.2) as

π̇ = AX1π − πAX2 + π∆12Pπ.

Then

dπ2

dt
= π̇π + ππ̇ = [AX1π − πAX2 + π∆12Pπ]π + π[AX1π − πAX2 + π∆12Pπ]

= AX1π
2 − πAX2π + π∆12Pπ

2 + πAX1π − π2AX2 + π2∆12Pπ.

Hence,

d(π2 − π)
dt

= AX1(π2−π)−(π2−π)AX2−(π2−π)∆12P (π2−π)+π2∆12Pπ
2−π∆12Pπ.

Adding and subtracting the quantity π2∆12Pπ in the right-hand side and rearranging
terms, we finally get

d(π2 − π)
dt

= (AX1 +π2∆12P )(π2−π)−(π2−π)(AX2−∆12Pπ)−(π2−π)∆12P (π2−π).

Let F1 := AX1 +π2∆12P and F2 := AX2−∆12Pπ. It follows that, if π(t) is a solution
of (2.2), then, on the same time interval, π2 − π is a solution of the homogeneous
Riccati equation

Ẋ = F1X −XF2 −X∆12PX,(2.12)

and F1 and F2 are there bounded. Since π2(t0) − π(t0) = 0, by uniqueness of the
solution of equation (2.12) starting at zero, it follows that π2(t) − π(t) = 0 on all of
[t0, t1].

The above proof actually establishes an amplification of Theorem 2.7. We record
it below because it is of interest on its own.

PROPOSITION 2.8. Let A1 and A2 be m × m continuous matrix functions on
[t0, t1]. Let Y be an m×m matrix function solving the homogeneous Riccati equation

Ẏ = A1Y − Y A2 + Y (A2 −A1)Y(2.13)

on [t0, t1]. If there exists a time t̄ ∈ [t0, t1] such that Y (t̄) = Y (t̄)2, then Y (t) = Y (t)2

on all of [t0, t1].
Remark 2.9. Notice that Y1 ≡ 0 and Y2 ≡ I are two equilibrium solutions of (2.13).

Also notice that the corresponding closed-loop matrices are A1 + 0(A2 − A1) = A1
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and A1 + I(A2 − A1) = A2. Now let Y be as in the proposition above—namely, a
projection-valued solution of (2.13)—and let M(t) and N(t) be the range spaces of
Y (t) and I − Y (t), respectively. Then, by Theorem 2.5, the propagation properties
(2.6) and (2.7) hold true, where φ1 and φ2 are the transition matrices corresponding
to A1 and A2, respectively. Finally, if A1 and A2 are constant and Y = Y 2 is an
equilibrium solution of (2.13), Y projects onto a subspace invariant for A1 along a
subspace invariant for A2.

Remark 2.10. The geometric results of this section provide a procedure to produce
new solutions of (1.1). For instance, in the full-rank case, let π0 be any projection, and
let M0 and N0 be the ranges of π0 and I−π0, respectively. Define M(t) := φ1(t, t0)M0
and N(t) := φ2(t, t0)N0. Let t̄ be the largest time such that for t0 ≤ t < t̄, M(t) and
N(t) give a direct sum decomposition of Rm (by continuity, t̄ > 0). Let π(t) be the
projection such that M(t) and N(t) are the ranges of π(t) and I − π(t), respectively.
Then π solves (2.2) and X = (I−π)X1 +πX2 solves (1.1) on [t0, t̄). Using an explicit
expression for π in terms of bases for its range and the range of I −π, it is easily seen
that π(t) becomes unbounded as t tends to t̄. If ∆12(t0) has full row rank, it follows
that the corresponding solution X(·) has a finite escape time (see, e.g., [16, 7, 8]) at
t = t̄.

We conclude the section with an example that illustrates Remark 2.10 as well as
Proposition 2.8 and Remark 2.9.

Example 2.11. Consider equation (2.13) with m = 2 and

A1 =
(

1 0
0 0

)
, A2 =

(
0 1
0 0

)
.

Choose as reference solutions Y1 = 0 and Y2 = I, and let π0 be given by

π0 =
(

1 0
0 0

)
.

Clearly π0 is a projection, in fact an orthogonal projection. We have that M0 =
(
R
0

)
and N0 =

(0
R

)
. Next notice that the transition matrices φ1(t, s) and φ2(t, s) are given

here by

φ1(t, s) = eA1(t−s) =
(
et−s 0

0 1

)
, φ2(t, s) = eA2(t−s) =

(
1 t− s
0 1

)
.

Hence, M(t) = φ1(t, t0)M0 is the span of the vector
(1

0

)
and N(t) = φ2(t, t0)N0

is the span of the vector
(
t−t0

1

)
. Notice that M(t) and N(t) provide a direct sum

decomposition of R2 for all t ≥ t0. The projection π(t) with range M(t) and kernel
N(t) is given by

π(t) =
(

1 t0 − t
0 0

)
.

The corresponding solution of (2.13) is Y (t) = 0 + π(t)(I − 0) = π(t), namely π(t)
itself. This is no surprise. Since Y (t0) = 0 + π0(I − 0) = π0 is a projection, Theorem
2.7 implies that Y (t) has to be a projection for all t. Notice that π(t) is unbounded
as t tends to infinity. This is possible because π(t) for t > 0 is not an orthogonal
projection, although π0 is orthogonal.
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3. Geometric results: The case where X1 and X2 are equilibrium solu-
tions. All through this section we assume that X1 and X2 are equilibrium solutions
of (1.1). The coefficients A, B, P , and Q may still be time varying.

PROPOSITION 3.1. Let X be an equilibrium solution of (1.1) and let ∆i = X−Xi,
i = 1, 2. Then for all t in [t0, t1],

AX(t)∆i = −∆iBXi(t),(3.1)
AXi∆i = −∆iBX(t).(3.2)

It follows that if (ξ(t), λ(t)) is an eigenvector-eigenvalue pair for BXi(t) so that
BXi(t)ξ(t) = λ(t)ξ(t), then either ∆iξ(t) = 0 or (∆iξ(t),−λ(t)) is an eigenvector-
eigenvalue pair for AX(t). Similarly, it follows for AXi(t) and BX(t). If ∆i admits
a right inverse, we get the relations

AX(t) = −∆iBXi(t)∆
−R
i ,

AXi(t) = −∆iBX(t)∆−Ri .

In particular, if m = n and ∆12 is invertible, we have

AX2(t) = −∆12BX1(t)∆−1
12 .(3.3)

Proof. Relations (3.1) and (3.2) are a consequence of (1.5).
Once more, we compare (3.3) with the corresponding classical result. In the

notation of Theorem 2.6, let X1 = X− and X2 = X+. Then (3.3) reads A+ =
−∆AT−∆−1 which is precisely [23, Lemma 8]. Let us now assume that the coefficients
of (1.1) are constant. Theorems 1.4 and 2.3 yield the following result.

THEOREM 3.2. Let X = (I − π)X1 + πX2 be an equilibrium solution of the
RDE (1.1). Let M := π∆12R

n and N := (I − π)∆12R
n. Then M is an invariant

subspace for AX1 and N is an invariant subspace for AX2 . Moreover, M and N are
both invariant for AX . Conversely, let M and N be two subspaces of Rm providing
a direct sum decomposition of ∆12R

n. Let π be an m ×m matrix such that πx = x
for any x in M and πy = 0 for any y in N . If M is an invariant subspace for AX1

and N is an invariant subspace for AX2 , then X = (I−π)X1 +πX2 is an equilibrium
solution of the RDE (1.1).

Once more, we state independently the result in the case when ∆12 has full row
rank.

THEOREM 3.3. Suppose ∆12 has full row rank and let X be an equilibrium solution
of (1.1). Assume that ker ∆12 ⊆ ker ∆1. Then there exists an m ×m matrix π such
that X = (I −π)X1 +πX2. Moreover, the range M of π is invariant for AX1 and for
AX , and the range N of I − π is invariant for AX2 and for AX . Conversely, if π is
any oblique projection onto a subspace invariant for AX1 along a subspace invariant
for AX2 , then X = (I − π)X1 + πX2 satisfies (1.1).

In order to compare this result with Theorem 2.6, notice that if m = n and
∆12 has full rank, the condition ker ∆12 ⊆ ker ∆1 is always satisfied. The additional
assumptions of Theorem 2.6 permit us to conclude that if X = (I − π)X1 + πX2 is
an equilibrium solution of (1.1), π is always a projection.

4. The symmetric Riccati equation. We finally consider the symmetric case
where n = m, B = AT , P = PT , Q = QT but return to the nonequilibrium situation.
Equation (1.1) is now

Ẋ = AX +XAT +XPX +Q.(4.1)
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We also assume that the two reference solutions X1 and X2 take values in the sym-
metric matrices. Hence, ∆12(t) is also symmetric at all times. It is then natural to
restrict our attention to symmetric solutions of (4.1).

LEMMA 4.1. φ2(t, s)∆12(s) = ∆12(t)φ1(s, t)T .
Proof. By Lemma 1.1, φ2(t, s)∆12(s) = ∆12(t)ψ1(t, s). The conclusion now fol-

lows observing that BX1 = ATX1
implies that ψ1(t, s) = φ1(s, t)T .

For the sake of simplicity, we only give the main result in the case where ∆12 is
nonsingular.

THEOREM 4.2. Let X1 and X2 be any two symmetric solutions of (4.1) on [t0, t1]
such that ∆12(t0) is invertible. Let X(t) = (I−π(t))X1(t)+π(t)X2(t) be a symmetric
solution of (4.1) on [t0, t1]. Let M(t) and N(t) denote the range of π(t) and the range
of (I−π(t)), respectively. Then for s and t in [t0, t1] the following relations hold true:

π(t)∆12(t) = ∆12(t)π(t)T ,(4.2)
(I − π(t))φ1(t, s)π(s) = 0.(4.3)

Conversely, let π be a C1, projection-valued function satisfying for all s and t in [t0, t1]
(4.2), (4.3). Then X(t) = (I − π(t))X1(t) + π(t)X2(t) is also a symmetric solution of
the RDE (4.1) on [t0, t1].

Proof. Let X(t) = (I−π(t))X1(t)+π(t)X2(t) = X1(t)+π(t)∆12(t) be a symmetric
solution of (4.1) on [t0, t1]. The symmetry of X(t) implies that (4.2) must hold. Let
M(t) and N(t) denote the range of π(t) and of I − π(t), respectively. By Theorem
2.5, we have M(t) = φ1(t, s)M(s) from which (4.3) follows. Conversely, suppose that
(4.2) and (4.3) are verified. From (4.3) we get φ1(t, s)M(s) ⊆M(t). Exchanging the
roles of s and t, we see that equality, i.e., equation (2.6), must hold. Now, multiplying
equation (4.3) (with s and t exchanged) by ∆12(s)−1 on the left and by ∆12(t) on the
right we get

∆12(s)−1(I − π(s))φ1(s, t)π(t)∆12(t) = 0.(4.4)

Transposing (4.4) and using (4.2) twice, we get

π(t)∆12(t)φ1(s, t)T∆12(s)−1(I − π(s)) = 0.

The latter equation, together with Lemma 4.1, now gives equation (2.7). The conclu-
sion now follows from Theorem 2.5.

5. Closing comments. As is well known, the Riccati differential equation may
be viewed as the description in local coordinates of the restriction to a subset of
the Lagrangian Grassmannian manifold L of a vector field on L; see [15, 19]. Our
results may then be readily interpreted in that setting. In fact, some may be also
directly derived in that setting; see [8], where the case of l ≥ 2 reference solutions
X1, X2, . . . , Xl, is also considered (see also [17, Theorem 4]). Similar results may also
be derived in the discrete-time setting [9]. Alternative representation formulas for
solutions of (1.1) have been proposed in [22] and references therein.

The classification of the solutions of the ARE via invariant subspaces of the
Hamiltonian matrix has the disadvantage, when compared with the J. C. Willems
classification, that the invariant subspaces need to be J-neutral and complementary
to the subspace Span

(0
I

)
; see [13, pp. 67–68]. In [19] it was observed that the dis-

advantages of Jan Willems method are that, contrary to the Hamiltonian matrix
method, it does not lead naturally to a concept of solution at infinity (phenomenon of
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the finite escape time; see, e.g., [16, 7]) and it does not have an obvious generalization
to the nonsymmetric Riccati equation. Whereas the first disadvantage persists, we
observe that this paper has completely removed the second.

Acknowledgment. This paper has considerably profited from the detailed com-
ments of an anonymous reviewer who went so far as to produce a more elegant proof
of Theorem 1.4. His or her help is gratefully acknowledged.
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