Calcium-induced Calcium Release from Purified Cardiac Sarcoplasmic Reticulum Vesicles

GENERAL CHARACTERISTICS*

(Received for publication, December 27, 1983)

Brian K. Chamberlain[‡], Pompeo Volpe[§], and Sidney Fleischer

From the Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235

Isolated canine cardiac sarcoplasmic reticulum exhibits Ca2+-induced Ca2+ release from both actively and passively loaded vesicles. The rate and extent of Ca2+ release depend on the extravesicular ionized Ca2+ concentration ([Ca2+]0) at the onset of release. Maximal release following ATP-dependent, phosphate-facilitated Ca²⁺ loading (up to 360 nmol of Ca²⁺/mg of protein/min at 37 °C) occurs at 1.5-2 µM [Ca2+]0, with reduced release at both lower and higher Ca2+ concentrations (half-maximal Ca2+ release at approximately 0.8 and 5.5 µM [Ca2+]0). Only a portion of the accumulated Ca2+ is released and the release is followed by reuptake of Ca2+. A similar Ca2+ dependence is obtained in the absence of ATP and Pi by measuring unidirectional Ca^{2+} efflux from passively loaded vesicles (maximal Ca^{2+} efflux at 1 μ M [Ca^{2+}]₀; half-maximal Ca2+-dependent efflux at approximately 0.15 and 13 μM [Ca²⁺]₀). Although the Ca²⁺ release rates observed in this study are several orders of magnitude lower than the rate of Ca2+ release which occurs in muscle cells in vivo, this Ca2+ release phenomenon may be related to the Ca2+-induced Ca2+ release which has been described for skinned cardiac cells (Fabiato, A. (1983) Am. J. Physiol. 245, C1-C14).

Ca²⁺ release occurs in the presence of an ATP-regenerating system and is not accompanied by a reduction in ATP hydrolysis. Also, since unidirectional Ca²⁺ efflux (as high as 860 nmol of Ca²⁺/mg of protein/min at 37 °C) exceeds net Ca²⁺ release under similar conditions, Ca²⁺ influx proceeds during the period of net Ca²⁺ release. Therefore, Ca²⁺ release does not involve reversal or cessation of inward Ca²⁺ pumping. Other data indicate that Ca²⁺ release is not mediated through the Ca²⁺ pump protein, but occurs through a separate Ca²⁺-dependent efflux pathway, possibly a channel.

The SR¹ is a specialized membrane system in muscle which

regulates the myoplasmic Ca²⁺ level thereby controlling muscle contraction and relaxation (2). Release of Ca²⁺ from the SR triggers contraction and active Ca²⁺ reuptake by the SR produces relaxation. Ca²⁺ uptake, mediated by a membrane-bound Ca²⁺ pump protein, has been extensively studied for both cardiac and skeletal muscle SR (2–5). On the other hand, the mechanism by which depolarization of the surface membrane causes Ca²⁺ release from the SR is not well understood (6, 7).

Additional complexity is present in the heart where systems in the sarcolemma such as a "slow" inward Ca²⁺ channel (8, 9), a Ca²⁺ pump (10–12), and a Na⁺-Ca²⁺ exchanger (13) also participate in the regulation of intracellular Ca²⁺ levels. Studies on skinned cardiac cells indicate that in the mammalian heart, the trans-sarcolemmal Ca²⁺ influx is insufficient to activate the myofilaments and that Ca²⁺ release from the SR is essential for contraction (14, 15). Fabiato postulates that the trans-sarcolemmal Ca²⁺ influx acts as a trigger to induce Ca²⁺ release from the SR and has amassed convincing evidence for this hypothesis of Ca²⁺-induced Ca²⁺ release using skinned heart cells (14, 15). In this report, we describe a Ca²⁺-induced Ca²⁺ release from isolated cardiac SR vesicles with a Ca²⁺ concentration response similar to that described for skinned heart fibers.

EXPERIMENTAL PROCEDURES

Antipyrylazo III, Na₂ATP,Na₂-phosphocreatine, creatine phosphokinase type I, NADH, phosphoenolpyruvate, pyruvate kinase, and lactic dehydrogenase were from Sigma. ⁴⁵CaCl₂ was obtained from New England Nuclear and from ICN Pharmaceuticals, Inc.

Cardiac SR was isolated from canine ventricles as previously described (16) and stored in liquid N2. Net Ca2+ uptake and release were observed by dual wavelength spectrophotometry, using the metallochromic indicator antipyrylazo III (17) and monitoring ΔA (A_{710} A₇₉₀) with a Hewlett-Packard model 8450A spectrophotometer. Antipyrylazo III was less inhibitory than arsenazo III in the Ca²⁴ loading assay; i.e. at indicator concentrations producing adequate signal-to-noise characteristics, loading rates measured in the presence of antipyrylazo III were higher than those determined in the presence of arsenazo III. At 275 µM antipyrylazo III, Ca2+ loading rates were reduced only 5–10% and the patterns of Ca^{2+} uptake and release were essentially unaltered, when compared to results at threshold concentrations of antipyrylazo III (100-200 µM) where the signal-to-noise characteristics were poor. The wavelength pair $(A_{710} - A_{790})$ was optimal for following Ca^{2+} uptake and release under our assay conditions and light scattering changes in normal differential absorbance measurements (at 180° with respect to the incident light and without dye) were insignificant compared to the dye-related signals at the low sample concentrations employed. The standard 1-ml uptake/release assay contained 35-40 µg of SR protein, 1 mm Na₂ATP, 1 mm MgSO₄, 3 mm Na₂-phosphocreatine, 20 µg (2-3 units) of creatine phosphokinase, and 275 µM antipyrylazo III in 120 mM K+, 75 mM Pi, pH 7.0 at 37 °C. Ca²⁺ uptake was initiated by the addition of Ca²⁺ as indicated in the figures.

For each experiment, a calibration was performed to correlate

^{*} This work was supported by Grant AM 14632 from the National Institutes of Health. A preliminary report of this reserach was presented at the 74th Annual Meeting of the American Society of Biological Chemists, San Francisco, CA (1). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

[‡] Present address, Calcium Regulation Department, Norwich Eaton Pharmaceuticals, Inc., Norwich, NY 13815.

[§] Postdoctoral Fellow of the Muscular Dystrophy Association of America. Present address, Department of Physiology, New Jersey Medical School, 100 Bergen Street, Newark, NJ 07103.

¹ The abbreviations used are: SR, sarcoplasmic reticulum; EGTA, ethylene glycol bis(β -aminoethyl ether)-N,N,N',N'-tetraacetic acid; [Ca²⁺]₀, extravesicular ionized Ca²⁺ concentration; Hepes, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid.

absorbance changes with extravesicular ionized Ca²⁺ concentration, [Ca²⁺]_o, by adding varying amounts of CaCl₂ to the standard assay mixture and noting the absorbance change. For each total CaCl₂ concentration, the ionized Ca²⁺ concentration was determined using the association constants and calculations previously described (18). In addition, binding of Ca²⁺ and Mg²⁺ to antipyrylazo III was included in the calculations. An apparent stability constant of 8330 M⁻¹ for the Ca²⁺-antipyrylazo III complex used (17). A median value of 3000 M⁻¹ was used for the apparent stability constant of the Mg²⁺-antipyrylazo III complex (19, 20).

ATPase values were determined spectrophotometrically, by monitoring the oxidation of NADH in a coupled enzyme system (21). This assay required a variant of the standard uptake/release medium containing an alternate ATP-regenerating system. A 1-ml assay contained 35-40 µg of SR protein, 1 mM Na₂ATP, 1 mM MgSO₄, 0.2 mM NADH, 2 mM phosphoenolpyruvate, 8.75 units of pyruvate kinase, and 12.5 units of lactic dehydrogenase in 120 mM K⁺, 75 mM P_i, pH 7.0 at 37 °C. For the paired experiments of Fig. 3, Ca²⁺ uptake and release were determined in this medium containing 275 µM antipyrylazo III. Reactions were initiated by the addition of CaCl₂. The "basal" ATPase measured in the presence of 4 mM EGTA was subtracted from the total ATPase to give Ca²⁺-dependent ATPase.

In the estimation of unidirectional Ca2+ efflux from actively loaded SR vesicles, uptake of ⁴⁵CaCl₂ in 2 ml of the standard uptake/release assay medium was monitored spectrophotomterically. At the onset of Ca²⁺ release, a ⁴⁰CaCl₂/EGTA buffer containing an excess of ⁴⁰CaCl₂ was added to fix $[Ca^{2+}]_0$ at 2×10^{-8} M, 2×10^{-6} M, or 2×10^{-4} M at a constant pH of 7.0. Concentrated buffer (40 μ l) was added to give final concentrations of 0.5 mm CaCl₂, 10.5 mm EGTA; 3 mm CaCl₂, 3.58 mm EGTA; or 3 mm CaCl₂, 2.02 mm EGTA, respectively. At intervals thereafter, 100-µl aliquots were removed from the cuvette and rapidly filtered through 0.2-um pore size nitrocellulose filters in a microfilter kit (Schleicher and Schuell) using air pressure. ⁴⁵Ca in the filtrate was monitored to estimate Ca2+ efflux. The specific activity (approximately 12,000 cpm/nmol) was determined from the ⁴⁵Ca inside the SR (measured isotopically) and from the total Ca²⁺ accumulated by the SR (determined spectrophotometrically) at the onset of release prior to adding to ⁴⁰CaCl₂/EGTA buffer. When $[Ca^{2+}]_0$ was fixed at 2×10^{-8} M, where Ca^{2+} uptake is negligible, ⁴⁵Ca was diluted 6- to 7-fold with 40 Ca. When [Ca²⁺]₀ was fixed at 2 × 10⁻⁶ M and 2 × 10⁻⁴ M, where considerable Ca²⁺ uptake can occur, 45 Ca was diluted 31- to 35-fold with 40Ca. Thus, reuptake of 45Ca would be reduced by the same factor and the increase in extravesicular ⁴⁵Ca is a reasonable estimate of unidirectional Ca2+ efflux. Although EGTA is not an efficient buffer of ionized Ca^{2+} at 2×10^{-4} M, the total extravesicular CaCl₂ changed by less than 1% during the efflux measurements at 2×10^{-4} M Ca²⁺, so the ionized Ca²⁺ concentration remained within 5% of 2×10^{-4} M.

To determine Ca²⁺ efflux from passively loaded SR in the absence of ATP and P_i, SR vesicles (4.7-6.7 mg/ml) in 0.29 M sucrose, 0.2 M KCl, 10 mm imidazole-HCl (pH 6.7 at 25 °C) were passively loaded with Ca²⁺ by incubating for 16-18 h at 0 °C in 2 mm ⁴⁵CaCl₂ (9000 cpm/nmol). Efflux was initiated by adding 0.11 ml of this mixture to 9.9 ml of 0.3 M sucrose, 0.1 M KCl, 5 mm K₂-EGTA, 20 mm Hepes, pH 7.0, at 25 °C containing various concentrations of MgCl₂ and ⁴⁰CaCl₂ to produce a constant ionized Mg²⁺ concentration of 0.1 mm at ionized Ca²⁺ concentrations ranging from 10⁻⁹ M to 10⁻⁴ M. After mixing, 0.95-ml aliquots were withdrawn and rapidly filtered through 0.22-μm pore size Millipore filters. The filters were immediately washed with 2 ml of ice-cold 10 mm LaCl₃, 20 mm MgCl₂ (22). After drying, the filters were dissolved and counted in 10 ml of Bray's solution (Research Products International Corp., Mount Prospect, IL). The first order rate constant of the fast initial component (first 35 s) of the Ca²⁺ efflux was determined by linear regression analysis of a semilog plot of 45Ca remaining in the SR versus time (cf. Fig. 5A).

RESULTS

Ca²⁺ Release from Actively Loaded SR—Ca²⁺-induced Ca²⁺ release from cardiac SR vesicles is shown in Fig. 1. In this experiment, the SR was preloaded with three additions of

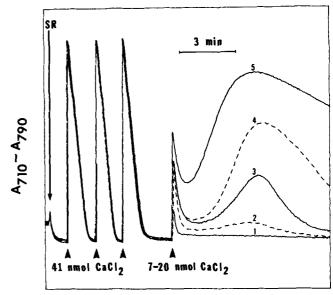


Fig. 1. Ca²⁺-induced Ca²⁺ release from cardiac SR vesicles. In figures where Ca²⁺ uptake and release were determined spectrophotometrically, the absorbance is proportional to [Ca²⁺]₀. Thus, net Ca²⁺ uptake by the SR is accompanied by a decrease in absorbance and net Ca²⁺ release is reflected by an increase in absorbance. The data are from five separate reactions. At the arrow, SR (35 μg of protein) was added to standard uptake/release medium (final volume after addition of CaCl₂: 1 ml) at 37 °C as described under "Experimental Procedures" and allowed to accumulate contaminating Ca²⁺ from the medium (approximately 4 nmol). Following three additions of 41 nmol of CaCl₂ (arrowheads), the amount of CaCl₂ in a fourth addition was successively increased in the separate reactions from 7 (trace 1) to 20 nmol (trace 5). For all but the smallest of these additions, net Ca²⁺ uptake ceased before all the Ca²⁺ was accumulated by the SR and a period of net Ca²⁺ release ensued. After 2–3 min of Ca²⁺ release, Ca²⁺ reuptake by the SR occurred.

CaCl₂. The CaCl₂ in a fourth addition was varied so that net Ca²⁺ uptake ceased and net Ca²⁺ release began at varying [Ca²⁺]₀. The rate and extent of release depended on [Ca²⁺]₀ at the onset of release for SR vesicles loaded to the same capacity (Table I). After 2–3 min of Ca²⁺ release, Ca²⁺ reuptake by the SR occurred (Fig. 1).

In this assay, Ca^{2+} release occurs only after preloading to a specific capacity (e.g. see Table I) which varied among several SR preparations (2.6–4.7 μ mol of Ca^{2+} /mg of protein). However, the rate and extent of release do not depend upon the value of this "trigger" capacity (data not shown). Rather, Ca^{2+} release is dependent upon $[Ca^{2+}]_0$ after each preparation accumulates $CaCl_2$ to its trigger capacity. This capacity is not the maximum Ca^{2+} loading capacity, since under defined conditions the SR can accumulate Ca^{2+} to at least twice this level (see "Discussion").

The dependence of the rate of Ca^{2+} release on $[Ca^{2+}]_0$ at the onset of release is presented in Fig. 2. A similar curve is obtained for the extent of release (data not shown). Maximum net release (up to 360 nmol of Ca^{2+}/mg of protein/min) occurs when $[Ca^{2+}]_0$ is $1.5-2~\mu M$. Ca^{2+} release declines at both lower and higher $[Ca^{2+}]_0$. Under optimal conditions, as much as 20% of the accumulated Ca^{2+} is released prior to reuptake.

Ca²⁺ release is not dependent upon depletion of ATP since it occurs in the presence of an ATP-regenerating system (see "Experimental Procedures") and reuptake of released Ca²⁺ is observed (Fig. 1). Ca²⁺ release does not appear to be mediated by reversal of Ca²⁺ pumping since this process (in skeletal muscle SR) requires [Ca²⁺]₀ less than 0.1 μM and ADP in excess over ATP (23). The Ca²⁺ release described here is

² In control experiments (in the absence of EGTA), simultaneous monitoring of Ca²⁺ loading by the spectrophotomteric procedure and by filtration gave identical values, indicating that the filtration procedure completely removed SR vesicles and the intravesicular Ca²⁺.

TABLE I Ca²⁺-induced Ca²⁺ release from cardiac SR vesicles

The data are derived from Fig. 1. For each trace in the figure, the extravesicular ionized $\operatorname{Ca^{2+}}$ concentration, $[\operatorname{Ca^{2+}}]_0$, at the onset of release was determined as described under "Experimental Procedures" using the absorbance value at the point when net $\operatorname{Ca^{2+}}$ uptake ceases and net $\operatorname{Ca^{2+}}$ release begins. Also, for each trace in Fig. 1, the maximum rate of change of absorbance (dA/dt) during the 1-2 min when it is constant) and the maximum extent of the absorbance change (ΔA) following the onset of net release were determined and converted to units of $\operatorname{Ca^{2+}}$ as described under "Experimental Procedures" to yield, respectively, the maximum release rate and the maximum release extent. The values are for net $\operatorname{Ca^{2+}}$ release and reflect the summation of unidirectional influx and efflux. The rate and extent of net $\operatorname{Ca^{2+}}$ release are dependent upon $[\operatorname{Ca^{2+}}]_0$ for SR loaded to approximately the same total capacity.

m:	Capacity at	[Ca ²⁺] ₀	Maximum release	
Trace in Fig. 1	onset of release	at onset of release	Rate	Extent nmol Ca ²⁺ / mg 0 43
	μmol Ca ²⁺ / mg protein	μΜ	nmol Ca ²⁺ / mg/min	,
1	3.82	0.26^{a}	0	0
2	3.97	0.55	18	43
3	3.95	0.79	128	261
4	3.94	0.92	262	526
5	3.87	1.99	291	594

 $^{\alpha}\,[\text{Ca}^{2+}]_0$ at the absorbance baseline was calculated to be 0.26 μM by a parallel loading in the presence of $^{45}\text{CaCl}_2$ and measuring extravesicular ^{45}Ca following filtration.

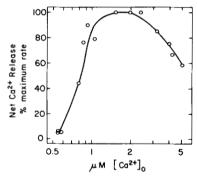


Fig. 2. Net $\operatorname{Ca^{2+}}$ release at various $[\operatorname{Ca^{2+}}]_0$. The data are from three experiments similar to that described in Fig. 1 and Table I, using two different cardiac SR preparations. The rate of net $\operatorname{Ca^{2+}}$ release, expressed as a percentage of the maximal value at optimum $[\operatorname{Ca^{2+}}]_0$, is ploted versus the $[\operatorname{Ca^{2+}}]_0$ at the onset of release. $[\operatorname{Ca^{2+}}]_0$ and the rates of net $\operatorname{Ca^{2+}}$ release were calculated as described in the legend to Table I. For these experiments, the 100% values at 1.5–2 μ M $[\operatorname{Ca^{2+}}]_0$ varied between 240 and 290 nmol of $\operatorname{Ca^{2+}}/m$ g of protein/min. Half-maximal release occurred at approximately 0.8 and 5.5 μ M $[\operatorname{Ca^{2+}}]_0$.

optimal at 1.5–2 μM [Ca²+]₀ and occurs in 1 mm ATP in the presence of a regenerating system to prevent ADP accumulation. Furthermore, as shown in Fig. 3, the Ca²+-dependent ATPase rate is not diminished during Ca²+ release, but increases somewhat over the rate observed during Ca²+ preloading.

Unidirectional Ca^{2+} Efflux from Actively Loaded SR—The data thus far have been for net Ca^{2+} release. We also measured unidirectional ⁴⁵Ca efflux as a function of fixed $[Ca^{2+}]_0$ (Fig. 4). Two preloading conditions were chosen to vary $[Ca^{2+}]_0$ at the onset of release prior to adding $CaCl_2/EGTA$ buffers to fix $[Ca^{2+}]_0$. In Fig. 4A, $[Ca^{2+}]_0$ at the onset of release was 1.9 μ M, near the optimal for net Ca^{2+} release (see Fig. 2). In Fig. 4B, $[Ca^{2+}]_0$ at the onset of release was 0.6 μ M, near the minimum threshold for inducing Ca^{2+} release. For both conditions, $[Ca^{2+}]_0$ was fixed immediately after the onset of

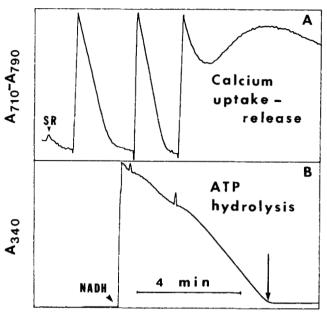


Fig. 3. ATP hydrolysis during Ca2+ uptake and release. In paired experiments, net Ca2+ uptake and release (A) and ATP hydrolysis, i.e. oxidation of NADH (B), were monitored as described under "Experimental Procedures." SR (38 µg of protein) was allowed to accumulate contaminating Ca2+ in the medium prior to three successive additions of 40 nmol of CaCl₂. Ca²⁺ release occurred after the third addition of CaCl2. NADH (0.2 mm) was not added until after the first addition of CaCl2 had been accumulated by the SR in order to ensure that there would be sufficient NADH to monitor ATP hydrolysis during the Ca^{2+} release phase. At the arrow, A_{340} levels off because the NADH has been depleted, not because ATP hydrolysis has ceased (as confirmed in a parallel experiment in which NADH was not added until after the second addition of CaCl2 had been accumulated by the SR). The rates of ATP hydrolysis were 1.10 and 1.32 µmol/mg/min during Ca2+ preloading and during Ca2+ release, respectively.

release at 2×10^{-8} M, 2×10^{-6} M, and 2×10^{-4} M.

As observed for net release, unidirectional Ca^{2+} efflux is dependent upon $[Ca^{2+}]_0$. For both preloading conditions, maximum efflux occurred when $[Ca^{2+}]_0$ was fixed at 2×10^{-6} M, with the initial efflux rates at 2×10^{-8} M and 2×10^{-4} M, approximately 35% and 15%, respectively, of the maximum rate. Moreover, the initial rate of unidirectional Ca^{2+} efflux (856 nmol/mg/min) at $2~\mu$ M $[Ca^{2+}]_0$ exceeded that of net release (325 nmol/mg/min) at $1.9~\mu$ M $[Ca^{2+}]_0$ (Fig. 4A) indicating that Ca^{2+} influx occurs during release. The difference between net Ca^{2+} release and unidirectional Ca^{2+} efflux indicates that Ca^{2+} pumping proceeds at about 60% of the rate measured during preloading.

The unidirectional Ca^{2+} effluxes are similar for preloading conditions which were chosen, respectively, to maximize (Fig. 4A) and minimize (Fig. 4B) net Ca^{2+} release. The control traces verify that this goal was achieved. However, when $[Ca^{2+}]_0$ is fixed soon after the onset of release, Ca^{2+} efflux depends upon the new fixed $[Ca^{2+}]_0$ and not upon the $[Ca^{2+}]_0$ at the onset of release. Thus, under these experimental conditions, the Ca^{2+} release process does not have a "memory" as has been suggested (24).

 Ca^{2+} Efflux from Passively Loaded SR—We next studied Ca^{2+} efflux from SR vesicles passively loaded with Ca^{2+} in the absence of ATP and P_i . This Ca^{2+} efflux was also dependent upon $[Ca^{2+}]_0$ (Fig. 5). Since the Ca^{2+} efflux rate in this assay is dependent upon the Ca^{2+} gradient across the SR membrane, the results (Fig. 5B) are expressed as the first order rate constant. The maximum rate constant for Ca^{2+} efflux (k=

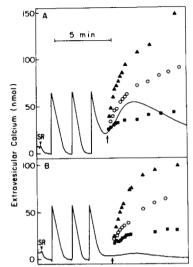
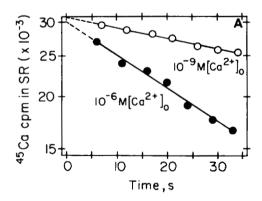


FIG. 4. Unidirectional Ca²⁺ efflux from actively loaded SR at different [Ca²⁺]₀. SR vesicles (71 μ g of protein) were loaded with ⁴⁵CaCl₂ in 2 ml of the standard uptake/release assay medium. The lines are spectrophotometric traces of $A_{710} - A_{790}$ indicating net Ca²⁺ uptake and release by control samples. The rates of Ca²⁺ preloading are 942 and 915 nmol of Ca²⁺/mg of protein/min for traces A and B, respectively. The symbols are isotopically determined values of extravesicular CaCl₂ following addition of CaCl₂/EGTA buffers as described under "Experimental Procedures." A, after three successive additions of 65 nmol of CaCl₂, net Ca²⁺ release (325 nmol of Ca²⁺/mg of protein/min) began at 1.91 μ M [Ca²⁺]₀. B, after three successive additions of 57.5 nmol of CaCl₂, net Ca²⁺ release (21 nmol of Ca²⁺/mg of protein/min) began at 0.59 μ M [Ca²⁺]₀. For both A and B, ⁴⁰CaCl₂/EGTA buffers were added immediately after the onset of release (arrows) to fix [Ca²⁺]₀ at 2 × 10⁻⁸ M (O), 2 × 10⁻⁶ M (♠), or 2 × 10⁻⁴ M (■). When [Ca²⁺]₀ was fixed at 2 × 10⁻⁶ M, approximately 60% of the accumulated ⁴⁵Ca was released within 3.5 min.

1.1–1.3 min⁻¹) is observed at 1 μ M [Ca²⁺]₀. Ca²⁺ efflux is slower at both higher and lower [Ca²⁺]₀, with a portion of this efflux (that observed at 1 nM [Ca²⁺]₀) apparently independent of [Ca²⁺]₀.

Inhibition of Ca^{2+} -induced Ca^{2+} Release by Mg^{2+} —The data in Fig. 6 demonstrate that net Ca^{2+} release from actively loaded SR is inhibited by increasing total magnesium from 1 to 4 mM, resulting in an increase in ionized Mg^{2+} from 0.12


to 0.74 mm. Reduced Ca²+ release could result from increased inward Ca²+ pumping. However, no increase in Ca²+ pumping is observed. Rather, a small decrease in the Ca²+ loading rate is seen at the higher Mg²+ concentration (Fig. 6). A similar Mg²+ inhibition was also demonstrated for unidirectional Ca²+ efflux from passively loaded vesicles in the absence of Ca²+ pumping (Table II). Elevation of ionized Mg²+ from 0.10 to 0.72 mm at a constant 1 μ M [Ca²+]0 reduces Ca²+ efflux to the level previously seen at 1 nm [Ca²+]0 which is presumed to be Ca²+-independent efflux.

Dependence of Ca^{2+} -induced Release upon P_i —Net Ca^{2+} release is pronounced after energized Ca^{2+} accumulation in the presence of 75 mm P_i as a precipitating anion, but it is significantly reduced in 50 mm P_i and does not occur in 25 mm P_i (Fig. 7). This effect could be attributed to either a direct effect of the P_i concentration or upon a higher intravesicular ionized Ca^{2+} concentration at lower P_i concentrations.

It is likely that the requirement for high P_i is a peculiarity of the assay for Ca2+ release from actively loaded SR and not a requirement for Ca²⁺ release, per se. Ca²⁺ release from passively loaded cardiac SR (in the absence of Pi) shares many similarities with Ca2+ release from actively loaded SR including Ca2+ dependence (compare Figs. 2 and 5B), inhibition by Mg2+ (compare Fig. 6 and Table II), and inhibition by a wide variety of chemical compounds (see accompanying report, Ref. 25). These similarities suggest that the two assays reflect Ca2+ efflux through identical pathways or "channel(s)," and that the Ca2+-dependent opening of the channel(s) can occur in the absence of P_i. Thus, although it is doubtful that the release from actively loaded SR which occurs only with high Pi concentrations is itself a "physiological" process, the physiological Ca²⁺ release may involve the same Ca²⁺ efflux pathway.

DISCUSSION

Purified cardiac SR vesicles exhibit a pronounced Ca^{2+} -induced Ca^{2+} release. This phenomenon has been demonstrated for SR actively loaded with Ca^{2+} in the presence of ATP and P_i and for passively loaded SR. Ca^{2+} efflux from actively and passively loaded vesicles appears to proceed via the same channels since both phenomena are characterized by similar $[Ca^{2+}]_0$ dependence, inhibition by Mg^{2+} , and (as

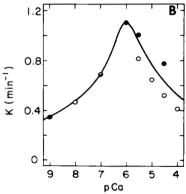


FIG. 5. Unidirectional Ca^{2+} efflux from passively loaded SR vesicles at different $[Ca^{2+}]_0$. SR vesicles were passively loaded with $^{45}CaCl_2$ and efflux was initiated by dilution into various ionized $^{40}Ca^{2+}$ concentrations as described under "Experimental Procedures." A, semilog plot of ^{45}Ca counts/min remaining in SR (i.e. trapped on filters) versus time after initiation of efflux by dilution. Data are shown only for dilution into media containing 10^{-9} M $[Ca^{2+}]_0$ and 10^{-6} M $[Ca^{2+}]_0$. B, the first order rate constants of the fast initial phase of Ca^{2+} efflux were determined from linear regression analyses of data as shown in A and plotted as a function of the pCa of the dilution medium. Open and closed symbols represent data from two separate experiments. Ca^{2+} -dependent efflux was half-maximal at approximately 0.15 and 13 μ M $[Ca^{2+}]_0$.

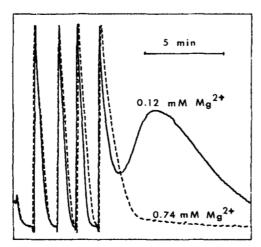


FIG. 6. Inhibition of Ca²⁺-induced Ca²⁺ release by Mg²⁺. SR (40 µg of protein) was added either to standard uptake/release assay medium (1 mM total magnesium, solid line) or to medium containing 4 mM total magnesium (dashed line); i.e. the ionized Mg²⁺ concentrations were 0.12 and 0.74 mM, respectively. Net Ca²⁺ uptake/release was monitored after four successive additions of 40 nmol of CaCl₂ (final volume, 1 ml).

TABLE II

Inhibition of Ca²⁺ efflux from passively loaded SR by Mg²⁺

SR vesicles were passively loaded with $^{45}CaCl_2$ and unidirectional efflux was initiated by dilution as described under "Experimental Procedures." The ionized Mg^{2^+} concentration in the dilution buffer (essentially equivalent to the total magnesium under these conditions) was varied at a constant 1 μ M [Ca $^{2+}$]0. The first order rate constant of the fast initial phase of the Ca $^{2^+}$ efflux varied as a function of ionized Mg^{2^+} . At 0.72 mM Mg^{2^+} , Ca^{2^+} efflux was reduced to the level previously measured at 1 nM [Ca $^{2^+}$]0 and 0.10 mM Mg^{2^+} (Fig. 5).

[Ca ²⁺] ₀	Ionized Mg ²⁺	k	
μМ	mM	min ⁻¹	
1	0.10	1.30	
1	0.72	0.37	

reported in the companion paper, Ref. 25) inhibition by a wide variety of chemical compounds. The Ca^{2+} concentrations which promote Ca^{2+} release are in the physiological range, with half-maximal Ca^{2+} release at submicromolar $[Ca^{2+}]_0$ (Figs. 2 and 5). Elevation of $[Ca^{2+}]_0$ to 5–10 μ M significantly inhibits Ca^{2+} release. The characteristics of this release are thus similar to those previously observed for Ca^{2+} -induced Ca^{2+} release in skinned cardiac fibers (14, 15). The rates of Ca^{2+} release observed in this study are several orders of magnitude lower than Ca^{2+} release $in\ vivo\ (26)$, but the physiological Ca^{2+} release may involve the same Ca^{2+} efflux pathway.

Following ATP-dependent Ca^{2+} loading in the presence of 75 mM P_i , Ca^{2+} release occurs after SR vesicles have accumulated Ca^{2+} to a trigger capacity. This capacity varies from SR preparation to preparation and is not the maximum Ca^{2+} loading capacity since the SR can accumulate Ca^{2+} to at least twice this level in the presence of 10 mM total magnesium or when P_i is reduced to 25 mM (data not shown). The rate and extent of net Ca^{2+} release are dependent upon $[Ca^{2+}]_0$ when the trigger capacity is attained (Table I). Maximum Ca^{2+} release occurs when $[Ca^{2+}]_0$ is 15.–2 μ M (Fig. 2). Ca^{2+} release occurs in the presence of 1 mM ATP and an ATP-regenerating system, *i.e.* under conditions that prevent ATP depletion and Ca^{2+} pump reversal. Ca^{2+} -dependent ATP hydrolysis continues unabated during Ca^{2+} release (Fig 3). Paired experiments measuring net Ca^{2+} release and unidirectional Ca^{2+} efflux

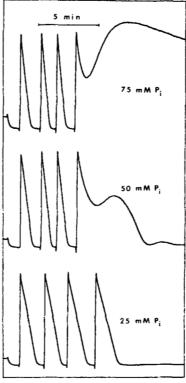


Fig. 7. Dependence of Ca^{2+} -induced Ca^{2+} release on P_i concentration. SR (40 μg of protein) was added either to standard uptake/release assay medium (75 mM P_i) or to media containing 50 or 25 mM P_i , in which the total potassium concentration was maintained at 120 mM by addition of KCl. Net Ca^{2+} uptake/release was monitored after four successive additions of 40 nmol of $CaCl_2$ (final volume, 1 ml).

confirm the Ca^{2+} dependence of Ca^{2+} efflux (Fig. 4) and indicate that inward Ca^{2+} pumping continues during Ca^{2+} release at about 60% of the initial rate prior to release. After 2–3 min of net Ca^{2+} release, Ca^{2+} reuptake by the SR occurs (Fig. 1). The reuptake of released Ca^{2+} indicates that release is not mediated by irreversible damage to the membrane permeability barrier. Net Ca^{2+} release is inhibited by increasing ionized Mg^{2+} from 0.12 to 0.74 mM (Fig. 6) or by decreasing P_i from 75 to 25 mM (Fig. 7). Unidirectional Ca^{2+} efflux from passively loaded vesicles exhibits similar dependence on $[Ca^{2+}]_0$ (Fig. 5) and inhibition by Mg^{2+} (Table II). It occurs in the absence of P_i , indicating that high levels of P_i are not required for Ca^{2+} -induced Ca^{2+} release, per se.

There have been numerous investigations of Ca²⁺-induced Ca²⁺ release using SR vesicles isolated from either skeletal (27–35) or cardiac (24, 36–39) muscle. There is some doubt about the physiological role of Ca²⁺-induced Ca²⁺ release in skeletal muscle (6), but experiments on skinned heart cells provide convincing evidence for a physiologically significant role for Ca²⁺-induced Ca²⁺ release from mammalian cardiac SR (14, 15). In skinned heart cells, increasing [Ca²⁺]₀ results in increased Ca²⁺ release up to an optimum [Ca²⁺]₀ beyond which further increases progressively inhibit Ca²⁺ release (15, 40). These observations are consistent with the decreased contraction of intact heart fibers at high [Ca²⁺]₀ (41). For skinned fibers from adult dog ventricle, the optimum [Ca²⁺]₀ for Ca²⁺ release is 0.6–0.7 μM (14).

In previous reports on Ca^{2+} -induced Ca^{2+} release from cardiac SR vesicles, the optimum $[Ca^{2+}]_0$ varied from 5–30 μ M and there was little or no inhibition of Ca^{2+} release by higher $[Ca^{2+}]_0$ (24, 37–39). The Ca^{2+} release from SR vesicles de-

scribed in this report more closely resembles that observed with skinned heart cells. Maximum net $\operatorname{Ca^{2+}}$ release is observed at $1.5{\text -}2~\mu\text{M}$ [$\operatorname{Ca^{2+}}]_0$ and declines at higher [$\operatorname{Ca^{2+}}]_0$ such that at $5~\mu\text{M}$ [$\operatorname{Ca^{2+}}]_0$ it is only 60% of the maximum (Fig. 2). Similarly, the $\operatorname{Ca^{2+}}$ -dependent component of $\operatorname{Ca^{2+}}$ efflux from passively loaded SR vesicles decreases about 50% as [$\operatorname{Ca^{2+}}]_0$ is increased from 1 to 10 μM (Fig. 5). It should be noted again, however, that the maximum $\operatorname{Ca^{2+}}$ efflux rates observed in this study, like many others previously observed in vitro using SR vesicles, is several orders of magnitude lower than the rate of $\operatorname{Ca^{2+}}$ release which occurs in muscle cells in vivo (26). The basis for reduced efflux in vitro may be the different conditions of the isolated system, including suboptimal assay conditions or the possible loss of a component(s), and is yet to be resolved.

Inhibition of Ca2+-induced Ca2+ release, in vitro, by Mg2+ has previously been described for both skeletal muscle (6, 22, 27-29, 42) and cardiac (37, 38, 43) SR. Nevertheless, the inhibition of Ca2+ release by 0.74 mM ionized Mg2+ might cast doubt upon the physiological relevance of the phenomenon. In skinned heart cells, the threshold [Ca2+]0 for release is elevated as ionized Mg²⁺ is increased, but Ca²⁺ release still occurs at a presumed physiological level of 3.2 mm ionized Mg²⁺ (14, 15, 44). Similarly, in one previous study with cardiac SR vesicles, decreased sensitivity of EGTA-induced Ca2+ efflux to [Ca2+]0 was observed as ionized Mg2+ was increased from 0.1 to 1.0 mm (38). Ca2+ efflux was reduced 5-fold at the original optimum $[Ca^{2+}]_0$ of 3 μM , but at the new optimum [Ca²⁺]₀ of 13 μM, Ca²⁺ efflux in the absence of Ca²⁺ pumping occurred at 80% of the original rate at 0.1 mm Mg²⁺, 3μm $[Ca^{2+}]_0$.

Our experiments indicate that Ca2+-induced Ca2+ efflux does indeed occur when the trigger capacity is attained at 10 μ M [Ca²⁺]₀ following active Ca²⁺ loading in the presence of 0.74 mm ionized Mg2+ (data not shown). In this regard, our data parallel the earlier results using cardiac SR vesicles (38). However, the magnitude of the efflux is insufficient to produce net Ca2+ release and our data (and possibly the earlier results also since net uptake/release data are not presented in Ref. 38) differ from the results obtained with skinned heart cells where net Ca²⁺ release can occur at high ionized Mg²⁺ concentrations (14, 15, 44). The significance of the inhibition of Ca²⁺ release by 0.74 mm ionized Mg²⁺ is difficult to evaluate since the physiological level of ionized Mg2+ has not been unambiguously determined. Although the presumed physiological level is about 3 mm ionized Mg2+ (14, 15, 44), in one recent report (45), the ionized Mg2+ level in heart muscle was determined to be only 0.2-0.6 mm.

In some respects, the Ca²⁺ release described in this report resembles that from skeletal muscle SR described by Katz and co-workers (27, 30, 31). Because of some similarities in the requirements for Ca²⁺ pumping and Ca²⁺ release, especially those for Ca²⁺ and Mg²⁺, they concluded that this Ca²⁺ release is mediated by the Ca²⁺ pump protein (27, 30). The same conclusion based on similar considerations was also reached regarding Ca²⁺-induced Ca²⁺ release from cardiac SR (24, 38).

Our studies do not support this conclusion. The Ca^{2+} and Mg^{2+} requirements for Ca^{2+} pumping and Ca^{2+} release are distinctly different. The K_m for Ca^{2+} pumping by our cardiac SR preparation is 2.6 μ M [Ca^{2+}]₀ (data not shown) while net Ca^{2+} release is half-maximal at 0.8 μ M [Ca^{2+}]₀ (Fig. 2) and Ca^{2+} -dependent Ca^{2+} efflux after passive loading is half-maximal at 0.1–0.15 μ M [Ca^{2+}]₀ (Fig. 5B). Moreover, at 5–10 μ M [Ca^{2+}]₀ where Ca^{2+} pumping is maximal, both net Ca^{2+} release and Ca^{2+} -dependent efflux after passive loading are reduced

approximately 50% from maximum values. Also, elevation of ionized Mg²⁺ from 0.12 to 0.74 mM inhibits Ca²⁺ release (Fig. 6, Table II) but has little effect on Ca²⁺ pumping (Fig. 6). Furthermore, a variety of chemicals completely block Ca²⁺-induced Ca²⁺ release at concentrations which have little effect on the turnover of the Ca²⁺-dependent ATPase (25). We conclude from these considerations that Ca²⁺-induced Ca²⁺ efflux occurs through specific channel(s) distinct from the Ca²⁺ pump protein.³

Palade et al. (46) described a spontaneous Ca2+ release from skeletal muscle SR which differs from the Ca2+-induced Ca2+ release described by Katz et al. (27, 30, 31) but which also shares some characteristics with the Ca2+-induced Ca2+ release from heart SR described here. Both types of release occur in the presence of 1 mm ATP and a regenerating system and are followed by reuptake of the released Ca2+. Both types of release are reduced either by increasing Mg2+ or by decreasing P_i (47). Also, during both types of release, Ca²⁺-dependent ATPase continues unabated and inward Ca2+ pumping continues at a reduced rate. Since similar results were previously observed for Ca2+-induced Ca2+ release from both cardiac and skeltal muscle (24, 27, 30, 31, 36, 38), these features may be common to a variety of modes of Ca2+ release in vitro. However, the spontaneous Ca2+ release from skeletal muscle SR differs fundamentally from the Ca2+-induced Ca2+ release from cardiac SR in at least two important respects, the dependence upon [Ca2+]0 (this report and Ref. 46) and the inhibition of Ca2+ release by various chemical compounds (25, 48). These results indicate diversity, either in the Ca²⁺ channels themselves or in the modulation of the channels.

This report provides the most detailed study to date of Ca²⁺-induced Ca²⁺ release from isolated cardiac SR vesicles. In contrast to previous results (24, 37–39, 43), Ca²⁺ efflux was elicited by relatively low, *i.e.* physiological Ca²⁺ concentrations and was significantly inhibited by higher [Ca²⁺]₀. Our results are similar to those achieved with skinned cardiac fibers (14, 15). Also, for the first time, Ca²⁺-induced Ca²⁺ efflux was demonstrated for both actively and passively loaded cardiac SR vesicles. Finally, in contrast to a previous conclusion (24, 38), the characteristics of the phenomenon indicate that Ca²⁺ efflux occurs via channels distinct from the Ca²⁺ pump protein.

Acknowledgment—We wish to thank Arthur Colsky for participating in the preliminary experiments on calcium release from cardiac SR

REFERENCES

- Chamberlain, B. K., Volpe, P., and Fleischer, S. (1983) Fed. Proc. 42, 2215
- Tada, M., Yamamoto, T., and Tonomura, Y. (1978) Physiol. Rev. 58, 1-79
- Møller, J. V., Andersen, J. P., and le Maire, M. (1982) Mol. Cell. Biochem. 42, 83-107
- Tada, M., Yamada, M., Kadoma, M., Inui, M., and Ohmori, F. (1982) Mol. Cell. Biochem. 46, 73-95
- 5. Ikemoto, N. (1982) Annu. Rev. Physiol. 44, 297-317
- 6. Endo, M. (1977) Physiol. Rev. 57, 71-108
- 7. Winegrad, S. (1982) Annu. Rev. Physiol. 44, 451-462
- 8. Reuter, H. (1979) Annu. Rev. Physiol. 41, 413-424
- 9. McDonald, T. F. (1982) Annu. Rev. Physiol. 44, 425-434
- Caroni, P., and Carafoli, E. (1980) Nature (Lond.) 283, 765-767
 Trumble, W. R., Sutko, J. L., and Reeves, J. P. (1980) Life Sci.
- 11. Trumble, W. R., Sutko, J. L., and Reeves, J. P. (1980) Life Sci. 27, 207-214

³ In further support of this conclusion, preliminary studies indicate that it is possible to separate cardiac SR vesicles containing the Ca²⁺ gated Ca²⁺ channels from vesicles which do not have the channels but which do contain the Ca²⁺ pump protein (B. K. Chamberlain, unpublished data).

- 12. Caroni, P., and Carafoli, E. (1981) J. Biol. Chem. 256, 3263-
- 13. Langer, G. A.(1982) Annu. Rev. Physiol. 44, 435-449
- 14. Fabiato, A. (1982) Fed. Proc. 41, 2238-2244
- 15. Fabiato, A.(1983) Am. J. Physiol. 245, C1-C14
- 16. Chamberlain, B. K., Levitsky, D. O., and Fleischer, S. (1983) J. Biol. Chem. 258, 6602-6609
- 17. Scarpa, A. (1979) Methods Enzymol. 56, 301-338
- 18. Fabiato, A., and Fabiato, F. (1979) J. Physiol. (Paris) 75, 463-
- 19. Scarpa, A., Brinley, F. J., Jr., and Dubyak, G. (1978) Biochemistry **17**, 1378–1386
- 20. Durham, A. C. H., and Walton, J. M. (1983) Cell Calcium 4, 47-
- 21. Warren, G. B., Toon, B. A., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 622-
- 22. Kim, D. H., Ohnishi, S. T., and Ikemoto, N. (1983) J. Biol. Chem. **258**, 9662-9668
- 23. Hasselbach, W. (1978) Biochim. Biophys. Acta 515, 23-53
- 24. Kirchberger, M. A., and Wong, D. (1978) J. Biol. Chem. 253, 6941-6945
- 25. Chamberlain, B. K., Volpe, P., and Fleischer, S. (1984) J. Biol. Chem. 259, 7547-7553
- 26. Meisner, G. (1983) Mol. Cell. Biochem. 55, 65-82
- 27. Katz, A. M., Repke, D. I., Fudyma, G., and Shigekawa, M. (1977) J. Biol. Chem. 252, 4210-4214
- 28. Ohnishi, S. T. (1979) J. Biochem. 86, 1147-1150
- 29. Nagasaki, K., and Kasai, M. (1981) J. Biochem. 90, 749-755
- 30. Katz, A. M., Louis, C. F., Repke, D. I., Fudyma, G., Nash-Adler, P. A., Kupsaw, R., and Shigekawa, M. (1980) Biochim. Biophys. Acta 596, 94-107

- 31. Katz, A. M., Repke, D. I., Dunnett, J., and Hasselbach, W. (1977) J. Biol. Chem. 252, 1950-1956
- 32. Miyamoto, H., and Racker, E. (1981) FEBS Lett. 133, 235-238
- 33. Miyamoto, H., and Racker, E. (1982) J. Membr. Biol. 66, 193-
- 34. Yamamoto, N., and Kasai, M. (1982) J. Biochem. 92, 485-496
- 35. Morii, H., and Tonomura, Y. (1983) J. Biochem. **93**, 1271–1285 36. Jones, L. R., and Besch, H. R., Jr. (1978) Circulation **57/58** (Suppl. II), 72
- 37. Dunnet, J., and Nayler, W. G. (1978) J. Mol. Cell. Cardiol. 10, 487-498
- 38. Kirchberger, M. A., and Wong, D. (1980) Adv. Myocardiol. 1, 179-187
- 39. Dunnet, J., and Nayler, W. G. (1979) Arch. Biochem. Biophys. 198, 434-438
- Fabiato, A. (1981) J. Gen. Physiol. 78, 457–497
- 41. Aronson, R. S., and Capasso, J. M. (1980) J. Mol. Cell. Cardiol. 12, 1305-1309
- 42. Ford, L. E., and Podolsky, R. J. (1972) J. Physiol. (Lond.) 223, 21 - 33
- 43. Dunnet, J., and Nayler, W. G. (1977) J. Physiol. (Lond.) 266, 79P-80P
- 44. Fabiato, A., and Fabiato, F. (1975) J. Physiol. (Lond.) 249, 497-517
- 45. Gupta, P., Gupta, R. K., Yushok, W. D., and Rose, Z. B. (1983) Fed. Proc. 42, 2215
- 46. Palade, P., Mitchell, R. D., and Fleischer, S. (1983) J. Biol. Chem. 258, 8098-8107
- 47. Mitchell, R. D., Palade, P., and Fleischer, S. (1984) J. Biol. Chem. **259**, 1073–1081
- 48. Volpe, P., Palade, P., Costello, B., Mitchell, R. D., and Fleischer, S. (1983) J. Biol. Chem. 258, 12434-12442