Journal of Differential Equations 184, 475-525 (2002)
doi:10.1006/jdeq.2001.4150

TheTotal Variation Flow in RY

G. Bellettini

Dipartimento di Matematica, Universita di Roma *““Tor Vergata” via, della Ricerca Scientifica,
00133 Rome, Italy
E-mail: belletti@mat.uniroma2.it

V. Caselles

Departament de Tecnologia, Universitat Pompeu-Fabra, Barcelona, Spain
E-mail: vicent.caselles@tecn.upf.es

and

M. Novaga1

Dipartimento di Matematica, Universita di Pisa, via Buonarroti 2, 56127 Pisa, Italy
E-mail : novaga@dm.unipi.it

Received June 14, 2001

In this paper, we study the minimizing total variation flow u, = div(Du/|Dul) in RY
for initial data g in LIIOC(RN ), proving an existence and uniqueness result. Then we
characterize all bounded sets Q of finite perimeter in R?> which evolve without
distortion of the boundary. In that case, uy = yq evolves as u(t, x) = (1 — Aat) 70,
where yq is the characteristic function of Q, 1q = P(Q)/|Q|, and P(Q) denotes the
perimeter of Q. We give examples of such sets. The solutions are such that v :== gy
solves the eigenvalue problem —div ‘g—:ﬁ‘ = v. We construct other explicit solutions
of this problem. As an application, we construct explicit solutions of the denoising
problem in image processing. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

In this paper, we are interested in the equation
0 . (D .
a—’: - d1V(|D—Z|) in 10, co[xRY, (1)

'To whom correspondence should be addressed.

475

0022-0396/02 $35.00
© 2002 Elsevier Science (USA)
All rights reserved.



476 BELLETTINI, CASELLES, AND NOVAGA

coupled with the initial condition
u(0, x) = uo(x), xeRY 2

for a given ug € Lioo(RY). This PDE appears (in a bounded domain D) in the
steepest descent method for minimizing the total variation, a method
introduced by Rudin et al. [33] in the context of image denoising and
reconstruction. When dealing with the deconvolution or reconstruction
problem one minimizes the total variation functional

/D IDul 3)

with some constraints which model the process of image acquisition,
including blur and noise. The constraint can be written as z = K*u + n,
where z is the observed image, K is a convolution operator whose kernel
represents the point spread function of the optical system, # is the noise and
u is the ideal image, previous to distortion. The denoising problem
corresponds to the case K = I, and the constraint becomes z = u + n. Then
one minimizes (3) under one of the above constraints [33]. Numerical
experiments show that the model is adapted to restore the discontinuities of
the image [18, 25, 33, 35, 36]. Indeed, the underlying functional model is the
space of BV functions, i.e., functions of bounded variation, which admit a
discontinuity set which is countably rectifiable [2, 26, 38].

To solve (3) (with the specified constraint) one formally computes the Euler—
Lagrange equation and solves it with Neumann boundary conditions, which
amounts to a reflection of the image across the boundary of D. Many
numerical methods have been proposed to solve this equation in practice, see
for instance [18,25, 33,35, 36] (see also [31] for an interesting analysis of the
features of most numerical methods explaining, in particular, the staircasing
effect). This leads to an iterative process which, in some sense, can be
understood as a gradient descent. Thus, to understand how total variation is
minimized by functional (3) we shall forget about the constraint and study the
gradient descent flow of (3). In a bounded domain, this leads to the study of (1)
under Neumann boundary conditions and this study was done in [3] where the
authors proved existence and uniqueness of solutions, and constructed some
particular explicit solutions of the equation. This study was completed in [5]
where the authors proved that the solution reaches its asymptotic state in finite
time and studied its extinction profile, given in terms of the eigenvalue problem

—div <g—l;|> = . 4)

A similar study was done in [5] for Dirichlet boundary conditions. Still, we
need a better understanding of the behavior of (1) when minimizing the total
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variation and, for that, we need to have at our disposal explicit solutions
which display this behavior. To avoid technicalities due to the presence of
the boundary, we will study (1) in the whole space and we will construct a
family of explicit solutions corresponding to the evolution of sets, i.e.,
solutions whose initial condition is given by the characteristic function yq of
a set Q. In particular, in two space dimensions, we are interested in
understanding for which bounded sets Q the solution of (1) and (2) with
up = yq decreases its height, without distortion of the boundary of Q.

In this respect, a useful remark is that functional (3) can be regarded, up
to a constant and on a bounded domain, as the anisotropic perimeter [12] of
the set {(x, y) € RV x R: y<u(x)}, corresponding to the anisotropy given by
the cylindrical norm ¢(z, () == max{||z|, ||}, for (z,{) € RY x R. Therefore,
Eq. (1) is similar (even if not exactly the same) to the equation defining the
anisotropic mean curvature flow corresponding to ¢. Interestingly enough,
it turns out that, when N = 2, the problem of determining those bounded
connected sets Q whose characteristic function evolve by decreasing its
height is close to the problem of determining which planar horizontal facets
of a given solid subset of R* x R do not break or bend under the ¢-
anisotropic mean curvature flow. This problem has been considered in
[10, 11] and the techniques developed there can be adapted, to some extent,
to the present situation (see in particular Theorem 4).

Let us explain the plan of the paper. In Section 2, we recall some basic facts
about BV functions and the integration by parts formula. In Section 3, we
study the well-posedness of (1) and (2) for initial data uo in L2(R"). In Section
4, we give the definition of entropy solutions of (1) and (2) for initial data u in
Llloc([F\RN ), and we state the existence and uniqueness theorem (see Theorem 3).
Sections 5 and 6 are devoted to prove the uniqueness and the existence part of
Theorem 3, respectively. In Section 7, we prove the regularity in time of the
entropy solution when the initial condition is bounded above or below by a
constant. In Section 8, we characterize all hounded connected subsets Q of R? for
which the solution of (1) and (2) with uy = yq does not deform its boundary
but only decreases its height. In Theorem 4, we prove that if C = R? is a
bounded set of finite perimeter which is connected, then the solution u of (1)
and (2) with u(0, x) = y(x) is given by

u(t, x) = (1 = Zet) " (), Ac = %

(where P(C) stands for the perimeter of C and |C| for the Lebesgue measure
of C) if and only C is convex, 0C is of class C'"! and

ess sup kac(p)<ic, ®)
pedC
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where kpc denotes the (almost everywhere defined) curvature of 6C. The
characterization for general nonconnected bounded sets of finite perimeter Q
is the argument of Section 9, see Theorems 6 and 7. In particular, beside the
conditions of Theorem 4 on each connected component C; of Q, i=
1,...,m, a new property must be added in the list of necessary and sufficient
conditions, which reads as follows. Let 0<ki<m and let {ij,... i} C
{1,...,m} be any k-uple of indices; if we denote by E;, a solution of the
variational problem

k m
min{P(E): Uc cecr | c,-,},
j=1

j= j=k+1

~~~~~ ik

then
P(E;. ;)= Y P(Cy). (6)

Notice that (6) implies, in particular, a condition between the mutual
distances between all sets C;. More generally, we construct solutions of (4) of
the form )", g Xc, where Ac, = P‘(Cci"'), C; are bounded open convex sets of
class C"! satisfying the curvature bound (5) and the variational property
described in (6).

The previous results allow us to explicitly compute the minimum of the
denoising problem

1
min {/ |Du| + — / (u— _f)2 dx}, (7)
uel2(R*)ABV(R?) | JR2 22 Jr2

where >0, /=", bl Xc,» for b; e R and C; sets of the type described
above. Indeed, in Section 10 we prove that if the function v == """, A¢, z¢,
solves (4) then u = > | a;ic,xc, solves (7) where a; = sign(b;)(|b;| — N A
converse statement holds if b; —a; = A, or b; —a; = —A, foralli=1,...,m.
Note that a; is given in terms of a soft thresholding of b; with threshold A.
This is in coincidence with the soft thresholding rule applied to the wavelet
coefficients of a noisy function (the uncorrupted function being in some
Besov space) [22-24, 37]. Finally, in Section 11, we illustrate our results, in
particular the role of condition (6), with some explicit examples.

2. SOME NOTATION

Let O be an open subset of RY. A function u € L'(Q) whose gradient Du in
the sense of distributions is a (vector valued) Radon measure with finite total
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variation in Q is called a function of bounded variation. The class of such
functions will be denoted by BV(Q). The total variation of Du on Q turns out
to be

sup{/ udivzdx: ze CP(O;R"), |lzll (o) = ess sup |z(x)| < 1} )
0] xeQ

(where for a vector v = (vy,...,vy) € RY we set [v] : va , v?) and will be
denoted by |Du|(Q) or by fQ |Du| It turns out that the map u — |[Du|(Q) is
L} .(0)-lower semicontinuous. BV(Q) is a Banach space when endowed with
the norm [, |ul dx + |Dul(Q). We recall that BV(RY) < L¥/W-D(RY). The
total VdI’lcltIOn of u on a Borel set B < Q is defined as inf{|Du|(4): A open,
BcAc Q5.

A measurable set E = R" is said to be of finite perimeter in Q if (8) is finite
when u is substituted with the characteristic function y, of E. The perimeter
of E in Q is defined as P(E, Q) .= |Dy;|(Q). We shall use the notation P(F) :
= P(E,R"). For sets of finite perimeter £ one can define the essential
boundary 6*E, which is countably (N — 1) rectifiable with finite #V~!
measure, and compute the outer unit normal v£(x) at #V~! almost all points
x of 6*E, where #"~! is the (N — 1)-dimensional Hausdorff measure.
Moreover, |Dy;| coincides with the restriction of #V~! to 6*E.

Each set £ of finite perimeter will be identified with the representative (in
its Lebesgue class) given by the set of all points x € RV such that lim, o+
lE;B;(X)‘ = 1. Here B,(x) denotes the open ball of radius p centered at x, | - |
stands for the Lebesgue measure, and wy is the Lebesgue measure of the
unit ball of RY. It is clear that if 6E is Lipschitz continuous, then the precise
representative we are choosing is an open set.

We now recall [1] some basic results about connected components of sets
of finite perimeter. Let £ = R" be a set with finite perimeter. We say that E is
decomposable if there exists a partition (4,B) of E such that P(E) =
P(4) + P(B) and both |4| and |B| are strictly positive. We say that E is
indecomposable if it is not decomposable; notice that the properties of being
decomposable or indecomposable are invariant modulo Lebesgue null sets.
It turns out that, if £ is a set with finite perimeter in R", there exists a unique
at most countable family of pairwise disjoint (modulo |- |) indecomposable
sets {E;};; such that |Ej]>0 and P(E) =), P(E;). Moreover AN
(E\U.s Ei) =0 and the E;’s are maximal indecomposable sets, i.c., any
indecomposable set F' < E is contained (modulo | - |) in some E;. We call the
sets E; the connected components of E.

We denote by BVi,.(Q) the space of functions w € L, (Q) such that wo €
BV(Q) for all ¢ € C;°(Q). For results and informations on functions of
bounded variation we refer to [2, 26].
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If wis a (possibly vector valued) Radon measure and f is a Borel function,
the integration of f with respect to u will be denoted by [ fdu. When p is the
Lebesgue measure, the symbol dx will be often omitted.

By L! (0, TT; BV(RY)) we denote the space of functions w:[0, 7] —
BV(RY) such that w e L!(]0, T[xR"), the maps t € [0, T] > [iv ¢ dDw(?) are
measurable for every ¢ € CH(R";R") and [j IDw(®)[(R")dt<oo. By L1(]0,
T[; BVioo(RY)) we denote the space of functions w : [0, T] = BVo(R") such
that we e L!(10, T[; BV(R")) for all ¢ e C°(RY).

Following [8], let

X(RY) = {ze L°RY;RY): div z e L*(RY)}.

If ze X>(RY) and w e L2(R") n BV(R") we define the functional (z, Dw) :
Cr(RY) > R by the formula

L(z,Dw), p) = — /IRN we div zdx — /RN wz- Vo dx.
Then (z, Dw) is a Radon measure in R",
/R (z,Dw) = /RNZ-dex Yw e L2(RY) n wHH(RY)
and

‘ / (z,Dw)‘< / Iz, Dw)| < |zl / IDw| VB Borel set cRY. (9)
B B B

Moreover, we have the following integration by parts formula [8], for z €
X>(RY) and w e LA(RY) n BV(RY):

/ wdivzdx+/ (z, Dw) = 0. (10)
RY RY

We denote by 0(z, Dw) € LIOEW‘(RN ) the density of (z, Dw) with respect to |Dw],
that is

(z, DW)(B) = / 0(z, Dw) d|Dw| for any Borel set B RY.  (11)
B

In particular, if Q is bounded and has finite perimeter in R", from (10)
and (11) it follows that

/ divzdx = / (z, —Dyq) = / 0(z, —Dyq) d A" (12)
Q RY o*Q

>
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Notice also that if z,z, eXz([R{N ) and z; = z; almost everywhere on Q,
then 0(z;, —Dyg)(x) = 0(z2, —Dyg)(x) for #V~'-almost every x € 5*Q.
We recall the following result proved in [8].

THEOREM 1. Let Q = RY be a bounded open set with Lipschitz
boundary. Let ueBV(Q) and zeL®QRY) with divz e IN(Q).
Then there exists a function [z-v*] e L™(@Q) such that ||[z-v*ll~e0)
<zl @y and

/udivzdx+/ 0(Z,Du)d|Du|:/ [z vV udAaVN L. (13)
Q Q oQ

In particular, if Q is a bounded open set with Lipschitz boundary, then
(12) has a meaning also if z is defined only on Q and not on the whole of R",
precisely when z € L*(Q; RY) with divz € L¥(Q). In this case we mean that
0(z, —Dyq) coincides with [z - v¥].

Remark 1. Let Q = R? be a bounded Lipschitz open set, and let zjy, €
L®(Q; R?) with divzin € L2 (Q), and zoy € L2(R?\Q; R?) with divzoy €

loc

L} (R*\Q). Assume that
0(Zinn» —Dx0)(x) = —0(zou —Dygag))  for ' —ae x e oQ.

Then if we define z =z,, on Q and z: =z, on Rz\ﬁ, we have ze
L®(R* R?) and divz e L2 (R?).

loc

3. INITIAL CONDITIONS IN L2(RY)

Throughout the paper, given a (possibly vector valued) function f
depending on space and time, we usually write f(¢) to mean the function

f(ta )

DErFINITION 1. A function u e C([0, T];L2(R")) is called a strong
solution of (1) if

ue W20, T; L2(RY)) A LL (10, T[; BV(RY))

and there exists z € L*(]0, T[xRY; RY) with |z]|,, <1 such that

u,=divz  in 2'(]0, T[xRY)
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and

[, w0 = = [ o.0m~ [ 1w

Ywe L2(RY) n BV(RY), ae. 1[0, T]. (14)
The aim of this section is to prove the following result.

THEOREM 2. Let uy € LA(RY). Then there exists a unique strong solution u
of (1), (2) in [0, T] x RY for every T > 0. Moreover, if u and v are the strong
solutions of (1) corresponding to the initial conditions ug, vy € L*(RY), then

I(u(t) = @) Nl <Iluo — v0)*[l,  for any t>0. (15)

Proof. Let us introduce the following multivalued operator .o in L*(R"):
a pair of functions (u, v) belongs to the graph of .o/ if and only if

ue L*(RY) n BV(RY), ve LX(RY), (16)

there exists z € Xo(RY) with ||z||, <1, such that v = —divz  (17)

and
/ (w—up< / z-Vw—/ \Du|  Ywe LARY) n WwH(RY).
RN [RN RN

Let also ¥ : L2(R") =] — 00, +00] be the functional defined by

) = { Jav 1Dul if we LARY) A BV(RY),

+00 if u e L2(RY)\BV(RY). (18)

Since W is convex and lower semicontinuous in L*(R"), its subdifferential 6%
is a maximal monotone operator in L2(RY).

We divide the proof of the theorem into three steps.

Step 1. The following assertions are equivalent:

(@) (u,v) € o,
(b) (16) and (17) hold,

and
/ (w—up< / (z, Dw) — / IDul  YweL*(RY) nBV(RY); (19)
IRN RN RN
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(c) (16) and (17) hold, and (19) holds with the equality instead of the
inequality;
(d) (16) and (17) hold, and

/R (Du) = /R 1Dul. (20)

It is clear that (c) implies (b), and (b) implies (a), while (d) follows from
(b) with the choice w = u using (9). In order to prove that (a) implies (b) it is
enough to use Lemmas 5.2 and 1.8 of [8]. To obtain (c¢) from (d) it suffices to
multiply both terms of the equation v = —divz by w — u, for w e L2(R") n
BV(R") and to integrate by parts using (10).

Step 2. The operator ./ is maximal monotone in L*(R") with dense
domain. The proof of the monotonicity of .o7 follows from (c) of Step 1 and
(10). Note also that, as a consequence of Step I, one can prove that .o7 is
closed. The other assertions can be proved as in [3,4]. Indeed, if f €
L2(RY) A L*(RY) has compact support, using the idea of approximating .«
with the p-Laplace operator (see [3,4]), one can prove that, if >0, there
exists a solution u of

U+ icdu= f. Q1)

The closedness of .7 implies that (21) can be solved for any f e LX(R"). It
follows that the range of 7 + .« is the whole of L2(R"), and therefore .o/ is
maximal monotone. The density of the domain of .o/ can be proved as in [3].

Step 3. We also have .« = 0¥. The proof is similar to the proof of Lemma
1 in [4] and we omit the details.

As a consequence, the semigroup generated by ./ coincides with the
semigroup generated by 0¥ and therefore (see [16]) u(z, x) = e " up(x) is a
strong solution of

u;, + L us0,

ie., ue W0, T[; LA(RY)) and —u,(r) € <Zu(f) for almost all ¢ € 0, T [l6,

loc
Theorem 3.1]. Then, according to the equivalence proved in Step 1, we have that

L, w0 == [ co.m= [ iouo

22
Yw e L*(RY) n BV(RY) =

for almost all ¢ €]0, T[. Now, choosingw =u — ¢, ¢ € CSC(IRN), we see that
u, (1) = div z(¢) in Z'(R") for almost every ¢ €]0, T[. We deduce that u, = divz
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in 2'(10, T[xR"). We have proved that u is a strong solution of (1) in the
sense of Definition 1.

The contractivity estimate (15) of Theorem 2 follows as in [3,4]. This
concludes the proof of the Theorem. 1

Given a function g € LA(RY) n LN(RY), we define

Il glls = sup{ ‘ /R | g0u) dx|:u e L*(RY) n BV(RY), /R L IDul<1 }

Part (b) of the next lemma gives a characterization of .«/0 which will be
useful in Section 9 to find vector fields whose divergence is assigned. This
part of the lemma was proved in [30] in the context of the analysis of the
Rudin—Osher—Fatemi model for image denoising; for the sake of complete-
ness, we shall include its proof.

LemMA 1. Let f e L*(RY) n LN(RY) and ) > 0. The following assertions
hold:

(a) The function u is the solution of

min D(w), Dw) = / |Dw|—|— / (w— f)Yde (23)

weLl2(RM)nBV(RY)

if and only if there exists z € Xo(RY) satisfying (20) with |z||,, <1 and
—Adivz=f—u.

(b) The function u = 0 is the solution of (23) if and only if || f |, < A.
(©) IfN =2, /0 = {f e *(R*):||fll«<1}.

Proof. (a) Thanks to the strict convexity of D, u is the solution of (23) if
and only if 0e€oD(u)=0¥Y(u)+ u— )= L wu)+ w— f), where ¥ is
defined in (18) and the last equality follows from Step 3 in the proof of
Theorem 2. This is equivalent to —Adiv Du‘) = f —u, i.e., there exists z €
X>(RY) satisfying (20) with |z]|. <1 and —Adivz = f —u (recall the
definition of .o/ in the proof of Theorem 2).

(b) The function u = 0 is the solution of (23) if and only if

1
Lowdes; [ prass [ fa

(24)
Vo e LX(RY) n BV(RY).
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Replacing v by ev (where ¢ > 0), expanding the L>-norm, dividing by &> 0,
and letting ¢ — 0+ we have

‘ / f(x)u(x)dx‘gz / IDv|  YveL*(RY) n BV(RY). (25)
RN RN

Since (25) implies (24), we have that (24) and (25) are equivalent. The
assertion follows by observing that (25) is equivalent to || f]|, < 4.

(c) Let N = 2. We have .70 = {v € L*A(R*): 3z € Xo(R?), ||zl <1, —divz =
v}. On the other hand, from (a) and (b) it follows that || f]|,. <1 if and only if
there exists z € Xo(R?) with ||z||,, <1 and such that f = —divz Then the
assertion follows. 1

Let us give a heuristic explanation of what the vector field =z
represents. Condition (20) essentially means that z has unit norm and is
orthogonal to the level sets of u. In some sense, z is invariant under local
contrast changes. To be more precise, we observe thatif u = Y 7 | ¢; 1, Where
B; are sets of finite perimeter such that #V~'((B; U 0*B,) N (B; U *B))) = 0
fori#j, ¢; e R, and

D
“div (2L = re2RY), (26)
|Du
. Dv
then also —div (@) = f for any v=73" diyz where d;eR and

sign(d;) = sign(c;). Indeed, there is a vector field z € L°(R":R") such that
llzllo <1, —divz = f and (20) holds. Then one can check that |Dy,|=
sign(c;)(z, Dyp,) as measures in R"Y and, as a consequence (z, Dv) = |Dv| as
measures in R,

Let us also observe that the solutions of (26) are not unique. Indeed,
if ueL2(RY) nBV(RY) is a solution of (26) and g € C'(R) with ¢'(r) >0
for all r e R, then w = g(u) is also a solution of (26). In other words, a
global contrast change of u produces a new solution of (26). In an
informal way, the previous remark can be rephrased by saying that also
local contrast changes of a given solution of (26) produce new solutions of
it. To express this nonuniqueness in a more general way we suppose
that (uy, v), (u2, v) € ., i.e., there are vector fields z; € Xo(RY) with ||z;]|, <1,
such that

—div zZi =0, / (Zi,DM,') = / |Dui|, = 1,2
R’ R’
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Then
—/ (diVZ] — diVZz)(ul — uz)dx = / (21 —22,Du1 —Duz)
RN RN

= / [Duy| — (22, Duy) + / |Dus| — (z1, Duy).
RN RN

/ |Du1|=/ (z2,Duy) and / |Du2|=/v(21,Du2)-
RV RY RY R

In other words, z; is in some sense a unit vector field of normals to the level
sets of u; and a similar thing can be said of z, with respect to u;. Any two
solutions of (26) should be related in this way.

The following estimate, which is a consequence of the homogeneity of .o/
[14] will be useful to prove the regularity in time of the solution when the
initial condition is in LIIOC(IREN) (see Lemma 4 of Section 7).

Hence

PROPOSITION 1. Let ug € LA(RY), ug >0, and let u be the strong solution of
(1) and (2). Then

u(f)

W(H)<—=> for a.e. t>0.
Moreover, if uy<0, then u' (t);@ for almost every t > 0.

Proof. We consider the case uy >0, the other case being similar. First, let
us prove that for any A >0, and any ¢ > 0, we have that

27ty = e (2 ug). (27)

By Crandall-Liggett’s exponential formula e *”(up) = lim,_ (I + Lo/)™"
x (up) in LA(RY) [21], it is enough to prove that for all x> 0,

(I + pt) 'O gy = 271U + Auet)(uo). (28)

We have v, = (I + /)" (A 'ug) if and only if (vﬂ,A o= %Y e of, which is
equivalent to the existence of z, € X>(RY) such that

-1
. A U)— D
—div z, == #

u

~/RN (Z,uyDU,u) = /R{N |DU,u|~
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Then, we have
Uy — Avy
A

| Gudiny = [ 1ptn,),

which is equivalent to say that (J,vﬂ,uo - A0y > e .o/, that is, v, = 2~ '(I +
Aue/) " (up), and (28) holds. i

Fix ¢ > 0 a differentiability point of u. For A >0, let 4 be such that it =
t + h. Now, applying (27), we obtain

—divz, =

>

ult + h) — u(t) = u(At) — u(?) = (1 — A~ Yu(it) + 2" (i) — u(d)

ult + h) + e (2" ug) — u(o).

_h
Ct+h
Now, since 4~ 'ug <ug, by Theorem 2 we get e “ (4~ 'up) <u(r). Hence

u(t+h) —u(®) < t—&—Lh u(t+ h),

and the result follows. 1

4. THE NOTION OF ENTROPY SOLUTION

Let
P = {peW'*R): p'>0, supp(p’) compact}.

DEFINITION 2. A function u e C([0, T ];Llloc([REN )) is called an entropy
solution of (1), (2) if u(¢) converges to uy in L}OC(RN) ast — 0T,

pw) € 1,0, T BVine(RY))  Vpe 2,
and there exists z € L*(]0, T[xRY; RY) with |z]|,, <1 such that

u,=divz  in 2'(0, T[xRY) (29)

_/OT /R j(u—z)n,+/0T /R nd|D(p(u — 1))|

T
+ /0 /RNZ~V17p(u—l)<O (30)

and
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for all / e R, all € C®(]0, T[xRY), with >0, 5(t, x) = $()WY(x), being ¢ €
Cr (0, T, ¥ € CX(RY), and all p e 2, where j(r) = [; p(s)ds.

The notion of entropy solution for scalar conservation laws was
introduced by Kruzhkov [29] in order to prove their uniqueness and the
L' contractivity estimate using the doubling variables technique. Carrillo
[17] was the first to apply Kruzhkov’s method to parabolic equations, and
more recently, Benilan et al. [13] introduced the notion of entropy solution
for elliptic equations in divergence form in order to prove uniqueness when
the right-hand side is a function in L'. The case of parabolic equations was
considered by Andreu et al. [7]. In all these cases, the elliptic operator was in
divergence form and it excluded the case of operators derived from
functionals with linear growth in Du. The case of the total variation with
Neumann and Dirichlet boundary conditions was considered in [3,4],
respectively, and the general case was considered in [6].

Inequality (30) is a weak way to impose equality (14); indeed if we
integrate by parts, we formally substitute (29), using ||z||,, <1 and the fact
that » is nonnegative, we get

L= npte=n=— [ == [ nd(pw— )
>~ [ == [ ndieDipu— .

which, after integration in time, shows that the opposite inequality in (30) is
satisfied.

Remark 2. 1f uy e L*(RY), then the strong solution of (1) and (2)
coincides with the entropy solution, see Lemma 2 in Section 6.

The aim of Sections 5 and 6 is to prove the following result.

THEOREM 3. Letug € Li?C(RN ). Then there exists a unique entropy solution
of (1) and (2) in [0, T] x RY for all T > 0. Moreover, if ugy, uoy eLllOC(IRN) are
such that uy, — ugy in L}OC(RN ) and u,u; denote the corresponding entropy

solutions, then uy — u in C([0, T];Llloc(IRN)) as k — +oo.

5. UNIQUENESS IN !

loc

®"Y)

Let o> N, Ti(r) := max(min(r, k), —k), T,/ (r) = max(Z;(r),0) (k=0) and
let j, be the primitive of och““(r)“*1 vanishing at r = 0. If N = 1, we take
@>2, so that j, e WI°(R).
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PROPOSITION 2.  Let ugy,uy € L}OC(RN). Let u,u be two entropy solutions of

(1) with initial conditions u, uy, respectively. Then
[, it~y [ =i ve>o G1)
R RY

Proof. Let T'>0 and Qr =10, T[xR". Write j = j,, /*(r) == j(—r), p(r) :
= ol ()", p*r) = j¥(r) = —p(—r). Let z,Z € L(Or; RY) with |lzl| <1,
lIZll, <1 and such that, if »,7eRY, with ||#/|<1, |[Fl|<] and [}, e R,
then

[ g [ nat-

T /OT /R (z—n-Vn p(u—zl)+/oT /LRA,wwp(u—llKo, (32)

and

- /0 ' /R - b+ /0 ' /R N dID(p*— 1)

+ /OT /R‘N(Z—F)-Vnp*(ﬁ—lz)—i—/or /RNf-Wp*(ﬁ—lzKO, (33)

for all n e C*(Qr), with =0, n(t, x) = Pp(t)W(x), being ¢ € C°(10, T]), ¥ €
C(RY).

We choose two different pairs of variables (z, x), (s, y) and consider u, z as
functions of (¢,x) and %, Z as functions of (s,y). Let 0<¢ e C;°(10, TY),
0y e CS“([RN ), (p,) a standard sequence of mollifiers in RY and (5,) a
sequence of mollifiers in R. Define

~ t+s X+
N1, X, 8, ¥) = Pult — $)p,(x — ¥ (T)lﬁ( 2 y) >0.
Note that for n sufficiently large,

(ts x)'—’ﬂn(t, X, S, y) € C(f)x(]oy T[XRN) V(Ss y) € QTs

(s, ¥) 1, x, 5, ¥) € CX(10, T[xRY) Y(t, x) € Or.
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Hence, for (s, y) fixed, if we take /1 = u(s, y) and » = z(s, ) in (32), we get

_ /0 ' /R - 2, ), + /0 ' /R  dID pla — s, )

T
’ /0 /w(z = 25, ) Vil plu = (s, 7))

T
+ /0 /[RN Z(s, y) - Van, pu — (s, y)) <0. (34)

Similarly, for (z, x) fixed, if we take [, = u(¢, x) and r = z(¢, x) in (33), we get

! T
_ /0 /R T = e, x))(n,), + /0 /[R 0, dIDy (@ — u(t, x)
T
* /() /RN (2 B Z(t’ x)) ’ V_Vnn P*(l_l - u(t, x))
T
+ /0 /RN 2, x) - Vo, p(i — u(t, x))<0. (35)

Now, since p*(r) = — p(—r) and j*(r) = j(—r), we can rewrite (35) as

r T
_ /O /[RN Ju(t, x) —u)(n,)s + /0 /[RN 1, dIDy(p(u(t, x) — @))|

T
+ /0 /[RZN (z(t, x) — 2) - Vi, p(u(t, x) — u)
T
_ / / 2(t, x) - Vi, p(ult, x) — ) <0. (36)
0 RN

Integrating (34) with respect to (s, y) and (36) with respect to (¢, x) and
taking the sum yields

- / Jutt, x) — s, D)), + (1,),)
Orx0r

4 / iy dID(plu — s, Y| + / iy dID,(plut, x) — i(s))
OrxQ0r OrxQ0r

+ / (&t %) — 25, 7)) - (Vatly + V1) plat, ) — (s, )
Orx0r

4 / 2s,7) - Vit plult, x) — (s, )
OrxQ0r

- /Q =V, plu9) s ) <0 (37)
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Now, by Green’s formula we have

491

/ 25, 7) - Vi plult, ) — (s, ) + / i dID(p(u(t, x) — s, 1)
OrxQ0r

Orx0r

_ /Q 6. Dol ) — i, 1)
+ / iy dIDS(plult, x) — (s, )| 0
Orx0r
and
- / 26, %) - Vg, pu(t, 3) — s, )
Orx0r
4 / 1D, pu(t, 3) — ii(s, )
OrxQ0r
- / (=Lt ), D plu(t, x) — s, )
OrxQ0r
4 / i dID,(pluut, x) — (s, )| > 0.
OrxQ0r
Hence, from (37), it follows that

- / JGu(t, %) — (s, Y1) + (1),)
Orx0r

+ /) (z(t, x) = 2(s, ¥)) - (Vi + V) pu(t, x) — (s, ) <O
Orx0r

Since

OMerLZmU—Qm@_wwcngcgy)

and

Ve, + Vo, = gl = 9,0 = o () vu (),

passing to the limit in (38) as n — 400 yields

- / J(u(t, x) — (e, N )

+ Q@@XT—ﬂhﬂvaﬁ)Mﬁﬂﬂhﬂ—QQXDSO

(38)

(39)
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Let us choose = ¢*, ¢ € CS“([R{N), @=0. Since (39) holds for any ¢ €
Cy°(0, T7), it follows that

G L, ste.n — e oo

< / (&t x) = 2(t, ) - Vo (x)” plut, x) — u(t, x)).
RIV

Therefore,

d
7 Ju(t, x) — u(t, x))p(x)* < 20 / | p(u(t, x) — a(t, x))lo™ ' [Vl
RN RN

(a—1)/a 1/a
<2 ( [ ptate. 0~ it x))|«p“)“/<“>> ( /. |V<p|“>
(a—1)/a 1/a
2 + =~ of, A0 o ) 4
<2 ( [ 15 e = e ) |<p) ( L W) (40)

Now, we observe that 7;" (r)* <, (r) for all » € R. Hence

d , 5 ' B } (a—1)/a
G L sttt < 202 [ e - e oot

1/o
x(/ |V<p|°‘> ,
RN

and, therefore,

d 1/a 1/a
([ st~ et ) <oa( [ wor)

Setting ¢,(x) == ¢(5) instead of ¢(x) we get

d _ 1/a 1/a
G s~ ae0) <2 ( [ wor)
RN RN
1/
:2(xn(N°‘)/°‘(/ |Vq)|°‘) .
RN
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Integrating from 0 to T and using the facts that u(¢) — ug, u(t) — 4y in
Ll (RY) as t - 0%, we have

1/ 1/a
([ swcron—azoone) < ( [ s - o)
R’ R
1/o
+2ocTn<N°‘)/a< / |V<p|“> D)
RN

Letting n — oo and recalling that « > N, we obtain that
[, st —aro< [ - 8
RY RY

COROLLARY 1. Let ug,uy € L}OC(RN). Let u,u be two entropy solutions of
(1) with initial conditions ug,uy, respectively. If uy<uy then u<u. In
particular, the entropy solution of (1) is unique.

Proof of the Last Assertion of Theorem 3. Write (41) for u(t, x) and w(¢, x).
We have

1/a 1/a
</ Ju(t, x) — w2, x))q’z) < (/ = Juo — u0k)(P,°§>
RY RN
1/o
+ 2otnN =/ ( /R |v(p|°‘> ,

for any t [0, 7] and any n,k>1. Given p e N, let n, € N be such that

1/a 1
2ocTn(I],V7“)/“ (/ |V§0|1> <—.
RY p

Choose now ¢ € Cgo([RN) of the form ¢(x) = ¢(Jx|) where ¢ is a decreasing
function. By our choice of ¢ we have that

1/ 1/a
( / e, x) = @, x))(p“) < ( / -t x) = e, x)wZ,,)
R/ RY

1/a 1
< (/ J(uo — uor) @), ) +—
RY ’ p

for any ¢ € [0, T] and any k> 1. Now, let k, € N be such that

1/a 1
(/ Juo — u(m)‘!’z)) S—
RY ! p
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for any k>k,. Then

1/a 2
( / Jutt, %) — e xw) 2
R P

for any ¢e[0,7] and any k>k, We conclude that u; —u in
C([0, T]; Lj, (RY)).

loc

Remark 3. The same proof above yields that (u;) is a Cauchy sequence
in C([0, T}; L}, .(R")) when (uq) is a Cauchy sequence in L] (RY).

6. EXISTENCE IN L/

loc

®Y)
LEMMA 2. Let ug € L*(R") and let u be the strong solution of (1) and (2).

Let T>0, pe?, set j(r) = for p(s)ds, and let ¢ € C([0, T] x RY) with
compact support in x. Then

/RN Jw(D)o(T) — /OT /RN Jw)e, + /OT /RN @ d\D(p(w))|

< - /0 ' /[R 2 Vo pu) + /R _ J(0)e(0). (42)

If in addition p € 2 n C'(R), then the equality holds in (42). In particular, u is
an entropy solution of (1).

Proof. Assume first that p is of class C'. Then

d . .
G | dwe= [ e+ [ i,
RI\/ RN IRN
—— [ odeopwn - [ =Vopw [ jwo.
IRN R:\ IRN
Integrating both terms of the above equality in ]0, 7], and using the fact that

[, 0 dGo.DGuom = [ odDipuon  for ae. rep.

which is a consequence of Proposition 2.8 in [8] (here we use p € C') and the
equality

/ @ d(z(t), Du(t)) = / @ d|Du(t)| for a.e. ¢ €]0, TT,
RN IRN
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we obtain

/RN Jw(T)(T) — /OT /RN Jw)e, + /OT /RN @ d\D(p(w))|
= - /0 ' /R L2 Vop) + /R | J0)p(0). (43)

If p € 2 is generic, we approximate p in the uniform norm with functions
pn €2 N C(R), then write (43) for p, instead of p and let n — oo to
conclude that (42) holds. 1

Proof. Existence. Let ug € L (RY). Let ug, € L*(R") be such that up, —
Uy in L}OC(RN ). Let u, be the strong solutions of (1) corresponding to the
initial conditions ug,. By Remark 3, (u,) is a Cauchy sequence in C([0, T7;
Ll (R")). Thus we may assume that u, — u in C([0, T]; L}, (R")) for some
ue C([0, T]; L} (RY)). In particular, we have that u(f) - uo in L} (R") as
t—->0+4.

Now, let p e Z and let ¢ € C;°(]0, T[x RY). Inserting u = u, into (42) gives

) /OT [ e+ [ ' [ oapmuis - [ ' L, = ort.
(44)

with an equality if p € 2 n C!(R). In particular, the choice of j(r) = r, i.c.,

p(r) =1, gives
T T
| [we= [ [ ave (45)
0 RY 0 RY

Possibly passing to a subsequence, we may assume that z, — z weakly® in
(L]0, T[xRY))". Letting n — oo in (45) we have

/OT /[RN “(Pt:/OT /R\’z-V(p. (46)

We conclude u, = divz in 2'(]0, T[xRY). As j(u,) — j(u) and p(u,) — p(u)
in C([0, T}; L}, .(RY)), letting n — o0 in (44) we obtain

- /0 ' /R e, + /0 T /RN<pd|D(p<u>)|<— /0 ' /R 2-Vopw
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provided ¢ >0. In particular, since j(u), p(u) € C([0, T ];Llloc([R{N )) we have

pu) e LLA0, T BVine(RY))  Vpe 2,

and we conclude that u is an entropy solution of (1).

7. TIME REGULARITY

Let us recall the basic estimates of semigroups generated by subdiffer-
entials. According to Step 3 of Theorem 2 and [16, Theorem 3.2] (estimate
(15) with v = 0) and [16, Theorem 3.6] (with f = 0, K = {0}) we have that

1
ess sup / (s, x)* dx<— / luol* dx  Vt>0, (47)
selnool JRY tJry
T 1
/ / |u,(t, )]t dx dt <= / |uo|* dx (48)
0 RY 2 Jry

and if uy € BV(RY)

T
/0 /R | it )P dr dr < /R Duq. (49)

Our purpose is to localize estimates (48) and (49). To cover the case of initial

conditions in L]IOC(RN ), we need to consider the family 7 < £ of truncatures

Tap, wWith a < b, defined by

a if r<a,
Tap(r)=<r if a<r<b,
b if »>b.

PROPOSITION 3. Let ug € LA(RY) and let u be the strong solution of (1) and
(2). Then

pw), e L2 (0, TLLARY)), 2 p(u), e L2(0, TLL*RY)),  Vpe 7.

Moreover, for any ¢ € CSO(RN) and any s <t such that p(u(s)) € BViee(RY) we
have the estimate

L 2 2 )
2 / /R [P "e” + /[R o® dID(p(u(0)

2 _ 2
< [ apuon+ 205 [ 9o, (50)
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and, if T is such that u(T) € BV oo(RY), also

1 T
B /0 /RN 1 p(u),*@* + T/RN @> d|D p(u(T))|

T
< / / @ dIDpu(0)] + T / Vol
0 RN RN

Proof. Let ¢ e C;°(R") and set

(51

[ = {s €10, TT: u(s) € BVioe(RY) / |u,(s,x)|2dx<§ / |u0|2dx}.
RN RN

We recall that 10, 7[\/ has zero measure. Let s, ¢ € I. Multiply the equation
u(f) = divz(f) by (pu(t)) — p(u(s)))p® and integrate over RY. After
integrating by parts, we obtain

/R | 0> d(D(p(u())] — ID(p(u(s)))

< / u(Opluls)) — plu()o® - / =0 Vorlpu(®) — pu))  (52)
R R
Let 6>0and lets,tel, s, t=0. Using (47), we have

/R 0 dUD(P)] — DD < 5 ol [p(5) — P}

(53)

+ [ Vet - puts.

R
Since a similar inequality holds with s and ¢ interchanged, we have
] /R 0> d(D(p(u(0)] - |D[p(u(s>)]|)}
(54)
1 2 2
<5 o LlICp(u(s)) — plue))e7l> + /R . Vol pu@) — p(us))].

Asue Wl(l)f(]O, T[; LA(RY)), i.e., is a locally absolutely continuous function of
time, then also p(u) is and, from (53), we deduce that [gv @ d|D( p(u))| is
absolutely continuous in ]d, 7[ for any o >0 sufficiently small. Put s =

t—hel in (52), divide by £>0, and let 2 —» 0". We obtain, at any
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differentiability point # of u and gy ¢* d|D( p(u))|,
/ 2, d 2
p(wu; ¢ to P d|D(p(w))|
RY t JRY

<2 [ Ipwllelvol

12 1/2
<2( / ,|p<u),|2<p2) ( / |V<p|2)
R;‘\ RN

1
<5 [, 1o’ + 29 0lk
Rf\

Since p/(r) € {0, 1} for almost every r, we have

1 d
! / P Po? + L / o dID(p(u))] <2V ol (55)
2 RN dl RN

Observe that inequality (55) holds almost everywhere in ]0, 7[. Choosing
s € I and integrating (55) in ]s, ¢[ we obtain (50). Since ¢ does not depend on
time, from (42) it follows that

/[R | J(T)g® + /O ' /R @ dID(p(w)|

<[ VeI pu)| + ' Jo)9?. (56)
I b

Inequality  (56) proves that  [ov @ d|D(p(u))| € L'(0, T). Hence
t, fRN ©?|D(p(u(t,)))| — 0 for a subsequence #, — 0+, 1, € I. Multiplying
(55) by ¢t and integrating on J¢,, T[ we obtain

T T d
! / / t p) 0 + / 4 / P dID(p) < (T — £) / Vel
2 tn [RN t dt RN RN

Integrating by parts with respect to time we obtain

1 T
5 /, /RN tlp(u),Po* + T /RN @> d|\D(p(u(T)))|

T
: 2 2 2 2
< /t /R ¢~ dID(p)| + b /R @ dID(pu(t)| + (77 = 1) /R VR

Letting n — oo, we obtain (51). 1
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COROLLARY 2. Letuye L}OC(RN ). Let u be the entropy solution of (1) and
(2). Then
pw); € Line(0, 00 Lip (RY)), 17 plu), € Lo ([0, 00[; Lipe RY)),  Vpe 7.

loc loc loc

Proof. Let (ug,) = L*(RY) be a sequence such that ug, — ug in L} (RV).

loc
Let u, be the strong solution of (1) corresponding to the initial condition u,.

Inserting u = u, into (42) and using the fact that the corresponding vector
fields z, satisfy ||z,||,, <1 we obtain

T
. 2 2
L aw@e+ [ [ o ani
T
2 . 2
<[ [ wetpwis [ o (57)

forany pe ?, T>0, ¢ € CSC(RN) and n € N. Since the right-hand side of
(57) is bounded by

Clplt [ 9eldssup [ o

we have

T
[ [, ¢ apwupi<c (58)
0 R

Choose now T > 0 such that u,(T) € BV o(R")) for all n. Using (51) and (58)
we have

1 T
5 [ dsudbe<car [ (59)
0o JRY RY

Since p(u,) — p(u) in C([0, T]; LL (RY)), letting n — oo in (59) we obtain

loc

1 T
5/ / tp(u)tzqo2<C+T2 / Vol
0 RY RY

Since this holds for almost every T > 0, the conclusion follows. 1
Remark 4. If p(ug) € BVioe(RY) we have

p(u) € L0, T; BVio(RY)),
p(u) e W2Q0, T[; LE (RY)) < ([0, T]; L} (RY))

loc loc
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for any p € 7. Indeed, this follows from (50) instead of using (51) in the
above argument.

If u is the entropy solution of (1) and (2) for uy € LIIOC(RN) and K € R, then
v(t) = u(¢t) + K is the entropy solution of (1) whose initial condition is v(0) =
uy + K. If we denote by S(¢) the semigroup in LIOC(RN ) constructed from the
entropy solutions, we may write S(t)(uyp + K) = S(H)up + K for any u(0) =
up € L), (RY) and K e R.

PROPOSITION 4. Let ujy € LIOC(IR ) with uy= — M for some M > 0. If u is
the entropy solution of (1) and (2) we have

(t)<u(t) +M for ae. t>0.

Moreover, u, € L} (10, T[; L} (RYY) for any T > 0. A similar statement holds if

up <M for some M > 0.

loc

Proof. Let 0<ug, € L*(RY) be such that vy, — up + M in L} (RY). Let
v,(t) = S(t)(vo,). By Proposition 1 we have

v
<7 for a.e. t>0.

Since 0,(8) = S()(von) = S(E) (o + M) = S(t) (o) + M = u(t) + M in L' (J0, T
Ll (RY)), it follows that

loc

<" t M in 90, TIXRY), (60)

By estimate (60), u, is a Radon measure in Js, {{xR", for all 0<s<t and

R >0. Thus
t
/ / Jua,| < 00. (61)
s Br(0)

in any ball Bg(0), R > 0. Now, taking p = T, the estimate in Corollary 2
says that u, is a function in LZ(Qa,b N Br(0)), for all a<b, where Q,p =
{(t, x) € O: a<u(t,x)<b}, and all R > 0. This observation together with (61)
proves that u, € L} (10, T[; L}, .(RY)). 1

We conclude this section with the following observation. The existence
and uniqueness results for (1) and (2) may be used to prove an estimate for
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the time derivative of the solution of

ov Dv
Z_div ——— in 10, oo[xR", (62)
ot <\/1 + |Dv|2>

when the initial datum v(0, x) = vo(x) € L'(R"). First, we observe that
existence and uniqueness results for (62) when vy € L'(R") can be obtained
following the approach in [6]. Next, we notice that if v is the solution of (62)
corresponding to the initial condition vy e L'(RY), then u(z, x, xyy1) =
u(t, x) — xy1 is the entropy solution of (1) in R¥*! such that u(0, x, xy+1) =
vo(x) — xy+1. In other words, the semigroups 7(¢) and S(¢) associated with
(62) and (1) satisfy

S()(vo — xy+1) = T(t)vo —xy41 for any vy e L'(RY).
Now, proceeding as in the proof of Proposition 1 with 2 = 2% we obtain

t

v(t+h)—v@) =ult+h) —u(t) = u(t + h) + SO (o — xy41)) — u(t)

h
1+ h

- h
= u(t + h) + T()(A "vo) — T(1)vg oy e

o(t 4+ h) + T vo) — T(F)vo.

Ry
This implies that

< luoll
S Voll1.
o

o(t+ h) — ()
h

From this, and using the techniques of completely accretive operators [15] as
in [3] it can be proved that ||v||; <%||Uo||1-

8. EVOLUTION OF SETS IN R?*: THE CONNECTED CASE

Throughout this section, as well as in Sections 9-11, we take N = 2. Let
B = R? be an open set; we say that 8B is of class C""! if B can be written,
locally around each point, as the graph (with respect to a suitable
orthogonal coordinate system) of a function f of class C' with Lipschitz
continuous gradient, and B can be written (locally) as the epigraph of f. If
OB is of class C"', we denote by gz the (#'-almost everywhere defined)
curvature of 0B.
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Let @ = R? be a bounded set of finite perimeter. We set

PR ()
Q= |Q| .

We want to study when the function
u(t, x) = (1 — Aat) " yq(x) (63)
is the entropy solution of (1) and (2) when we choose uy = yq.

Remark 5. The function u defined in (63) is the solution of (1) and (2)
with u(0, x) = yo(x) if and only if the function v == y, satisfies the equation

4wGﬂ>zmu (64)

i.e., if and only if there exists a vector field & € L(R?; R?) such that 1€l ao
<1,

—div ¢ = Jgv (65)

and

/R (@Dy= /R 1Dl (66)

With a little abuse of notation, we also write that the pair (v,¢&) is a
solution of (64).

It is clear that if v is a solution of (64) then Agu is a solution of (4).

If yq is a solution of (64) and C is a connected component of Q, using (65)
and (66) it follows that

e = Ja. (67)

DEFINITION 3. Let Q R’ be a set of finite perimeter. We say that Q is
— calibrable if there exists a vector field &, : R* - R? with the following
properties:

(i) & e L2 (R R?) and divég e L2

loc(Rz);
(i) |¢ql<1 almost everywhere in Q;
(iii) div &, is constant on Q;

(iv) 0y, —Dyq)(x) = —1 for #'-almost every x € &*Q.
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We say that Q is +calibrable if there exists a vector field &}, : R* - R?
satisfying properties (i), (ii), (iii), and such that (5, —Dyo)(x) = 1 for # L
almost every x € 0*Q.

Heuristically, condition (iv) says that the inner (resp. outer) normal trace
of & (resp. of &) is 1.

It is clear that Q is — calibrable if and only if Q is + calibrable (it is
sufficient to define &) = —&;). Moreover, if Q is bounded and — calibrable,
the constant in (iii) equals —Aq, i.e., —div &, = Ag on Q.

The following remark should be compared with (a) of Proposition 5.

Remark 6. Let Q < R? be a bounded set of finite perimeter which is —
calibrable. Then

P©) _PD)

< VD < Q, D of finite perimeter. (68)
1 |D

Indeed,

1 1
A :—/—divéfdxé—PD.
@ =p) J, W iSO

Remark 7. Let Q < R? be a bounded set of finite perimeter. Assume
that Q is — calibrable and that R*\Q is + calibrable. Define

¢a on Q,
<= R0 on R*\Q.

Then ¢ € L°(R*; R?) and div & € L¥(R?).

LEMMA 3. Let Q < R? be a bounded set of finite perimeter. Then v = 10
is a solution of (64) if and only if Q is — calibrable with —div &g = Aq in Q and
R2\Q is + calibrable, with div fﬁz\g =0 in R*\Q.

Proof. 1If (yq, &) is a solution of (64), then & = ¢, éﬁz\g = ¢ satisfy (i)—
(iii) of Definition 3. Moreover, by (66) and (12)

[0 Dryar’ =P@) = [ 00 ~Drma dr',

so that (iv) of Definition 3 is satisfied. Conversely, it is enough to define
(56:; Eala + é%z\QXRZ\Q, and to use Remark 7 to check that (yq,&) solves
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We are precisely interested in characterizing the sets of Lemma 3. The
following theorem answers to this question, under the additional assump-
tion that Q is connected; thanks to Remark 5, we can characterize those sets
Q such that the function u in (63) is the solution of (1) and (2) with uy = yq-
In Theorems 6 and 7 of Section 9 we consider the general situation.

THEOREM 4. Let C = R? be a bounded set of finite perimeter, and assume
that C is connected. The function v := y is a solution of (64) if and only if the
following three conditions hold:

(1) C is convex;
(ii) OC is of class C"';
(ii1) the following inequality holds:

P(C
€ss sup Kac(p)<g. (69)
pedC IC]

To prove Theorem 4, we need several intermediate steps. We start with
the proof of the implication

7c solution of (64) = (i)—(iii) hold, (70)

which will be given after Lemma 7.

Given any set D  R?, we define
D, = U{B,,: B, open ball of radius p contained in C},

where p > 0 is small enough such that D, is nonempty.

The result of the next lemma, without an estimate on the curvature, is
proved in [28, Proposition 2.4.3]. Since in the following the estimate on the
curvature plays a crucial role, we need to include the proof.

LEMMA 4. Let C = R? be a bounded open convex set. The following
conditions are equivalent:

(a) there exists p > 0 such that C = C,;
(b) OC is of class C"' and ess sup yeac Koc(p) <.

Proof. (a) = (b): Assume that C = C, for some p >0 and fix a point
z € 0C. Up to a translation and rotation of coordinates, we can suppose that
z =0, that 0C can be written, in a neighborhood of 0, as the graph I", with
respect to the x-variable, of a nonnegative convex function f vanishing at 0
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(therefore the open epigraph of f coincides with C in a neighborhood of z).
Since C = C,, the open ball of radius p contained in the epigraph of f and
tangent to I'y at (0,0) lies locally above f. Therefore we can choose a
parabola tangent to I'; at (0,0), lying locally inside the epigraph of f and
above the ball, whose graph has curvature at zero equals 1 + ¢. Precisely, for
any ¢ > 0 sufficiently small there exists é > 0 such that f (x)<(2 + e)x? for
any |x|<0. It follows that f is differentiable at x = 0 with f/(0) =0, i.e., 6C
is differentiable at z. Therefore 0C is differentiable at any point. Since ac 1S
convex and differentiable at any point, it follows that 8C is of class C!.

Let us now prove that 0C is of class C!. The idea is the same as before,
but now we need a family of parabolas locally above f, passing to an
arbitrary point (¢, f(¢)) for |f/<¢ and tangent (at the same point) to I'y. It
will follow that C is locally an infimum of parabolas with second derivative
larger than /l) (up to ¢&). Precisely, as C = C,, given ¢ > 0 sufficiently small and
possibly reducing J, we have

S <9,(x) = ( Ly 8) (x—a@®) + b Vi, 1<,

where a(t) =t — /fp 0 and b(1) = f(t) — % (note that f e C!, so that

a and b are well defined). Since

f = inf ¢, on |x|<9,

lf<o
and since ¢, are semiconcave with semiconcavity constant equal to ﬁ + ¢ for
any ¢ <9, it follows that f is semiconcave on [—d, ] with semiconcavity
constant equal to 5- + & Hence [ is of class C! in [-4, 4] and f”<1 +3
almost everywhere in [—0,0]. Therefore 0C is of class C” and, smce € 1is

arbitrary, €ss sup ,csc Kac(p) </1).
The implication (b) = (a) is a particular case of [11, Lemma 9.2] with the

choices P = C, (]3(51,62) = \/5% + f% and A=p. 1
Remark 8. If condition (a) of Lemma 4 holds, then C = C, for any
o €0, p], since any ball B, of radius p is the union of all balls B, of radius

o €0, p] contained in B,,.

LEMMA 5. Leta,beR, a<b, >0 and G, : H}([a,b]) — R be defined as

Gi(u) = /[ h][\/lJr(u’(s))zfiu(s)] d#\(s). (71)

Assume that there exists a function u; € Hi([a, b]) whose graph is contained in
a translated of 0By);. Then u, is the unique minimizer of G, in H\([a, b]).
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Proof. 1t is a particular case of [11, Lemma 8.4] with the choice
fen) = /a+a

LEMMA 6. Let Q = R? be a bounded set of finite perimeter. Assume that
R*\Q is + calibrable. Then div &, = 0 on R?\Q.

Proof. Let for simplicity & := fﬁz\g- Let R > 0 be such that Br o Q and let

U be the unbounded component of R?\Q. By assumption we have that
div ¢ = o on U n Bp for some real constant o. Using (12) and the properties
of £ (see (ii) and (iv) of Definition 3) we have

—2nR + P(U)< / div ¢ dx<2nR + P(U).
UﬁBR

If we denote by A the (finite) measure of the union of all connected
components of R?\Q contained in B, it follows that

—2aR+ P(U) _  Jyog, divEdY _ 2nR + P(U)

R0 =2 T T UAB AR =

Letting R —» +00 we deduce & = 0. 1

PROPOSITION 5. Let Q = R? be a bounded set of finite perimeter which is
— calibrable and such that R*\Q is + calibrable. Then
(a) the following relations hold:

PQ _ PD)
1Q ~1Q D

YD R?, D of finite perimeter; (72)

(b) each connected component of Q is convex.

Proof. Let & e L(R*;R?), |||, <1 be the vector field defined by ¢ =
Eada + é}‘gz\QXRz\Q. By Remark 7 we have that div ¢ € L°(R?). Let D = R? be
a set of finite perimeter. Using Lemma 6 and the fact that —div &, = Ag on
Q, we have

—/ o div & d = —/ Yoz div & dx = AQ/ Yo ds = 70l A D],
RZ RZ RZ
Hence
J0lQ A DI<P(D), (73)

and (72) follows.



THE TOTAL VARIATION FLOW IN RY 507

Moreover from (73) it follows that
P(Q)<P(D) VD2 Q, D of finite perimeter.

We conclude that each connected component of Q must be convex. 1

Definition 4. Given 4 € R we define the functional 4, as
%,(D) = P(D) — A|D|, DcR? D of finite perimeter.

ProposITION 6.  Let C be a bounded open convex set, and assume that C is
— calibrable. Then 0C is of class C"!.

Proof.  Set for simplicity ¢ .= —¢ and recall that div¢ = A¢ on C. For
any 4 > A¢ and any finite perimeter set B strictly contained in C we then have

4,(B)> /B (div & — 2) dx > /C (div & — 2) dx = 9,(C). (74)

Assume now by contradiction that 6C is not of class C''!. By Lemma 4 it
follows that C, is strictly contained in C for some p > 0. Fix ¢ < p such that
glc<1. By Remark 8 we have that C, is strictly contained in C. Applying
Lemma 5 to the connected components of 0C,\0C, we get

gl/a(ca) < ‘(ql/o‘(c)s
which contradicts (74). 1

Remark 9. (i) If Q < R? is a bounded set of finite perimeter satisfying
(68) it follows that ¥,,(D)=0 for any D c Q of finite perimeter, while
obviously ¥4,,(Q) = 0. Therefore Q minimizes ¥,, among all finite perimeter
sets D < Q.

(i1) By the proof of Proposition 6, it follows that if C is a bounded open
convex set which is — calibrable, then C minimizes ¥, among all finite
perimeter sets B < C and where /> Ac.

In order to prove implication (70) of Theorem 4 we need one more lemma.

LEMMA 7. Let C = R? be a bounded open convex set with C'' boundary
satisfying (68) with C in place of Q. Then (69) holds.

Proof. Let U be a neighborhood of 0C and let & e C}(U). Let « € R be
sufficiently small, and let W,(x, ) = (x, y) + ah(x, y)v(x, y), where v € C'(U;
R?) is a vector field satisfying [v| = 1 on U, and v = v€ on 8C. Extend ¥, as
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WY, (x, y) = (x, y) outside U. Let C, = ¥,(C). By Remark 9 it follows that C
minimizes %,. among all finite perimeter sets contained in C. Therefore, if 2
is nonpositive,

0< lim gif(cl) B gﬁc(C)

oa—0F o

- / [Koc — Aclhd A"
oC

It follows kac(x)<Ac for #'-almost every x € 6C. 1

We are now in the position to prove implication (70) of Theorem 4. If .
is a solution of (64), by Lemma 3 (applied with Q = C) it follows that C is —
calibrable with —div ¢, = A¢ in C and Rz\ C is + calibrable with div ‘f?REZ\C =
0 in R?\C. Therefore by Proposition 5 (b) (applied with Q = C) and the
assumption that C is connected it follows that C is convex. Hence by
Proposition 6 we have that 8C is of class C'!'. Moreover, inequality (68)
holds. Therefore we can apply Lemma 7 to conclude that (69) holds.

Let us now prove the opposite implication of Theorem 4, that is

(1)—(ii) = y solution of (64). (75)

Assume that C is a bounded open C"! convex set satisfying (69). It has
been proved in [27] that (69) is a necessary and sufficient condition for C to
be a minimizer of the functional ¢,. among all sets of finite perimeter D c C.
In this case the function f = A¢y satisfies || f|l,, < 1. Indeed, if w € LY(RY) n
BV(R?) is nonnegative, we have

o0 o0
/f(x)w(x)dx:/ /)chcx{w,}dxdt:/ AclC N {w=t}| dt
R? 0 R? 0
o0

< /OwP(Cm{WZI})dté/O P({w)t})dt:/Rz \Dw,

where we have used that for all >0 for which {w>¢} is a set of finite
perimeter we have that

P(C n{wzt)) <P({w=1}),

which is a consequence of the convexity of C. Splitting any function w €
LX(R*) ~ BV(R?) into its positive and negative part, using the above
inequality one can prove that | [ f(x)o(x) dx|< [ |Do|. It follows that
[Ifllx<1. Then, by Lemma 1, there is a vector field ¢ e L(R*; R?) with
[1€llso <1 such that

—div{ = f = Acxc- (76)
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Now, multiplying (76) by . and integrating by parts, we obtain

/ (&.Dye) = e / Yo dx = P(C) = / IDxcl.
RZ RZ RZ

hence y. is a solution of (64). The proof of Theorem 4 is concluded.

We conclude this section by recalling that in paper [27], condition (69) was
used as a necessary and sufficient condition for the existence of a solution u
with Vu e L (C; R?) of the equation

loc
Cdiv[— Y% ) incC (77)
V1 + V)

Vu(y) —v¢(x) for any x € &C.

Nrea

with boundary condition limesy—

9. EVOLUTION OF SETS IN R?: THE NONCONNECTED CASE

The aim of this section is to generalize Theorem 4 to nonconnected sets
(see Theorems 6 and 7). Theorem 7 is basically a further generalization of
Theorem 6, and has a self-contained and independent proof. We begin with
the following result.

THEOREM 5. Let Q R? be a bounded open set and assume that 8Q is of
class C"'. Then R*\Q is + calibrable if and only if

2P(D,RN\Q)>P(D), D < R*\Q, D bounded of finite perimeter. (78)

Proof. Assume first that R*\Q is + calibrable and set & = §+\
Lemma 6 we have div¢é =0 on R*\Q. Let D = R*\Q be a bounded set of
finite perimeter. Then

0= / div & dx = #'(6*D n 6Q) — P(D, R*\Q),
D

which implies (78), since #(*D n 6Q) = P(D) — P(D, R*\Q).
Assume now that (78) holds. Let R > 0 be such By = Br(0) 2 Q and
dist(0Bg, Q) > 1P(Q) (79)
and set

P(Q)
- 27R’

(80)
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Possibly increasing R, we can assume that |c| < 1. Given a bounded open set
A = R? we now define the functional

F(E,A) = /A (div &) dx, e HY(A), (81)

where HY(4) = {¢ € L2(4; R?): div ¢ € L2(4)}. Reasoning as in [9, Propo-
sition 6.1] one can prove that the variational problem

min{Z (&, BR\Q): & e HV(BR\Q), |£]<1 ae. in Br\Q, (82)

0(S, —Dyq) = —1 on 8Q, (¢, —Dyp,) = ¢ on 0Bg} (83)

admits a solution and, if ¢; and ¢, are two solutions, then div ¢ = div &,
almost everywhere on Bz\Q. Moreover, arguing as in [9, Theorem 6.7; 10,
Proposition 3.5, Theorem 5.3], it follows that given any minimizer &, we
have div &, € L¥(Bz\Q) n BV(BR\Q), and that if u € R and we define

Oy = {x e Be\Q: div &pin(x) >

where we can assume that O, has finite perimeter, then

div i dx = (¥ 0, 0 0Q) + c# ' (0*Qy M OBr) — P(Q,, BR\Q).  (84)
O

We claim that div &y, is constant on Bg\Q, and therefore div &, = 0 on
Br\Q in view of the choice of ¢ in (80). Suppose by contradiction that
div &, is not identically zero on Bg\Q. By (80) and the Gauss—Green
Theorem, it follows that {div &, <0} cannot be the whole of Bg\Q. It
follows that there exists 4 >0 such that O, is a nonempty set of finite
perimeter. Using (84) with u = 1 and (80), the inequality

div émin dx > }|Q/»| >0

0;
implies
PO BAD) < (0 1 00) — D 0, oBr).  (89)
that is
2P(0;, B\ D)< PO B) — 200 A (6%0; 0B, (36)



THE TOTAL VARIATION FLOW IN RY 511

We now split the proof into three cases. B
Case 1. Assume 06*Q; N 0Q = 0. In this case we have P(Q;,Bz\Q) =
P(Q;, Bg), which inserted in (86) gives a contradiction. B
Case 2. Assume that 0*Q; N 0By = 0. In this case we have P(Q;, Bz\Q) =
P(0;, R*\Q) and P(Q;, Bz) = P(0Q,), so that (86) implies

2P(0;, R*\Q) < P(0;),

which contradicts (78) with D = Q,.

Case 3. Assume that 6¥Q; n 0Q 0 and 6*Q; N 6Bz #0. By the additivity
of the perimeter on connected components, there exists a connected
component C of Q; such that (85) holds with C in place of Q;. On the other
hand, using the fact that C is connected, (79), and |c|< 1, we get

P(C, Bg\Q) > 2 dist(dBg, 6Q) = P(Q)

> #NGC no) - L (Q)

Jf (0*C n 0By),
which contradicts (85). _

Our claim is proved, and therefore div &, = 0 on Bz\Q. We now extend
Emin on the whole of R? as follows. Define é o) = P(Q) x if x € R\ Bg,
and f Q(x) émm(x) if x € Bg\Q. Finally, deéne .;H' 1ns1 e Q as follows:
first we extend 5 in a Lipschitz way, inside Q, in d sultable open tubular
neighborhood of éQ keeping the constraint ||&||,, = 1. It is then enough to
use a cut-off function to further extend the vector field on the whole of Q,
keeping all required constraints. One can check that &f, - e HY(R),
||£ alle<1, and div fﬁz\ﬁ =0 on RY*Q. It follows that R*\Q is
+ cahbrable ]

Remark 10. If the set Q in Theorem 5 is convex, then (78) is
automatically satisfied.

The following theorem generalizes Theorem 4 to nonconnected sets.

THEOREM 6. Let Q < R? be a bounded set of finite perimeter. If v = g is
a solution of (64), then Q has a finite number of connected components C\,
., C, and

(1) C; is convex for any i =1,...,m;
(ii) 0C; is of class C' for anyi=1,...,m
(iii) the following inequalities hold.

P(C,
ess sup koc(p)< ()
pedC; |Cz|
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(iv) P|(cci = ‘C‘ for any i,je{l,...,m};
(v) let 0<k<m and let {11,...,zk} c {1,...,m} be any k-uple of indices;

if we denote by E;, . a solution of the variational problem

.....

mm{P(E) E of finite perimeter, U G, CEc R U Cz,} (87)

j=1 Jj=k+1

we have
P(E;,..i)= Y P(Cy). (88)

Conversely, assume that Q < R* is a bounded open set which is union of a
finite number Ci,...,C, of connected components satisfying (1)—(v). Then
v = yq is a solution of (64).

Proof. Assume that (yq, &) is a solution of (64). By Lemma 3 we have
that Q is — calibrable and R?\Q is + calibrable. By Proposition 5 (b) we
have that each connected component C of Q is convex, and by Proposition 6
we have that 0C is of class C»'. By Remark 6 we have that Q satisfies (68) so
that, by Remark 9, Q minimizes %,, among all finite perimeter subsets of Q.
Thanks to the results in [27], this is equivalent to (69). Therefore, as Q is
bounded, it follows that Q consists of a finite number of connected
components Ci,...,Cy,. Integrating —div ¢ on each C; we obtain

~

AQ: Ci:;LC, Vi,je{l,...,m}.

It is not difficult to prove that (87) admits a solution. Moreover, this
solution is in general not unique; however, since the portions of the
boundary of a minimizer which are not contained in va: | 0C; are segments,
it is possible to prove that the number of different solutions of (87) is finite.
Let us now prove (88). Set

We have

.....
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Equivalently,
k _ k k
> P(C)<PE,,. . R\ + Y PC)— ! (8*D ~ U ac,._,>>. (89)
J=1 j=1 i=1

Since the right-hand side of (89) is less than or equal to P(E;,
(88) follows.

i )» inequality

.....

Assume now that Q is a bounded open set which is union of a
finite number Ci,...,C, of connected components satisfying (i)—(v).
Reasoning as in the proof of (75) it follows that each C; is — calibrable,
so that thanks to (iv) it follows that Q is — calibrable. To prove that
R*\Q is + calibrable, we will show that (78) is valid. Let D = R*\Q be a
bounded set of finite perimeter. Denote by C,...,C; the
connected components of Q whose boundary intersects *D. Let E;, . ; be

a minimizer of problem (87). Using (88) and the minimality of E; ; we
then have
k k
> P(C)<PE;,... ik><P<D vl c) (90)
J=1 =1

Observe now that

Jj=1

k k k
p(z) vl c,,) =P(D.R\Q)+ > P(C;)— " <6*D N (U 6’@,))
=1 = /=1

k
=2P(D,R*\Q) — P(D) + Y P(Cy),
j=1

which, inserted in (90), gives (78). According to Lemma 3 we have that
v = yq 1s a solution of (64).

In order to prove Theorem 7 (without the use of the tools introduced in
(81) and (82)) we start with the following observation.

LEMMA 8. Let o; >0 and B; = R* be bounded measurable sets, for i =
L...,m. Let g :=>"" oixp. Then ||gll<1 if and only if

Z o;|B; n D|<P(D) VD = R?, D bounded of finite perimeter. (91)

i=1
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Proof. Assume that ||g|l,<1. Let Dc R?> be a bounded set of finite
perimeter. Then

m

> altin D= [ v [ D1l = PD)

i=1

Conversely, assume that (91) holds. Let v e L2(R*) n BV(R?) be nonnega-
tive. We have

m o0 m [o¢]
/Rzgvdxzz.fxi/o /szB‘_x{v;t}dxdt:Zozi/o |B; 0 {v=t}| dt
i=1 i=1

< /OOOP({@z})dr/RZ Dol

Splitting into the positive and negative parts, the above inequality holds for
a generic v € LA(R?) n BV(R?). Therefore [|g|l,<1. &

The following result is essentially a generalization of Theorem 6.

THEOREM 7. Let Q < R? be a bounded set of finite perimeter and assume
that Q consists of a finite number of connected components Ci,...,C,. Let
bi >0 fori=1,...,m. The function u = Y";" | biyc, is a solution of (4) if and
only if

(a) b; = P‘(Cc‘)forallizl,...,m
(b) conditions (1)—(iii) and (v) of Theorem 6 hold.

Proof.  Assume that (u, &) is a solution of (4), where u =) " | b; yc The
identity (¢, Du) = |Du| implies that (¢, Dyc,) = [Dy,| as measures in R?, for
alli = 1,...,m. Using this observation and integrating the equality d1V &=
u in C; it follows that b; = A¢,. Now, let D < R? be a set of finite perimeter.
Multiplying the equation —div ¢ = u by y, and integrating in R? we obtain

P(D)> — / ipdivEdx =Y " biIC; n DI=b)|C; A D, (92)
IRZ

i=1

s A \Ig( )‘ for each j=1,...,m. As in the proof of Theorem 6, it

follows that (1)—(ii1) hold. Fmally, let us prove that condition (v) holds. If we
write (92) for D = E;,_;, we have

i=1
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which gives (6) since C;; N Ej,
O for l'é {i1,...,0x}.

Conversely, assume that conditions (a) and (b) hold. Reasoning as in the
proof of (75) it follows that each C; is — calibrable. We shall prove that
g=>" Ac 1, satisfies [|g[l, < 1. According to Lemma 8, it will be sufficient
to prove that

..........

Z Ac,|Ci n D|<P(D) VD = R?, D bounded of finite perimeter. (93)
i=1

By additivity of the area and the perimeter, it is sufficient to prove (93) when
D is also indecomposable. Let D ¢ R be such a set. Since C; are — calibrable
sets, by Remark 6 (applied with Q .= C; and D .= D n C;), we have that

/’LC, |C, N D| <P(C, M D)

Then, to prove (93), it will be sufficient to prove that

m

> P(C:nD)<PD) VD < R,

i1

D bounded indecomposable of finite perimeter. (94)

Denote by C;,...,C; the connected components of Q such that Du
U;;l C;, is connected. Those components intersect either D or 0*D. Let
,,,,, ;, be a minimizer of problem (87). Using (88) and the minimality of
E; . i we then have

k k
> P(C)<P(E;,... ik)gP(D 7y c,-,). (95)
j=1 J=1
We claim that

k k K
P(D vl c,-j.) <P(D,R*\Q)+ Y P(C;) — A" (D A (U ac,-j) ) (96)
1 = =1

Indeed, since 8%(D U X) < (6*D\X) U (0X\D) where X = Uj;l C;,, we have

P(D U X)<A#N&*D\X) + #'(0X\D) — #1(F*D n oX)
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since the term with a minus sign was counted twice by the first two terms at
the right-hand side. Thus

P(D L X)< #\(*D\X) + #'(0X\D) = P(D,R*\ X) + P(X) — #'(6X n D)
=P(D,R*\Q) + P(X) — #"(8X D)

which proves claim (96).
Inserting (96) into (95), we obtain

k
Ve (D ~ U ac,-_/)) <P(D,R*\Q). 97)
=1

On the other hand, since 7*(C; n D) < (6*D n C;) U (6C; n D) U (6*D N
0C;), we have, using (97),

k

N k
> P(CinD)=> P(C,nD)<P(D,Q)+ A" (D A (U ac,-,))
i=1

J=1 j=1

+ A (6*D N (@l ac,,))

k
< P(D,Q) + P(D,R*\Q) + ! (6*D ~ U acij>> = P(D).
=1

We have proved that ||g||,, < 1. According to Lemma 1 there is a vector field
Ee L°(R*R?) with ||&]l, <1 such that —divé=u. Multiplying this
equation by u and integrating in R? we obtain

/Rz(c,Du)z/Rzuzdxzzm:Pg)z :/Rz |Dul.

i=1

Therefore, u is a solution of (4). 1

10. EXPLICIT SOLUTIONS FOR THE DENOISING PROBLEM

PROPOSITION 7. Let >0, b € R and a = sign(b)(|b| — /). If 1 e BV(R?)
is a solution of (4) then the function au is the solution of the variational
problem (7) with f = bu. Conversely, if au is the solution of (7) with f = bu
and b —a = + 1, then @i € BV(R?) is a solution of (4).

In particular, if Q satisfies the conditions listed in Theorem 6, then aloyg is
a solution of (7) with f = blqyq. The converse statement holds if b — a = + 1.
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Proof. Recall (see Lemma 1) that a function u € BV(R?) is the solution
of (7) if and only if u is the solution of

u — 7 div <|g ”|) . (98)

Let f == bu where u satisfies (4). Without loss of generality, we may assume
that 5>0 (the case b <0 can be obtained by changing b - —b and u —» —u).
Suppose first that b > 1, so that a = b — A. Since

Du
—div = Au=(b—a)u,
(|D |> b=

it follows that u := au satisfies (98). Now, assume that 0<h</, so that
a=0. Let &£ € L°(R*;R?) be such that ||é||oo 1 and —div ¢ = @i Obviously,
if z:=2¢, then ||zl|, <1, and —divz = —2 div & = 24, that is —Adivz = biu =
f. Smce Jrv(z,D0) =0 = [ov |DO], it follows that u = 0 solves (98). The
converse statement follows by substituting f = bz and u = au into (98).

The last assertion follows from Theorem 6 and the first part of the
proof. 1

Let us prove an extension of the above result.

PROPOSITION 8. Let Q be a bounded set of finite perimeter which consists
of a finite number Ci,...,C,, of connected components. Let b; e R for i =
1,...,m. Assume that the function it ==y | Ac,)c, solves (4). Let 2> 0 and
a; = sign(b,)(|b;| — A)*. Then the function u =3 " | ail.cc, is the solution of
the variational problem (7) with f = Y"" | bilc,xc,. The converse statement
holds if a;,b; are such that b; — a; = 4, or b —a; = —A, foralli=1,...,m

Proof. As in the proof of Proposition 7, we have to prove that u is the
solution of (98). We observe that this is obviously true if b; >4, or b; < — 4,
for all i=1,...,m. In the general case, let I, = {ie{l,...,m}: |b;|=1},
J,={ie{l,...,m}: |b;]<A}. Since, in this case,

f—u=21 Z sign(b))Ac,1c, + Z bidcxc,s

i€l ieJ;

to prove that u is a solution of (98) we have to construct a vector field
& e L°(R*; R?) with ||¢]|,, <1, such that

—dive =" sign(b)ic e, + Z— e (99)

iel; ieJ)
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and (&, Du) = |Dul. Let F € L*(R?) denote the right-hand side of (99), and let
F* = sup(F,0), F~ = sup(—F, 0). Let (&, &;) be a solution of (4). Let D < R?
be a set of finite perimeter. Multiplying the equation —div {; = u by y and
integrating in R*> we have that

PO~ [ dviapdi=Y i [ romdr = delCinDl (100
i=1 3 i=1
This inequality implies that [|F]||,, < 1. Indeed, let v € BV(R?). Since
/2F(x)v(x)dx< / (Frv" + F v )dx
R R?

and [p [Dv| = [o2 [DvT| + [z [Dv™|, the inequality [ F(x)v(x) dx < [ [Do|
follows if we prove that

/F*v*dxé/ |Dv"| and /F*v*dxé/ |Dv ).
RZ RZ RZ RZ

Thus, without loss of generality, we may assume that F>0 and v € BV(R?),
v>=0. Then, using that %sl for any i € J;, we have that

o0
/7F(x)v(x)dx=/ /’F}g{vgt}dxdt
R 0o Jr?
00 bi 00
- - )"Ci/o /Rz X Xw=1 dx dt + Z I )“Ci/o /R2 LciXiv=1) dx dt

ieJ;

m o0 [o0]
<> e | |Cin{v=t|ddi< | P(w=i)dt= [ |Du|.
i=1 Jo 0 R2

Therefore ||F||, <1. By Lemma 1, there is a vector field £ € L®(R?; R?) such
that [|€]|,, <1, satisfying (99). Since a; = 0 for all i € J;, it follows that

[ 1ol = S lalicP(@ = Y aiie, [ (~div oy ds

l‘E]," iG[,j
= aic [ @D = [ &ow.
i=1 R R

which, in turn implies that (&, Du) = |Du, since ||&]| || < 1.
The converse statement is obvious. 1

Proposition 8 proves that a; is a soft thresholding of b; with threshold A.
This is in coincidence with the soft thresholding rule used in the wavelet
shrinkage method for denoising [22, 23, 24, 30, 37]. As proved by Meyer [30],
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a soft thresholding applied to the wavelet coefficients of the function f €
L2(R?) gives a quasi-optimal solution of the denoising problem (7). Let us
also mention that it has been proved recently that the wavelet coefficients of
a BV function are somewhere between ¢! and weak ¢! [19, 20, 30, 32].
Finally, that a solution of (7) when Q is a ball was given by the above
formula was already observed by Meyer [30] and Strong—Chan [34].

11. SOME EXAMPLES

In order to clarify the conditions given in Sections 8 and 9, we shall
discuss some explicit examples.

Example 1. Let Q@ = R? be the set of Fig. 1. It is easy to check that Q
satisfies the assumptions of Theorem 4, since Q is a convex set with C"!
boundary and there holds

I 2mr42L  PQ)

€SS Sup K, =< = .
o o) = < 55 T T

(101)

Moreover, since the inequality in (101) is always strict, the solution of (1)
starting from y¢ remains a characteristic function for any convex set Q' of
class C"! close enough to Q in the C"'-norm.

Example 2. Let Q < R? be the union of two disjoint balls of radius r,
whose centers are at distance L (see Fig. 2). Then condition (88) of Theorem
6 reads as

L>=nr.

Under this condition the solution of (1) and (2) with uy = yo remains a
characteristic function.

Example 3. Consider now three disjoint balls of radius r, whose centers
are on the vertices of an equilateral triangle with edges of length 1 (see Fig.
3). In this case, condition (88) reads as

r<—.
T4n
Notice that this condition is more restrictive than the condition holding
for two balls, which has been discussed in Example 1 and gives r<%. This
implies that it is not enough to consider only pairs of sets in condition (v) of
Theorem 6.
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Example 4. We give now an example of an explicit solution,
which is also a solution of (1) which is not among the solutions
considered in Sections 8 and 9. Let Q:= Bg(0)\B.(0) be the set of
Fig. 4. In this case Q does not satisfy assumption (i) of Theorem 4, i.e., Q
is not convex. However, is it possible to compute explicitly the solution
of (1) and (2) with uy = zq. Indeed, let &:R* - R* be the vector field
defined as

N for x € B,(0),
&0 =4 (B -1)g;  for xeBr(0)\B0),

x|

— R x for x € R\ Bz(0).

Ix|

|

Then |||l <1, divé =2 on B,(0), divi = —2% on Br(0)\B.(0), divé =0
on R?\Bg(0), and &-v&© =1 on 6B,(0), &-v2©® = —1 on 8Bg(0). There-
fore, one can check that the solution u of (1) and (2) with uy = yq is

given by

e R%.

u(t, x) = (1 = Zat)ya(x) + % 10, te {0’ r(Rz; r)]’

For ¢ > @ the solution  is equal to the solution starting from (1 — %)z,

(at time %}’)) and it is one of the solutions described in Sections 8
and 9.

Example 5. Let0=Ry<R;<--- <R,<R,.| = 400, so that Bg,(0) = 0,
Bg,.,(0) = R*. Set for simplicity B; := Bg,(0), for i =0,..., p+ 1. Let Q; :=
B\Bi_1,i=1,...,p+ 1. Letay,.. .,ap+1 be real numbers such that a; #a;_1,
ai#aiy1, i=2,...,p, and apy; =0. Let u:=3"" ajyq. We claim that
choosing a; appropriately we have that u is a solution of (4). To be more
precise, we say that we have specified a qualitative ordering of ay, ..., a1 if
we have said if a; is above a; (i.e., a; > ay) or below a, (i.e., a; <ay), a; is
above or below a3, ..., a, is above or below a, . Then, for each qualitative
ordering of ay,...,a,, the values of ay,...,a,.| can be uniquely specified
so that u is a solution of (4). This will be a consequence of the following
observations.

If (i1, z), with s = 3°7 | a;yq, , is a solution of (4), then integrating div z in B;
we get

/ z VB da" = ¢;P(B)), (102)
0B;
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where ¢; ;= sign(a;;| — @;). Now, integrating (4) in Q; and using (102) we
obtain

& 1P(Bi_1) — &P(B)
’ 1B — 1B;-1l

: (103)

where P(Bjy) = 0 and |By| = 0.
If Bg == Br(0), we recall that the vector fields ¢(x) == % and z(x) == Rﬁ
satisfy

P(Bg)

—divé =
|Br|

X
n BR7 glaBR = M7
respectively,

. . - X
—divz=0 in R?\ B, Zlop, = ﬂ
x

The following lemma follows by a simple computation and we shall omit
its proof.

LEMMA 9. Let 0<r<R. The vector field £~ (x) = —(1 + B\ satisfies

W R
. .._ P(Bgr)—P(B)) - x x
—dive T =R T BB fap =, G, =
|Bel — 1B, ! e B
The vector field ¢ (x) = (ﬁ — 1)z~ satisfies
. _ P(BR) + P(Br) . 3 X X
_dlvg ’Jr = s 5 n B \Br’ é’\ == _77 é’ -7
Bal— Bl " oo = s =y
r L

FIG. 1. A bean-shaped set as initial datum for the solution.
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FIG. 2. Two balls as initial datum for the solution.

FIG. 3. Three balls as initial datum for the solution.

The vector field ¢ (x) = (1 — ﬁ)ﬁ satisfies

. _ P(Br) + P(B,) — X X
—diverm = PR TP Gy B\ B, ==, =__.
ive Bzl — 1B, n R\ §|aBR ] f|aB,. ]
The vector field £ (x) = (1 + %)RLH satisfies
) P(Br) — P(B,) - X X
—divéht = ——— Br\B,, =, =_—.
ive Bal — |B,] n R\ f|aBR ] f|aB,. x|
In all cases |5 % <1.
Finally, let us check that given a qualitative ordering of a1, ...,a,4 there

is a corresponding solution of (4) of the form #=>"", aiyg,- First, we

observe that once we have specified ¢, the value of a; is given by a; =
—81%. Thus, it will be sufficient to check that given three consecutive

values a;_1,a;,a;.; with their qualitative ordering, we can uniquely
determine the value of a;. For simplicity, let us denote these values as aj,
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FIG. 4. An explicit solution starting from a ring.

ay,as. Let us prove the compatibility of the values of ay, a;, az given by (103)
with its qualitative ordering, if this is specified in advance. There are four
cases to be considered: (i) a3 <ap, a; <ap, (i) a3 <ay, a; > ay, (iii) a3 > ay,
ay > ay, (V) a3 > ap, a; <a,.

Assume that we are in case (i). Then ¢; = 1 and ¢, = —1. Then, by Lemma
9, we have
_ &P(Bo) — P(B1) 0 = P(By) + P(B)) s = —P(B2) — e3P(B3)
IBi| — [Bo| ’ B2l — 1B~ |B3| — | B

Independently of the values of ¢y, &3 € {+1,—1} we have

P(Bo) — P(B1) —P(B>) + P(B3)
1= as, a3<
|B1| — |Bo |B3| — |B:]

Thus, the value of a; is consistent with the qualitative ordering specified in
advance. The other three cases can be checked in a similar way.
Thus, having specified the qualitative ordering of ai,...,a,+1, the
values of ¢; are given, and formula (103) gives the corresponding value of
a;. We have checked the consistency of this choice. In that case, u =
7 aixg, is a solution of (4) and, by Proposition 7, u = ait is a solution of
(7) with f = bit, and a = sign(b)(|b| — A)". The same result, with a similar
proof, can be proved in R". This result has already been observed by
Strong—Chan [34].
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