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In this paper, we study the minimizing total variation flow ut ¼ divðDu=jDujÞ in R
N

for initial data u0 in L1locðR
N Þ; proving an existence and uniqueness result. Then we

characterize all bounded sets O of finite perimeter in R2 which evolve without

distortion of the boundary. In that case, u0 ¼ wO evolves as uðt; xÞ ¼ ð1� lOtÞþwO;
where wO is the characteristic function of O; lO :¼ P ðOÞ=jOj; and P ðOÞ denotes the
perimeter of O:We give examples of such sets. The solutions are such that v :¼ lOwO
solves the eigenvalue problem �div Dv

jDvj

� �
¼ v: We construct other explicit solutions

of this problem. As an application, we construct explicit solutions of the denoising

problem in image processing. # 2002 Elsevier Science (USA)

Key Words: total variation flow; nonlinear parabolic equations; finite perimeter

sets; calibrable sets.
1. INTRODUCTION

In this paper, we are interested in the equation

@u
@t

¼ div
Du
jDuj

� �
in �0;1½
RN ; ð1Þ
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coupled with the initial condition

uð0; xÞ ¼ u0ðxÞ; x 2 RN ð2Þ

for a given u0 2 LlocðR
N Þ: This PDE appears (in a bounded domain D) in the

steepest descent method for minimizing the total variation, a method
introduced by Rudin et al. [33] in the context of image denoising and
reconstruction. When dealing with the deconvolution or reconstruction
problem one minimizes the total variation functionalZ

D
jDuj ð3Þ

with some constraints which model the process of image acquisition,
including blur and noise. The constraint can be written as z ¼ K *uþ n;
where z is the observed image, K is a convolution operator whose kernel
represents the point spread function of the optical system, n is the noise and
u is the ideal image, previous to distortion. The denoising problem
corresponds to the case K ¼ I ; and the constraint becomes z ¼ uþ n: Then
one minimizes (3) under one of the above constraints [33]. Numerical
experiments show that the model is adapted to restore the discontinuities of
the image [18, 25, 33, 35, 36]. Indeed, the underlying functional model is the
space of BV functions, i.e., functions of bounded variation, which admit a
discontinuity set which is countably rectifiable [2, 26, 38].
To solve (3) (with the specified constraint) one formally computes the Euler–

Lagrange equation and solves it with Neumann boundary conditions, which
amounts to a reflection of the image across the boundary of D: Many
numerical methods have been proposed to solve this equation in practice, see
for instance [18, 25, 33, 35, 36] (see also [31] for an interesting analysis of the
features of most numerical methods explaining, in particular, the staircasing
effect). This leads to an iterative process which, in some sense, can be
understood as a gradient descent. Thus, to understand how total variation is
minimized by functional (3) we shall forget about the constraint and study the
gradient descent flow of (3). In a bounded domain, this leads to the study of (1)
under Neumann boundary conditions and this study was done in [3] where the
authors proved existence and uniqueness of solutions, and constructed some
particular explicit solutions of the equation. This study was completed in [5]
where the authors proved that the solution reaches its asymptotic state in finite
time and studied its extinction profile, given in terms of the eigenvalue problem

�div
Dv
Dvj

� �
¼ v: ð4Þ

A similar study was done in [5] for Dirichlet boundary conditions. Still, we
need a better understanding of the behavior of (1) when minimizing the total
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variation and, for that, we need to have at our disposal explicit solutions
which display this behavior. To avoid technicalities due to the presence of
the boundary, we will study (1) in the whole space and we will construct a
family of explicit solutions corresponding to the evolution of sets, i.e.,
solutions whose initial condition is given by the characteristic function wO of
a set O: In particular, in two space dimensions, we are interested in
understanding for which bounded sets O the solution of (1) and (2) with
u0 ¼ wO decreases its height, without distortion of the boundary of O:
In this respect, a useful remark is that functional (3) can be regarded, up

to a constant and on a bounded domain, as the anisotropic perimeter [12] of
the set fðx; yÞ 2 RN 
 R: y5uðxÞg; corresponding to the anisotropy given by
the cylindrical norm fðz; zÞ :¼ maxfjjzjj; jzjg; for ðz; zÞ 2 RN 
 R: Therefore,
Eq. (1) is similar (even if not exactly the same) to the equation defining the
anisotropic mean curvature flow corresponding to f: Interestingly enough,
it turns out that, when N ¼ 2; the problem of determining those bounded
connected sets O whose characteristic function evolve by decreasing its
height is close to the problem of determining which planar horizontal facets
of a given solid subset of R2 
 R do not break or bend under the f-
anisotropic mean curvature flow. This problem has been considered in
[10, 11] and the techniques developed there can be adapted, to some extent,
to the present situation (see in particular Theorem 4).
Let us explain the plan of the paper. In Section 2, we recall some basic facts

about BV functions and the integration by parts formula. In Section 3, we
study the well-posedness of (1) and (2) for initial data u0 in L2ðR

N Þ: In Section
4, we give the definition of entropy solutions of (1) and (2) for initial data u0 in
L1locðR

N Þ; and we state the existence and uniqueness theorem (see Theorem 3).
Sections 5 and 6 are devoted to prove the uniqueness and the existence part of
Theorem 3, respectively. In Section 7, we prove the regularity in time of the
entropy solution when the initial condition is bounded above or below by a
constant. In Section 8, we characterize all bounded connected subsets O of R2 for
which the solution of (1) and (2) with u0 ¼ wO does not deform its boundary
but only decreases its height. In Theorem 4, we prove that if C � R2 is a
bounded set of finite perimeter which is connected, then the solution u of (1)
and (2) with uð0; xÞ ¼ wCðxÞ is given by

uðt; xÞ ¼ ð1� lCtÞ
þwCðxÞ; lC :¼

P ðCÞ
jCj

(where P ðCÞ stands for the perimeter of C and jCj for the Lebesgue measure
of C) if and only C is convex, @C is of class C1;1 and

ess sup
p2@C

k@CðpÞ4lC ; ð5Þ
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where k@C denotes the (almost everywhere defined) curvature of @C: The
characterization for general nonconnected bounded sets of finite perimeter O
is the argument of Section 9, see Theorems 6 and 7. In particular, beside the
conditions of Theorem 4 on each connected component Ci of O; i ¼
1; . . . ;m; a new property must be added in the list of necessary and sufficient
conditions, which reads as follows. Let 04k4m and let fi1; . . . ; ikg �
f1; . . . ;mg be any k-uple of indices; if we denote by Ei1;...;ik a solution of the
variational problem

min P ðEÞ:
[k
j¼1

Cij � E � R2=
[m
j¼kþ1

Cij

( )
;

then

P ðEi1;...;ik Þ5
Xk
j¼1

P ðCij Þ: ð6Þ

Notice that (6) implies, in particular, a condition between the mutual
distances between all sets Ci:More generally, we construct solutions of (4) of
the form

Pm
i¼1 lCiwCi where lCi :¼

P ðCiÞ
jCi j

; Ci are bounded open convex sets of
class C1;1 satisfying the curvature bound (5) and the variational property
described in (6).
The previous results allow us to explicitly compute the minimum of the

denoising problem

min
u2L2ðR2Þ\BVðR2Þ

Z
R2

jDuj þ
1

2l

Z
R2
ðu� f Þ2 dx

� �
; ð7Þ

where l > 0; f :¼
Pm

i¼1 bilCiwCi ; for bi 2 R and Ci sets of the type described
above. Indeed, in Section 10 we prove that if the function v :¼

Pm
i¼1 lCi wCi

solves (4) then u :¼
Pm

i¼1 ailCiwCi solves (7) where ai :¼ signðbiÞðjbij � lÞþ: A
converse statement holds if bi � ai ¼ l; or bi � ai ¼ �l; for all i ¼ 1; . . . ;m:
Note that ai is given in terms of a soft thresholding of bi with threshold l:
This is in coincidence with the soft thresholding rule applied to the wavelet
coefficients of a noisy function (the uncorrupted function being in some
Besov space) [22–24, 37]. Finally, in Section 11, we illustrate our results, in
particular the role of condition (6), with some explicit examples.

2. SOME NOTATION

Let Q be an open subset of RN : A function u 2 L1ðQÞ whose gradient Du in
the sense of distributions is a (vector valued) Radon measure with finite total
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variation in Q is called a function of bounded variation. The class of such
functions will be denoted by BVðQÞ: The total variation of Du on Q turns out
to be

sup

Z
Q
u div z dx: z 2 C1

0 ðQ;RnÞ; jjzjjL1ðQÞ :¼ ess sup
x2Q

jzðxÞj41

( )
ð8Þ

(where for a vector v ¼ ðv1; . . . ; vN Þ 2 RN we set jvj2 :¼
PN

i¼1 v
2
i ) and will be

denoted by jDujðQÞ or by
R
Q jDuj: It turns out that the map u! jDujðQÞ is

L1locðQÞ-lower semicontinuous. BVðQÞ is a Banach space when endowed with
the norm

R
Q juj dxþ jDujðQÞ: We recall that BVðRN Þ � LN=ðN�1ÞðRN Þ: The

total variation of u on a Borel set B � Q is defined as inffjDujðAÞ: A open;
B � A � Qg:
A measurable set E � RN is said to be of finite perimeter in Q if (8) is finite

when u is substituted with the characteristic function wE of E: The perimeter
of E in Q is defined as P ðE;QÞ :¼ jDwEjðQÞ: We shall use the notation P ðEÞ :
¼ P ðE;RN Þ: For sets of finite perimeter E one can define the essential
boundary @nE; which is countably ðN � 1Þ rectifiable with finite HN�1

measure, and compute the outer unit normal nEðxÞ atHN�1 almost all points
x of @nE; where HN�1 is the ðN � 1Þ-dimensional Hausdorff measure.
Moreover, jDwEj coincides with the restriction of H

N�1 to @nE:
Each set E of finite perimeter will be identified with the representative (in

its Lebesgue class) given by the set of all points x 2 RN such that limr!0þ
jE\BrðxÞj
oNrN

¼ 1: Here BrðxÞ denotes the open ball of radius r centered at x; j � j
stands for the Lebesgue measure, and oN is the Lebesgue measure of the
unit ball of RN : It is clear that if @E is Lipschitz continuous, then the precise
representative we are choosing is an open set.
We now recall [1] some basic results about connected components of sets

of finite perimeter. Let E � RN be a set with finite perimeter. We say that E is
decomposable if there exists a partition ðA;BÞ of E such that P ðEÞ ¼
P ðAÞ þ P ðBÞ and both jAj and jBj are strictly positive. We say that E is
indecomposable if it is not decomposable; notice that the properties of being
decomposable or indecomposable are invariant modulo Lebesgue null sets.
It turns out that, if E is a set with finite perimeter in RN ; there exists a unique
at most countable family of pairwise disjoint (modulo j � j) indecomposable
sets fEigi2I such that jEij > 0 and P ðEÞ ¼

P
i P ðEiÞ: Moreover HN�1

E=
S
i2I Ei

� �
¼ 0 and the Ei’s are maximal indecomposable sets, i.e., any

indecomposable set F � E is contained (modulo j � j) in some Ei:We call the
sets Ei the connected components of E:
We denote by BVlocðQÞ the space of functions w 2 L1locðQÞ such that wj 2

BVðQÞ for all j 2 C1
0 ðQÞ: For results and informations on functions of

bounded variation we refer to [2, 26].
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If m is a (possibly vector valued) Radon measure and f is a Borel function,
the integration of f with respect to m will be denoted by

R
fdm:When m is the

Lebesgue measure, the symbol dx will be often omitted.
By L1wð�0; T ½;BVðR

N ÞÞ we denote the space of functions w : ½0; T � !
BVðRN Þ such that w 2 L1ð�0; T ½
RN Þ; the maps t 2 ½0; T � !

R
RN

f dDwðtÞ are
measurable for every f 2 C10ðR

N ;RN Þ and
R T
0 jDwðtÞjðRN Þ dt51: By L1wð�0;

T ½;BVlocðR
N ÞÞ we denote the space of functions w : ½0; T � ! BVlocðR

N Þ such
that wj 2 L1wð�0; T ½;BVðR

N ÞÞ for all j 2 C1
0 ðRN Þ:

Following [8], let

X2ðR
N Þ :¼ fz 2 L1ðRN ;RN Þ: div z 2 L2ðRN Þg:

If z 2 X2ðR
N Þ and w 2 L2ðRN Þ \ BVðRN Þ we define the functional ðz;DwÞ :

C1
0 ðRN Þ ! R by the formula

hðz;DwÞ;ji :¼ �
Z
RN
wj div z dx�

Z
RN
w z � rj dx:

Then ðz;DwÞ is a Radon measure in RN ;Z
RN

ðz;DwÞ ¼
Z
RN
z � rw dx 8w 2 L2ðRN Þ \ W 1;1ðRN Þ

and Z
B
ðz;DwÞ

����
����4
Z
B
jðz;DwÞj4jjzjj1

Z
B
jDwj 8B Borel set � RN : ð9Þ

Moreover, we have the following integration by parts formula [8], for z 2
X2ðR

N Þ and w 2 L2ðRN Þ \ BVðRN Þ:Z
RN
w div z dxþ

Z
RN

ðz;DwÞ ¼ 0: ð10Þ

We denote by yðz;DwÞ 2 L1jDwjðR
N Þ the density of ðz;DwÞ with respect to jDwj;

that is

ðz;DwÞðBÞ ¼
Z
B
yðz;DwÞ d jDwj for any Borel set B � RN : ð11Þ

In particular, if O is bounded and has finite perimeter in RN ; from (10)
and (11) it follows thatZ

O
div z dx ¼

Z
RN
ðz;�DwOÞ ¼

Z
@nO

yðz;�DwOÞ dH
N�1: ð12Þ
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Notice also that if z1; z2 2 X2ðR
N Þ and z1 ¼ z2 almost everywhere on O;

then yðz1;�DwOÞðxÞ ¼ yðz2;�DwOÞðxÞ for H
N�1-almost every x 2 @nO:

We recall the following result proved in [8].

Theorem 1. Let O � RN be a bounded open set with Lipschitz

boundary. Let u 2 BVðOÞ and z 2 L1ðO;RN Þ with div z 2 LN ðOÞ:
Then there exists a function ½z � nO� 2 L1ð@OÞ such that jj½z � nO�jjL1ð@OÞ
4jjzjjL1ðO;RN Þ; and

Z
O
u div z dxþ

Z
O
yðz;DuÞ d jDuj ¼

Z
@O

½z � nO�u dHN�1: ð13Þ

In particular, if O is a bounded open set with Lipschitz boundary, then
(12) has a meaning also if z is defined only on O and not on the whole of RN ;
precisely when z 2 L1ðO;RN Þ with divz 2 LN ðOÞ: In this case we mean that
yðz;�DwOÞ coincides with ½z � nO�:

Remark 1. Let O � R2 be a bounded Lipschitz open set, and let zinn 2
L1ðO;R2Þ with div zinn 2 L2locðOÞ; and zout 2 L1ðR2= %OO;R2Þ with div zout 2
L2locðR

2= %OOÞ: Assume that

yðzinn;�DwOÞðxÞ ¼ �yðzout;�DwR2=%OOÞðxÞ for H1 � a:e x 2 @O:

Then if we define z :¼ zinn on O and z :¼ zout on R2= %OO; we have z 2
L1ðR2;R2Þ and div z 2 L2locðR

2Þ:

3. INITIAL CONDITIONS IN L2ðRN Þ

Throughout the paper, given a (possibly vector valued) function f
depending on space and time, we usually write f ðtÞ to mean the function
f ðt; �Þ:

Definition 1. A function u 2 Cð½0; T �; L2ðRN ÞÞ is called a strong
solution of (1) if

u 2 W 1;2
loc ð0; T ; L

2ðRN ÞÞ \ L1wð�0; T ½;BVðR
N ÞÞ

and there exists z 2 L1ð�0; T ½
RN ;RN Þ with jjzjj141 such that

ut ¼ div z in D0ð�0; T ½
RN Þ
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and Z
RN

ðuðtÞ � wÞutðtÞ ¼
Z
RN
ðzðtÞ;DwÞ �

Z
RN

jDuðtÞj

8w 2 L2ðRN Þ \ BVðRN Þ; a:e: t 2 ½0; T �: ð14Þ

The aim of this section is to prove the following result.

Theorem 2. Let u0 2 L2ðR
N Þ: Then there exists a unique strong solution u

of (1), (2) in ½0; T � 
 RN for every T > 0: Moreover, if u and v are the strong

solutions of (1) corresponding to the initial conditions u0; v0 2 L2ðR
N Þ; then

jjðuðtÞ � vðtÞÞþjj24jjðu0 � v0Þ
þjj2 for any t > 0: ð15Þ

Proof. Let us introduce the following multivalued operatorA in L2ðRN Þ:
a pair of functions ðu; vÞ belongs to the graph of A if and only if

u 2 L2ðRN Þ \ BVðRN Þ; v 2 L2ðRN Þ; ð16Þ

there exists z 2 X2ðR
N Þ with jjzjj141; such that v ¼ �div z ð17Þ

and Z
RN
ðw� uÞv4

Z
RN
z � rw�

Z
RN

jDuj 8w 2 L2ðRN Þ \ W 1;1ðRN Þ:

Let also C : L2ðRN Þ !� �1;þ1� be the functional defined by

CðuÞ :¼

R
RN

jDuj if u 2 L2ðRN Þ \ BVðRN Þ;

þ1 if u 2 L2ðRN Þ=BVðRN Þ:

(
ð18Þ

SinceC is convex and lower semicontinuous in L2ðRN Þ; its subdifferential @C
is a maximal monotone operator in L2ðRN Þ:
We divide the proof of the theorem into three steps.
Step 1. The following assertions are equivalent:

(a) ðu; vÞ 2 A;

(b) (16) and (17) hold,

andZ
RN
ðw� uÞv4

Z
RN

ðz;DwÞ �
Z
RN

jDuj 8w 2 L2ðRN Þ \ BVðRN Þ; ð19Þ
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(c) (16) and (17) hold, and (19) holds with the equality instead of the
inequality;

(d) (16) and (17) hold, andZ
RN

ðz;DuÞ ¼
Z
RN

jDuj: ð20Þ

It is clear that (c) implies (b), and (b) implies (a), while (d) follows from
(b) with the choice w ¼ u using (9). In order to prove that (a) implies (b) it is
enough to use Lemmas 5.2 and 1.8 of [8]. To obtain (c) from (d) it suffices to
multiply both terms of the equation v ¼ �div z by w� u; for w 2 L2ðRN Þ \
BVðRN Þ and to integrate by parts using (10).

Step 2. The operator A is maximal monotone in L2ðRN Þ with dense
domain. The proof of the monotonicity ofA follows from (c) of Step 1 and
(10). Note also that, as a consequence of Step 1; one can prove that A is
closed. The other assertions can be proved as in [3, 4]. Indeed, if f 2
L2ðRN Þ \ L1ðRN Þ has compact support, using the idea of approximating A
with the p-Laplace operator (see [3, 4]), one can prove that, if l > 0; there
exists a solution u of

uþ lAu ¼ f : ð21Þ

The closedness of A implies that (21) can be solved for any f 2 L2ðRN Þ: It
follows that the range of I þ lA is the whole of L2ðRN Þ; and therefore A is
maximal monotone. The density of the domain ofA can be proved as in [3].

Step 3. We also haveA ¼ @C: The proof is similar to the proof of Lemma
1 in [4] and we omit the details.
As a consequence, the semigroup generated by A coincides with the

semigroup generated by @C and therefore (see [16]) uðt; xÞ ¼ e�tAu0ðxÞ is a
strong solution of

ut þAu]0;

i.e., u 2 W 1;2
loc ð�0; T ½; L

2ðRN ÞÞ and �utðtÞ 2 AuðtÞ for almost all t 2 �0; T ½ [16,
Theorem 3.1]. Then, according to the equivalence proved in Step 1, we have thatZ

RN
ðuðtÞ � wÞutðtÞ ¼

Z
RN
ðzðtÞ;DwÞ �

Z
RN

jDuðtÞj

8w 2 L2ðRN Þ \ BVðRN Þ
ð22Þ

for almost all t 2�0; T ½: Now, choosing w ¼ u� j; j 2 C1
0 ðRN Þ; we see that

utðtÞ ¼ div zðtÞ in D0ðRN Þ for almost every t 2�0; T ½:We deduce that ut ¼ div z
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in D0ð�0; T ½
RN Þ: We have proved that u is a strong solution of (1) in the
sense of Definition 1.
The contractivity estimate (15) of Theorem 2 follows as in [3, 4]. This

concludes the proof of the Theorem. ]

Given a function g 2 L2ðRN Þ \ LN ðRN Þ; we define

jj gjjn :¼ sup
Z
RN
gðxÞuðxÞ dx

����
����: u 2 L2ðRN Þ \ BVðRN Þ;

Z
RN

jDuj41
� �

:

Part (b) of the next lemma gives a characterization of A0 which will be
useful in Section 9 to find vector fields whose divergence is assigned. This
part of the lemma was proved in [30] in the context of the analysis of the
Rudin–Osher–Fatemi model for image denoising; for the sake of complete-
ness, we shall include its proof.

Lemma 1. Let f 2 L2ðRN Þ \ LN ðRN Þ and l > 0: The following assertions

hold:

(a) The function u is the solution of

min
w2L2ðRN Þ\BVðRN Þ

DðwÞ; DðwÞ :¼
Z
RN

jDwj þ
1

2l

Z
RN

ðw� f Þ2 dx ð23Þ

if and only if there exists z 2 X2ðR
N Þ satisfying (20) with jjzjj141 and

�l div z ¼ f � u:

(b) The function u � 0 is the solution of (23) if and only if jjf jjn4l:

(c) If N ¼ 2; A0 ¼ ff 2 L2ðR2Þ: jjf jjn41g:

Proof. (a) Thanks to the strict convexity of D; u is the solution of (23) if
and only if 0 2 @DðuÞ ¼ @CðuÞ þ ðu� f Þ ¼ AðuÞ þ ðu� f Þ; where C is
defined in (18) and the last equality follows from Step 3 in the proof of
Theorem 2. This is equivalent to �l divð DujDuj Þ ¼ f � u; i.e., there exists z 2
X2ðR

N Þ satisfying (20) with jjzjj141 and �l div z ¼ f � u (recall the
definition of A in the proof of Theorem 2).

(b) The function u � 0 is the solution of (23) if and only ifZ
RN

jDvj þ
1

2l

Z
RN
ðv� f Þ2 dx5

1

2l

Z
RN
f 2 dx

8v 2 L2ðRN Þ \ BVðRN Þ:
ð24Þ
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Replacing v by ev (where e > 0), expanding the L2-norm, dividing by e > 0;
and letting e ! 0þ we have

Z
RN
f ðxÞvðxÞ dx

����
����4l

Z
RN

jDvj 8v 2 L2ðRN Þ \ BVðRN Þ: ð25Þ

Since (25) implies (24), we have that (24) and (25) are equivalent. The
assertion follows by observing that (25) is equivalent to jjf jjn4l:
(c) Let N ¼ 2: We have A0 ¼ fv 2 L2ðR2Þ: 9z 2 X2ðR

2Þ; jjzjj141;�div z ¼
vg: On the other hand, from (a) and (b) it follows that jjf jjn41 if and only if
there exists z 2 X2ðR

2Þ with jjzjj141 and such that f ¼ �div z: Then the
assertion follows. ]

Let us give a heuristic explanation of what the vector field z
represents. Condition (20) essentially means that z has unit norm and is
orthogonal to the level sets of u: In some sense, z is invariant under local
contrast changes. To be more precise, we observe that if u ¼

Pp
i¼1 ciwBi where

Bi are sets of finite perimeter such that HN�1ððBi [ @nBiÞ \ ðBj [ @nBjÞÞ ¼ 0
for i=j; ci 2 R; and

�div
Du
jDuj

� �
¼ f 2 L2ðRN Þ; ð26Þ

then also �div
Dv
jDvj

� �
¼ f for any v ¼

Pp
i¼1 diwBi where di 2 R and

signðdiÞ ¼ signðciÞ: Indeed, there is a vector field z 2 L1ðRN ;RN Þ such that
jjzjj141; �div z ¼ f and (20) holds. Then one can check that jDwBi j ¼
signðciÞðz;DwBiÞ as measures in RN and, as a consequence ðz;DvÞ ¼ jDvj as
measures in RN :
Let us also observe that the solutions of (26) are not unique. Indeed,

if u 2 L2ðRN Þ \ BVðRN Þ is a solution of (26) and g 2 C1ðRÞ with g0ðrÞ > 0
for all r 2 R; then w ¼ gðuÞ is also a solution of (26). In other words, a
global contrast change of u produces a new solution of (26). In an
informal way, the previous remark can be rephrased by saying that also
local contrast changes of a given solution of (26) produce new solutions of
it. To express this nonuniqueness in a more general way we suppose
that ðu1; vÞ; ðu2; vÞ 2 A; i.e., there are vector fields zi 2 X2ðR

N Þ with jjzijj141;
such that

�div zi ¼ v;
Z
RN

ðzi;DuiÞ ¼
Z
RN

jDuij; i ¼ 1; 2:
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Then

0 ¼ �
Z
RN

ðdiv z1 � div z2Þðu1 � u2Þ dx ¼
Z
RN

ðz1 � z2;Du1 � Du2Þ

¼
Z
RN

jDu1j � ðz2;Du1Þ þ
Z
RN

jDu2j � ðz1;Du2Þ:

Hence Z
RN

jDu1j ¼
Z
RN
ðz2;Du1Þ and

Z
RN

jDu2j ¼
Z
RN

ðz1;Du2Þ:

In other words, z1 is in some sense a unit vector field of normals to the level
sets of u2 and a similar thing can be said of z2 with respect to u1: Any two
solutions of (26) should be related in this way.
The following estimate, which is a consequence of the homogeneity ofA

[14] will be useful to prove the regularity in time of the solution when the
initial condition is in L1locðR

N Þ (see Lemma 4 of Section 7).

Proposition 1. Let u0 2 L2ðR
N Þ; u050; and let u be the strong solution of

(1) and (2). Then

u0ðtÞ4
uðtÞ
t

for a:e: t > 0:

Moreover, if u040; then u0ðtÞ5uðtÞ
t for almost every t > 0:

Proof. We consider the case u050; the other case being similar. First, let
us prove that for any l > 0; and any t > 0; we have that

l�1uðltÞ ¼ e�tAðl�1u0Þ: ð27Þ

By Crandall–Liggett’s exponential formula e�tAðu0Þ ¼ limn!1ðI þ t
nAÞ�n


 ðu0Þ in L2ðR
N Þ [21], it is enough to prove that for all m > 0;

ðI þ mAÞ�1ðl�1u0Þ ¼ l�1ðI þ lmAÞ�1ðu0Þ: ð28Þ

We have vm ¼ ðI þ mAÞ�1ðl�1u0Þ if and only if ðvm;
l�1u0�vm

m Þ 2 A; which is
equivalent to the existence of zm 2 X2ðR

N Þ such that

�div zm ¼
l�1u0 � vm

m
;

Z
RN

ðzm;DvmÞ ¼
Z
RN

jDvmj:
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Then, we have

�div zm ¼
u0 � lvm

lm
;

Z
O
ðzm;DðlvmÞÞ ¼

Z
RN

jDðlvmÞj;

which is equivalent to say that lvm;
u0 � lvm

lm

� �
2 A; that is, vm ¼ l�1ðI þ

lmAÞ�1ðu0Þ; and (28) holds.
Fix t > 0 a differentiability point of u: For h > 0; let l be such that lt ¼

t þ h: Now, applying (27), we obtain

uðt þ hÞ � uðtÞ ¼ uðltÞ � uðtÞ ¼ ð1� l�1ÞuðltÞ þ l�1uðltÞ � uðtÞ

¼
h

t þ h
uðt þ hÞ þ e�tAðl�1u0Þ � uðtÞ:

Now, since l�1u04u0; by Theorem 2 we get e�tAðl�1u0Þ4uðtÞ: Hence

uðt þ hÞ � uðtÞ4
h

t þ h
uðt þ hÞ;

and the result follows. ]

4. THE NOTION OF ENTROPY SOLUTION

Let

P :¼ fp 2 W 1;1ðRÞ: p050; suppðp0Þ compactg:

Definition 2. A function u 2 Cð½0; T �; L1locðR
N ÞÞ is called an entropy

solution of (1), (2) if uðtÞ converges to u0 in L1locðR
N Þ as t! 0þ;

pðuÞ 2 L1wð�0; T ½;BVlocðR
N ÞÞ 8p 2 P;

and there exists z 2 L1ð�0; T ½
RN ;RN Þ with jjzjj141 such that

ut ¼ div z in D0ð�0; T ½
RN Þ ð29Þ

and

�
Z T

0

Z
RN
jðu� lÞZt þ

Z T

0

Z
RN

Z d jDðpðu� lÞÞj

þ
Z T

0

Z
RN
z � rZ pðu� lÞ40 ð30Þ
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for all l 2 R; all Z 2 C1ð�0; T ½
RN Þ; with Z50; Zðt; xÞ ¼ fðtÞcðxÞ; being f 2
C1
0 ð�0; T ½Þ; c 2 C1

0 ðRN Þ; and all p 2 P; where jðrÞ :¼
R r
0 pðsÞ ds:

The notion of entropy solution for scalar conservation laws was
introduced by Kruzhkov [29] in order to prove their uniqueness and the
L1 contractivity estimate using the doubling variables technique. Carrillo
[17] was the first to apply Kruzhkov’s method to parabolic equations, and
more recently, Benilan et al. [13] introduced the notion of entropy solution
for elliptic equations in divergence form in order to prove uniqueness when
the right-hand side is a function in L1: The case of parabolic equations was
considered by Andreu et al. [7]. In all these cases, the elliptic operator was in
divergence form and it excluded the case of operators derived from
functionals with linear growth in Du: The case of the total variation with
Neumann and Dirichlet boundary conditions was considered in [3, 4],
respectively, and the general case was considered in [6].
Inequality (30) is a weak way to impose equality (14); indeed if we

integrate by parts, we formally substitute (29), using jjzjj141 and the fact
that Z is nonnegative, we getZ

RN
z � rZpðu� lÞ ¼ �

Z
RN
jðu� lÞtZ�

Z
RN

Z dðz;Dðpðu� lÞÞÞ

5 �
Z
RN
jðu� lÞt Z�

Z
RN

Z d jðz;Dðpðu� lÞÞj;

which, after integration in time, shows that the opposite inequality in (30) is
satisfied.

Remark 2. If u0 2 L2ðR
N Þ; then the strong solution of (1) and (2)

coincides with the entropy solution, see Lemma 2 in Section 6.

The aim of Sections 5 and 6 is to prove the following result.

Theorem 3. Let u0 2 L1locðR
N Þ: Then there exists a unique entropy solution

of (1) and (2) in ½0; T � 
 RN for all T > 0: Moreover, if u0; u0k 2 L1locðR
N Þ are

such that u0k ! u0 in L1locðR
N Þ and u; uk denote the corresponding entropy

solutions, then uk ! u in Cð½0; T �; L1locðR
N ÞÞ as k ! þ1:

5. UNIQUENESS IN L1locðR
N Þ

Let a > N ; TkðrÞ :¼ maxðminðr; kÞ;�kÞ; Tþ
k ðrÞ ¼ maxðTkðrÞ; 0Þ ðk50Þ and

let ja be the primitive of aTþ
k ðrÞ

a�1 vanishing at r ¼ 0: If N ¼ 1; we take
a52; so that j0a 2 W

1;1ðRÞ:
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Proposition 2. Let u0; %u0u0 2 L1locðR
N Þ: Let u; %uu be two entropy solutions of

(1) with initial conditions u0; %u0u0; respectively. Then

Z
RN
jaðuðtÞ � %uuðtÞÞ4

Z
RN
jaðu0 � %uu0Þ 8t > 0: ð31Þ

Proof. Let T > 0 and QT :¼�0; T ½
RN : Write j ¼ ja; jnðrÞ :¼ jð�rÞ; pðrÞ :
¼ aTþ

k ðrÞ
a�1; pnðrÞ :¼ jn

0
ðrÞ ¼ �pð�rÞ: Let z; %zz 2 L1ðQT ;R

N Þ with jjzjj141;
jj%zzjj141 and such that, if r; %rr 2 RN ; with jjrjj41; jj%rrjj41 and l1; l2 2 R;
then

�
Z T

0

Z
RN
jðu� l1ÞZt þ

Z T

0

Z
RN

Z d jDðpðu� l1ÞÞj

þ
Z T

0

Z
RN

ðz� rÞ � rZ pðu� l1Þ þ
Z T

0

Z
RN
r � rZpðu� l1Þ40; ð32Þ

and

�
Z T

0

Z
RN
jnð %uu � l2ÞZt þ

Z T

0

Z
RN

Z d jDðpnð %uu � l2ÞÞj

þ
Z T

0

Z
RN
ð%zz � %rrÞ � rZpnð %uu � l2Þ þ

Z T

0

Z
RN

%rr � rZpnð %uu � l2Þ40; ð33Þ

for all Z 2 C1ðQT Þ; with Z50; Zðt; xÞ ¼ fðtÞcðxÞ; being f 2 C1
0 ð�0; T ½Þ; c 2

C1
0 ðRN Þ:
We choose two different pairs of variables ðt; xÞ; ðs; yÞ and consider u; z as

functions of ðt; xÞ and %uu; %zz as functions of ðs; yÞ: Let 04f 2 C1
0 ð�0; T ½Þ;

04c 2 C1
0 ðRN Þ; ðrnÞ a standard sequence of mollifiers in RN and ð *rrnÞ a

sequence of mollifiers in R: Define

Znðt; x; s; yÞ :¼ *rrnðt � sÞrnðx� yÞf
t þ s
2

� �
c
xþ y
2

� �
50:

Note that for n sufficiently large,

ðt; xÞ/Znðt; x; s; yÞ 2 C
1
0 ð�0; T ½
RN Þ 8ðs; yÞ 2 QT ;

ðs; yÞ/Znðt; x; s; yÞ 2 C
1
0 ð�0; T ½
RN Þ 8ðt; xÞ 2 QT :
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Hence, for ðs; yÞ fixed, if we take l1 ¼ %uuðs; yÞ and r ¼ %zzðs; yÞ in (32), we get

�
Z T

0

Z
RN
jðu� %uuðs; yÞÞðZnÞt þ

Z T

0

Z
RN

Zn d jDxðpðu� %uuðs; yÞÞÞj

þ
Z T

0

Z
RN
ðz� %zzðs; yÞÞ � rxZnpðu� %uuðs; yÞÞ

þ
Z T

0

Z
RN

%zzðs; yÞ � rxZnpðu� %uuðs; yÞÞ40: ð34Þ

Similarly, for ðt; xÞ fixed, if we take l2 ¼ uðt; xÞ and %rr ¼ zðt; xÞ in (33), we get

�
Z T

0

Z
RN
jnð %uu � uðt; xÞÞðZnÞs þ

Z T

0

Z
RN

Zn d jDyðp
nð %uu � uðt; xÞÞÞj

þ
Z T

0

Z
RN
ð%zz � zðt; xÞÞ � ryZnp

nð %uu � uðt; xÞÞ

þ
Z T

0

Z
RN
zðt; xÞ � ryZn p

nð %uu � uðt; xÞÞ40: ð35Þ

Now, since pnðrÞ ¼ �pð�rÞ and jnðrÞ ¼ jð�rÞ; we can rewrite (35) as

�
Z T

0

Z
RN
jðuðt; xÞ � %uuÞðZnÞs þ

Z T

0

Z
RN

Zn d jDyðpðuðt; xÞ � %uuÞÞj

þ
Z T

0

Z
RN

ðzðt; xÞ � %zzÞ � ryZnpðuðt; xÞ � %uuÞ

�
Z T

0

Z
RN
zðt; xÞ � ryZnpðuðt; xÞ � %uuÞ40: ð36Þ

Integrating (34) with respect to ðs; yÞ and (36) with respect to ðt; xÞ and
taking the sum yields

�
Z
QT
QT

jðuðt; xÞ � %uuðs; yÞÞððZnÞt þ ðZnÞsÞ

þ
Z
QT
QT

Zn d jDxðpðu� %uuðs; yÞÞÞj þ
Z
QT
QT

Zn d jDyðpðuðt; xÞ � %uuðsÞÞj

þ
Z
QT
QT

ðzðt; xÞ � %zzðs; yÞÞ � ðrxZn þryZnÞpðuðt; xÞ � %uuðs; yÞÞ

þ
Z
QT
QT

%zzðs; yÞ � rxZn pðuðt; xÞ � %uuðs; yÞÞ

�
Z
QT
QT

zðt; xÞ � ryZn pðuðt; xÞ � %uuðs; yÞÞ40: ð37Þ
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Now, by Green’s formula we haveZ
QT
QT

%zzðs; yÞ � rxZnpðuðt; xÞ � %uuðs; yÞÞ þ
Z
QT
QT

Zn d jDxðpðuðt; xÞ � %uuðs; yÞÞÞj

¼ �
Z
QT
QT

Znð%zzðs; yÞ;Dxpðuðt; xÞ � %uuðs; yÞÞÞ

þ
Z
QT
QT

Zn d jDxðpðuðt; xÞ � %uuðs; yÞÞÞj50

and

�
Z
QT
QT

zðt; xÞ � ryZnpðuðt; xÞ � %uuðs; yÞÞ

þ
Z
QT
QT

Zn d jDyðpðuðt; xÞ � %uuðs; yÞÞÞj

¼
Z
QT
QT

Zn ðzðt; xÞ;Dypðuðt; xÞ � %uuðs; yÞÞÞ

þ
Z
QT
QT

Zn d jDyðpðuðt; xÞ � %uuðs; yÞÞÞj50:

Hence, from (37), it follows that

�
Z
QT
QT

jðuðt; xÞ � %uuðs; yÞÞððZnÞt þ ðZnÞsÞ

þ
Z
QT
QT

ðzðt; xÞ � %zzðs; yÞÞ � ðrxZn þryZnÞpðuðt; xÞ � %uuðs; yÞÞ40: ð38Þ

Since

ðZnÞt þ ðZnÞs ¼ *rrnðt � sÞrnðx� yÞf
0 t þ s
2

� �
c
xþ y
2

� �
and

rxZn þryZn ¼ *rrnðt � sÞrnðx� yÞf
t þ s
2

� �
rc

xþ y
2

� �
;

passing to the limit in (38) as n! þ1 yields

�
Z
QT

jðuðt; xÞ � %uuðt; xÞÞf0ðtÞcðxÞ

þ
Z
QT

ðzðt; xÞ � %zzðt; xÞÞ � rcðxÞ fðtÞpðuðt; xÞ � %uuðt; xÞÞ40: ð39Þ
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Let us choose c ¼ ja; j 2 C1
0 ðRN Þ; j50: Since (39) holds for any f 2

C1
0 ð�0; T ½Þ; it follows that

d
dt

Z
RN
jðuðt; xÞ � %uuðt; xÞÞjðxÞa

4
Z
RN

ð%zzðt; xÞ � zðt; xÞÞ � rjðxÞapðuðt; xÞ � %uuðt; xÞÞ:

Therefore,

d
dt

Z
RN
jðuðt; xÞ � %uuðt; xÞÞjðxÞa42a

Z
RN

jpðuðt; xÞ � %uuðt; xÞÞjja�1jrjj

42a
Z
RN
ðjpðuðt; xÞ � %uuðt; xÞÞjja�1Þa=ða�1Þ

� �ða�1Þ=a Z
RN

jrjja
� �1=a

42a2
Z
RN

jTþ
k ðuðt; xÞ � %uuðt; xÞÞajja

� �ða�1Þ=a Z
RN

jrjja
� �1=a

: ð40Þ

Now, we observe that Tþ
k ðrÞ

a4jaðrÞ for all r 2 R: Hence

d
dt

Z
RN
jðuðt; xÞ � %uuðt; xÞÞja4 2a2

Z
RN
jðuðt; xÞ � %uuðt; xÞÞja

� �ða�1Þ=a



Z
RN

jrjja
� �1=a

;

and, therefore,

d
dt

Z
RN
jðuðt; xÞ � %uuðt; xÞÞja

� �1=a
42a

Z
RN

jrjja
� �1=a

:

Setting jnðxÞ :¼ jðxnÞ instead of jðxÞ we get

d
dt

Z
RN
jðuðt; xÞ � %uuðt; xÞÞja

n

� �1=a
4 2a

Z
RN

jrjnj
a

� �1=a

¼ 2anðN�aÞ=a
Z
RN

jrjja
� �1=a

:
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Integrating from 0 to T and using the facts that uðtÞ ! u0; %uuðtÞ ! %uu0 in
L1locðR

N Þ as t! 0þ; we have

Z
RN
jðuðT ; xÞ � %uuðT ; xÞÞja

n

� �1=a
4

Z
RN
jðu0 � %uu0Þja

n

� �1=a

þ 2aTnðN�aÞ=a
Z
RN

jrjja
� �1=a

: ð41Þ

Letting n! 1 and recalling that a > N ; we obtain thatZ
RN
jðuðT ; xÞ � %uuðT ; xÞÞ4

Z
RN
jðu0 � %uu0Þ: ]

Corollary 1. Let u0; %u0u0 2 L1locðR
N Þ: Let u; %uu be two entropy solutions of

(1) with initial conditions u0; %u0u0; respectively. If u04 %u0u0 then u4 %uu: In

particular, the entropy solution of (1) is unique.

Proof of the Last Assertion of Theorem 3. Write (41) for uðt; xÞ and ukðt; xÞ:
We have

Z
RN
jðuðt; xÞ � ukðt; xÞÞja

n

� �1=a
4

Z
RN
jðu0 � u0kÞja

n

� �1=a

þ 2atnðN�aÞ=a
Z
RN

jrjja
� �1=a

;

for any t 2 ½0; T � and any n; k51: Given p 2 N; let np 2 N be such that

2aTnðN�aÞ=a
p

Z
RN

jrjja
� �1=a

4
1

p
:

Choose now j 2 C1
0 ðRN Þ of the form jðxÞ ¼ fðjxjÞ where f is a decreasing

function. By our choice of j we have that

Z
RN
jðuðt; xÞ � ukðt; xÞÞja

� �1=a
4

Z
RN
jðuðt; xÞ � ukðt; xÞÞja

np

� �1=a

4
Z
RN
jðu0 � u0kÞja

np

� �1=a
þ
1

p

for any t 2 ½0; T � and any k51: Now, let kp 2 N be such that

Z
RN
jðu0 � u0kÞja

np

� �1=a
4
1

p
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for any k5kp: Then

Z
RN
jðuðt; xÞ � ukðt; xÞÞja

� �1=a
4
2

p

for any t 2 ½0; T � and any k5kp: We conclude that uk ! u in
Cð½0; T �; L1locðR

N ÞÞ: ]

Remark 3. The same proof above yields that ðukÞ is a Cauchy sequence
in Cð½0; T �; L1locðR

N ÞÞ when ðu0kÞ is a Cauchy sequence in L1locðR
N Þ:

6. EXISTENCE IN L1locðR
N Þ

Lemma 2. Let u0 2 L2ðR
N Þ and let u be the strong solution of (1) and (2).

Let T > 0; p 2 P; set jðrÞ :¼
R r
0 pðsÞ ds; and let j 2 C1ð½0; T � 
 RN Þ with

compact support in x: Then

Z
RN
jðuðT ÞÞjðT Þ �

Z T

0

Z
RN
jðuÞjt þ

Z T

0

Z
RN

j d jDðpðuÞÞj

4�
Z T

0

Z
RN
z � rj pðuÞ þ

Z
RN
jðu0Þjð0Þ: ð42Þ

If in addition p 2 P\ C1ðRÞ; then the equality holds in (42). In particular, u is

an entropy solution of (1).

Proof. Assume first that p is of class C1: Then

d
dt

Z
RN
jðuÞj ¼

Z
RN
pðuÞutjþ

Z
RN
jðuÞjt

¼ �
Z
RN

j dðz;DðpðuÞÞÞ �
Z
RN
z � rj pðuÞ þ

Z
RN
jðuÞjt:

Integrating both terms of the above equality in �0; T ½; and using the fact thatZ
RN

j dðzðtÞ;DðpðuðtÞÞÞÞ ¼
Z
RN

j d jDðpðuðtÞÞÞj for a:e: t 2�0; T ½;

which is a consequence of Proposition 2.8 in [8] (here we use p 2 C1) and the
equality Z

RN
j dðzðtÞ;DuðtÞÞ ¼

Z
RN

j d jDuðtÞj for a:e: t 2�0; T ½;
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we obtain

Z
RN
jðuðT ÞÞjðT Þ �

Z T

0

Z
RN
jðuÞjt þ

Z T

0

Z
RN

j d jDðpðuÞÞj

¼ �
Z T

0

Z
RN
z � rjpðuÞ þ

Z
RN
jðu0Þjð0Þ: ð43Þ

If p 2 P is generic, we approximate p in the uniform norm with functions
pn 2 P\ C1ðRÞ; then write (43) for pn instead of p and let n! 1 to
conclude that (42) holds. ]

Proof. Existence. Let u0 2 L1locðR
N Þ: Let u0n 2 L2ðR

N Þ be such that u0n !
u0 in L1locðR

N Þ: Let un be the strong solutions of (1) corresponding to the
initial conditions u0n: By Remark 3, ðunÞ is a Cauchy sequence in Cð½0; T �;
L1locðR

N ÞÞ: Thus we may assume that un ! u in Cð½0; T �; L1locðR
N ÞÞ for some

u 2 Cð½0; T �; L1locðR
N ÞÞ: In particular, we have that uðtÞ ! u0 in L1locðR

N Þ as
t! 0þ :
Now, let p 2 P and let j 2 C1

0 ð�0; T ½
RN Þ: Inserting u ¼ un into (42) gives

�
Z T

0

Z
RN
jðunÞjt þ

Z T

0

Z
RN

j d jDðpðunÞÞj4�
Z T

0

Z
RN
zn � rjpðunÞ;

ð44Þ

with an equality if p 2 P\ C1ðRÞ: In particular, the choice of jðrÞ ¼ r; i.e.,
pðrÞ ¼ 1; gives

Z T

0

Z
RN
unjt ¼

Z T

0

Z
RN
zn � rj: ð45Þ

Possibly passing to a subsequence, we may assume that zn ! z weaklyn in
ðL1ð�0; T ½
RN ÞÞN : Letting n! 1 in (45) we have

Z T

0

Z
RN
ujt ¼

Z T

0

Z
RN
z � rj: ð46Þ

We conclude ut ¼ div z in D0ð�0; T ½
RN Þ: As jðunÞ ! jðuÞ and pðunÞ ! pðuÞ
in Cð½0; T �; L1locðR

N ÞÞ; letting n! 1 in ð44Þ we obtain

�
Z T

0

Z
RN
jðuÞjt þ

Z T

0

Z
RN

j d jDðpðuÞÞj4�
Z T

0

Z
RN
z � rjpðuÞ
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provided j50: In particular, since jðuÞ;pðuÞ 2 Cð½0; T �; L1locðR
N ÞÞ we have

pðuÞ 2 L1wð�0; T ½;BVlocðR
N ÞÞ 8p 2 P;

and we conclude that u is an entropy solution of (1).

7. TIME REGULARITY

Let us recall the basic estimates of semigroups generated by subdiffer-
entials. According to Step 3 of Theorem 2 and [16, Theorem 3.2] (estimate
(15) with v ¼ 0) and [16, Theorem 3.6] (with f ¼ 0; K ¼ f0g) we have that

ess sup
s2�t;1½

Z
RN

jutðs; xÞj
2 dx4

1

t

Z
RN

ju0j
2 dx 8t > 0; ð47Þ

Z T

0

Z
RN

jutðt; xÞj2t dx dt4
1

2

Z
RN

ju0j2 dx ð48Þ

and if u0 2 BVðR
N Þ Z T

0

Z
RN

jutðt; xÞj
2 dx dt4

Z
RN

jDu0j: ð49Þ

Our purpose is to localize estimates (48) and (49). To cover the case of initial
conditions in L1locðR

N Þ; we need to consider the familyT � P of truncatures
Ta;b; with a5b; defined by

Ta;bðrÞ ¼

a if r5a;

r if a4r4b;

b if r > b:

8><
>:

Proposition 3. Let u0 2 L2ðR
N Þ and let u be the strong solution of (1) and

(2). Then

pðuÞt 2 L
2
locð�0; T ½; L

2ðRN ÞÞ; t1=2pðuÞt 2 L
2ð�0; T ½; L2ðRN ÞÞ; 8p 2 T:

Moreover, for any j 2 C1
0 ðRN Þ and any s5t such that pðuðsÞÞ 2 BVlocðR

N Þ we

have the estimate

1

2

Z t

s

Z
RN

jpðuÞtj
2j2 þ

Z
RN

j2 d jDðpðuðtÞÞÞj

4
Z
RN

j2 d jDðpðuðsÞÞÞj þ 2ðt � sÞ
Z
RN

jrjj2; ð50Þ
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and, if T is such that uðT Þ 2 BVlocðR
N Þ; also

1

2

Z T

0

Z
RN
tjpðuÞtj

2j2 þ T
Z
RN

j2 d jDpðuðT ÞÞj

4
Z T

0

Z
RN

j2 d jDpðuðtÞÞj þ T 2
Z
RN

jrjj2:

ð51Þ

Proof. Let j 2 C1
0 RN
� �

and set

I :¼ s 2�0; T ½: uðsÞ 2 BVlocðR
N Þ
Z
RN

jutðs; xÞj
2 dx4

1

s

Z
RN

ju0j
2 dx

� �
:

We recall that �0; T ½=I has zero measure. Let s; t 2 I : Multiply the equation
utðtÞ ¼ div zðtÞ by ðpðuðtÞÞ � pðuðsÞÞÞj2 and integrate over RN : After
integrating by parts, we obtainZ

RN
j2 dðjDðpðuðtÞÞÞj � jDðpðuðsÞÞÞjÞ

4
Z
RN
utðtÞ½pðuðsÞÞ � pðuðtÞÞ�j2 �

Z
RN
zðtÞ � rj2½pðuðtÞÞ � pðuðsÞÞ�: ð52Þ

Let d > 0 and let s; t 2 I ; s; t5d: Using (47), we haveZ
RN

j2 dðjDðpðuðtÞÞÞj � jDðpðuðsÞÞÞjÞ4
1

d
jju0jj2jj½pðuðsÞÞ � pðuðtÞÞ�j

2jj2

þ
Z
RN

jrj2jjpðuðtÞÞ � pðuðsÞÞj:

ð53Þ

Since a similar inequality holds with s and t interchanged, we have

Z
RN

j2 dðjDðpðuðtÞÞÞj � jD½pðuðsÞÞ�jÞ

����
����

4
1

d
jju0jj2jjðpðuðsÞÞ � pðuðtÞÞÞj

2jj2 þ
Z
RN

jrj2jjpðuðtÞÞ � pðuðsÞÞj:

ð54Þ

As u 2 W 1;2
loc ð�0; T ½; L

2ðRN ÞÞ; i.e., is a locally absolutely continuous function of
time, then also pðuÞ is and, from (53), we deduce that

R
RN

j2 d jDðpðuÞÞj is
absolutely continuous in �d; T ½ for any d > 0 sufficiently small. Put s ¼
t � h 2 I in (52), divide by h > 0; and let h! 0þ: We obtain, at any
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differentiability point t of u and
R
RN

j2 d jDðpðuÞÞj;Z
RN
p0ðuÞu2t j

2 þ
d
dt

Z
RN

j2 d jDðpðuÞÞj

42
Z
RN

jpðuÞtjjjjjrjj

42
Z
RN

jpðuÞtj
2j2

� �1=2 Z
RN

jrjj2
� �1=2

4
1

2

Z
RN

jpðuÞtj
2j2 þ 2jjrjjj22:

Since p0ðrÞ 2 f0; 1g for almost every r; we have

1

2

Z
RN

jpðuÞtj
2j2 þ

d
dt

Z
RN

j2 d jDðpðuÞÞj42jjrjjj22: ð55Þ

Observe that inequality (55) holds almost everywhere in �0; T ½: Choosing
s 2 I and integrating (55) in �s; t½ we obtain (50). Since j does not depend on
time, from (42) it follows thatZ

RN
jðuðT ÞÞj2 þ

Z T

0

Z
RN

j2 d jDðpðuÞÞj

4
Z T

0

Z
RN

jrj2jjpðuÞj þ
Z T

0

Z
RN
jðu0Þj2: ð56Þ

Inequality (56) proves that
R
RN

j2 d jDðpðuÞÞj 2 L1ð0; T Þ: Hence
tn
R
RN

j2jDðpðuðtnÞÞÞj ! 0 for a subsequence tn ! 0þ; tn 2 I : Multiplying
(55) by t and integrating on �tn; T ½ we obtain

1

2

Z T

tn

Z
RN
tjpðuÞtj

2j2 þ
Z T

tn

t
d
dt

Z
RN

j2 d jDðpðuÞÞj4ðT 2 � t2nÞ
Z
RN

jrj2j:

Integrating by parts with respect to time we obtain

1

2

Z T

tn

Z
RN
tjpðuÞtj

2j2 þ T
Z
RN

j2 d jDðpðuðT ÞÞÞj

4
Z T

tn

Z
RN

j2 d jDðpðuÞÞj þ tn

Z
RN

j2 d jDðpðuðtnÞÞÞj þ ðT 2 � t2nÞ
Z
RN

jrj2j:

Letting n! 1; we obtain (51). ]
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Corollary 2. Let u0 2 L1locðR
N Þ: Let u be the entropy solution of (1) and

(2). Then

pðuÞt 2 L
2
locð0;1; L2locðR

N ÞÞ; t1=2pðuÞt 2 L
2
locð½0;1½; L2locðR

N ÞÞ; 8p 2 T:

Proof. Let ðu0nÞ � L2ðRN Þ be a sequence such that u0n ! u0 in L1locðR
N Þ:

Let un be the strong solution of (1) corresponding to the initial condition u0n:
Inserting u ¼ un into (42) and using the fact that the corresponding vector
fields zn satisfy jjznjj141 we obtain

Z
RN
jðunðT ÞÞj2 þ

Z T

0

Z
RN

j2 d jDðpðunÞÞj

4
Z T

0

Z
RN

jrj2jjpðunÞj þ
Z
RN
jðunð0ÞÞj2 ð57Þ

for any p 2 P; T > 0; j 2 C1
0 ðRN Þ and n 2 N: Since the right-hand side of

(57) is bounded by

C :¼ jjpjj1T
Z
RN

jrj2j dxþ sup
n

Z
RN
jðunð0ÞÞj2;

we have

Z T

0

Z
RN

j2 d jDðpðunÞÞj4C: ð58Þ

Choose now T > 0 such that unðT Þ 2 BVlocðR
N ÞÞ for all n:Using (51) and (58)

we have

1

2

Z T

0

Z
RN
tjpðunÞtj

2j24C þ T 2
Z
RN

jrjj2: ð59Þ

Since pðunÞ ! pðuÞ in Cð½0; T �; L1locðR
N ÞÞ; letting n! 1 in (59) we obtain

1

2

Z T

0

Z
RN
tpðuÞ2t j

24C þ T 2
Z
RN

jrjj2:

Since this holds for almost every T > 0; the conclusion follows. ]

Remark 4. If pðu0Þ 2 BVlocðR
N Þ we have

pðuÞ 2 L1wð�0; T ½;BVlocðR
N ÞÞ;

pðuÞ 2 W 1;2ð�0; T ½; L2locðR
N ÞÞ � Cð½0; T �; L2locðR

N ÞÞ
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for any p 2 T: Indeed, this follows from (50) instead of using (51) in the
above argument.

If u is the entropy solution of (1) and (2) for u0 2 L1locðR
N Þ and K 2 R; then

vðtÞ :¼ uðtÞ þ K is the entropy solution of (1) whose initial condition is vð0Þ ¼
u0 þ K: If we denote by SðtÞ the semigroup in L1locðR

N Þ constructed from the
entropy solutions, we may write SðtÞðu0 þ KÞ ¼ SðtÞu0 þ K for any uð0Þ ¼
u0 2 L1locðR

N Þ and K 2 R:

Proposition 4. Let u0 2 L1locðR
N Þ with u05�M for some M > 0: If u is

the entropy solution of (1) and (2) we have

u0ðtÞ4
uðtÞ þM

t
for a:e: t > 0:

Moreover, ut 2 L1locð�0; T ½; L
1
locðR

N ÞÞ for any T > 0: A similar statement holds if

u04M for some M > 0:

Proof. Let 04v0n 2 L2ðR
N Þ be such that v0n ! u0 þM in L1locðR

N Þ: Let
vnðtÞ :¼ SðtÞðv0nÞ: By Proposition 1 we have

v0nt4
vn
t

for a:e: t > 0:

Since vnðtÞ ¼ SðtÞðv0nÞ ! SðtÞðu0 þMÞ ¼ SðtÞðu0Þ þM ¼ uðtÞ þM in L1ð�0; T ½
; L1locðR

N ÞÞ; it follows that

ut4
uþM
t

in D0ð�0; T ½
RN Þ: ð60Þ

By estimate (60), ut is a Radon measure in �s; t½
RN ; for all 05s5t and
R > 0: Thus

Z t

s

Z
BRð0Þ

jutj51: ð61Þ

in any ball BRð0Þ; R > 0: Now, taking p ¼ Tab; the estimate in Corollary 2
says that ut is a function in L2ðQa;b \ BRð0ÞÞ; for all a5b; where Qa;b :¼
fðt; xÞ 2 Q: a5uðt; xÞ5bg; and all R > 0: This observation together with (61)
proves that ut 2 L1locð�0; T ½; L

1
locðR

N ÞÞ: ]

We conclude this section with the following observation. The existence
and uniqueness results for (1) and (2) may be used to prove an estimate for
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the time derivative of the solution of

@v
@t

¼ div
Dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDvj2

p
 !

in �0;1½
RN ; ð62Þ

when the initial datum vð0; xÞ ¼ v0ðxÞ 2 L1ðR
N Þ: First, we observe that

existence and uniqueness results for (62) when v0 2 L1ðR
N Þ can be obtained

following the approach in [6]. Next, we notice that if v is the solution of (62)
corresponding to the initial condition v0 2 L1ðR

N Þ; then uðt; x; xNþ1Þ ¼
vðt; xÞ � xNþ1 is the entropy solution of (1) in RNþ1 such that uð0; x; xNþ1Þ ¼
v0ðxÞ � xNþ1: In other words, the semigroups T ðtÞ and SðtÞ associated with
(62) and (1) satisfy

SðtÞðv0 � xNþ1Þ ¼ T ðtÞv0 � xNþ1 for any v0 2 L1ðR
N Þ:

Now, proceeding as in the proof of Proposition 1 with l ¼ tþh
t we obtain

vðt þ hÞ � vðtÞ ¼ uðt þ hÞ � uðtÞ ¼
h

t þ h
uðt þ hÞ þ SðtÞðl�1ðv0 � xNþ1ÞÞ � uðtÞ

¼
h

t þ h
uðt þ hÞ þ T ðtÞðl�1v0Þ � T ðtÞv0 þ

h
t þ h

xNþ1

¼
h

t þ h
vðt þ hÞ þ T ðtÞðl�1v0Þ � T ðtÞv0:

This implies that

vðt þ hÞ � vðtÞ
h

����
����

����
����
1

4
2

t þ h
jjv0jj1:

From this, and using the techniques of completely accretive operators [15] as
in [3] it can be proved that jjvtjj14

2
t jjv0jj1:

8. EVOLUTION OF SETS IN R2: THE CONNECTED CASE

Throughout this section, as well as in Sections 9–11, we take N ¼ 2: Let
B� R2 be an open set; we say that @B is of class C1;1 if @B can be written,
locally around each point, as the graph (with respect to a suitable
orthogonal coordinate system) of a function f of class C1 with Lipschitz
continuous gradient, and B can be written (locally) as the epigraph of f : If
@B is of class C1;1; we denote by k@B the (H1-almost everywhere defined)
curvature of @B:
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Let O � R2 be a bounded set of finite perimeter. We set

lO :¼
P ðOÞ
jOj

:

We want to study when the function

uðt; xÞ :¼ ð1� lOtÞ
þwOðxÞ ð63Þ

is the entropy solution of (1) and (2) when we choose u0 ¼ wO:

Remark 5. The function u defined in (63) is the solution of (1) and (2)
with uð0; xÞ ¼ wOðxÞ if and only if the function v :¼ wO satisfies the equation

�div
Dv
jDvj

� �
¼ lOv; ð64Þ

i.e., if and only if there exists a vector field x 2 L1ðR2;R2Þ such that jjxjj1
41;

�div x ¼ lOv ð65Þ

and Z
R2
ðx;DvÞ ¼

Z
R2

jDvj: ð66Þ

With a little abuse of notation, we also write that the pair ðv; xÞ is a
solution of (64).
It is clear that if v is a solution of (64) then lOv is a solution of (4).
If wO is a solution of (64) and C is a connected component of O; using (65)

and (66) it follows that

lC ¼ lO: ð67Þ

Definition 3. Let O � R2 be a set of finite perimeter. We say that O is
� calibrable if there exists a vector field x�O : R2 ! R2 with the following
properties:

(i) x�O 2 L2locðR
2;R2Þ and div x�O 2 L2locðR

2Þ;

(ii) jx�O j41 almost everywhere in O;

(iii) div x�O is constant on O;

(iv) yðx�O ;�DwOÞðxÞ ¼ �1 for H1-almost every x 2 @nO:
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We say that O is þcalibrable if there exists a vector field xþO : R2 ! R2

satisfying properties (i), (ii), (iii), and such that yðxþO ;�DwOÞðxÞ ¼ 1 forH
1-

almost every x 2 @nO:

Heuristically, condition (iv) says that the inner (resp. outer) normal trace
of x�O (resp. of x

þ
O) is 1:

It is clear that O is � calibrable if and only if O is þ calibrable (it is
sufficient to define xþO :¼ �x�O). Moreover, if O is bounded and � calibrable,
the constant in (iii) equals �lO; i.e., �div x

�
O � lO on O:

The following remark should be compared with (a) of Proposition 5.

Remark 6. Let O � R2 be a bounded set of finite perimeter which is �
calibrable. Then

P ðOÞ
jOj

4
P ðDÞ
jDj

8D � O; D of finite perimeter: ð68Þ

Indeed,

lO ¼
1

jDj

Z
D
�div x�O dx4

1

jDj
P ðDÞ:

Remark 7. Let O � R2 be a bounded set of finite perimeter. Assume
that O is � calibrable and that R2=O is þ calibrable. Define

x :¼
x�O on O;

xþ
R2=O

on R2=O:

(

Then x 2 L1ðR2;R2Þ and div x 2 L1ðR2Þ:

Lemma 3. Let O � R2 be a bounded set of finite perimeter. Then v :¼ wO
is a solution of (64) if and only if O is � calibrable with �div x�O ¼ lO in O and

R2=O is þ calibrable, with div xþ
R2=O

¼ 0 in R2=O:

Proof. If ðwO; xÞ is a solution of (64), then x�O :¼ x; xþ
R2=O

:¼ x satisfy (i)–
(iii) of Definition 3. Moreover, by (66) and (12)Z

@nO
yðx�O ;DwOÞ dH

1 ¼ P ðOÞ ¼
Z
@nO

yðxþ
R2=O

;�DwR2=OÞ dH
1;

so that (iv) of Definition 3 is satisfied. Conversely, it is enough to define
x :¼ x�OwO þ xþ

R2=O
wR2=O; and to use Remark 7 to check that ðwO; xÞ solves

(64). ]
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We are precisely interested in characterizing the sets of Lemma 3. The
following theorem answers to this question, under the additional assump-
tion that O is connected; thanks to Remark 5, we can characterize those sets
O such that the function u in (63) is the solution of (1) and (2) with u0 ¼ wO:
In Theorems 6 and 7 of Section 9 we consider the general situation.

Theorem 4. Let C � R2 be a bounded set of finite perimeter, and assume

that C is connected. The function v :¼ wC is a solution of (64) if and only if the

following three conditions hold:

(i) C is convex;

(ii) @C is of class C1;1;

(iii) the following inequality holds:

ess sup
p2@C

k@CðpÞ4
P ðCÞ
jCj

: ð69Þ

To prove Theorem 4, we need several intermediate steps. We start with
the proof of the implication

wC solution of ð64Þ ) ðiÞ2ðiiiÞ hold; ð70Þ

which will be given after Lemma 7.

Given any set D � R2; we define

Dr :¼
[

fBr: Br open ball of radius r contained in Cg;

where r > 0 is small enough such that Dr is nonempty.
The result of the next lemma, without an estimate on the curvature, is

proved in [28, Proposition 2.4.3]. Since in the following the estimate on the
curvature plays a crucial role, we need to include the proof.

Lemma 4. Let C � R2 be a bounded open convex set. The following

conditions are equivalent:

(a) there exists r > 0 such that C ¼ Cr;

(b) @C is of class C1;1 and ess supp2@C k@CðpÞ4
1
r :

Proof. ðaÞ ) ðbÞ: Assume that C ¼ Cr for some r > 0 and fix a point
z 2 @C: Up to a translation and rotation of coordinates, we can suppose that
z ¼ 0; that @C can be written, in a neighborhood of 0; as the graph Gf ; with
respect to the x-variable, of a nonnegative convex function f vanishing at 0
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(therefore the open epigraph of f coincides with C in a neighborhood of z).
Since C ¼ Cr; the open ball of radius r contained in the epigraph of f and
tangent to Gf at ð0; 0Þ lies locally above f : Therefore we can choose a
parabola tangent to Gf at ð0; 0Þ; lying locally inside the epigraph of f and
above the ball, whose graph has curvature at zero equals 1r þ e: Precisely, for
any e > 0 sufficiently small there exists d > 0 such that f ðxÞ4ð 1

2r þ eÞx2 for
any jxj4d: It follows that f is differentiable at x ¼ 0 with f 0ð0Þ ¼ 0; i.e., @C
is differentiable at z: Therefore @C is differentiable at any point. Since @C is
convex and differentiable at any point, it follows that @C is of class C1:

Let us now prove that @C is of class C1;1: The idea is the same as before,
but now we need a family of parabolas locally above f ; passing to an
arbitrary point ðt; f ðtÞÞ for jtj4d and tangent (at the same point) to Gf : It
will follow that @C is locally an infimum of parabolas with second derivative
larger than 1r (up to e). Precisely, as C ¼ Cr; given e > 0 sufficiently small and
possibly reducing d; we have

f ðxÞ4ftðxÞ :¼
1

2r
þ e

� �
ðx� aðtÞÞ2 þ bðtÞ 8jxj; jtj4d;

where aðtÞ :¼ t � f 0ðtÞ
ð1=rÞþ2e and bðtÞ :¼ f ðtÞ � f 0ðtÞ2

ð2=rÞþ4e (note that f 2 C1; so that
a and b are well defined). Since

f ¼ inf
jtj4d

ft on jxj4d;

and since ft are semiconcave with semiconcavity constant equal to
1
2r þ e for

any jtj4d; it follows that f is semiconcave on ½�d; d� with semiconcavity
constant equal to 1

2r þ e: Hence f is of class C1;1 in ½�d; d� and f 0041
r þ

e
2

almost everywhere in ½�d; d�: Therefore @C is of class C1;1 and, since e is
arbitrary, ess supp2@C k@CðpÞ4

1
r :

The implication ðbÞ ) ðaÞ is a particular case of [11, Lemma 9.2] with the

choices P ¼ C; *ffðx1; x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
and l ¼ r: ]

Remark 8. If condition (a) of Lemma 4 holds, then C ¼ Cs for any
s 2 ½0;r�; since any ball Br of radius r is the union of all balls Bs of radius
s 2 ½0;r� contained in Br:

Lemma 5. Let a; b 2 R; a5b; l > 0 and Gl : H10 ð½a; b�Þ ! R be defined as

GlðuÞ :¼
Z
½a;b�

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðu0ðsÞÞ2

q
� luðsÞ� dH1ðsÞ: ð71Þ

Assume that there exists a function ul 2 H10 ð½a; b�Þ whose graph is contained in

a translated of @B1=l: Then ul is the unique minimizer of Gl in H 10 ð½a; b�Þ:
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Proof. It is a particular case of [11, Lemma 8.4] with the choice

*ffðx1; x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
: ]

Lemma 6. Let O � R2 be a bounded set of finite perimeter. Assume that

R2=O is þ calibrable. Then div xþ
R2=O

¼ 0 on R2=O:

Proof. Let for simplicity x :¼ xþ
R2=O

: Let R > 0 be such that BR � O and let

U be the unbounded component of R2=O: By assumption we have that
div x ¼ a on U \ BR for some real constant a: Using (12) and the properties
of x (see (ii) and (iv) of Definition 3) we have

�2pRþ P ðU Þ4
Z
U\BR

div x dx42pRþ P ðU Þ:

If we denote by l the (finite) measure of the union of all connected
components of R2=O contained in BR; it follows that

�2pRþ P ðU Þ
pR2 � jOj � l

4a ¼

R
U\BR

div x dx

jU \ BRj
4
2pRþ P ðU Þ
pR2 � jOj � l

v:

Letting R! þ1 we deduce a ¼ 0: ]

Proposition 5. Let O � R2 be a bounded set of finite perimeter which is

� calibrable and such that R2=O is þ calibrable. Then

(a) the following relations hold:

P ðOÞ
jOj

4
P ðDÞ

jO\ Dj
8D � R2; D of finite perimeter; ð72Þ

(b) each connected component of O is convex.

Proof. Let x 2 L1ðR2;R2Þ; jjxjj141 be the vector field defined by x :¼
x�OwO þ xþ

R2=O
wR2=O: By Remark 7 we have that div x 2 L1ðR2Þ: Let D � R2 be

a set of finite perimeter. Using Lemma 6 and the fact that �div x�O � lO on
O; we have

�
Z
R2

wD div x dx ¼ �
Z
R2

wOwD div x dx ¼ lO

Z
R2

wO\D dx ¼ lOjO\ Dj:

Hence

lOjO\ Dj4P ðDÞ; ð73Þ

and (72) follows.
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Moreover from (73) it follows that

P ðOÞ4P ðDÞ 8D � O; D of finite perimeter:

We conclude that each connected component of O must be convex. ]

Definition 4. Given l 2 R we define the functional Gl as

GlðDÞ :¼ P ðDÞ � ljDj; D � R2; D of finite perimeter:

Proposition 6. Let C be a bounded open convex set, and assume that C is

� calibrable. Then @C is of class C1;1:

Proof. Set for simplicity x :¼ �x�C and recall that div x ¼ lC on C: For
any l > lC and any finite perimeter set B strictly contained in C we then have

GlðBÞ5
Z
B
ðdiv x� lÞ dx >

Z
C
ðdiv x� lÞ dx ¼ GlðCÞ: ð74Þ

Assume now by contradiction that @C is not of class C1;1: By Lemma 4 it
follows that Cr is strictly contained in C for some r > 0: Fix s5r such that
slC51: By Remark 8 we have that Cs is strictly contained in C: Applying
Lemma 5 to the connected components of @Cs=@C; we get

G1=sðCsÞ4G1=sðCÞ;

which contradicts (74). ]

Remark 9. (i) If O � R2 is a bounded set of finite perimeter satisfying
(68) it follows that GlO ðDÞ50 for any D � O of finite perimeter, while
obviously GlO ðOÞ ¼ 0: Therefore O minimizes GlO among all finite perimeter
sets D � O:

(ii) By the proof of Proposition 6, it follows that if C is a bounded open
convex set which is � calibrable, then C minimizes Gl among all finite
perimeter sets B � C and where l > lC:

In order to prove implication (70) of Theorem 4 we need one more lemma.

Lemma 7. Let C � R2 be a bounded open convex set with C1;1 boundary

satisfying (68) with C in place of O: Then (69) holds.

Proof. Let U be a neighborhood of @C and let h 2 C10ðU Þ: Let a 2 R be
sufficiently small, and let Caðx; yÞ :¼ ðx; yÞ þ ahðx; yÞnðx; yÞ; where n 2 C1ðU ;
R2Þ is a vector field satisfying jnj ¼ 1 on U ; and n ¼ nC on @C: Extend Ca as
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Caðx; yÞ ¼ ðx; yÞ outside U : Let Ca :¼ CaðCÞ: By Remark 9 it follows that C
minimizes GlC among all finite perimeter sets contained in C: Therefore, if h
is nonpositive,

04 lim
a!0þ

GlC ðCaÞ � GlC ðCÞ
a

¼
Z
@C
½k@C � lC�h dH1:

It follows k@CðxÞ4lC for H1-almost every x 2 @C: ]

We are now in the position to prove implication (70) of Theorem 4. If wC
is a solution of (64), by Lemma 3 (applied with O ¼ C) it follows that C is �
calibrable with �div x�C ¼ lC in C and R2=C is þ calibrable with div xþ

R2=C
¼

0 in R2=C: Therefore by Proposition 5 (b) (applied with O ¼ C) and the
assumption that C is connected it follows that C is convex. Hence by
Proposition 6 we have that @C is of class C1;1: Moreover, inequality (68)
holds. Therefore we can apply Lemma 7 to conclude that (69) holds.
Let us now prove the opposite implication of Theorem 4, that is

ðiÞ2ðiiiÞ ) wC solution of ð64Þ: ð75Þ

Assume that C is a bounded open C1;1 convex set satisfying (69). It has
been proved in [27] that (69) is a necessary and sufficient condition for C to
be a minimizer of the functional GlC among all sets of finite perimeter D � C:
In this case the function f :¼ lCwC satisfies jjf jjn41: Indeed, if w 2 L2ðR2Þ \
BVðR2Þ is nonnegative, we have

Z
R2
f ðxÞwðxÞ dx ¼

Z 1

0

Z
R2

lCwCwfw5tg dx dt ¼
Z 1

0

lC jC \ fw5tgj dt

4
Z 1

0

P ðC \ fw5tgÞ dt4
Z 1

0

P ðfw5tgÞ dt ¼
Z
R2

jDwj;

where we have used that for all t50 for which fw5tg is a set of finite
perimeter we have that

P ðC \ fw5tgÞ4P ðfw5tgÞ;

which is a consequence of the convexity of C: Splitting any function o 2
L2ðR2Þ \ BVðR2Þ into its positive and negative part, using the above
inequality one can prove that j

R
R2
f ðxÞoðxÞ dxj4

R
R2

jDoj: It follows that
jjf jjn41: Then, by Lemma 1, there is a vector field x 2 L1ðR2;R2Þ with
jjxjj141 such that

�div x ¼ f ¼ lCwC : ð76Þ
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Now, multiplying (76) by wC and integrating by parts, we obtainZ
R2
ðx;DwCÞ ¼ lC

Z
R2

wC dx ¼ P ðCÞ ¼
Z
R2

jDwC j;

hence wC is a solution of (64). The proof of Theorem 4 is concluded.
We conclude this section by recalling that in paper [27], condition (69) was

used as a necessary and sufficient condition for the existence of a solution u
with ru 2 L1locðC;R

2Þ of the equation

�div
ruffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jruj2

p
 !

¼ lC in C ð77Þ

with boundary condition limC]y!x
ruðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjruðyÞj2

p ¼ �nCðxÞ for any x 2 @C:

9. EVOLUTION OF SETS IN R2: THE NONCONNECTED CASE

The aim of this section is to generalize Theorem 4 to nonconnected sets
(see Theorems 6 and 7). Theorem 7 is basically a further generalization of
Theorem 6, and has a self-contained and independent proof. We begin with
the following result.

Theorem 5. Let O � R2 be a bounded open set and assume that @O is of

class C1;1: Then R2= %OO is þ calibrable if and only if

2P ðD;R2= %OOÞ5P ðDÞ; D� R2= %OO; D bounded of finite perimeter: ð78Þ

Proof. Assume first that R2= %OO is þ calibrable and set x :¼ xþ
R2=%OO

: By
Lemma 6 we have div x ¼ 0 on R2= %OO: Let D� R2= %OO be a bounded set of
finite perimeter. Then

0 ¼
Z
D
div x dx5H1ð@nD\ @OÞ � P ðD;R2= %OOÞ;

which implies (78), since H1ð@nD\ @OÞ ¼ P ðDÞ � P ðD;R2= %OOÞ:
Assume now that (78) holds. Let R > 0 be such BR :¼ BRð0Þ � O and

distð@BR; @OÞ > 12P ðOÞ ð79Þ

and set

c :¼ �
P ðOÞ
2pR

: ð80Þ
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Possibly increasing R; we can assume that jcj51: Given a bounded open set
A� R2 we now define the functional

Fðx;AÞ :¼
Z
A
ðdiv xÞ2 dx; x 2 HdivðAÞ; ð81Þ

where HdivðAÞ :¼ fx 2 L2ðA;R2Þ: div x 2 L2ðAÞg: Reasoning as in [9, Propo-
sition 6.1] one can prove that the variational problem

minfFðx;BR= %OOÞ: x 2 HdivðBR= %OOÞ; jxj41 a:e: in BR= %OO; ð82Þ

yðx;�DwOÞ ¼ �1 on @O; yðx;�DwBRÞ ¼ c on @BRg ð83Þ

admits a solution and, if x1 and x2 are two solutions, then div x1 ¼ div x2
almost everywhere on BR= %OO: Moreover, arguing as in [9, Theorem 6.7; 10,
Proposition 3.5, Theorem 5.3], it follows that given any minimizer xmin we
have div xmin 2 L1ðBR= %OOÞ \ BVðBR= %OOÞ; and that if m 2 R and we define

Qm :¼ fx 2 BR= %OO: div xminðxÞ > mg;

where we can assume that Qm has finite perimeter, thenZ
Qm

div xmin dx ¼ H1ð@nQm \ @OÞ þ cH1ð@nQm \ @BRÞ � P ðQm;BR= %OOÞ: ð84Þ

We claim that div xmin is constant on BR= %OO; and therefore div xmin ¼ 0 on
BR= %OO in view of the choice of c in (80). Suppose by contradiction that
div xmin is not identically zero on BR= %OO: By (80) and the Gauss–Green
Theorem, it follows that fdiv xmin50g cannot be the whole of BR= %OO: It
follows that there exists l > 0 such that Ql is a nonempty set of finite
perimeter. Using (84) with m ¼ l and (80), the inequalityZ

Ql

div xmin dx > ljQlj > 0

implies

P ðQl;BR= %OOÞ5H1ð@nQl \ @OÞ �
P ðOÞ
2pR

H1ð@nQl \ @BRÞ; ð85Þ

that is

2P ðQl;BR= %OOÞ5P ðQl;BRÞ �
P ðOÞ
2pR

H1ð@nQl \ @BRÞ: ð86Þ
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We now split the proof into three cases.
Case 1. Assume @nQl \ @O ¼ |: In this case we have P ðQl;BR= %OOÞ ¼

P ðQl;BRÞ; which inserted in (86) gives a contradiction.
Case 2. Assume that @nQl \ @BR ¼ |: In this case we have P ðQl;BR= %OOÞ ¼

P ðQl;R
2= %OOÞ and P ðQl;BRÞ ¼ P ðQlÞ; so that (86) implies

2P ðQl;R
2= %OOÞ5P ðQlÞ;

which contradicts (78) with D ¼ Ql:
Case 3. Assume that @nQl \ @O=| and @nQl \ @BR=|: By the additivity

of the perimeter on connected components, there exists a connected
component C of Ql such that (85) holds with C in place of Ql: On the other
hand, using the fact that C is connected, (79), and jcj51; we get

P ðC;BR= %OOÞ5 2 distð@BR; @OÞ5P ðOÞ

>H1ð@nC \ @OÞ �
P ðOÞ
2pR

H1ð@nC \ @BRÞ;

which contradicts (85).
Our claim is proved, and therefore div xmin ¼ 0 on BR= %OO:We now extend

xmin on the whole of R
2 as follows. Define xþ

R2=%OO
ðxÞ :¼ �P ðOÞ

2p
x
jxj2
if x 2 R2= %BBR;

and xþ
R2=%OO

ðxÞ :¼ xminðxÞ if x 2 BR= %OO: Finally, define x
þ
R2=%OO

inside O as follows:
first we extend xþ

R2=%OO
in a Lipschitz way, inside O; in a suitable open tubular

neighborhood of @O; keeping the constraint jjxjj1 ¼ 1: It is then enough to
use a cut-off function to further extend the vector field on the whole of O;
keeping all required constraints. One can check that xþ

R2=%OO
2 HdivðR2Þ;

jjxþ
R2=%OO

jj141; and div xþ
R2=%OO

¼ 0 on R2= %OO: It follows that R2= %OO is
þ calibrable. ]

Remark 10. If the set O in Theorem 5 is convex, then (78) is
automatically satisfied.

The following theorem generalizes Theorem 4 to nonconnected sets.

Theorem 6. Let O � R2 be a bounded set of finite perimeter. If v :¼ wO is

a solution of (64), then O has a finite number of connected components C1;
. . . ;Cm; and

(i) Ci is convex for any i ¼ 1; . . . ;m;

(ii) @Ci is of class C1;1 for any i ¼ 1; . . . ;m;

(iii) the following inequalities hold:

ess sup
p2@Ci

k@CiðpÞ4
P ðCiÞ
jCij

8i ¼ 1; . . . ;m;
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(iv) P ðCiÞjCi j
¼ P ðCjÞ

jCj j
for any i; j 2 f1; . . . ;mg;

(v) let 04k4m and let fi1; . . . ; ikg � f1; . . . ;mg be any k-uple of indices;
if we denote by Ei1;...;ik a solution of the variational problem

min P ðEÞ: E of finite perimeter;
[k
j¼1

Cij � E � R2=
[m
j¼kþ1

Cij

( )
; ð87Þ

we have

P ðEi1;...;ik Þ5
Xk
j¼1

P ðCijÞ: ð88Þ

Conversely, assume that O � R2 is a bounded open set which is union of a

finite number C1; . . . ;Cm of connected components satisfying (i)–(v). Then

v :¼ wO is a solution of (64).

Proof. Assume that ðwO; xÞ is a solution of (64). By Lemma 3 we have
that O is � calibrable and R2=O is þ calibrable. By Proposition 5 (b) we
have that each connected component C of O is convex, and by Proposition 6
we have that @C is of class C1;1: By Remark 6 we have that O satisfies (68) so
that, by Remark 9, O minimizes GlO among all finite perimeter subsets of O:
Thanks to the results in [27], this is equivalent to (69). Therefore, as O is
bounded, it follows that O consists of a finite number of connected
components C1; . . . ;Cm: Integrating �div x on each Ci we obtain

lO ¼ lCi ¼ lCj 8i; j 2 f1; . . . ;mg:

It is not difficult to prove that (87) admits a solution. Moreover, this
solution is in general not unique; however, since the portions of the
boundary of a minimizer which are not contained in

SN
i¼1 @Ci are segments,

it is possible to prove that the number of different solutions of (87) is finite.
Let us now prove (88). Set

D :¼ Ei1;...;ik =
[k
j¼1

Cij � R2=O:

We have

0 ¼
Z
D
div x dx5� P ðEi1;...;ik ;R

2= %OOÞ þH1ð@nD\ @OÞ

5 � P ðEi1;...;ik ;R
2= %OOÞ þH1 @nD\

[k
j¼1

@Cij

 ! !
:
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Equivalently,

Xk
j¼1

P ðCijÞ4P ðEi1;...;ik ;R
2= %OOÞ þ

Xk
j¼1

P ðCij Þ �H1 @nD\
[k
j¼1

@Cij

 ! !
: ð89Þ

Since the right-hand side of (89) is less than or equal to P ðEi1;...;ik Þ; inequality
(88) follows.

Assume now that O is a bounded open set which is union of a
finite number C1; . . . ;Cm of connected components satisfying (i)–(v).
Reasoning as in the proof of (75) it follows that each Ci is � calibrable,
so that thanks to (iv) it follows that O is � calibrable. To prove that
R2= %OO is þ calibrable, we will show that (78) is valid. Let D� R2= %OO be a
bounded set of finite perimeter. Denote by Ci1 ; . . . ;Cik the
connected components of O whose boundary intersects @nD: Let Ei1;...;ik be
a minimizer of problem (87). Using (88) and the minimality of Ei1;...;ik we
then have

Xk
j¼1

P ðCij Þ4P ðEi1;...;ik Þ4P D[
[k
j¼1

Cij

 !
: ð90Þ

Observe now that

P D[
[k
j¼1

Cij

 !
¼ P ðD;R2= %OOÞ þ

Xk
j¼1

P ðCij Þ �H1 @nD\
[k
j¼1

@Cij

 ! !

¼ 2P ðD;R2= %OOÞ � P ðDÞ þ
Xk
j¼1

P ðCijÞ;

which, inserted in (90), gives (78). According to Lemma 3 we have that
v :¼ wO is a solution of (64).

In order to prove Theorem 7 (without the use of the tools introduced in
(81) and (82)) we start with the following observation.

Lemma 8. Let ai > 0 and Bi � R2 be bounded measurable sets, for i ¼
1; . . . ;m: Let g :¼

Pm
i¼1 aiwBi : Then jjgjjn41 if and only if

Xm
i¼1

aijBi \ Dj4P ðDÞ 8D� R2; D bounded of finite perimeter: ð91Þ
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Proof. Assume that jjgjjn41: Let D � R2 be a bounded set of finite
perimeter. Then

Xm
i¼1

aijBi \ Dj ¼
Z
R2
gwD dx4

Z
R2

jDwDj ¼ P ðDÞ:

Conversely, assume that (91) holds. Let v 2 L2ðR2Þ \ BVðR2Þ be nonnega-
tive. We have

Z
R2
gv dx ¼

Xm
i¼1

ai

Z 1

0

Z
R2

wBiwfv5tg dx dt ¼
Xm
i¼1

ai

Z 1

0

jBi \ fv5tgj dt

4
Z 1

0

P ðfv5tgÞ dt ¼
Z
R2

jDvj:

Splitting into the positive and negative parts, the above inequality holds for
a generic v 2 L2ðR2Þ \ BVðR2Þ: Therefore jjgjjn41: ]

The following result is essentially a generalization of Theorem 6.

Theorem 7. Let O � R2 be a bounded set of finite perimeter and assume

that O consists of a finite number of connected components C1; . . . ;Cm: Let

bi > 0 for i ¼ 1; . . . ;m: The function u :¼
Pm

i¼1 biwCi is a solution of (4) if and

only if

(a) bi ¼
P ðCiÞ
jCi j

for all i ¼ 1; . . . ;m;

(b) conditions (i)–(iii) and (v) of Theorem 6 hold.

Proof. Assume that ðu; xÞ is a solution of (4), where u ¼
Pm

i¼1 biwCi : The
identity ðx;DuÞ ¼ jDuj implies that ðx;DwCiÞ ¼ jDwCi j as measures in R2; for
all i ¼ 1; . . . ;m:Using this observation and integrating the equality �div x ¼
u in Ci it follows that bi ¼ lCi : Now, let D � R2 be a set of finite perimeter.
Multiplying the equation �div x ¼ u by wD and integrating in R2 we obtain

P ðDÞ5�
Z
R2

wDdiv x dx ¼
Xm
i¼1

bijCi \ Dj5bjjCj \ Dj; ð92Þ

i.e., lCj4
P ðDÞ
jCj\Dj

for each j ¼ 1; . . . ;m: As in the proof of Theorem 6, it
follows that (i)–(iii) hold. Finally, let us prove that condition (v) holds. If we
write (92) for D ¼ Ei1;...;ik we have

Xm
i¼1

lCi jCi \ Ei1;...;ik j4P ðEi1;...;ik Þ;
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which gives (6) since Cij \ Ei1;...;ik ¼ Cij for j ¼ 1; . . . ; k; while Ci \ Ei1;...;ik ¼
| for i =2 fi1; . . . ; ikg:

Conversely, assume that conditions (a) and (b) hold. Reasoning as in the
proof of (75) it follows that each Ci is � calibrable. We shall prove that
g :¼

Pm
i¼1 lCiwCi satisfies jjgjjn41: According to Lemma 8, it will be sufficient

to prove that

Xm
i¼1

lCi jCi \ Dj4P ðDÞ 8D� R2; D bounded of finite perimeter: ð93Þ

By additivity of the area and the perimeter, it is sufficient to prove (93) when
D is also indecomposable. Let D � R2 be such a set. Since Ci are � calibrable
sets, by Remark 6 (applied with O :¼ Ci and D :¼ D\ Ci), we have that

lCi jCi \ Dj4P ðCi \ DÞ:

Then, to prove (93), it will be sufficient to prove that

Xm
i¼1

P ðCi \ DÞ4P ðDÞ 8D� R2;

D bounded indecomposable of finite perimeter: ð94Þ

Denote by Ci1 ; . . . ;Cik the connected components of O such that D[Sk
j¼1 Cij is connected. Those components intersect either D or @nD: Let

Ei1;...;ik be a minimizer of problem (87). Using (88) and the minimality of
Ei1;...;ik we then have

Xk
j¼1

P ðCij Þ4P ðEi1;...;ik Þ4P D[
[k
j¼1

Cij

 !
: ð95Þ

We claim that

P D[
[k
j¼1

Cij

 !
4P ðD;R2= %OOÞ þ

Xk
j¼1

P ðCij Þ �H1 D\
[k
j¼1

@Cij

 ! !
: ð96Þ

Indeed, since @nðD[ X Þ � ð@nD=X Þ [ ð@X =DÞ where X :¼
Sk
j¼1 Cij ; we have

P ðD[ X Þ4H1ð@nD=X Þ þH1ð@X =DÞ �H1ð@nD\ @X Þ
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since the term with a minus sign was counted twice by the first two terms at
the right-hand side. Thus

P ðD[ X Þ4H1ð@nD= %XX Þ þH1ð@X =DÞ ¼ P ðD;R2= %XX Þ þ P ðX Þ �H1ð@X \ DÞ

¼ P ðD;R2= %OOÞ þ P ðX Þ �H1ð@X \ DÞ

which proves claim (96).
Inserting (96) into (95), we obtain

H1 D\
[k
j¼1

@Cij

 ! !
4P ðD;R2= %OOÞ: ð97Þ

On the other hand, since @nðCi \ DÞ � ð@nD\ CiÞ [ ð@Ci \ DÞ [ ð@nD\
@CiÞ; we have, using (97),

XN
i¼1

P ðCi \ DÞ ¼
Xk
j¼1

P ðCij \ DÞ4P ðD;OÞ þH1 D\
[k
j¼1

@Cij

 ! !

þ H1 @nD\
[k
j¼1

@Cij

 ! !

4 P ðD;OÞ þ P ðD;R2= %OOÞ þH1 @nD\
[k
j¼1

@Cij

 ! !
¼ P ðDÞ:

We have proved that jjgjjn41: According to Lemma 1 there is a vector field
x 2 L1ðR2;R2Þ with jjxjj141 such that �div x ¼ u: Multiplying this
equation by u and integrating in R2 we obtain

Z
R2
ðx;DuÞ ¼

Z
R2
u2 dx ¼

Xm
i¼1

P ðCiÞ
2

jCij
¼
Z
R2

jDuj:

Therefore, u is a solution of (4). ]

10. EXPLICIT SOLUTIONS FOR THE DENOISING PROBLEM

Proposition 7. Let l > 0; b 2 R and a :¼ signðbÞðjbj � lÞþ: If %uu 2 BVðR2Þ
is a solution of (4) then the function a %uu is the solution of the variational

problem (7) with f :¼ b %uu: Conversely, if a %uu is the solution of (7) with f ¼ b %uu
and b� a ¼ �l; then %uu 2 BVðR2Þ is a solution of (4).

In particular, if O satisfies the conditions listed in Theorem 6, then alOwO is

a solution of (7) with f ¼ blOwO: The converse statement holds if b� a ¼ �l:
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Proof. Recall (see Lemma 1) that a function u 2 BVðR2Þ is the solution
of (7) if and only if u is the solution of

u� l div
Du
jDuj

� �
¼ f : ð98Þ

Let f :¼ b %uu where %uu satisfies (4). Without loss of generality, we may assume
that b50 (the case b50 can be obtained by changing b! �b and u! �u).
Suppose first that b > l; so that a ¼ b� l: Since

�l div
D %uu

jD %uuj

� �
¼ l %uu ¼ ðb� aÞ %uu;

it follows that u :¼ a %uu satisfies (98). Now, assume that 04b4l; so that
a ¼ 0: Let x 2 L1ðR2;R2Þ be such that jjxjj141 and �div x ¼ %uu: Obviously,
if z :¼ b

lx; then jjzjj141; and �div z ¼ �b
l div x ¼ b

l %uu; that is �l div z ¼ b %uu ¼
f : Since

R
RN
ðz;D0Þ ¼ 0 ¼

R
RN

jD0j; it follows that u ¼ 0 solves (98). The
converse statement follows by substituting f ¼ b %uu and u ¼ a %uu into (98).
The last assertion follows from Theorem 6 and the first part of the

proof. ]

Let us prove an extension of the above result.

Proposition 8. Let O be a bounded set of finite perimeter which consists

of a finite number C1; . . . ;Cm of connected components. Let bi 2 R for i ¼
1; . . . ;m: Assume that the function %uu :¼

Pm
i¼1 lCiwCi solves (4). Let l > 0 and

ai :¼ signðbiÞðjbij � lÞþ: Then the function u :¼
Pm

i¼1 ailCiwCi is the solution of

the variational problem (7) with f ¼
Pm

i¼1 bilCiwCi : The converse statement

holds if ai; bi are such that bi � ai ¼ l; or bi � ai ¼ �l; for all i ¼ 1; . . . ;m:

Proof. As in the proof of Proposition 7, we have to prove that u is the
solution of (98). We observe that this is obviously true if bi5l; or bi4� l;
for all i ¼ 1; . . . ;m: In the general case, let Il :¼ fi 2 f1; . . . ;mg: jbij5lg;
Jl :¼ fi 2 f1; . . . ;mg: jbij5lg: Since, in this case,

f � u ¼ l
X
i2Il

signðbiÞlCiwCi þ
X
i2Jl

bilCiwCi ;

to prove that u is a solution of (98) we have to construct a vector field
x 2 L1ðR2;R2Þ with jjxjj141; such that

�div x ¼
X
i2Il

signðbiÞlCiwCi þ
X
i2Jl

bi
l
lCiwCi ð99Þ
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and ðx;DuÞ ¼ jDuj: Let F 2 L2ðR2Þ denote the right-hand side of (99), and let
F þ ¼ supðF ; 0Þ; F � ¼ supð�F ; 0Þ: Let ð %uu; x %uuÞ be a solution of (4). Let D � R2

be a set of finite perimeter. Multiplying the equation �div x %uu ¼ %uu by wD and
integrating in R2 we have that

P ðDÞ5�
Z
R2
div x %uuwD dx ¼

Xm
i¼1

lCi

Z
R2

wCiwD dx ¼
Xm
i¼1

lCi jCi \ Dj: ð100Þ

This inequality implies that jjF jjn41: Indeed, let v 2 BVðR
2Þ: SinceZ

R2
F ðxÞvðxÞdx4

Z
R2
ðF þvþ þ F �v�Þdx

and
R
R2

jDvj ¼
R
R2

jDvþj þ
R
R2

jDv�j; the inequality
R
R2
F ðxÞvðxÞ dx4

R
R2

jDvj
follows if we prove thatZ

R2
F þvþ dx4

Z
R2

jDvþj and

Z
R2
F �v� dx4

Z
R2

jDv�j:

Thus, without loss of generality, we may assume that F50 and v 2 BVðR2Þ;
v50: Then, using that bil41 for any i 2 Jl; we have thatZ

R2
F ðxÞvðxÞ dx ¼

Z 1

0

Z
R2
F wfv5tg dx dt

¼
X
i2Il

lCi

Z 1

0

Z
R2

wCiwfv5tg dx dt þ
X
i2Jl

bi
l
lCi

Z 1

0

Z
R2

wCiwfv5tg dx dt

4
Xm
i¼1

lCi

Z 1

0

jCi \ fv5tgj dx dt4
Z 1

0

P ð½v5t�Þ dt ¼
Z
R2

jDvj:

Therefore jjF jjn41: By Lemma 1, there is a vector field x 2 L1ðR2;R2Þ such
that jjxjj141; satisfying (99). Since ai ¼ 0 for all i 2 Jl; it follows thatZ

R2
jDuj ¼

X
i2Il

jaijlCiP ðCiÞ ¼
X
i2Il

ailCi

Z
R2
ð�div xÞwCi dx

¼
Xm
i¼1

ailCi

Z
R2
ðx;DwCiÞ ¼

Z
R2
ðx;DuÞ;

which, in turn implies that ðx;DuÞ ¼ jDuj; since jjxjj1jj41:
The converse statement is obvious. ]

Proposition 8 proves that ai is a soft thresholding of bi with threshold l:
This is in coincidence with the soft thresholding rule used in the wavelet
shrinkage method for denoising [22, 23, 24, 30, 37]. As proved by Meyer [30],
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a soft thresholding applied to the wavelet coefficients of the function f 2
L2ðR2Þ gives a quasi-optimal solution of the denoising problem (7). Let us
also mention that it has been proved recently that the wavelet coefficients of
a BV function are somewhere between ‘1 and weak ‘1 [19, 20, 30, 32].
Finally, that a solution of (7) when O is a ball was given by the above

formula was already observed by Meyer [30] and Strong–Chan [34].

11. SOME EXAMPLES

In order to clarify the conditions given in Sections 8 and 9, we shall
discuss some explicit examples.

Example 1. Let O � R2 be the set of Fig. 1. It is easy to check that O
satisfies the assumptions of Theorem 4, since O is a convex set with C1;1

boundary and there holds

ess sup
p2@O

k@OðpÞ ¼
1

r
5
2pr þ 2L
pr2 þ 2rL

¼
P ðOÞ
jOj

: ð101Þ

Moreover, since the inequality in (101) is always strict, the solution of (1)
starting from wO0 remains a characteristic function for any convex set O0 of
class C1;1 close enough to O in the C1;1-norm.

Example 2. Let O � R2 be the union of two disjoint balls of radius r;
whose centers are at distance L (see Fig. 2). Then condition (88) of Theorem
6 reads as

L5pr:

Under this condition the solution of (1) and (2) with u0 ¼ wO remains a
characteristic function.

Example 3. Consider now three disjoint balls of radius r; whose centers
are on the vertices of an equilateral triangle with edges of length 1 (see Fig.
3). In this case, condition (88) reads as

r4
3

4p
:

Notice that this condition is more restrictive than the condition holding
for two balls, which has been discussed in Example 1 and gives r41

p : This
implies that it is not enough to consider only pairs of sets in condition (v) of
Theorem 6.



BELLETTINI, CASELLES, AND NOVAGA520
Example 4. We give now an example of an explicit solution,
which is also a solution of (1) which is not among the solutions
considered in Sections 8 and 9. Let O :¼ BRð0Þ=Brð0Þ be the set of
Fig. 4. In this case O does not satisfy assumption (i) of Theorem 4, i.e., O
is not convex. However, is it possible to compute explicitly the solution
of (1) and (2) with u0 ¼ wO: Indeed, let x : R2 ! R2 be the vector field
defined as

xðxÞ :¼

x
r for x 2 Brð0Þ;

Rr
jxj2

� 1
� �

x
R�r for x 2 BRð0Þ=Brð0Þ;

� R
jxj2
x for x 2 R2=BRð0Þ:

8>>><
>>>:

Then jjxjj141; div x ¼ 2
r on Brð0Þ; div x ¼ � 2

R�r on BRð0Þ=Brð0Þ; div x ¼ 0
on R2=BRð0Þ; and x � nBrð0Þ ¼ 1 on @Brð0Þ; x � nBRð0Þ ¼ �1 on @BRð0Þ: There-
fore, one can check that the solution u of (1) and (2) with u0 ¼ wO is
given by

uðt; xÞ ¼ ð1� lOtÞwOðxÞ þ
2t
r
wBrð0ÞðxÞ; t 2 0;

rðR� rÞ
2R

� �
; x 2 R2:

For t > rðR�rÞ
2R the solution u is equal to the solution starting from ð1� r

RÞwBRð0Þ
(at time rðR�rÞ

2R ) and it is one of the solutions described in Sections 8
and 9.

Example 5. Let 0 ¼ R05R15 � � �5Rp5Rpþ1 ¼ þ1; so that BR0ð0Þ ¼ |;
BRpþ1 ð0Þ ¼ R2: Set for simplicity Bi :¼ BRið0Þ; for i ¼ 0; . . . ;p þ 1: Let Oi :¼
Bi= %BBi�1; i ¼ 1; . . . ;p þ 1: Let a1; . . . ; apþ1 be real numbers such that ai=ai�1;
ai=aiþ1; i ¼ 2; . . . ;p; and apþ1 ¼ 0: Let %uu :¼

Pp
i¼1 aiwOi : We claim that

choosing ai appropriately we have that u is a solution of (4). To be more
precise, we say that we have specified a qualitative ordering of a1; . . . ; apþ1 if
we have said if a1 is above a2 (i.e., a1 > a2) or below a2 (i.e., a15a2), a2 is
above or below a3; . . . ; ap is above or below apþ1: Then, for each qualitative
ordering of a1; . . . ; apþ1; the values of a1; . . . ; apþ1 can be uniquely specified
so that u is a solution of (4). This will be a consequence of the following
observations.
If ð %uu; zÞ; with %uu ¼

Pp
i¼1 aiwOi ; is a solution of (4), then integrating div z in Bi

we get

Z
@Bi

z � nBi dH1 ¼ eiP ðBiÞ; ð102Þ



THE TOTAL VARIATION FLOW IN RN 521
where ei :¼ signðaiþ1 � aiÞ: Now, integrating (4) in Oi and using (102) we
obtain

ai ¼
ei�1P ðBi�1Þ � eiP ðBiÞ

jBij � jBi�1j
; ð103Þ

where P ðB0Þ ¼ 0 and jB0j ¼ 0:
If BR :¼ BRð0Þ; we recall that the vector fields xðxÞ :¼ x

R and zðxÞ :¼ R x
jxj2

satisfy

�div x ¼
P ðBRÞ
jBRj

in BR; xj@BR ¼
x
jxj
;

respectively,

�div z ¼ 0 in R2= %BBR; zj@BR ¼
x
jxj
:

The following lemma follows by a simple computation and we shall omit
its proof.

Lemma 9. Let 05r5R: The vector field x�;�ðxÞ ¼ �ð1þ rR
jxj2

Þ x
Rþr satisfies

�div x�;� ¼
P ðBRÞ � P ðBrÞ
jBRj � jBrj

in BR= %BBr; xj@BR ¼ �
x
jxj
; xj@Br ¼ �

x
jxj
:

The vector field x�;þðxÞ :¼ ð rR
jxj2

� 1Þ x
R�r satisfies

�div x�;þ ¼
P ðBRÞ þ P ðBrÞ
jBRj � jBr j

in BR= %BBr; xj@BR ¼ �
x
jxj
; xj@Br ¼

x
jxj
:

Lr

FIG. 1. A bean-shaped set as initial datum for the solution.



FIG. 2. Two balls as initial datum for the solution.

FIG. 3. Three balls as initial datum for the solution.
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The vector field xþ;�ðxÞ :¼ ð1� rR
jxj2

Þ x
R�r satisfies

�div xþ;� ¼ �
P ðBRÞ þ P ðBrÞ
jBRj � jBr j

in BR= %BBr; xj@BR ¼
x
jxj
; xj@Br ¼ �

x
jxj
:

The vector field xþ;þðxÞ ¼ ð1þ rR
jxj2

Þ x
Rþr satisfies

�div xþ;þ ¼ �
P ðBRÞ � P ðBrÞ
jBRj � jBr j

in BR= %BBr; xj@BR ¼
x
jxj
; xj@Br ¼

x
jxj
:

In all cases jjx�;�jj141:

Finally, let us check that given a qualitative ordering of a1; . . . ; apþ1 there
is a corresponding solution of (4) of the form %uu ¼

Pp
i¼1 aiwOi : First, we

observe that once we have specified e1; the value of a1 is given by a1 ¼
�e1

P ðB1Þ
jB1 j

: Thus, it will be sufficient to check that given three consecutive
values ai�1; ai; aiþ1 with their qualitative ordering, we can uniquely
determine the value of ai: For simplicity, let us denote these values as a1;



FIG. 4. An explicit solution starting from a ring.
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a2; a3: Let us prove the compatibility of the values of a1; a2; a3 given by (103)
with its qualitative ordering, if this is specified in advance. There are four
cases to be considered: (i) a35a2; a15a2; (ii) a35a2; a1 > a2; (iii) a3 > a2;
a1 > a2; (iv) a3 > a2; a15a2:
Assume that we are in case (i). Then e1 ¼ 1 and e2 ¼ �1: Then, by Lemma

9, we have

a0 ¼
e0P ðB0Þ � P ðB1Þ

jB1j � jB0j
; a2 ¼

P ðB2Þ þ P ðB1Þ
jB2j � jB1j

; a3 ¼
�P ðB2Þ � e3P ðB3Þ

jB3j � jB2j
:

Independently of the values of e0; e3 2 fþ1;�1g we have

a14
P ðB0Þ � P ðB1Þ
jB1j � jB0j

5a2; a34
�P ðB2Þ þ P ðB3Þ

jB3j � jB2j
5a2:

Thus, the value of a2 is consistent with the qualitative ordering specified in
advance. The other three cases can be checked in a similar way.
Thus, having specified the qualitative ordering of a1; . . . ; apþ1; the
values of ei are given, and formula (103) gives the corresponding value of
ai: We have checked the consistency of this choice. In that case, %uu ¼Pp

i¼1 aiwOi is a solution of (4) and, by Proposition 7, u ¼ a %uu is a solution of
(7) with f ¼ b %uu; and a ¼ signðbÞðjbj � lÞþ: The same result, with a similar
proof, can be proved in RN : This result has already been observed by
Strong–Chan [34].
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