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Abstract. In this paper we compute explicit solutions of the eigenvalue problem −div(Du/|Du|)
= u in R2, in particular explicit solutions whose truncatures are in W 1,1

loc
(R2), and piecewise constant

ones which are sums of characteristic functions of convex sets. The solutions of the above eigenvalue
problem describe the asymptotic behavior of solutions of the minimizing total variation flow. As an
application, we also construct explicit solutions of the denoising problem in image processing.
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1. Introduction. The main aim of this paper is to compute explicit solutions
of the following eigenvalue problem:

−div

(
Du

|Du|

)
= u, u ∈ L1

loc(R
2).(1.1)

Solutions to (1.1) describe the asymptotic behavior, as t → +∞, of solutions of the
minimizing total variation flow in R2 given by the equation

∂u

∂t
= div

(
Du

|Du|

)
in QT := ]0, T [ × R2,(1.2)

coupled with the initial condition

u(0) = u0 ∈ L2(R2).(1.3)

Indeed, as was proved in [9], if u0 ∈ L2(R2), then the solution u(t) vanishes in

finite time T (u0) and the rescaled function u(t)
T (u0)−t converges along subsequences to

a solution of (1.1) as t → T (u0); see Theorem 2.8 below. Thus, solutions of (1.1)
describe the profiles of extinction of solutions of (1.2). We also notice that a solution
u of (1.1) allows us to construct a solution of (1.2) of the form v(t, x) = (1− t)+u(x).

One of the main motivations of our study comes from the total variation approach
to the problems of image denoising and restoration. Indeed, as was shown in [12],
solutions of (1.1) allow us to construct explicit solutions of the total variation formu-
lation of the denoising problem [33]. Assuming that our observed image (or data) f
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comes from noisy observations of an ideal undistorted image u, the image model can
be written as

f = u + n,(1.4)

where n represents the noise, typically assumed to be Gaussian. In [33], Rudin,
Osher, and Fatemi proposed obtaining the denoised image u by solving the constrained
minimization problem

Minimize

∫
D

|Du| with

∫
D

(u− f)2 dx = σ2|D|,(1.5)

where D is the image domain, typically a rectangle in R2, and the constraint incor-
porates the image acquisition model given by (1.4) in terms of the variance of the
noise σ2. Let us stress here that even if three-dimensional images occur, for instance,
a medical image (or video data), the case of R2, being the case of photographs and
satellite or medical images, plays an important role in image processing. In practice,
problem (1.5) is solved via the unconstrained minimization problem

min

{∫
D

|Du| + 1

2λ

∫
D

(u− f)2 dx : u ∈ BV (D)

}
(1.6)

for some Lagrange multiplier λ > 0 [17]. The constraint has been introduced as a
penalization term. The regularization parameter λ controls the trade-off between the
goodness of fit of the constraint and the smoothness term given by the total variation.
This formulation of the denoising problem pioneered the use of total variation as a
regularization term and the use of bounded variation functions in image processing.
The first regularization methods used the Sobolev (semi)norm

∫
D
|Du|2 and proposed

denoising the data f by solving

min

{∫
D

|Du|2 +
1

2λ

∫
D

(u− f)2 dx : u ∈ W 1,2(D)

}
.(1.7)

In case D = R2, the solution of (1.7) in the Fourier domain is given by

û(ξ) =
f̂(ξ)

1 + 4γπ2|ξ|2 , ξ ∈ R2

(the constants appearing in the denominator being dependent on the form of the
Fourier transform). From the above formula we see that high frequencies of f (hence,
the noise) are attenuated by the smoothness constraint. This was an important step,
but the results were not satisfactory, mainly due to the inability of the previous
functional to resolve discontinuities (edges) and oscillatory textured patterns. The
smoothness constraint is too restrictive. Indeed, functions in W 1,2(D) cannot have
discontinuities along rectifiable curves. These observations motivated the introduction
of total variation in image restoration models by Rudin, Osher, and Fatemi in their
seminal work [33]. The a priori hypothesis is that functions of bounded variation
(the BV model) [6, 24, 36] are a reasonable functional model for many problems in
image processing, in particular, for restoration problems [33]. Typically, functions of
bounded variation have discontinuities along rectifiable curves, being continuous in
the measure theoretic sense away from discontinuities. The discontinuities could be
identified with edges. The ability of this functional to describe textures is less clear;
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some textures can be recovered, but up to a certain scale of oscillation. An interesting
experimental discussion of the adequacy of the BV model to describe real images can
be seen in [3, 29].

The analysis of problem (1.5) has been the subject of much work in the last ten
years, both numerical and theoretical. It will not be our purpose to review it here,
and we refer the interested reader to [10] for an account of it. Let us mention only
that the existence of solutions of (1.5) for any f ∈ L2(RN ) follows easily from the
convexity of the functional and the properties of bounded variation functions; that the
equivalence between (1.5) and (1.6) was proved in [17]; and that the characterization
of the Euler–Lagrange equation in distributional terms was done in [8, 12] (see [10]).
To describe the behavior of solutions of (1.6), the authors started in [12] the search
for explicit solutions for some particular kind of functions f ∈ L2(R2). Since, when
λ = ∆t, (1.6) corresponds to the implicit in time discretization of (1.2) (also called
the Crandall–Liggett scheme in semigroup theory [19]), the behavior of solutions of
one of them is analogous to those of the other. This has been exploited in the papers
[8, 12] (see also [10] for a full account).

In particular, in [12] we showed how the explicit solutions of (1.1) could be used
to construct data f ∈ L2(R2) for which we could compute the explicit solution of
(1.6) in R2. In the most simple case, if u ∈ BV (R2) is a solution of (1.1) and b ∈ R,
then the function au with a = sign(b)(|b| − λ)+ is the solution of the variational
problem (1.6) when f = bu. In other words, the solution of (1.6) is given by the
soft-thresholding rule applied to b. Other more general results were also exhibited. In
particular, this established a connection with the wavelet approach to denoising given
by the soft-thresholding rule applied to the wavelet coefficients of a noisy function (the
uncorrupted function being in some Besov space) [20, 21, 22, 23]. In this direction, let
us recall the result of Meyer [31], which proves that by applying a soft-thresholding
to the coefficients of the wavelet expansion of f with respect to some orthonormal
wavelet basis, one obtains a quasi-optimal solution of (1.6) in the sense that its energy
is bounded by a universal constant times the actual minimum energy. Further work
exploring the connection between both approaches, variational and wavelet-based, to
the denoising problem can be found in [35].

Our purpose in this paper will be to make progress in the study of the solutions of
the eigenvalue problem (1.1) and to derive, as a consequence, other explicit solutions
of the denoising problem

min

{∫
R2

|Du| + 1

2λ

∫
R2

(u− f)2 dx : u ∈ BV (R2)

}
(1.8)

for some data f ∈ L2(R2), λ > 0. For that, in section 2 we shall begin by recalling
some preliminary facts about functions of bounded variation, a generalized Green’s
formula [11], and the notion of solution for the evolution equation (1.2) and for the
eigenvalue problem (1.1).

In section 3 we describe the regularity properties of the level lines of the solutions
of (1.1). In section 4 we study the solutions of (1.1) which are in W 1,1(R2), and
hence do not possess discontinuities along rectifiable curves. Indeed, we compute the
explicit solutions u of (1.1) whose truncatures Tk(u) := (−k)∨ u∧ k are in W 1,1

loc (R2)
for any k > 0, and we prove that the level sets {u > t}, t > 0 (resp., {u < t}, t < 0),
of the nonzero solutions are balls of radius 1

t (resp., − 1
t ).

Then we turn our attention to the consideration of piecewise constant solutions of
(1.1) which can be described as sums of characteristic functions of convex sets forming
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towers (or oscillating towers). As we shall prove, there are geometric restrictions on
the curvature of the convex sets, as well as restrictions on their relative position to be
able to combine them in towers which are solutions of (1.1). In some particular cases,
this kind of geometric condition already appeared in the study of capillarity problems
in domains of R2 [18, 25, 26, 27, 28], and its analogues have also appeared in the case
of crystalline variational problems [13, 14, 15]. Let us mention that consideration
of convex sets is justified by the results in [12]. The analysis of piecewise constant
solutions of (1.1) leads to the study of solutions of div z = constant in bounded and
unbounded domains delimited by convex sets. Section 5 is devoted to solving the
equation div z = constant in a bounded domain F of R2 determined by an exterior
Jordan curve ∂C0 of class C1,1 and a finite number m of interior Jordan curves, also
of class C1,1, where the unknown is a vector field z ∈ L∞(F ;R2), ‖z‖∞ ≤ 1, whose
trace at the boundary is the inner or outer unit normal, depending on the Jordan
curve. This is one of the basic building blocks in constructing piecewise constant
explicit solutions of (1.1), the other being the solution of the equation div z = 0 in the
complement of a bounded domain made by a finite number of connected components
whose boundary is a convex curve of class C1,1. This will be the purpose of section
6. By pasting together these solutions one can construct explicit piecewise constant
solutions of (1.1). We shall call these solutions oscillating tower solutions of (1.1).
We shall use them to construct some data f ∈ L2(R2) for which the explicit solutions
of (1.8) can be computed (with a soft-thresholding rule). This will be the purpose of
section 8.

The solutions constructed here illustrate the behavior of solutions of (1.8), but
do not exhibit all its features. The behavior of (1.8) for characteristic functions of
general convex sets in R2 (together with explicit solutions of (1.2)) was described
in [1], where it was shown that the sets are eroded at high curvature points of its
boundary. By the way, the extension of the above results to characteristic functions
of convex sets in RN has been started in [2]. The explicit behavior of (1.8) and (1.2)
when the initial condition is the characteristic function of a general set in R2 with
smooth or piecewise smooth boundary is still to be described. We believe that with
these elements on hand, one would be able to add them and produce a description
of a more general class of piecewise constant solutions of (1.2). There is still a long
way to go, but our explicit solutions are a first step in this direction and illustrate the
behavior of soft-thresholding in some geometrically simple cases, exhibiting the role
of the parameter λ in the elimination of small localized perturbations of the image
(which could be assimilated to a multiple of a characteristic function of some small
ball).

2. Some notation.

2.1. Functions of bounded variation and sets of finite perimeter. Let
Q be an open subset of RN . By C∞

0 (Q) (resp., C∞
0 (Q;RN )) we denote the space of

functions (resp., vector fields with values in RN ) which are C∞ and have compact
support in Q.

A function u ∈ L1(Q) whose gradient Du in the sense of distributions is a (vector-
valued) Radon measure with finite total variation in Q is called a function of bounded
variation. The class of such functions will be denoted by BV (Q). The total variation
of Du on Q turns out to be

sup

{∫
Q

u divz dx : z ∈ C∞
0 (Q;RN ), ‖z‖L∞(Q) := ess sup

x∈Q
|z(x)| ≤ 1

}
(2.1)



EXPLICIT SOLUTIONS OF AN EIGENVALUE PROBLEM 1099

(where for a vector v = (v1, . . . , vN ) ∈ RN we set |v|2 :=
∑N

i=1 v
2
i ) and will be denoted

by |Du|(Q) or by
∫
Q
|Du|. It turns out that the map u → |Du|(Q) is L1

loc(Q)-lower

semicontinuous. BV (Q) is a Banach space when endowed with the norm
∫
Q
|u| dx +

|Du|(Q). We recall that BV (RN ) ⊆ LN/(N−1)(RN ). The total variation of u on
a Borel set B ⊆ Q is defined as inf{|Du|(A) : A open, B ⊆ A ⊆ Q}. We denote
by BVloc(Q) the space of functions w ∈ L1

loc(Q) such that wϕ ∈ BV (Q) for all
ϕ ∈ C∞

0 (Q). For results and information on functions of bounded variation, we refer
to [6, 24].

A measurable set E ⊆ RN is said to be of finite perimeter in Q if (2.1) is finite
when u is substituted with the characteristic function χE of E. The perimeter of E
in Q is defined as P (E,Q) := |DχE |(Q), and P (E,Q) = P (RN \ E,Q). We shall
use the notation P (E) := P (E,RN ). For sets of finite perimeter E one can define
the essential boundary ∂∗E, which is countably (N − 1) rectifiable with finite HN−1

measure, and compute the outer unit normal νE(x) at HN−1 almost all points x of
∂∗E, where HN−1 is the (N − 1)-dimensional Hausdorff measure. Moreover, |DχE |
coincides with the restriction of HN−1 to ∂∗E.

For a Lebesgue measurable subset E ⊆ RN and a point x ∈ RN , the upper and
lower densities of E at x are, respectively, defined by

D(x,E) := lim sup
r→0+

|E ∩Br(x)|
|Br(x)| , D(x,E) := lim inf

r→0+

|E ∩Br(x)|
|Br(x)| .

Here Br(x) denotes the open ball of radius r centered at x and | · | stands for the
Lebesgue measure. If the upper and lower densities are equal, their common value
will be called the density of E at x, and it will be denoted by D(x,E). Each set E
of finite perimeter will be identified with the representative (in its Lebesgue class)
given by the set of all points x ∈ RN such that D(x,E) = 1. It is clear that if ∂E is
Lipschitz continuous, then the precise representative we are choosing is an open set.

If µ is a (possibly vector-valued) Radon measure and f is a Borel function, the
integration of f with respect to µ will be denoted by

∫
fdµ. When µ is the Lebesgue

measure, the symbol dx will be often omitted.
By L1

w(]0, T [;BV (RN )) we denote the space of functions v : ]0, T [ → BV (RN )
such that v ∈ L1

(
]0, T [×RN

)
, the maps t ∈ ]0, T [→

∫
RN φ dDv(t) are measurable

for every φ ∈ C1
0 (RN ;RN ), and

∫ T

0
|Dv(t)|(RN ) dt < ∞. By L1

w(]0, T [;BVloc(R
N ))

we denote the space of functions v : ]0, T [ → BVloc(R
N ) such that vϕ ∈ L1

w(]0, T [;
BV (RN )) for all ϕ ∈ C∞

0 (RN ).
If E is a subset of RN of class C1,1, we denote by κ∂E the (HN−1-almost every-

where defined) curvature of ∂E, nonnegative for convex sets. The following result can
be proved as in [32].

Proposition 2.1. Let µ ∈ R and E be a set of class C1,1. Assume that there
exists an open set A such that A ∩ ∂E is the graph of a C1,1 function, and

P (E,A) − µ|E ∩A| ≤ P (E ∪B,A) − µ|(E ∪B) ∩A|(2.2)

for any bounded measurable set B with B ⊂ A. Then κ∂E(x) ≥ µ for HN−1-almost
every x ∈ A ∩ ∂E. Similarly, if in place of (2.2) there holds the inequality

P (E,A) − µ|E ∩A| ≤ P (E \B,A) − µ|(E \B) ∩A|,

then κ∂E(x) ≤ µ for HN−1-almost every x ∈ A ∩ ∂E.
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The following lemma will be used in several places. Let us include its proof for
the sake of completeness.

Lemma 2.2. Let A,B ⊆ RN be two sets of finite perimeter such that |A∩B| = 0.
Then, up to a set of HN−1-measure zero, we have

∂∗(A ∪B) = (∂∗A \ ∂∗B) ∪ (∂∗B \ ∂∗A).

In particular, we have

P (A ∪B) = P (A) + P (B) − 2HN−1(∂∗A ∩ ∂∗B).

Proof. Recall that if E ⊆ RN has finite perimeter, the essential boundary ∂∗E is
contained in the measure theoretic boundary ∂ME (i.e., the set of points x ∈ RN such
that D(x,E) > 0 and D(x,RN \E) > 0) of E, and HN−1(∂ME \∂∗E) = 0 [6, 24, 36].
Let p ∈ ∂∗(A ∪ B). Then D(p,A ∪ B) > 0 and D(p,RN \ (A ∪ B)) > 0. Since
RN \ (A∪B) ⊆ RN \A we have D(p,RN \A) > 0. Similarly D(p,RN \B) > 0. From
D(p,A ∪ B) > 0, we have either D(p,A) > 0 or D(p,B) > 0. If D(p,A) > 0 (resp.,
D(p,B) > 0), we have p ∈ ∂∗A (resp., p ∈ ∂∗B). Now, if p ∈ ∂∗A ∩ ∂∗B, HN−1-
almost everywhere, we have D(p,A) = D(p,RN \A) = D(p,B) = D(p,RN \B) = 1

2 .
Since |A ∩B| = 0, we conclude

D(p,A ∪B) = D(p,A) + D(p,B) =
1

2
+

1

2
= 1.

This implies that p ∈ ∂∗(A ∪ B), a contradiction. We conclude that p ∈ ∂∗A ∩ ∂∗B.
We have proved that

∂∗(A ∪B) ⊆ (∂∗A \ ∂∗B) ∪ (∂∗B \ ∂∗A) (mod HN−1).

To prove the opposite inclusion, assume that p ∈ ∂∗A \ ∂∗B. Then for HN−1-almost
every p we may assume that

D(p,A) = D(p,RN \A) =
1

2
.(2.3)

In particular, we have that D(p,A∪B) > 0. Assume that D(p,RN \ (A∪B)) = 0. In
this case, D(p,A ∪ B) = 1. Using (2.3), we obtain D(p,B) = 1

2 . Hence, p ∈ ∂∗B, a

contradiction. Thus, we also have D(p,RN \(A∪B)) > 0, and therefore p ∈ ∂∗(A∪B)
for HN−1-almost every p ∈ ∂∗A \ ∂∗B. We conclude that ∂∗A \ ∂∗B ⊆ ∂∗(A ∪ B).
Similarly we have that ∂∗B \ ∂∗A ⊆ ∂∗(A ∪B).

2.2. A generalized Green’s formula. Let Ω be an open set in RN . Following
[11], let

X2(Ω) := {z ∈ L∞(Ω;RN ) : div z ∈ L2(Ω)},
X2,loc(Ω) := {z ∈ L∞(Ω;RN ) : div z ∈ L2

loc(Ω)}.

If z ∈ X2,loc(Ω) and w ∈ L2
loc(Ω) ∩ BVloc(Ω), we define the functional (z,Dw):

C∞
0 (Ω) → R by the formula

〈(z,Dw), ϕ〉 := −
∫

Ω

wϕdiv z dx−
∫

Ω

w z · ∇ϕdx ∀ϕ ∈ C∞
0 (Ω).(2.4)
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Notice that

〈(z,Dw), ϕ〉 =

∫
Ω

z · ∇wϕdx ∀w ∈ L2
loc(Ω) ∩W 1,1

loc (Ω).

If z ∈ X2(Ω) and w ∈ L2(Ω) ∩BV (Ω), then (z,Dw) is a Radon measure in Ω, and∣∣∣∣
∫
B

(z,Dw)

∣∣∣∣ ≤
∫
B

|(z,Dw)| ≤ ‖z‖∞
∫
B

|Dw| ∀ Borel set B ⊆ Ω.

We denote by θ(z,Dw) ∈ L∞
|Dw|(Ω) the density of (z,Dw) with respect to |Dw|, that

is,

(z,Dw)(B) =

∫
B

θ(z,Dw) d|Dw| ∀ Borel set B ⊆ Ω.(2.5)

If Ω = RN , we have the following integration-by-parts formula [11] for z ∈ X2(R
N )

and w ∈ L2(RN ) ∩BV (RN ):∫
RN

w div z dx +

∫
RN

(z,Dw) = 0.(2.6)

In particular, if B is bounded and has finite perimeter in RN , from (2.6) and (2.5) it
follows that ∫

B

div z dx =

∫
RN

(z,−DχB) =

∫
∂∗B

θ(z,−DχB) dHN−1.(2.7)

Notice also that if z1, z2 ∈ X2(R
N ) and z1 = z2 almost everywhere on B, then

θ(z1,−DχB)(x) = θ(z2,−DχB)(x) for HN−1-almost every x ∈ ∂∗B.
We recall the following result proved in [11].
Theorem 2.3. Let Ω ⊂ RN be a open set with Lipschitz boundary, 1 ≤ p ≤ N ,

p′ = p
p−1 . Assume that either Ω or RN \ Ω is bounded. Let u ∈ BV (Ω) ∩ Lp′

(Ω) and

z ∈ L∞(Ω;RN ) with div z ∈ Lp(Ω). Then, using test functions ϕ ∈ C∞
0 (Ω), (2.4)

defines a Radon measure (z,Du) in Ω, there exists a function [z · νΩ] ∈ L∞(∂Ω) such
that ‖[z · νΩ]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω;RN ), and∫

Ω

u divz dx +

∫
Ω

(z,Du) =

∫
∂Ω

[z · νΩ]u dHN−1.

In particular, if Ω or RN \Ω is a bounded open set with Lipschitz boundary, then
(2.7) has a meaning also if z is defined only on Ω and not on the whole of RN , precisely
when z ∈ L∞(Ω;RN ) with div z ∈ L1(Ω). In this case we mean that θ(z,−DχΩ)
coincides with [z · νΩ].

Remark 1. Let Ω ⊂ R2 be a bounded Lipschitz open set, and let zinn ∈ L∞(Ω;R2)
with divzinn ∈ L2(Ω), and zout ∈ L∞(R2 \Ω;R2) with divzout ∈ L2(R2 \Ω). Assume
that

[zinn · νΩ](x) = −[zout · νR
2\Ω](x) for H1-a.e. x ∈ ∂Ω.

Then if we define z := zinn on Ω and z := zout on R2 \ Ω, we have z ∈ L∞(R2;R2)
and divz ∈ L2(R2).
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2.3. The notion of solution, and existence and uniqueness results. Con-
sider the energy functional Ψ : L2(RN ) → (−∞,+∞] defined by

Ψ(u) :=

⎧⎨
⎩

∫
RN

|Du| if u ∈ L2(RN ) ∩BV (RN ),

+∞ if u ∈ L2(RN ) \BV (RN ).

(2.8)

Since the functional Ψ is convex, lower semicontinuous, and proper, then ∂Ψ is a
maximal monotone operator with dense domain, generating a contraction semigroup
in L2(RN ) (see [16]). Therefore, we have the following result.

Theorem 2.4. Let u0 ∈ L2(RN ). Then there exists a unique strong solu-
tion in the semigroup sense u of (1.2), (1.3) in [0, T ] for every T > 0, i.e., u ∈
C([0, T ];L2(RN )) ∩ W 1,2

loc (0, T ;L2(RN )), u(0) = u0, u(t) ∈ D(∂Ψ) for almost every
t ∈ [0, T ], and

−u′(t) ∈ ∂Ψ(u(t)) for a.e. t ∈ [0, T ].(2.9)

Moreover, if u and v are the strong solutions of (1.2) corresponding to the initial
conditions u0, v0 ∈ L2(Ω), respectively, then

‖u(t) − v(t)‖2 ≤ ‖u0 − v0‖2 for any t > 0.

The semigroup theory immediately provides us with existence and uniqueness
results for (1.2). The characterization of ∂Ψ given in Lemma 2.5 below (see [8, 9, 12]
for a proof) allows us to write Theorem 2.4 in more classical terms.

Lemma 2.5. The following assertions are equivalent:
(a) (u, v) ∈ ∂Ψ;
(b)

u ∈ L2(RN ) ∩BV (RN ), v ∈ L2(RN ),(2.10)

∃z ∈ X2(R
N ) with ‖z‖∞ ≤ 1, such that v = −divz in D′(RN ),

and ∫
RN

(z,Du) =

∫
RN

|Du|.(2.11)

Let us now give a more classical definition of solution for problem (1.2). As we
shall notice below, this notion coincides with the notion of a strong solution in the
sense of semigroups defined above.

Definition 2.6. A function u ∈ C([0, T ];L2(RN )) is called a strong solution of
(1.2) if

u ∈ W 1,2
loc (0, T ;L2(RN )) ∩ L1

w(]0, T [;BV (RN )),

and there exists z ∈ L∞ (
]0, T [×RN ;RN

)
with ‖z‖∞ ≤ 1 such that

ut = div z in D′(]0, T [×RN )

and ∫
RN

(z(t), Du(t)) =

∫
RN

|Du(t)| for a.e. t > 0.(2.12)
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We have the following result [8, 9, 12].
Theorem 2.7. Let u0 ∈ L2(RN ). A function u ∈ C([0, T ];L2(RN )) is a strong

solution of (1.2) with u(0) = u0 if and only if it is a strong solution of it in the
semigroup sense. Hence there exists a unique strong solution u of (1.2), (1.3) in
[0, T ] × RN for every T > 0. Moreover, if u and v are the strong solutions of (1.2)
corresponding to the initial conditions u0, v0 ∈ L2(RN ), respectively, then

‖(u(t) − v(t))+‖2 ≤ ‖(u0 − v0)
+‖2 for any t > 0.(2.13)

Obviously, using Lemma 2.5, a strong solution of (1.2) is a strong solution in
the sense of semigroups. The converse implication would follow along the same lines,
except for the measurability of z(t, x). To ensure the joint measurability of z, one
takes into account that, by the Crandall–Liggett theorem [19], semigroup solutions
can be approximated by implicit-in-time discretizations of (2.9), and one constructs a
function z(t, x) ∈ L∞(]0, T [×RN ) satisfying the requirements contained in Definition
2.6. For details we refer to [8, 10]. Let us finally recall that, by a suitable extension
of the notion of solution, we have existence, uniqueness, and stability results with
respect to convergence in L1

loc(R
N ) for initial conditions in L1

loc(R
N ) [12].

Theorem 2.7 can be complemented with the following result.
Theorem 2.8. Let u0 ∈ L2(RN ) ∩ LN (RN ) with support contained in a ball

B of radius R > 0, and let u(t, x) be the unique solution of problem (1.2). Then
supp(u) ⊆ B. If T ∗(u0) = inf{t > 0: u(t) = 0}, then

T ∗(u0) ≤
R‖u0‖∞

N
.(2.14)

Let

w(t, x) :=

⎧⎨
⎩

u(t, x)

T ∗(u0) − t
if 0 ≤ t < T ∗(u0),

0 if t ≥ T ∗(u0).

Then there exists an increasing sequence tn → T ∗(u0) and a solution v∗ = 0 of the
eigenvalue problem

v ∈ ∂Ψ(v)(2.15)

such that

lim
n→∞

w(tn) = v∗ in Lp(RN )

for all 1 ≤ p < ∞.
By Lemma 2.5, equation (1.1) can be understood in more classical terms. Let

us write this definition in a more general context. We shall use the truncatures
Tk(r) := (−k) ∧ r ∨ k, r ∈ R, k > 0.

Definition 2.9. Let Ω be an open set in RN and let f ∈ L2
loc(Ω). We say that

a function u ∈ L1
loc(Ω) is a solution of

−div

(
Du

|Du|

)
= f in Ω(2.16)

if

Tk(u) ∈ BVloc(Ω) ∀k > 0,(2.17)

∃z ∈ L∞(Ω;RN ) with ‖z‖∞ ≤ 1, such that − divz = f in D′(Ω),



1104 G. BELLETTINI, V. CASELLES, AND M. NOVAGA

and

〈(z,DTk(u)), ϕ〉 =

∫
Ω

|DTk(u)|ϕ for any ϕ ∈ C∞
0 (Ω),(2.18)

where the left-hand side is defined as in (2.4).
The above definition also makes sense if we assume that f ∈ L1

loc(R
N ). Since this

will not be needed in what follows, and to avoid cumbersome statements in subsection
2.2, we have assumed that L1

loc(R
N ).

Remark 2. If u is a solution of (2.16) and f ∈ Lp
loc(Ω) with p ≥ 2, then

(z,Dχ{u>t}) = |Dχ{u>t}| (in the sense that 〈(z,Dχ{u>t}), ϕ〉 = 〈|Dχ{u>t}|, ϕ〉 for
any ϕ ∈ C∞

0 (Ω)) for almost any t ∈ R. Indeed, by [11, Proposition 2.7], we have

〈(z,DTk(u)), ϕ〉 =

∫ k

−k

〈(z,Dχ{u>t}), ϕ〉 dt, ϕ ∈ C∞
0 (Ω), k > 0.

Since |DTk(u)|(ϕ) =
∫ k

−k
|Dχ{u>t}|(ϕ), we may write (2.18) as

∫ k

−k

〈(z,Dχ{u>t}), ϕ〉 dt =

∫ k

−k

|Dχ{u>t}|(ϕ) dt, ϕ ∈ C∞
0 (Ω), k > 0,

and this implies our claim.
Remark 3. If u ∈ L∞(Ω), condition (2.18) can be replaced by (z,Du) = |Du|.
3. Properties of Lp

loc-solutions. Throughout the paper, from now on we shall
assume that N = 2.

Proposition 3.1. Let Ω be an open set in R2, and let u ∈ Lp
loc(Ω) for some

p ∈ ]2,+∞]. Let u be a solution of (1.1) in Ω. The following assertions hold.
(a) If p < +∞ (resp., p = +∞), then for any t ∈ R the sets {u > t} and {u ≥ t}

have boundary of class C1,α in Ω for some α ∈ ]0, 1[ (resp., C1,1). Similar
assertions hold for {u < t} and {u ≤ t}.

(b) If u ≥ a in Ω (resp., u ≤ a in Ω) for some a ∈ R, then κΩ∩∂{u>t} ≥ a and
κΩ∩∂{u≥t} ≥ a in the sense of distributions.

Proof. Let us prove (a). Let t be such that {u > t} is nonempty and has locally
finite perimeter in Ω and (z,Dχ{u>t}) = |Dχ{u>t}| (in particular, by Remark 2, for
almost every t). Let E be a set of finite perimeter in R2 such that E�{u > t} ⊂⊂ Ω.
Take a bounded Lipschitz set Ω′ with E�{u > t} ⊂⊂ Ω′ ⊂ Ω. Then, using (1.1), we
have ∫

{u>t}∩Ω′
divz dx−

∫
E∩Ω′

divz dx ≤ P (E,Ω′) − P ({u > t},Ω′).(3.1)

It follows that {u > t} is a minimizer of the functional

P (E,Ω) +

∫
E∩Ω

div z dx, E ⊆ R2,(3.2)

with respect to perturbations with compact support in Ω. Since by assumption
−divz = u ∈ Lp

loc(Ω) for some p ∈ ]2,+∞], using the regularity results for pre-
scribed curvature problems (see [7, 30]), it follows that Ω ∩ ∂{u > t} is of class C1,α

for some α ∈ ]0, 1[ if p < +∞, and of class C1,1 if p = +∞. By the compactness
property of minimizers for problem (3.2) (see, for instance, [4]) the above assertion
holds for any t, and (a) follows for {u > t}.
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Let us prove (b). Assume that u ≥ a in Ω (the case u ≤ a is analogous). Let
t ∈ R be such that {u > t} is nonempty and has locally finite perimeter in Ω and
(z,Dχ{u>t}) = |Dχ{u>t}| as in Remark 2 (hence, for almost every t). Let E be a set
of finite perimeter in R2 such that E ⊇ {u > t} and E \ {u > t} ⊂⊂ Ω′ ⊂ Ω, Ω′ being
a bounded set with Lipschitz boundary. Then from (3.1) it follows that

P ({u > t},Ω′) ≤ P (E,Ω′) +

∫
(E\{u>t})∩Ω′

divz dx

≤ P (E,Ω′) − a(|E ∩ Ω′| − |{u > t} ∩ Ω′|).

It follows that {u > t} is a minimizer of the functional

P (E,Ω) − a|E ∩ Ω|, {u > t} ⊆ E ⊆ R2,

with respect to perturbations with compact support in Ω. This concludes the proof
of (b) [7, 30].

The corresponding assertions for the sets {u ≥ t} can be proved in a similar
way.

In what follows, given a function u as in Proposition 3.1 and t ∈ R, we always
identify the set {u > t} (resp., {u < t}) with its points of density one, which is an
open set. We accordingly define {u ≥ t} as the complement of {u < t}.

4. Properties of W 1,1
loc -solutions.

Proposition 4.1. Let u be a solution of (1.1). Assume that u ∈ W 1,1
loc (Ω) ∩

L∞
loc(Ω) for some open set Ω ⊆ R2. Then for any t ∈ R every connected component

of Ω ∩ ∂{u > t} is contained in the boundary of a ball of radius 1/t.
Proof. Let t ∈ R, γ := Ω ∩ ∂{u > t}, and ε > 0. By Proposition 3.1 the curve γ

and the two curves γ−
ε := Ω ∩ ∂{u > t− ε}, γ+

ε := Ω ∩ ∂{u < t + ε} are of class C1,1.
Moreover, since u ∈ W 1,1

loc (Ω), the two sets γ−
ε ∩ γ and γ+

ε ∩ γ are closed sets of zero
H1-measure. Then the curve γ \ (γ−

ε ∪ γ−
ε ) is contained in Ω ∩ {|u− t| < ε}. Since γ

is of class C1,1, by (b) of Proposition 3.1 it follows that γ has curvature belonging to
(t− ε, t + ε). The thesis follows by letting ε → 0+.

Note that if u is as in Proposition 4.1, then the set {u > t} is a disjoint union of
balls of radius 1

t for any t ∈ R such that the boundary of {u > t} is contained in Ω.

Lemma 4.2. Let u ∈ W 1,1
loc (R2) ∩ L∞

loc(R
2) be a solution of (1.1). Then u ≡ 0.

Proof. Assume by contradiction that λ := ess supR2 u > 0 (the case ess inf uR2 <
0 can be treated in a similar way). Using Proposition 4.1 it follows that the set
{u > t} contains an open ball Bt of radius 1

t for any t ∈ (0, λ). Fix t ∈ (0, λ) and
let t∗ := ess supBt

u > t. Then the closure of a connected component of the set
Bt ∩ {u = t∗} = Bt ∩ {u ≥ t∗} is a closed ball Dt∗ ⊂ Bt of radius 1

t∗ . Using (1.1) we
get

t∗ =
(t∗)2

π

∫
Dt∗

u dx = − (t∗)2

π

∫
Dt∗

divz dx = 2t∗,

which is a contradiction.
Loosely speaking, the following proposition classifies solutions with no jumps.
Proposition 4.3. Assume that u is a solution of (1.1) satisfying the following

assumption:

∀t ∈ R ∃ an open set Ut ⊃ ∂{u > t} such that u ∈ L∞
loc(Ut).
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Assume also that Tk(u) ∈ W 1,1
loc (R2) for any k > 0. Then one of the following possi-

bilities holds:
• u ≡ 0;
• u is positive and the set {u > t} is a ball of radius 1

t for any t > 0;
• u is negative and the set {u < t} is a ball of radius − 1

t for any t < 0;
• u is nonnegative, {u > 0} is a halfspace, and the set {u > t} is a ball of

radius 1
t for any t > 0;

• u is nonpositive, {u < 0} is a halfspace, and the set {u < t} is a ball of radius
− 1

t for any t < 0;
• both {u > 0} and {u < 0} are halfspaces, the set {u > t} is a ball of radius 1

t
for any t > 0, and the set {u < τ} is a ball of radius − 1

τ for any τ < 0.
Proof. Assume that λ := ess supu > 0 (the case ess inf u < 0 being similar). From

Proposition 4.1 we get that {u > t} is the disjoint union of balls of radius 1
t for any

t ∈ (0, λ). Reasoning as in the proof of Lemma 4.2 we deduce that λ = +∞. Observe
that, given 0 < t1 < t2, to each ball B1 ⊆ {u > t1} (of radius 1/t1) there corresponds
one and only one ball B2 ⊆ {u > t2} (of radius 1/t2) such that B2 ⊂ B1, and vice
versa. Hence there is a pairwise correspondence between the balls of {u > t1} and
those of {u > t2}. Letting t → 0+, {u > t} consists of at most two balls, since
given any three disjoint balls whose radius goes to infinity, at least one of them has a
distance from a fixed point which goes to infinity. Hence u > 0 may consist of either
one halfspace, two halfspaces, or the whole of R2.

Claim. The set {u > t} consists of exactly one ball of radius 1
t for any t > 0.

Observe that, once the claim is proved, all assertions of the proposition follow,
since {u > 0} =

⋃
t>0{u > t} can only be a halfspace or the whole of R2. Assume by

contradiction that {u > t} is the union of two balls (of radius 1
t ); hence u ≥ 0 is the

union of two halfspaces of R2. Given τ < 0, the set {u < τ} is either empty or contains
a ball of radius − 1

τ ; however, by the above argument there is no place for such a ball.
Hence u ≥ 0. Then {u = 0} is either a line or a stripe. Without loss of generality,
we may assume that {u = 0} = [−l, l] × R for some l ≥ 0. Let L > l and, for t > 0
small enough and such that (z,Dχ{u>t}) = |Dχ{u>t}|, set St,L := {u < t}∩ ]−L,L[2.
Since −divz = u is bounded in St,L, we have

0 ≥ −
∫
St,L

u dx =

∫
St,L

div z dx =

∫
∂St,L

[z, νSt,L ] dH1

≥ H1(∂St,L ∩ ∂{u < t}) −H1(∂St,L ∩ {u < t}) ≥ 4L−H1(∂St,L ∩ {u < t}).

Letting t → 0+ and using the fact that {u > t} is the union of two balls of radius
1/t, we obtain 4L− 4l ≤ 0, a contradiction. Our claim is proved and the proposition
follows.

5. Solutions of div z = constant in bounded domains. In the following,
m ≥ 1 is an integer, and we denote by C0, C1, . . . , Cm bounded open sets of R2 with
boundary of class C1,1 having the following properties:

• Cl ⊂ C0 for any l ∈ {1, . . . ,m};
• Cl ∩ Ch = ∅ for any l, h ∈ {1, . . . ,m}, l = h.

We define

F := C0 \
m⋃
l=1

Cl,
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J0 :=
1

|F |

(
k∑

i=0

P (Ci) −
m∑

j=k+1

P (Cj)

)
,(5.1)

where 0 ≤ k < m is a fixed integer.
Given a set E ⊆ F of finite perimeter in F , we also let

FF (E) := P (E,F ) +

k∑
i=0

H1(∂∗E ∩ ∂Ci) −
m∑

j=k+1

H1(∂∗E ∩ ∂Cj) − J0|E|.

Remark 4. It is clear that FF (∅) = 0. Observe also that, thanks to the definition
of J0, FF (F ) = 0.

We now define a class A of subsets of F .
Definition 5.1. Let E ⊆ F be a finite perimeter set and let J0 > 0. We say

that E ∈ A if either E ∈ {∅, F} or the following conditions hold: F ∩ ∂∗E consists of
disjoint arcs Γ of circles of radius 1/J0, with ∂F ∩ Γ = ∅, and

νE= νC0 on Γ ∩ ∂C0,(5.2)

νE= −νCi on Γ ∩ ∂Ci, i ∈ {1, . . . , k},(5.3)

νE= νCj on Γ ∩ ∂Cj , j ∈ {k + 1, . . . ,m}.(5.4)

In (5.2), (5.3), and (5.4) we keep the notation νE to indicate the extension of the
outer unit normal vector to ∂E at the points of Γ.

The following result can be essentially found in [25, Theorem 1] and [26, Theorem
6.10]. Indeed, the results in [25, 26] cover the case of equalities (5.2) and (5.3), but
they can be adapted to prove (5.4).

Theorem 5.2. Let E ⊆ F be a finite perimeter set and assume that FF (E) =
min{FF (B) : B ⊆ F}. Then E ∈ A.

The equivalence (a) ⇐⇒ (c) of the next theorem in the crystalline case has been
investigated in [13].

Theorem 5.3. The following conditions are equivalent:
(a) There exists a vector field z : F → R2 satisfying

z ∈ L∞(F ;R2),

⎧⎪⎪⎨
⎪⎪⎩

−div z = J0 in D′(F ),
‖z‖∞ ≤ 1,

[z, νF ] = −1 H1-a.e. on ∂Ci, i ∈ {0, . . . , k},
[z, νF ] = 1 H1-a.e. on ∂Cj , j ∈ {k + 1, . . . ,m}.

(5.5)

(b) We have

J0

∫
F

w ≤
∫
F

|Dw| +
k∑

i=0

∫
∂Ci

w −
m∑

j=k+1

∫
∂Cj

w ∀w ∈ BV (F ).(5.6)

(c) For any set E ⊆ F of finite perimeter in F we have FF (E) ≥ 0.
(d) We have

min
E∈A

FF (E) = 0.(5.7)

Proof. We divide the proof into several steps.
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Step 1. Let Ω be an open bounded connected subset of R2 with C1,1 boundary,
f ∈ L2(Ω), g ∈ L∞(∂Ω), and λ > 0. Assume that ‖g‖∞ < 1. A function u ∈
BV (Ω) ⊂ L2(Ω) is a solution of

min
w∈BV (Ω)

E(w), E(w) :=

∫
Ω

|Dw| + 1

2λ

∫
Ω

(w − f)2 dx−
∫
∂Ω

gw(5.8)

if and only if there exists z ∈ X2(Ω), with ‖z‖∞ ≤ 1, satisfying (z,Du) = |Du| as
measures in Ω, [z, νΩ] = g H1-almost everywhere on ∂Ω and −λdivz = f−u in D′(Ω).

We observe that the functional E is convex and L1-lower semicontinuous. More-
over, since ‖g‖∞ < 1 and ∂Ω is of class C1,1, using the results of Giusti [28] we get
that E is coercive. Therefore it attains its minimum, which is also unique. Hence
u = argmin E if and only if 0 ∈ ∂E(u), where ∂ denotes the subdifferential in L2.

We now define the operator Ag in L2(Ω) × L2(Ω) as follows: (w, v) ∈ Ag if and
only if w ∈ BV (Ω), v ∈ L2(Ω), and there is a vector field z ∈ L∞(Ω, R2) with
‖z‖∞ ≤ 1 such that (z,Dw) = |Dw|, −div z = v in D′(Ω), and [z, νΩ] = g H1-almost
everywhere on ∂Ω. Let us prove that the operator Ag is maximal monotone. As
a consequence, since Ag ⊆ ∂E and both are maximal monotone, we conclude that
Ag = ∂E . This will prove Step 1.

The monotonicity of Ag follows by an integration by parts. To prove the maximal
monotonicity, we have to solve

f ∈ u + Agu ∀f ∈ L2(Ω).(5.9)

First, we assume that f ∈ L∞(Ω). Let us approximate (5.9) by⎧⎨
⎩

u− div(Tεu) = f in Ω,

[Tεu, νΩ] = g in ∂Ω,
Tεu :=

Du√
ε2 + |Du|2

.(5.10)

Following [28], we have that (5.10) has a unique solution uε ∈ BV (Ω). If we further
assume that f ∈ W 1,∞(Ω), we have uε ∈ W 1,1(Ω) (actually uε ∈ C2,α(Ω); see [28]).

Let us prove the basic estimates required to pass to the limit as ε → 0.
(i) L2 and bounded variation estimates on uε when f ∈ L∞(Ω): multiplying

(5.10) by uε, after integration by parts, we get∫
Ω

u2
ε +

∫
Ω

Tεuε ·Duε =

∫
Ω

fuε +

∫
∂Ω

guε.

Since x2
√
ε2+x2

≥ |x| − ε for all x ∈ R, from the above estimate we have∫
Ω

u2
ε +

∫
Ω

|Duε| ≤ ε|Ω| +
∫

Ω

fuε +

∫
∂Ω

guε.(5.11)

Now, using [28, Lemma 1.2] and ‖g‖∞ =: 1− 2σ < 1, there is a constant c depending
on σ, g, Ω, such that∣∣∣∣

∫
∂Ω

gw

∣∣∣∣ ≤ (1 − σ)

∫
Ω

|Dw| + c

∫
Ω

|w| ∀w ∈ BV (Ω).(5.12)

Inserting (5.12) in (5.11) we obtain the estimate

1

2

∫
Ω

u2
ε + σ

∫
Ω

|Duε| ≤ (ε + c2)|Ω| + ‖f‖2
2.

Thus, by extracting a subsequence, if necessary, we may assume that uε → u in Lp(Ω)
for any 1 ≤ p < 2 and weakly in L2(Ω), where u ∈ BV (Ω).
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(ii) L3 estimate on uε when f ∈ W 1,∞(Ω). We multiply (5.10) by |Tk(uε)|uε.
After integrating by parts we obtain∫

Ω

u2
ε |Tk(uε)| +

∫
Ω

Tεuε ·D(|Tk(uε)|uε) =

∫
Ω

f |Tk(uε)|uε +

∫
∂Ω

g|Tk(uε)|uε.

Using (5.12) and∫
Ω

Tεuε ·D(|Tk(uε)|uε) ≥
∫

Ω

|D(|Tk(uε)|uε)| − ε

∫
Ω

[|uε| + |Tk(uε)|]

we obtain ∫
Ω

u2
ε |Tk(uε)| + σ

∫
Ω

|D(|Tk(uε)|uε| ≤ (‖f‖∞ + c)

∫
Ω

|Tk(uε)||uε|

+ ε

∫
Ω

|uε| + ε

∫
Ω

|Tk(uε)|.

Since uε is bounded in L2(Ω), letting k → ∞, we deduce that uε is bounded in L3(Ω).
Thus also u ∈ L3(Ω).

Now,∫
Ω

(uε − u)2 dx ≤
(∫

Ω

|uε − u|3 dx
)1/2 (∫

Ω

|uε − u| dx
)1/2

→ 0 as ε → 0.

Thus we may extract a sequence uε converging in L2(Ω) to some function u ∈
BV (Ω). Moreover, we may assume that Tεuε → z weakly∗ in L∞(Ω, R2). Letting
ε → 0 in (5.10) we have

u− div z = f in D′(Ω).(5.13)

Still we have to prove that (z,Du) = |Du| and [z, νΩ] = g.
Let ϕ be a smooth function in Ω, continuous up to ∂Ω. We multiply (5.10) by ϕ

and integrate by parts to obtain∫
Ω

uεϕ +

∫
Ω

Tεuε · ∇ϕ−
∫
∂Ω

[Tεuε, ν
Ω]ϕ =

∫
Ω

fϕ.(5.14)

Letting ε → 0 and using that [Tεuε, ν
Ω] = g, we obtain∫

Ω

uϕ +

∫
Ω

z · ∇ϕ−
∫
∂Ω

gϕ =

∫
Ω

fϕ.(5.15)

Integrating by parts the second term of the above equality, we get∫
Ω

uϕ−
∫

Ω

div z ϕ +

∫
∂Ω

([z, νΩ] − g)ϕ =

∫
Ω

fϕ.(5.16)

Now, using (5.13) it follows that
∫
∂Ω

([z, νΩ] − g)ϕ = 0 for all test functions ϕ. This
implies that [z, νΩ] = g on ∂Ω.

To prove that (z,Du) = |Du|, we observe that from the lower semicontinuity of
E and the convergence

∫
Ω
(uε − f)2 dx →

∫
Ω
(u− f)2 dx as ε → 0, we have∫

Ω

|Du| −
∫
∂Ω

gu ≤ lim inf
ε

(∫
Ω

|Duε| −
∫
∂Ω

guε

)
= lim inf

ε

(∫
Ω

(Tεuε, Duε) −
∫
∂Ω

guε

)

= lim inf
ε

−
∫

Ω

div Tεuε uε = −
∫

Ω

div z u

=

∫
Ω

(z,Du) −
∫
∂Ω

gu ≤
∫

Ω

|Du| −
∫
∂Ω

gu.

We conclude that
∫
Ω
(z,Du) =

∫
Ω
|Du|.
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We have proved that there is a solution of (5.9) for each f ∈ W 1,∞(Ω). Our
next goal is to prove that the operator Ag is closed. As a consequence we obtain
that (5.9) has a solution for each f ∈ L2(Ω). To prove the closedness of Ag, let
(un, vn) ∈ Ag be such that (un, vn) → (u, v) in L2(Ω)×L2(Ω). Then there is a vector
field zn ∈ L∞(Ω, R2) with ‖zn‖∞ ≤ 1 such that vn = −div zn, (zn, Dun) = |Dun|
and [zn, ν

Ω] = g. Modulo a subsequence, we may assume that zn → z weakly∗

in L∞(Ω, R2) with ‖z‖∞ ≤ 1. Since vn = −div zn → −div z in D′(Ω), we have
v = −div z. The proofs of the facts [z, νΩ] = g and (z,Du) = |Du| follow the same
arguments as those in the corresponding proofs above, and we shall omit the details.
We conclude that Ag is closed in L2(Ω). This ends the proof that Ag is maximal
monotone and ∂E = Ag.

Step 2. The function u ≡ 0 is the solution of (5.8) if and only if f and g satisfy

∫
Ω

|Dw| ≥ 1

λ

∫
Ω

wf dx +

∫
∂Ω

gw ∀w ∈ BV (Ω).(5.17)

The proof follows along the same lines as the proof of [12, Lemma 1]. Clearly u ≡ 0
is the solution of (5.8) if and only if

∫
Ω

|Dw| + 1

2λ

∫
Ω

(w − f)2 dx−
∫
∂Ω

gw ≥ 1

2λ

∫
Ω

f2 dx ∀w ∈ BV (Ω).(5.18)

Replacing w by εw (where ε > 0), expanding the L2-norm, dividing by ε > 0, and
letting ε → 0+, we have (5.17).

On the other hand, if (5.17) holds, (5.18) also holds. Finally note that, replacing
w by −w, we see that we may replace the right-hand side of (5.17) by its absolute
value.

Step 3. Problem (5.5) has a solution if and only if (5.6) holds.
Note that it is enough to prove inequality (5.6) only for functions w ∈ BV (F ),

which do not change sign, i.e., w ≥ 0 or w ≤ 0.
Suppose that (5.5) has a solution z. Let w ∈ BV (F ). Multiplying −divz = J0

on F by w and integrating by parts, we obtain that (5.6) holds.
Assume now that (5.6) holds. Multiplying (5.6) by 1 − ε > 0 we deduce that

(1 − ε)J0

∫
F

w ≤
∫
F

|Dw| + (1 − ε)

k∑
i=0

∫
∂Ci

w − (1 − ε)

m∑
j=k+1

∫
∂Cj

w

∀w ∈ BV (F ).

Thus, by Step 2 with λ = 1 we deduce that u = 0 is a solution of (5.8) with f =
(1 − ε)J0χF , and g ≡ −(1 − ε) in ∂Ci, i ∈ {0, . . . , k}, and g ≡ 1 − ε in ∂Cj , j ∈
{k+ 1, . . . ,m}, for all ε ∈ ]0, 1[. Then by Step 1, we know that there exists a solution
ξε ∈ L∞(F,R2) such that ‖ξε‖∞ ≤ 1, −divξε = (1 − ε)J0χF , [ξε, ν

F ] = g. Letting
ε → 0, we find a vector field z satisfying (5.5).

Step 4. Conditions (b) and (c) are equivalent.
(c) follows from (b) by taking w = χE in (5.6) for any set of finite perimeter

E ⊆ F . (b) follows from (c) by means of the coarea formula. Indeed, let w ∈ BV (F ),
w ≥ 0. We have
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J0

∫
F

w dx = J0

∫ ∞

0

∫
F

χ{w≥t}χF dx dt = J0

∫ ∞

0

|{w ≥ t} ∩ F | dt

≤
∫ ∞

0

P ({w ≥ t}, F ) dt +

k∑
i=0

∫ ∞

0

H1(∂∗{w ≥ t} ∩ ∂Ci) dt

−
m∑

j=k+1

∫ ∞

0

H1(∂∗{w ≥ t} ∩ ∂Cj) dt

=

∫
F

|Dw| +
k∑

i=0

∫
∂Ci

w −
m∑

j=k+1

∫
∂Cj

w.

Let us prove the corresponding inequality for w ∈ BV (F ), w ≤ 0. First, we observe
that, writing F \ E instead of E in (c), we obtain

P (F \E,F ) +
k∑

i=0

H1(∂∗(F \E) ∩ ∂Ci)−
m∑

j=k+1

H1(∂∗(F \E) ∩ ∂Cj)− J0|F \E| ≥ 0.

Since P (F \ E,F ) = P (E,F ) and H1(∂∗(F \ E) ∩ ∂Cl) = P (Cl) − H1(∂∗E ∩ ∂Cl),
using (5.1), we may write the last equation as

P (E,F ) +
m∑

j=k+1

H1(∂∗E ∩ ∂Cj) −
k∑

i=0

H1(∂∗E ∩ ∂Ci) + J0|E| ≥ 0.(5.19)

Now, we may proceed as in the case where w ≥ 0 but using (5.19) instead of (c).
Indeed,

J0

∫
F

w dx = −J0

∫ 0

−∞

∫
F

χ{w≤t}χF dx dt = −J0

∫ 0

−∞
|{w ≤ t} ∩ F | dt

≤
∫ 0

−∞
P ({w ≤ t}, F ) dt−

k∑
i=0

∫ 0

−∞
H1(∂∗{w ≤ t} ∩ ∂Ci) dt

+

m∑
j=k+1

∫ 0

−∞
H1(∂∗{w ≤ t} ∩ ∂Cj) dt

=

∫
F

|Dw| +
k∑

i=0

∫
∂Ci

w −
m∑

j=k+1

∫
∂Cj

w.

Finally, if w ∈ BV (F ), we decompose w = w+ +w−, write the corresponding inequal-
ities (5.6) for w+ and w−, and add them to obtain that (5.6) holds for w.

Step 5. Condition (c) is equivalent to

min
E⊆F

FF (E) = FF (∅) = FF (F ) = 0,(5.20)

where the minimum is taken on the sets E ⊆ F of finite perimeter. Moreover, any
set E ⊆ F of finite perimeter minimizing the left-hand side of (5.20) belongs to A by
Theorem 5.2; therefore condition (c) is equivalent to condition (d).

Given a set E ⊆ R2, of finite perimeter in R2, we define the functional G as

G(E) := P (E) −
m∑

j=k+1

P (Cj) − J0|E ∩ F |.
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Remark 5. Recalling the definition of J0, we have G(F ∪ (
⋃m

j=k+1 Cj)) = 0.
Proposition 5.4. The following conditions are equivalent:
(a) The set F ∪ (

⋃m
j=k+1 Cj) is a solution of the variational problem

min

{
G(E) :

m⋃
j=k+1

Cj ⊆ E ⊆ C0 \
k⋃

i=1

Ci

}
.(5.21)

(b) There exists a vector field z satisfying (5.5).
Remark 6. If k = 0 in Proposition 5.4, the last inclusion in (5.21) must be

understood as E ⊆ C0.
Proof of Proposition 5.4. Assume that there exists a vector field z satisfying (5.5).

Given a finite perimeter set E ⊂ R2 such that
⋃m

j=k+1 Cj ⊆ E ⊆ C0 \
⋃k

i=1 Ci, we
integrate the divergence of z on E ∩ F and obtain

J0|E ∩ F | = −
∫
E∩F

div z dx

≤ P (E ∩ F, F ) +
k∑

i=0

H1(∂∗(E ∩ F ) ∩ ∂Ci)−H1

(
∂∗(E ∩ F ) ∩

(
m⋃

j=k+1

Cj

))

= P (E) −
m∑

j=k+1

P (Cj).

It follows that G(E) ≥ 0, and (a) follows.
Let us now assume that (a) holds. Let D ⊂ F be a set of finite perimeter. By

Theorem 5.3 (see condition (c)), to obtain a vector field satisfying (5.5) it is enough
to prove that

P (D) − 2
m∑

j=k+1

H1(∂∗D ∩ ∂Cj) ≥ J0|D|.(5.22)

Set A := D ∪
⋃m

j=k+1 Cj . By assumption we have

0 ≤ G(A) = P (A) −
m∑

j=k+1

P (Cj) − J0|D|

= P (D) − 2

m∑
j=k+1

H1(∂∗D ∩ ∂Cj) +

m∑
j=k+1

P (Cj) −
m∑

j=k+1

P (Cj) − J0|D|,

which is (5.22).
Remark 7. If we consider the case in which k = 0, then J0 tends to zero as

C0 tends to R2; in this case, the minimum problem (5.21) reduces to the problem
considered in [12, Theorem 6].

5.1. Characterization through the curvature of the boundaries. The
aim of this subsection is to prove Theorem 5.10, which is a characterization of the
solvability of problem (5.5) through pointwise curvature conditions on the boundaries
of the sets Ci. We begin with some preliminaries. The next definition is taken from
[18, Theorem 4.1].
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Definition 5.5. Let Ω ⊆ R2 be an open set with boundary of class C1,1 and
ρ > 0. We say that Ω satisfies the ρ-ball condition if an open ball of radius ρ can be
rotated along ∂Ω in Ω in such a way that no antipods of the ball lie on ∂Ω.

It is clear that if Ω satisfies the ρ-ball condition, then it satisfies the σ-ball con-
dition for any σ ∈ ]0, ρ].

Lemma 5.6. Let Ω ⊆ R2 be an open set satisfying the ρ-ball condition for some
ρ > 0. Then ess sup∂Ω κ∂Ω ≤ 1

ρ . Moreover, given an open ball Bρ ⊂ Ω of radius ρ
and tangent to ∂Ω, the set γ ∩ ∂Bρ is connected for any connected component γ of
∂Ω and spans an angle strictly less than π.

Proof. The inequality ess sup∂Ω κ∂Ω ≤ 1
ρ is immediate. Now let p, q ∈ ∂Bρ ∩ ∂Ω,

and denote by γ ⊂ ∂Bρ the shortest of the two circular arcs in ∂Bρ having p and q as
boundary points (such a γ is uniquely determined since p and q cannot be antipodal
by the ρ-ball condition). If γ ⊂ ∂Ω, we slightly rotate Bρ along ∂Ω around p towards
q, and denoting by B′ such a rotated ball, one verifies that q belongs to the interior
of B′, thus violating the ρ-ball condition. Hence γ ⊆ ∂Bρ ∩ ∂Ω, and γ spans an angle
strictly less than π.

Remark 8. In general, the inequality ess sup∂Ω κ∂Ω ≤ 1
ρ does not imply the ρ-ball

condition for the set Ω. However, if Ω is a convex set with boundary of class C1,1 such
that ess sup∂Ω κ∂Ω < 1

ρ , then Ω satisfies the ρ-ball condition.

Remark 9. If Cl is convex for any l ∈ {0, . . . ,m}, ess sup∂C0
κ∂C0

< J0 (in
particular J0 > 0), and

dist(∂Cl, ∂Ch) >
2

J0
∀(l, h) ∈ {0, . . . ,m}, l = h,

then F satisfies the 1
J0

-ball condition.

Given a function f ∈ W 1,1(]a, b[) ∩ C1,1 (]a, b[), we denote by κ(x, f(x)) the cur-
vature of the graph of f at the point (x, f(x)), i.e.,

κ(x, f(x)) := − f ′′(x)

(1 + f ′2(x))3/2
for a.e. x ∈ ]a, b[.

Lemma 5.7. Let f, g ∈ W 1,1(]a, b[)∩C1,1 (]a, b[) be such that f ≤ g on [a, b], and
f(a) = g(a), f(b) = g(b). Assume that ess inf ]a,b[ κ(x, f(x)) ≥ ess sup]a,b[ κ(x, g(x)) ≥
0. Then f = g.

Proof. By a smoothing argument we can assume that f, g ∈ C2 (]a, b[). Suppose
by contradiction that f = g, and let c := max[a,b](g − f) > 0. Let us fix ε >
0 and consider the function fε(x) := (1 − ε)f (x/(1 − ε)), x ∈ [(1 − ε)a, (1 − ε)b].
Then, for ε small enough, the function g − fε attains its maximum at a point x ∈
]a, b[ ∩ ](1 − ε)a, (1 − ε)b[. Hence g′(x) = f ′

ε(x), g′′(x) ≤ f ′′
ε (x). It follows that

κ(x, g(x)) ≥ κ(x, fε(x)) =
1

1 − ε
κ

(
x

1 − ε
, f

(
x

1 − ε

))
> κ

(
x

1 − ε
, f

(
x

1 − ε

))
,

which gives a contradiction.
Lemma 5.8. Let K0 and K1 be two bounded strictly convex sets of class C1,1 in the

plane, with K1 ⊆ K0 and K1 = K0. Assume that ess sup∂K0
κ∂K0 ≤ ess inf∂K1 κ∂K1 .

Then either ∂K0 ∩ ∂K1 = ∅ or ∂K0 ∩ ∂K1 is a connected arc which spans an angle
strictly less than π.

Proof. Let Γ be a connected component of ∂K0 \∂K1, and assume that Γ = ∂K0.
It is enough to prove that Γ spans an angle strictly greater than π. Assume by
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contradiction that Γ spans an angle less than or equal to π. Then there exists an
arc Γ′ ⊂ ∂K1 \ ∂K0 which also spans an angle less than or equal to π and has the
same endpoints as Γ. By the strict convexity of K0 and K1, and with a proper choice
of a coordinate system, we may assume that Γ′ and Γ are, respectively, the graphs
of two functions f and g, which satisfy the assumptions of Lemma 5.7. We get a
contradiction from that lemma.

We recall the following result, which follows from [34, (6.52)].
Proposition 5.9. Let K0 and K1 be two bounded convex sets of class C1,1 in

the plane, with K1 ⊆ K0. Assume that ess sup∂K0
κ∂K0

≤ ess inf∂K1 κ∂K1 . Then

2π(|K0| + |K1|) − P (K0)P (K1) ≥ 0.

Moreover the inequality is strict if K1 ⊂⊂ K0.
Remark 10. Let λ > 0. Then the function

ρ → P (Bρ) − λ|Bρ| = π(2ρ− λρ2)

attains its maximum at ρ = 1/λ.
We are now in a position to prove the main result of this section.
Theorem 5.10. Assume that there exists a vector field z : F → R2 satisfying

(5.5). Then

ess sup
∂C0

κ∂C0
≤ J0,(5.23)

ess inf
∂Ci

κ∂Ci
≥ −J0, i ∈ {1, . . . , k},(5.24)

ess inf
∂Cj

κ∂Cj ≥ J0, j ∈ {k + 1, . . . ,m}.(5.25)

Conversely, assume that
(a) the inequality (5.25) holds;
(b) F ∪ (

⋃m
j=k+1 Cj) satisfies the 1

J0
-ball condition;

(c) dist(∂Cl, ∂Ch) > 2
J0

for all (l, h) ∈ {0, . . . , k}2 ∪ {k + 1, . . . ,m}2, l = h.

Then there exists a vector field z : F → R2 satisfying (5.5).
Remark 11. If k = 0 in Theorem 5.10, then condition (5.24) does not appear.
Proof of Theorem 5.10. Assume that problem (5.5) has a solution. Fix j ∈

{k + 1, . . . ,m} and x ∈ ∂Cj . Let A be an open neighborhood of x where ∂Cj can be
written as a graph; we can assume that A ⊂ C0 and A ∩ (∪l∈{1,...,m,},l �=jCl) = ∅. We
claim that

P (Cj) − J0|Cj | ≤ P (Cj ∪B) − J0|Cj ∪B| ∀B Borel, B ⊂ A.(5.26)

Let B be a Borel set with B ⊆ A. We can assume that P (B) < +∞. Define
E := B ∪

⋃m
l=k+1 Cl. Using Proposition 5.4 we have

0 ≤ G(E) = P (E) −
m∑

l=k+1

P (Cl) − J0|E ∩ F |.

Since E ∩ F = B \ Cj and P (E) = P (Cj ∪B) +
∑m

l=k+1,l �=j P (Cl), we have

P (Cj ∪B) − J0|B \ Cj | ≥ P (Cj).(5.27)

By substracting J0|Cj | to (5.27) we obtain (5.26). Then (5.25) is a consequence of
Proposition 2.1.
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Similarly, fix x ∈ ∂C0 (resp., x ∈ ∂Ci for some i ∈ {1, . . . , k}), and let A be an
open neighborhood of x where ∂C0 (resp., ∂Ci) can be written as a graph; we can
assume that A∩(∪l∈{1,...,m}Cl) = ∅ (resp., A ⊂ C0, A∩(∪l∈{1,...,m},l �=iCi) = ∅). Then

P (C0) − J0|C0| ≤ P (C0 \B) − J0|C0 \B|(5.28)

(resp., P (Ci) + J0|Ci| ≤ P (Ci ∪B) + J0|Ci ∪B|)(5.29)

for any Borel set B with B ⊂ A. Indeed, define E := (F \ B) ∪
⋃m

j=k+1 Cj . Using

Proposition 5.4 and the equality P (E) = P (C0 \B) +
∑k

i=1 P (Ci), we have

0 ≤ G(E) = P (E) −
m∑

j=k+1

P (Cj) − J0|E ∩ F |

= P (C0 \B) − P (C0) +

k∑
i=0

P (Ci) −
m∑

j=k+1

P (Cj) − J0|E ∩ F |

= P (C0 \B) − P (C0) + J0|F | − J0|E ∩ F |,

where in the last equality we have used the definition of J0. We then get

P (C0) − J0|C0| ≤ P (C0 \B) − J0(|E ∩ F | + |C0| − |F |) = P (C0 \B) − J0|C0 \B|,

which is (5.28). Then (5.23) is a consequence of Proposition 2.1.
Eventually, in the case where x ∈ ∂Ci for some i ∈ {1, . . . , k}, and A has been

chosen as described above, we define again E := (F \B) ∪
(⋃m

l=k+1 Cl

)
. Then

0 ≤ G(E) = P (E) −
m∑

l=k+1

P (Cl) − J0|E ∩ F |

= P (Ci ∪B) − P (Ci) +

k∑
l=0

P (Cl) −
m∑

l=k+1

P (Cl) − J0|E ∩ F |

= P (Ci ∪B) − P (Ci) + J0|F | − J0|E ∩ F |,

which implies

P (Ci) + J0|Ci| ≤ P (Ci ∪B) + J0(|F | − |E ∩ F | + |Ci|)

= P (Ci ∪B) + J0|Ci ∪B|,
(5.30)

and, by Proposition 2.1, (5.24) follows.
Assume now that (a)–(c) hold. Notice that condition (b) implies (5.23), which, in

turn, implies J0 > 0. Observe also that, by (5.25), the sets Ck+1, . . . , Cm are strictly
convex.

Denote by Emin ∈ A a solution of the minimum problem (5.7), with Emin /∈ {∅, F}.
By Theorem 5.3 and Remark 4, it is enough to prove that

FF (Emin) ≥ 0.(5.31)

We can assume that Emin is connected, since the functional FF is additive on con-
nected components [5]. Recall that, by the definition of A, the closure of (any con-
nected component of) Emin must intersect ∂F .
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Let Γ be a connected component of F ∩ ∂Emin, and let p, q be the endpoints of
Γ, with p ∈ ∂Cj and q ∈ ∂Ci, for some i, j ∈ {0, . . . ,m} (p not necessarily different
from q). We recall that Γ meets tangentially ∂F (see conditions (5.2)–(5.4)) and, by
assumption (b), Γ is contained in the boundary of an open ball B ⊆ F ∪ (

⋃m
n=k+1 Cn)

of radius 1
J0

. We now divide the proof into three steps. We first show that p and q
cannot belong both to the same ∂Ci when i ≤ k.

Step 1. If i ≤ k, then i = j.
Assume by contradiction that i = j ≤ k. Using assumption (b), by Lemma 5.6

(applied with Ω := F ∪ (
⋃m

l=k+1 Cl)) it follows that p and q are the extrema of an arc
γ ⊆ ∂B ∩ ∂Ci which spans an angle strictly less than π. Notice that ∂B = γ ∪ Γ;
moreover, recalling that the curvature (which is equal to 1/J0) of Emin inside F is
positive, either Emin = B or Emin = B \ Cj for some index j ≥ k + 1. Observe that,

in the latter case, Cj ⊂⊂ B and, by condition (c), there cannot be any other Cl,

with l ≥ k + 1 and l = j, with Cl ⊆ B. Let us consider a new set E′ := B′ \ B if
Emin = B (resp., E′ := B′ \ Cj if Emin = B \ Cj), where B′ is a ball obtained by
slightly translating B towards the interior of F , and slightly modifying its radius. By
Remark 10 we have FF (E′) < FF (Emin), which contradicts the minimality of Emin.
We now show that either i ≤ k and j ≥ k + 1 or vice versa.

Step 2. The cases i, j ≤ k and i, j ≥ k + 1 cannot happen.
By assumption (c) and Step 1 it is clear that the case i, j ≤ k cannot happen, nor

can the case i, j ≥ k+1 with i = j. We have to exclude the case i = j ≥ k+1. Recalling
that (5.25) implies the strict convexity of Cj , using (a) and (5.4), we have that Cj ⊆ B.
Using again the strict convexity of Cj , Lemma 5.8 implies that ∂Cj∩∂B is a connected
arc which spans an angle strictly less than π. Hence we get a contradiction by slightly
modifying Emin as in Step 1.

By Steps 1 and 2 we conclude that there exists an arc Γ of F ∩ ∂Emin whose
endpoints p, q satisfy p ∈ ∂Cj , q ∈ ∂Ci, and i ∈ {0, . . . , k}, j ∈ {k + 1, . . . ,m}.

In the following, we write Ci for i ≤ k, but we mean R2 \ C0 when i = 0.
Let us call the inner (resp., outer) side of Γ the side of Γ inside (resp., outside)

Emin. Notice that from conditions (5.2)–(5.4) Ci cannot lie in the inner side of Γ and
Cj cannot lie in the outer side of Γ. Moreover, since J0 > 0 the inner (resp., outer)
side of Γ is also the side of Γ inside (resp., outside) B.

Step 3. We have B = Emin ∪ Cj .
Let p′ ∈ ∂Cj be the endpoint of an arc Γ′ ⊆ F ∩ ∂Emin. Then Γ′ is contained

in the boundary of an open ball B′ ⊆ F ∪
(⋃m

l=k+1 Cl

)
of radius 1

J0
. By assumption

(c) Γ′ cannot meet another set Cj′ with j′ ≥ k + 1, j′ = j. On the other hand, the
above discussion implies Cj ⊆ B′. Let us suppose that the other endpoint q′ of Γ′

(different from p′) belongs to ∂Ci′ for some i′ ≤ k. Observe that B′ ∩ Ci′ = ∅. If
i = i′, then B = B′ (if B = B′ � {q, q′}, then dist(Ci, Ci′) ≤ 2

J0
, a contradiction with

assumption (c)). Since B and B′ contain Cj , we have B ∩ B′ = ∅. Now, Γ is an arc
of ∂B joining p ∈ B ∩ B′ to q ∈ ∂Ci ∩ B, q ∈ B′, whereas Γ′ is joining p′ ∈ B ∩ B′

to q′ ∈ ∂Ci′ ∩ B′, q ∈ B. It follows that either Γ ∩ Γ′ = ∅ or there exists another
arc of ∂B ∩ ∂Emin ∩ F different from Γ intersecting Γ′; see Figure 5.1. Since these
arcs intersect transversally, this contradicts the fact that ∂Emin is smooth. It follows
that i = i′. Moreover, since (B ∪B′)∩Ci = ∅, for the same reason (i.e., the fact that
∂Emin is smooth) we also get B = B′.

The ball B cannot meet, nor contain, any other set Ci′ with i′ ≤ k, i = i′, nor
any other set Cj′ with j′ ≥ k + 1, j′ = j. Thus B = Emin ∪ Cj (see Figure 5.2) and
Step 3 is proved.
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Fig. 5.1. The two intersecting balls B and B′.
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B = B’ = E  min

Fig. 5.2. The minimizing set Emin (i ≥ 1).

We now conclude the proof. Applying Proposition 5.9 with K1 = Cj and K0 = B,
we compute (see Figure 5.2)

FF (Emin) = P (Emin, F ) + H1(∂Ci ∩ ∂Emin) −H1(∂Cj ∩ ∂Emin) − J0|Emin|

=
2π

J0
− P (Cj) − J0

(
π

J2
0

− |Cj |
)

=
π

J0
− P (Cj) + J0|Cj | ≥ 0,

which gives (5.31) and hence the thesis.
Proposition 5.11. Let K0,K1 be two bounded open convex sets of R2 with

boundary of class C1,1 such that K1 ⊆ K0. Let F := K0 \K1. Let

J :=
P (K0) − P (K1)

|F | > 0.

If

ess sup
∂K0

κ∂K0 ≤ J,(5.32)

ess inf
∂K1

κ∂K1 ≥ J,(5.33)
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then there exists a vector field z ∈ L∞(F,R2) with ‖z‖∞ ≤ 1 such that⎧⎨
⎩

−div z = J in D′(F ),

[z, νF ] = −1 H1-a.e. on ∂K0,

[z, νF ] = 1 H1-a.e. on ∂K1.
(5.34)

Remark 12. Proposition 5.11 admits a direct proof along the lines of [27]. Notice
also that, thanks to Remark 9, Proposition 5.11 would be a consequence of Theorem
5.10 (in the case k = 0 and m = 1) if the strict inequality in (5.32) were valid.

Proof of Proposition 5.11. Let us prove that assumptions (a) and (b) of Theorem
5.10 hold for Fλ := K0λ\K1λ, where K0λ := (1+λ)K0, K1λ := (1−λ)K1, λ > 0 being
small enough. We observe that P (K0λ) = (1 + λ)P (K0), P (K1λ) = (1 − λ)P (K1),
|K0λ| = (1 + λ)2|K0|, and |K1λ| = (1 − λ)2|K1|; hence

Jλ :=
P (K0λ) − P (K1λ)

|Fλ|
= J +

λ

|F | (P (K0) + P (K1) − 2J(|K0| + |K1|)) + o(λ).

Since

ess sup
∂K0λ

κ∂K0λ
=

1

1 + λ
ess sup

∂K0

κ∂K0 ≤ 1

1 + λ
J,

it suffices to prove that 1
1+λJ < Jλ to conclude that

ess sup
∂K0λ

κ∂K0λ
< Jλ.(5.35)

By Remark 8, this implies that K0λ satisfies the 1
Jλ

-ball condition. Now, 1
1+λJ < Jλ

for λ small enough if and only if

2P (K0)|K1| < P (K1)(|K0| + |K1|).(5.36)

Since K1 ⊂ K0, using Proposition 5.9 and the isoperimetric inequality, we deduce

|K0| + |K1| >
1

2π
P (K0)P (K1) ≥ 2

P (K0)|K1|
P (K1)

,

and we obtain (5.36), and therefore also (5.35).
Let us prove that condition (b) of Theorem 5.10 holds. Since

ess inf
∂K1λ

κ∂K1λ
=

1

1 − λ
ess inf

∂K1

κ∂K1 ≤ 1

1 − λ
J,

to conclude that

ess sup
∂K1λ

κ∂K1λ
≥ Jλ,(5.37)

it suffices to prove that 1
1−λJ ≥ Jλ. Now, 1

1−λJ > Jλ for λ small enough if and only if

2P (K1)|K0| < P (K0)(|K0| + |K1|).(5.38)

Again, since K1 ⊆ K0, using Proposition 5.9 and the isoperimetric inequality, we
deduce

|K0| + |K1| >
1

2π
P (K0)P (K1) ≥ 2

P (K1)|K0|
P (K0)

,

and we conclude that (5.38), and therefore also (5.37), holds.
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By Theorem 5.10, there exists a vector field zλ ∈ L∞(Fλ, R
2) such that ‖zλ‖∞ ≤

1, satisfying ⎧⎨
⎩

−div zλ = Jλ in D′(Fλ),

[zλ, ν
Fλ ] = −1 H1-a.e. on ∂K0λ,

[zλ, ν
Fλ ] = 1 H1-a.e. on ∂K1λ.

Letting λ → 0+ we obtain a solution of (5.34).

6. Solutions of div z = 0 in an unbounded domain. In this section we
assume that C0 = R2, k ≥ 1, we let C1, . . . , Cm be as in section 5, and we let
F := R2 \

⋃m
i=1 Ci. We are concerned with the existence of a vector field z : F → R2

such that

z ∈ L∞(F,R2),

⎧⎪⎪⎨
⎪⎪⎩

−div z = 0 in D′(F ),
‖z‖∞ ≤ 1,

[z, νF ] = −1 H1-a.e. on ∂Ci, i ∈ {1, . . . , k},
[z, νF ] = 1 H1-a.e. on ∂Cj , j ∈ {k + 1, . . . ,m}.

(6.1)

Theorem 6.1. The following conditions are equivalent:
(i) Problem (6.1) has a solution.
(ii) We have

0 ≤
∫
F

|Dw| +
k∑

i=1

∫
∂Ci

w −
m∑

j=k+1

∫
∂Cj

w ∀w ∈ BV (F ).(6.2)

(iii) For any E ⊆ F of finite perimeter, we have

P (E,F ) ≥
∣∣∣∣∣

m∑
j=k+1

H1(∂∗E ∩ ∂Cj) −
k∑

i=1

H1(∂∗E ∩ ∂Ci)

∣∣∣∣∣.(6.3)

(iv) Let E1 be a solution of the variational problem

min

{
P (E) :

m⋃
j=k+1

Cj ⊆ E ⊆ R2 \
k⋃

i=1

Ci

}
.(6.4)

Then we have

P (E1) =

m∑
j=k+1

P (Cj).(6.5)

Let E2 be a solution of the variational problem

min

{
P (E) :

k⋃
i=1

Ci ⊆ E ⊆ R2 \
m⋃

j=k+1

Cj

}
.(6.6)

Then we have

P (E2) =

k∑
i=1

P (Ci).(6.7)
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Remark 13. Notice that (iv) implies that each Cl is a convex set. Moreover,
since any minimizer of problems (6.4) and (6.6) has boundary (lying inside F ) made
of a finite number of segments which intersect tangentially ∂F (and there are only
a finite number of such segments), the number of such minimizers is finite. Finally,
conditions (6.5) and (6.7) are essentially distance conditions between sets Ci of the
same type; for example, they are satisfied if dist(∂Ci, ∂Cj) > P (Cl) for any (i, j, l) ∈
{1, . . . , k}3 ∪ {k + 1, . . . ,m}3, i = j.

Proof. We divide the proof into four steps.
Step 1. Let f ∈ L2(F ), g ∈ L∞(∂F ), λ > 0. The following hold:
(a) Assume that ‖g‖∞ < 1. The function u is the solution of

min
w∈BV (F )

Q(w), Q(w) :=

∫
F

|Dw| + 1

2λ

∫
F

(w − f)2 dx−
∫
∂F

gw dH1(6.8)

if and only if there exists z ∈ X2(F ) with ‖z‖∞ ≤ 1 satisfying (z,Du) = |Du| as
measures in F , [z, νF ] = g H1-almost everywhere on ∂F and −λdivz = f − u in
D′(F ).

(b) The function u ≡ 0 is the solution of (6.8) if and only if∫
F

|Dw| ≥ 1

λ

∫
F

wf dx−
∫
∂F

gw ∀w ∈ BV (F ).

Let us prove both assertions. Let R > 0 be such that R2 \ F ⊂⊂ BR = BR(0).
We consider the functional

QR(w) :=

∫
BR∩F

|Dw| + 1

2λ

∫
BR∩F

(w − f)2 dx−
∫
∂F

gw dH1(6.9)

defined for w ∈ BV (BR ∩F ). Now, since ‖g‖∞ < 1 and ∂F is of class C1,1, using the
results of Giusti [28], we know that the convex functional QR is lower semicontinuous
and proper, and it attains its infimum in BV (BR ∩ F ). Let wn → w in L2(BR ∩ F ).
Then QR(w) ≤ lim infn QR(wn) ≤ lim infn Q(wn). Since this is true for all R > 0, we
deduce that Q(w) ≤ lim infn Q(wn). Thus, Q is convex, lower semicontinuous, and
proper. As we shall note below, Q attains its infimum in BV (F ). Hence u = argminQ
if and only if 0 ∈ ∂Q(u).

Now, we define the operator A′
g in L2(F ) × L2(F ) as follows: (w, v) ∈ A′

g if
and only if w ∈ BV (F ), v ∈ L2(F ), and there is a vector field z ∈ L∞(F,R2) with
‖z‖∞ ≤ 1 such that (z,Dw) = |Dw| and −div z = v in D′(F ), [z, νF ] = g H1-
almost everywhere on ∂F . We claim that the operator A′

g is maximal monotone.
The monotonicity of A′

g follows by an integration by parts. To prove the maximal
monotonicity we have to solve the equation

f ∈ u + A′
gu ∀f ∈ L2(F ).(6.10)

First, we assume that f ∈ Lp(F ) for any p ∈ [1,∞]. Let us approximate (6.10) by⎧⎨
⎩

u− div z = f in D′(BR ∩ F ),

[z, νBR∩F ] = g H1-a.e. in ∂F ,

[z, νBR∩F ] = 0 H1-a.e. in ∂BR,
(6.11)

where z ∈ L∞(BR ∩ F,R2) is such that ‖z‖∞ ≤ 1 and (z,Du) = |Du|. Then, by
Step 1 of the proof of Theorem 5.3, equation (6.11) has a unique solution uR. Let zR
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denote the associated vector field. Let us comment on the basic estimates required to
pass to the limit as R → ∞.

(i) L2 and bounded variation estimates on uR: multiplying (6.11) by uR, after
integration by parts, we get∫

BR∩F

u2
R +

∫
BR∩F

|DuR| =

∫
BR∩F

fuR +

∫
∂F

guR.(6.12)

Now, using [28, Lemma 2.2], there exists ε0 > 0 such that, for each δ > 0, there is
c(δ) > 0 such that∣∣∣∣

∫
∂F

gw

∣∣∣∣ ≤ (
1 − ε0

2

)∫
Sδ

|Dw| + c(δ)

∫
Sδ

|w| ∀w ∈ BV (BR ∩ F ),(6.13)

where Sδ := {x ∈ BR∩F : dist(x, ∂F ) < δ}, where the constant c(δ) does not depend
on R > 0. Using (6.13) in (6.12) we obtain the estimate

1

4

∫
BR∩F

u2
R + ε0

∫
BR∩F

|DuR| ≤
1

2
‖f‖2

2 + C|Sδ|.

Thus, by extracting a subsequence, if necessary, we may assume that uR → u in Lp
loc

for any 1 ≤ p < 2 and weakly in L2(F ) where u ∈ L2(F ) and
∫
F
|Du| < ∞.

Let us mention that, as a consequence of (6.13), if Q(un) is bounded, we obtain
that

∫
F
|un|2 and

∫
F
|Dun| are bounded and, therefore, Q attains its infimum.

(ii) Lp estimate on uR: let ηp : R → R be a smooth function such that η′p(r) > 0
for all r ∈ R, ηp(0) = 0, and sign(r)ηp(r) behaves as |r|p−1 as r → ∞. We multiply
(6.11) by ηp(uR). Integrating by parts and using (6.13), we obtain∫

BR∩F

uRηp(uR) ≤
∫
BR∩F

|f ||ηp(uR)| + c(δ)

∫
Sδ

|ηp(uR)|.(6.14)

Let p = 1, and assume that |η1(r)| ≤ 1 for any r ∈ R. We obtain∫
BR∩F

uRη1(uR) ≤
∫
BR∩F

|f | + c(δ)|Sδ|.(6.15)

Take a sequence η1,n(r) such that η1,n(r) → sign(r) for any r = 0. Using Fatou’s
theorem we deduce that ∫

BR∩F

|uR| ≤
∫
BR∩F

|f | + c(δ)|Sδ|.

Assume that uR is bounded in Lq. Using p = q in (6.14) and proceeding in the same
way, we deduce that uR is bounded in Lq+1. This implies that uR is bounded in Lp

for all p < ∞. Thus u ∈ Lp(F ) for any 1 ≤ p < ∞.
Now, let R > M > 0, where M is such that all sets Ci are contained in BM/4(0).

Let ϕ ∈ W 1,∞(R2) be such that ϕ = 0 on BM/2(0), ϕ = 1 outside BM (0), and it
increases linearly along the rays from 0 to 1 in BM (0) \BM/2(0). We multiply (6.11)
by uRϕ

2 and integrate by parts to obtain∫
BR∩F

u2
Rϕ

2 +

∫
BR∩F

|DuR|ϕ2 =

∫
BR∩F

fuRϕ
2 −

∫
BR∩F

uRzR · ∇(ϕ2).
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Hence ∫
BR∩F

u2
Rϕ

2 ≤
∫
BR∩F

|f ||uR|ϕ2 +

∫
BR∩F

|uR|ϕ|∇ϕ|

≤ 1

2

∫
BR∩F

|f |2ϕ2 +
1

2

∫
BR∩F

|uR|2ϕ2 + ‖uRϕ‖3/2‖∇ϕ‖3.

As |∇ϕ| ≤ 2
M we have

‖∇ϕ‖3 ≤ 2

M

(
3

4
πM2

)1/3

≤ C

M1/3
.

Since ‖uRϕ‖3/2 is bounded independently of R and M , we have∫
BR∩F

u2
Rϕ

2 ≤ C

∫
BR∩F

|f |2ϕ2 +
C

M1/3
.

Thus, given ε > 0 we find M large enough so that∫
BR∩F

u2
Rϕ

2 ≤ ε

for any R > M . Assume that uR is extended by 0 outside BR. Thus uR is equi-
integrable near infinity. Thus, to prove that uR → u in L2(F ) it is sufficient to prove
that uR → u in L2

loc(F ). For that, let ϕ ∈ C∞
0 (R2). Then

∫
F

|uR − u|2ϕ2 ≤
(∫

F

|uR − u|3ϕ2

)1/2 (∫
F

|uR − u|ϕ2

)1/2

→ 0 as R → ∞,

since the first integral is bounded independently of R and the second tends to 0 as
R → ∞.

The two previous estimates imply that we may extract a subsequence uR converg-
ing in L2(F ) to some function u ∈ BV (F ). Moreover, we may assume that zR → z
weakly∗ in L∞(F,R2). Letting R → ∞ in (6.11) we have

u− div z = f in D′(F ).(6.16)

We still have to prove that (z,Du) = |Du| and [z, νF ] = g.
Let ϕ be a smooth function in F , continuous up to ∂F and vanishing for large

values of |x|. We multiply (6.11) by ϕ and integrate by parts to obtain∫
BR∩F

uRϕ +

∫
BR∩F

zR · ∇ϕ−
∫
∂F

[zR, ν
BR∩F ]ϕ =

∫
BR∩F

fϕ.(6.17)

Letting R → ∞ and using that [zR, ν
BR∩F ] = g, we obtain∫

F

uϕ +

∫
F

z · ∇ϕ−
∫
F

gϕ =

∫
F

fϕ.(6.18)

Integrating by parts the second term of the above equality, we get∫
F

uϕ−
∫
F

div z ϕ +

∫
∂F

([z, νF ] − g)ϕ =

∫
F

fϕ.(6.19)
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Using (6.16) it follows that
∫
∂F

([z, νF ] − g)ϕ = 0 for any ϕ. This implies that
[z, νF ] = g on ∂F . To prove that (z,Du) = |Du|, we observe that from the lower
semicontinuity of Q and the convergence

∫
BR∩F

(uR − f)2 dx →
∫
F

(u − f)2 dx as
R → ∞, we have∫
F

|Du| −
∫
∂F

gu ≤ lim inf
R

(∫
BR∩F

|DuR| −
∫
∂F

guR

)

= lim inf
R

(∫
BR∩F

(zR, DuR) −
∫
∂F

guR

)
= lim inf

R
−
∫
BR∩F

div zR uR = −
∫
F

div z u

=

∫
F

(z,Du) −
∫
∂F

gu ≤
∫
F

|Du| −
∫
∂F

gu.

We conclude that
∫
F

(z,Du) =
∫
F
|Du|.

We have proved that there is a solution of (6.10) for each f ∈ L∞(F )∩L2(F ). Our
next purpose is to prove that the operator A′

g is closed. As a consequence we obtain
that (6.10) has a solution for any f ∈ L2(BR ∩F ). To prove the closedness of A′

g, let
(un, vn) ∈ A′

g be such that (un, vn) → (u, v) in L2(F )×L2(F ). Then there is a vector
field zn ∈ L∞(F,R2) with ‖zn‖∞ ≤ 1 such that vn = −div zn, (zn, Dun) = |Dun| and
[zn, ν

F ] = g. Up to a subsequence, we may assume that zn → z weakly∗ in L∞(F,R2)
with ‖z‖∞ ≤ 1. Since vn = −div zn → −div z in D′(F ), we have v = −div z. The
proofs of the facts [z, νF ] = g and (z,Du) = |Du| follow the same arguments as the
corresponding proofs in Theorem 5.3, and we shall omit the details. We conclude that
A′

g is closed.
Since A′

g ⊆ ∂Q and both are maximal monotone, we conclude that A′
g = ∂Q.

This proves (a).
The proof of (b) follows along the same lines as the proof of Step 2 in Theorem 5.3.
Step 2. (i) ⇐⇒ (ii). Note that, as before, we may replace the condition “∀w ∈

BV (F )” by “∀w ∈ BV (F ) such that w ≥ 0 or w ≤ 0.”
Suppose that (6.1) has a solution z. Let w ∈ BV (F ). Multiplying (6.1) by w and

integrating by parts, we obtain (6.2).
Assume now that (6.2) holds for any w ∈ BV (F ). Multiplying (6.2) by (1 − ε),

we deduce that

0 ≤
∫
F

|Dw| + (1 − ε)

k∑
i=1

∫
∂Ci

w − (1 − ε)

m∑
j=k+1

∫
∂Cj

w ∀w ∈ BV (F ).

Using Step 1(b), we deduce that u ≡ 0 is a solution of (6.8) with f = 0, and g ≡ 1− ε
on ∂Cj and g ≡ −(1 − ε) on ∂Ci for all ε > 0. Then by Step 2(a), we know that
there exists a solution ξε ∈ L∞(F,R2) such that ‖ξε‖∞ ≤ 1, −divξε = 0, [ξε, ν

F ] = g.
Letting ε → 0, we find a vector field z satisfying (6.1).

The equivalence between (ii) and (iii) can be proved in the same manner as the
equivalence between (b) and (c) in Theorem 5.3 was, and we shall omit the details.

Step 3. (iii)⇒(iv). Let X := E1 \
⋃m

j=k+1 Cj . Using (iii) we have

m∑
j=k+1

H1(∂∗X ∩ ∂Cj) −
k∑

i=1

H1(∂∗X ∩ ∂Ci) ≤ P (X,F ).(6.20)

Using Lemma 2.2, we have

P (E1) = P

(
X ∪

m⋃
j=k+1

Cj

)
= P (X) +

m∑
j=k+1

P (Cj) − 2H1

(
∂∗X ∩

(
m⋃

j=k+1

∂Cj

))
.
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Then, using (6.20), we have

P (E1) = P (X) +

m∑
j=k+1

P (Cj) − 2

m∑
j=k+1

H1(∂∗X ∩ ∂Cj)

= P (X,F ) +

m∑
j=k+1

H1(∂∗X ∩ ∂Cj) +

k∑
i=1

H1(∂∗X ∩ ∂Ci)

+

m∑
j=k+1

P (Cj) − 2

m∑
j=k+1

H1(∂∗X ∩ ∂Cj)

= P (X,F ) +

k∑
i=1

H1(∂∗X ∩ ∂Ci) +

m∑
j=k+1

P (Cj) −
m∑

j=k+1

H1(∂∗X ∩ ∂Cj)

≥
m∑

j=k+1

P (Cj).

The proof for the set E2 is analogous.
Step 4. (iv)⇒(iii). Let X ⊆ F be a set of finite perimeter. Let E1 be a minimizer

of (6.4) and set D :=
⋃m

j=k+1 Cj . Using (6.5) and the minimality of E1, we have

m∑
j=k+1

P (Cj) = P (E1) ≤ P (X ∪D) .(6.21)

Using Lemma 2.2 and (6.21), we have

P (X ∪D) = P (X) + P (D) − 2H1(∂D ∩ ∂∗X)

≤ P (X) + P (X ∪D) − 2H1(∂D ∩ ∂∗X).

Hence

2

m∑
j=k+1

H1(∂∗X ∩ ∂Cj) ≤ P (X) = P (X,F ) +

k∑
i=1

H1(∂∗X ∩ ∂Ci)

+

m∑
j=k+1

H1(∂∗X ∩ ∂Cj).

We then have

m∑
j=k+1

H1(∂∗X ∩ ∂Cj) ≤ P (X,F ) +

k∑
i=1

H1(∂∗X ∩ ∂Ci).

The other inequality follows by considering the set E2 and using condition (6.6) instead
of (6.4).

7. Examples of solutions of the eigenvalue problem (1.1). Let us give an
example of how, by pasting the solutions of problems (5.5) and (6.1), we can construct
solutions of the eigenvalue problem (1.1).
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Let Ci, i = 1, . . . ,m, 1 ≤ k ≤ m, be a family of convex sets of class C1,1 satisfying
the conditions in section 5. For each i ∈ {1, . . . ,m} let us consider Ci1, Ci2, . . . , Cimi

open bounded sets with boundary of class C1,1 with the following properties:
• Cij ⊂ Ci for any j ∈ {1, . . . ,mi};
• Cij ∩ Cij′ = ∅ for any j, j′ ∈ {1, . . . ,mi}, j = j′.

For i ∈ {1, . . . ,m} we define

Fi := Ci \
mi⋃
j=1

Cij , Ji :=

∑ki

j=0 P (Cij) −
∑mi

j=ki+1 P (Cij)

|Fi|
,

where ki ∈ {1, . . . ,mi} are given. Assume that
(a) ess inf∂Cij

κ∂Cij ≥ Ji, i ∈ {1, . . . ,m}, j ∈ {ki + 1, . . . ,mi};
(b) Fi ∪ (

⋃mi

j=ki+1 Cij) satisfies the 1
Ji

-ball condition for any i ∈ {1, . . . ,m};
(c) dist(∂Cij , ∂Cij′) >

2
Ji

, i ∈ {1, . . . ,m}, (j, j′) ∈ {0, . . . , ki}2∪{ki+1, . . . ,mi}2,
j = j′, where we have denoted Ci0 = Ci;

(d)

ess sup
∂Cij

κ∂Cij ≤ P (Cij)

|Cij |
=: Jij , i ∈ {1, . . . ,m}, j ∈ {1, . . . ,mi}.

Notice that Ji > 0, since (b) implies ess sup∂Ci0
κ∂Ci0 ≤ Ji, and also

ess inf
∂Cij

κ∂Cij
≥ −Ji, j ∈ {1, . . . , ki}.

Using Theorems 5.10 and 6.1, together with [12, Theorem 4], we have the existence
of vector fields ξext ∈ L∞(R2 \

⋃m
i=1 Ci), ξi ∈ L∞(Fi), ξij ∈ L∞(Cij), such that

‖ξext‖∞ ≤ 1, ‖ξi‖∞ ≤ 1, ‖ξij‖∞ ≤ 1, i = 1, . . . ,m, j = 1, . . . ,mi, satisfying⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−div ξext = 0 onR2 \
m⋃
i=1

Ci,

[ξext, ν
R2\∪m

i=1Ci ] = −1 H1-a.e. on ∂Ci, i ∈ {1, . . . , k},
[ξext, ν

R2\∪m
i=1Ci ] = 1 H1-a.e. on ∂Cj , j ∈ {k + 1, . . . ,m},

(7.1)

⎧⎨
⎩

−div ξi = Ji on Fi,

[ξi, ν
Fi ] = −1 H1-a.e. on ∂Cij , j ∈ {0, . . . , ki},

[ξi, ν
Fi ] = 1 H1-a.e. on ∂Cij , j ∈ {ki + 1, . . . ,mi},

i ∈ {1, . . . ,m},(7.2)

⎧⎨
⎩−div ξij =

P (Cij)

|Cij |
on Cij ,

[ξij , ν
Cij ] = −1 H1-a.e. on ∂Cij ,

i ∈ {1, . . . ,m}, j ∈ {1, . . . ,mi}.(7.3)

Now, we may paste together these vector fields to define ξ ∈ L∞(R2, R2), ‖ξ‖∞ ≤ 1,
by

ξ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξext on R2 \
⋃m

i=1 Ci,
−ξi on Fi, i = 1, . . . , k,
ξi on Fi, i = k + 1, . . . ,m,
ξij on Cij , i = 1, . . . , k, j = 1, . . . , ki,
−ξij on Cij , i = 1, . . . , k, j = ki + 1, . . . ,mi,
−ξij on Cij , i = k + 1, . . . ,m, j = 1, . . . , ki,
ξij on Cij , i = k + 1, . . . ,m, j = ki + 1, . . . ,mi,
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satisfying

−div ξ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 on R2 \
⋃m

i=1 Ci,
−Ji on Fi, i = 1, . . . , k,
Ji on Fi, i = k + 1, . . . ,m,
Jij on Cij , i = 1, . . . , k, j = 1, . . . , ki,
−Jij on Cij , i = 1, . . . , k, j = ki + 1, . . . ,mi,
−Jij on Cij , i = k + 1, . . . ,m, j = 1, . . . , ki,
Jij on Cij , i = k + 1, . . . ,m, j = ki + 1, . . . ,mi.

Thus, if we define

u := −
k∑

i=1

JiχFi
+

m∑
i=k+1

JiχFi
+

k∑
i=1

ki∑
j=1

JijχCij −
k∑

i=1

mi∑
j=ki+1

JijχCij

−
m∑

i=k+1

ki∑
j=1

JijχCij
+

m∑
i=k+1

mi∑
j=ki+1

JijχCij ,

then u is a solution of (1.1). Therefore, by pasting solutions of problems like (7.1),
(7.2), (7.3), we may construct solutions of (1.1).

8. Some explicit solutions of the denoising problem. The previous results
allow us to explicitly compute the minimum of the denoising problem (1.8) for some
data f ∈ L2(R2). Let us recall that a vector field z ∈ X2(R

2) with ‖z‖∞ ≤ 1 satisfying

−div z = F ∈ L2(R2)

exists if and only if [31, 12]

‖F‖∗ := sup

{∣∣∣∣
∫
R2

Fv dx

∣∣∣∣ : v ∈ BV (R2),

∫
R2

|Dv| ≤ 1

}
≤ 1.

Proposition 8.1. Let ui ∈ BV (R2), ui ≥ 0, be such that ui ∧ uj = 0, i, j ∈
{1, . . . ,m}, i = j. Assume that ui and

∑m
i=1 ui are solutions of the eigenvalue problem

(1.1), i ∈ {1, . . . ,m}. Let bi ∈ R, i = 1, . . . ,m, and f :=
∑m

i=1 biui. Also let λ > 0.
Then the solution u of the variational problem (1.8) is u :=

∑m
i=1 sign(bi)(|bi|−λ)+ui.

Observe that if (*)
∑m

i=1 ui is a solution of (1.1), then (**) ‖
∑m

i=1 ui‖∗ ≤ 1.
Notice that, using (8.2) below, it is easy to prove that both conditions (*) and (**)
are, indeed, equivalent.

Proof. Under our assumptions we have ui ∈ BV (R2) ⊂ L2(R2), i = 1, . . . ,m,
and hence f ∈ L2(R2). Recall that a function u ∈ BV (R2) is the solution of (1.8) if
and only if u is the solution of

u− λdiv

(
Du

|Du|

)
= f.(8.1)

Observe that since each ui is a solution of (1.1), multiplying (1.1) by ui and integrating
by parts, we obtain ∫

R2

u2
i dx =

∫
R2

|Dui|.(8.2)
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Let us prove that u =
∑m

i=1 sign(bi)(|bi| − λ)+ui is the solution of (8.1). Let Iλ :=
{i ∈ {1, . . . ,m} : |bi| ≥ λ}, Hλ := {i ∈ {1, . . . ,m} : |bi| < λ}. Since, in this case,

f − u = λ
∑
i∈Iλ

sign(bi)ui +
∑
i∈Hλ

biui,

to prove that u is a solution of (8.1) we have to construct a vector field ξ ∈ L∞(R2;R2)
with ‖ξ‖∞ ≤ 1, such that

−div ξ =
∑
i∈Iλ

sign(bi)ui +
∑
i∈Hλ

bi
λ
ui(8.3)

and (ξ,Du) = |Du|. Let F ∈ L2(R2) denote the right-hand side of (8.3), and let
F+ := sup(F, 0), F− := sup(−F, 0). Let us prove that ‖F‖∗ ≤ 1. In order to prove
this, we let v ∈ BV (R2). Since∫

R2

Fv dx ≤
∫
R2

(F+v+ + F−v−) dx

and
∫
R2 |Dv| =

∫
R2 |Dv+| +

∫
R2 |Dv−|, the inequality

∫
R2 Fv dx ≤

∫
R2 |Dv| follows if

we prove that∫
R2

F+v+ dx ≤
∫
R2

|Dv+| and

∫
R2

F−v− dx ≤
∫
R2

|Dv−|.

Thus, without loss of generality, we may assume that F ≥ 0 (i.e., all bi appearing
in the definition of F are nonnegative) and v ≥ 0. Then, using that bi

λ ≤ 1 for any
i ∈ Hλ, we have that

0 ≤ F ≤
m∑
i=1

ui.

Since, by assumption, ‖
∑m

i=1 ui‖∗ ≤ 1, we have∫
R2

Fv dx ≤
∫
R2

m∑
i=1

uiv dx ≤
∫
R2

|Dv|.

Therefore ‖F‖∗ ≤ 1. Thus, there is a vector field ξ ∈ L∞(R2;R2) such that ‖ξ‖∞ ≤ 1,
satisfying (8.3).

As (|bi| − λ)+ = 0 for all i ∈ Hλ, we have∫
R2

|Du| =
∑
i∈Iλ

(|bi| − λ)

∫
R2

|Dui|.

Since ui ∧ uj = 0 for any i, j ∈ {1, . . . ,m}, i = j, then Fu =
∑

i∈Iλ
(|bi| − λ)u2

i , and
we have∫

R2

(ξ,Du) = −
∫
R2

div ξ u dx =

∫
R2

Fudx =
∑
i∈Iλ

(|bi| − λ)

∫
R2

u2
i dx;

applying (8.2) we obtain∫
R2

(ξ,Du) =
∑
i∈Iλ

(|bi| − λ)

∫
R2

|Dui| dx =

∫
R2

|Du|,

which in turn implies that (ξ,Du) = |Du|, since ‖ξ‖∞ ≤ 1.
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