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GLOBAL SOLUTIONS TO THE GRADIENT FLOW EQUATION OF
A NONCONVEX FUNCTIONAL∗

G. BELLETTINI† , M. NOVAGA‡ , AND E. PAOLINI§

Abstract. We study the L2-gradient flow of the nonconvex functional Fφ(u) := 1
2

∫
(0,1) φ(ux) dx,

where φ(ξ) := min(ξ2, 1). We show the existence of a global in time possibly discontinuous solution u
starting from a mixed-type initial datum u0, i.e., when u0 is a piecewise smooth function having
derivative taking values both in the region where φ′′ > 0 and where φ′′ = 0. We show that, in gen-
eral, the region where the derivative of u takes values where φ′′ = 0 progressively disappears while
the region where φ′′ is positive grows. We show this behavior with some numerical experiments.
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1. Introduction. Let φ : R → [0,+∞) be the nonconvex continuous function
defined as

φ(ξ) :=

{
ξ2 if |ξ| ≤ 1,

1 otherwise.
(1.1)

In this paper we study the L2-gradient flow of the nonconvex functional

Fφ(u) :=
1

2

∫
(0,1)

φ(ux) dx, u ∈ BV (0, 1),(1.2)

where ux stands for the absolutely continuous part of the distributional derivative
of u. Note that φ∗∗ ≡ 0, where φ∗∗ is the convex envelope of φ; hence the L2-lower
semicontinuous envelope of Fφ is identically zero. Note also that if the initial datum u0

is smooth and such that u0x([0, 1]) ⊂ (−1, 1), it is reasonable to look for a solution of
the gradient flow of Fφ which coincides with the usual solution of the heat equation
starting from u0. In particular, such a solution cannot coincide with the standing
solution u(x, t) ≡ u0(x) obtained as the gradient flow of the lower semicontinuous
envelope of Fφ.

The solution u(x, t) of the formal gradient flow of Fφ should satisfy the following
evolution equation: ⎧⎪⎨⎪⎩

ut = uxx, where |ux| < 1,

ut = 0, where |ux| > 1,

u(0) = u0,

(1.3)

but the behavior of the interface {|ux| = 1} is not apparent.
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While existence and regularity theories for solutions of gradient flow equations
originated by convex energies is well established (see, for instance, [12], [31], [4], [2]),
very little is known for nonconvex evolution problems. The main difficulty is due to
the fact that nonconvexity of the energy density leads in general to ill-posed (i.e.,
backward-parabolic) problems and, as a consequence, to instabilities in the evolution.
The lack of forward parabolicity of the equation shows that even the local in time
existence of a solution (in some reasonable class of functions) is not straightforward,
as well as uniqueness and regularity. We refer the reader to [30] and to the papers
[26], [27], [32], [29], [23], [24], [5], [6] for some results in this direction and for pos-
sible regularization techniques. We point out that variational models involving (1.2)
have been used in [11] in the context of image segmentation; see also [14]. See also
the papers [28], [20], where other backward-forward parabolic equations, such as the
Perona–Malik equation corresponding to the choice φPM (ξ) := log(1+ ξ2), have been
used to reconstruct a digital image; see [34], [33], [13], [17], [18], [7], [8], [9].

Among nonconvex energy densities, the function φ in (1.1) is maybe the simplest
one (despite the fact that it is not of class C1, there are no points in R \ {±1} where
φ′′ is negative), and this motivates our choice of studying the gradient flow of the
associated functional Fφ.

The aim of the present paper is to prove the existence of a reasonable notion of
(discontinuous) global solution u to the gradient flow of Fφ starting from u0; we stress
that u0 will be allowed to be of mixed type, i.e., to have points where u0x belongs
to the locally convex region (−1, 1) of φ and points where u0x belongs to the region
R \ [−1, 1]. We show that, in general, the interface {|ux| = 1} has a velocity, and that
the region where ux takes values in (−1, 1) has the tendency to grow at the expenses
of the remaining region, with a well determined speed. Thus we are in the presence
of a free boundary problem and, in general,

(a) our solution does not coincide with the standing solution u(x, t) ≡ u0(x);
(b) our solution does not coincide with the solution of (1.3) obtained by keeping

the interface {|ux| = 1} fixed and by imposing the condition

lim
y→x, y∈{|ux(·,t)|<1}

ux(y, t) = 0 for x ∈ {|ux(·, t)| = 1},(1.4)

i.e., zero Neumann boundary conditions from the side of {|ux| < 1};
(c) these behaviors appear in numerical experiments; see section 7.
Observe that the lack of forward parabolicity precludes, as far as we know, a

direct way to construct global solutions based on the comparison principle, such as
viscosity solutions [15] or minimal barriers [10]. Moreover, global solutions obtained
by using the usual minimization methods (such as the implicit Euler scheme; see
[16]) coincide with the solution u(x, t) ≡ u0(x); this is due to the fact that, in the
minimization procedure, the functional Fφ can be equivalently replaced with its lower
semicontinuous envelope.

In the present paper we restrict the analysis to periodic boundary conditions,
even if the same technique can be adapted to different situations such as Neumann or
Dirichlet boundary conditions. We base our approach on the study of the system of
ODEs obtained as the gradient flow of the restriction Fφ|VN

of Fφ to VN , the space

of continuous piecewise affine functions on a uniformly distributed grid of [0, 1] of
size 1/N . The function Fφ|VN

turns out to be Lipschitz continuous; nevertheless, it

is possible to give a precise notion to the equation u̇ = −∇(Fφ|VN
)(u). After solving

the resulting system of ODEs, we pass to the limit as the discretization step goes to
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zero (N → +∞), and we identify the limit problem. This sort of regularization is
particularly handleable (as a consequence of the special features of φ in (1.1)) since
the interior of the region {|ux| > 1} has zero velocity, so that we can focus the
attention only at the free boundary {|ux| = 1}. This is a remarkable simplification,
for instance in comparison with the Perona–Malik equation where the quick formation
of microstructures in the region where |ux| > 1 seems to be present.

The plan of the paper is the following. In section 2 we state the main result
(Theorem 2.4). We look for a solution in the class of φ-admissible functions in the
sense of Definition 2.1. Several comments clarify both the definition and the theorem
(see, in particular, Remark 2.3 concerning condition (4) of Definition 2.1). In section 3
we motivate from a variational point of view the evolution law. In section 4 we
discretize the problem and introduce the discretized operator Au; see Definition 4.4.
The rigorous analysis of the discretized scheme is performed in section 5; in particular,
in Theorem 5.4 we prove the basic estimates and comparisons necessary to pass to the
limit as N → +∞. In section 6 we prove Theorem 2.4. In Remark 6.16 we discuss in
which sense our solution could provide a solution to the gradient flow of the Mumford–
Shah functional in one dimension. In section 7 we implement our scheme and show
that the numerical experiments are in agreement with Theorem 2.4. In particular, we
show that the free boundary {|ux(·)| = 1} has, in general, nonzero speed.

We conclude this introduction by observing that the analysis of the gradient flow
of (1.2) could be considered as a first step toward the understanding of the behavior
of the Perona–Malik equation.

2. Statement of the main results. We now state the main results of the paper
(Theorem 2.4). To this purpose we need some preparation. BV (0, 1) stands for the
space of functions with bounded variation in (0, 1). If u ∈ BV (0, 1) and x ∈ (0, 1),
u(x−) (resp., u(x+)) is the left (resp., right) limit of u at x. We always identify the
function u with its representative defined pointwise everywhere as the mean value of u;
i.e., u(x) = (u(x+)+u(x−))/2 for any x ∈ (0, 1). We set u(0) := u(0+) u(1) := u(1−).
We denote by Ju the jump set of u.

We recall that the distributional derivative of u ∈ BV (0, 1) is represented by a
measure Du, with finite total variation in (0, 1) (which we denote by ‖Du‖), and
that it splits into the sum of an absolutely continuous part (which we denote by ux

or by u′) and a singular part. We refer the reader to [3] for the main properties of
BV functions. If u : [0, T ) → R, we indicate by d

dt+u the right derivative of u; i.e.,
d

dt+u(t) := limh→0+
u(t+h)−u(t)

h for any t ∈ [0, T ), provided the limit is finite.
If u depends on (x, t) ∈ (0, 1) × (0, T ), we write u(t)(·) = u(·, t) = u(t).
Given B ⊆ R we denote by B (resp., int(B), ∂B, #(B), |B|) the closure (resp.,

the interior part, the topological boundary, the number of elements, the Lebesgue
measure) of B. We denote by dH(·, ·) the Hausdorff distance between sets.

Our analysis is restricted to a subset of BV (0, 1) given by the φ-admissible func-
tions, according to the following definition.

Definition 2.1. Let u ∈ BV (0, 1) with u(0) = u(1). We say that u is φ-
admissible, and we write u ∈ Aφ(0, 1), if there exist a natural number m ≥ 0 and real
numbers 0 < a1 ≤ b1 < · · · < am ≤ bm < 1 such that, setting

σφ
B(u) :=

m⋃
j=1

[aj , bj ] ⊂ (0, 1), σφ
G(u) := [0, 1] \ σφ

B(u),(2.1)

we have
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u u

a2a1 b1 a2 b2 a1 b1 b2

Fig. 2.1. The gray rectangles correspond to the closed intervals of σφ
B(u). The function on the

left is φ-admissible. The function on the right is not φ-admissible, because it is not monotone on
the closed interval [a1, b1].

(1) |u(x) − u(y)| ≤ |x− y| whenever [x, y] ⊂ σφ
G(u);

(2) if aj = bj for some j ∈ {1, . . . ,m}, then aj ∈ Ju;
(3) if j ∈ {1, . . . ,m} and aj < bj, then |u(x) − u(y)| > |x − y| whenever x, y ∈

[aj , bj ], x �= y;
(4) if j ∈ {1, . . . ,m} and aj < bj, then u is monotone on [aj , bj ].
Remark 2.2. Let us clarify Definition 2.1.
(a) Note that σφ

G(u) �= ∅ for any u ∈ Aφ(0, 1). We adopt the convention that

there are no points ai, bj if m = 0; in this case, σφ
B(u) = ∅, σφ

G(u) = (0, 1)
and u is one-Lipschitz in the whole of (0, 1). The assumptions a1 > 0 and
bm < 1 are not restrictive, since we can always assume (up to a translation)
that a one-periodic function u ∈ C1(R) is such that |ux(0)| < 1. Due to
our periodicity assumption, the point {0} is identified with {1} and can be

considered as belonging to the interior of σφ
G(u).

(b) In each interval I of σφ
G(u) we have that u is one-Lipschitz; hence, at almost

every x ∈ I we have that ux(x) belongs (unless |ux(x)| = 1) to the set where
φ is twice differentiable and φ′′ > 0, i.e., ux(x) ∈ (−1, 1).

(c) In each interval I of σφ
B(u) we have that

Du(A) ≥ |A| ∀ A ⊆ I or Du(A) ≤ −|A| ∀ A ⊆ I,

with the strict inequalities when |A| > 0, where A is any Borel subset of I.
(d) The class Aφ(0, 1) is L2-dense in BV (0, 1).
The following remark shows some analogy with the entropy condition in hyper-

bolic conservation laws.
Remark 2.3. Condition (4) in Definition 2.1 is required on the closed intervals

[aj , bj ]. Hence, since u(x) = (u(x+)+u(x−))/2 for any x ∈ (0, 1), if u is discontinuous
at some aj and u is nondecreasing on [aj , bj ] (resp., u is nonincreasing on [aj , bj ]), then
u(aj) ≤ u(aj+) (resp., u(aj) ≥ u(aj+)). Similarly, it happens if u is discontinuous at
some bj ; see Figure 2.1. Condition (4) is fulfilled at each time by the solution that
we are going to construct in Theorem 2.4 and arises naturally as a consequence of
the approximation procedure through spatial discretizations. Ultimately, it can be
considered as a consequence of the fact that, once a region in σφ

G(uN (t)) appears for
the discretized solutions uN (t) considered in Theorem 5.4 below, it must persist (and
possibly increase) with time.

Let us denote by AC2([0,+∞);L2(0, 1)) the space of absolutely continuous func-
tions u from [0,+∞) to L2(0, 1) such that ut ∈ L2((0,+∞)× (0, 1)); see, for instance,
[2]. Let VN ⊂ H1(0, 1) be the N -dimensional vector space of one-periodic continuous
functions on R which are affine on every interval of the form [i/N, (i + 1)/N ] with



GLOBAL SOLUTIONS TO THE GRADIENT FLOW 1661

i = 0, . . . , N − 1. It is clear that VN ⊂ Aφ(0, 1) and that each function in VN is
N -Lipschitz.

Let us denote by Au the differential of Fφ|VN
at u ∈ VN ; the linear operator Au is a

discrete Laplace operator with zero blocks corresponding to the region σφ
B(u) and zero

Neumann boundary conditions on the boundaries; see Remark 4.3 and Definition 4.4
below.

Theorem 2.4. Let u0 ∈ Aφ(0, 1), and write

σφ
B(u0) =

m⋃
j=1

[a0
j , b

0
j ].

Then there exist a sequence of initial data (uN
0 ) ⊂ VN , a sequence (uN ) of functions

taking [0,+∞) in VN , and a function u : (0, 1) × [0,+∞) → R with the following
properties:

(i) There exist numbers 0 < a0N
1 ≤ b0N1 < · · · < a0N

m ≤ b0Nm < 1 such that

σφ
B(uN

0 ) =

m⋃
j=1

[a0N
j , b0Nj ],(2.2)

and

lim
N→+∞

‖uN
0 − u0‖L2 = 0,

lim
N→+∞

(
‖uN

0 ‖BV (0,1) − ‖u0‖BV (0,1)

)
= 0,

lim
N→+∞

(
dH(σφ

G(uN
0 ), σφ

G(u0)) + dH(σφ
B(uN

0 ), σφ
B(u0))

)
= 0,

lim
N→+∞

Fφ(uN
0 ) = Fφ(u0).

(2.3)

(ii) uN : [0,+∞) → VN is continuous and right-differentiable, and satisfies⎧⎨⎩
d

dt+
uN (t) = AuN (t)u

N (t), t ∈ [0,+∞),

uN (0) = uN
0 .

(2.4)

(iii) uN , u ∈ L∞((0,+∞);BV (0, 1))∩AC2([0,+∞);L2(0, 1)), and uN ⇀ u weakly
in H1

loc((0,+∞);L2(0, 1)) and weakly∗ in L∞((0,+∞);BV (0, 1)) as N →
+∞.

(iv) u(t) ∈ Aφ(0, 1) for any t ∈ [0,+∞).
(v) For any j ∈ {1, . . . ,m} there exist Tj ∈ (0,+∞] and functions aj , bj :

[0, Tj) → (0, 1) such that
(v1) aj(0) = a0

j , aj is continuous and nondecreasing;

(v2) bj(0) = b0j , bj is continuous and nonincreasing;
(v3) aj ≤ bj on [0, Tj), and limt→Tj−

aj(t) = limt→Tj−
bj(t);

(v4)
⋃m

j=1(aj(t), bj(t)) ⊆ σφ
B(u(t)) ⊆

⋃m
j=1[aj(t), bj(t)] for any t ∈ [0,+∞),

where we have set (aj(t), bj(t)) = [aj(t), bj(t)] := ∅ if t ≥ Tj.

(vi) uxx ∈ L2(Γu), where Γu :=
⋃

t∈(0,+∞)(σ
φ
G(u(t))×{t}), and u is a solution of
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w

a1 10 b1

u0
u0

Fig. 2.2. Remark 2.6(b). We construct a function w starting from u0, such that w ≡ u0

in (a1, b1) and that evolves according to the heat equation in (0, a1) ∪ (b1, 1) with zero Neumann
boundary conditions in a1, b1 (dashed curve). Recall that we have periodic boundary conditions. Note
that Jw(t) = {a1, b1} for t > 0, and that w(t) /∈ Aφ(0, 1) for any t > 0, since (4) of Definition 2.1
is violated at a1, b1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = uxx, x ∈ σφ
G(u(t)), t ∈ (0,+∞),

ut = 0, x ∈ int(σφ
B(u(t))), t ∈ (0,+∞),

lim
y→x, y∈σφ

G(u(t))
ux(y, t) = 0, x ∈ ∂σφ

G(u(t)) \ {0, 1}, t ∈ (0,+∞),

u(x, 0) = u0(x), x ∈ (0, 1),

u(0, t) = u(1, t), ux(0, t) = ux(1, t), t ∈ (0,+∞).

(2.5)

(vii) For any t ∈ (0,+∞) we have
supσφ

G(u(t)) |ux(·, t)| < 1;

sup[0,1] u(·, t) ≤ sup[0,1] u0;
inf [0,1] u(·, t) ≥ inf [0,1] u0;
‖Du(·, t)‖ ≤ ‖Du0‖.

The proof of Theorem 2.4 is achieved in sections 5 and 6. In particular, (i) is
given by Lemma 6.1, (ii) is given by Theorem 5.4, (iii) is the content of Remark 6.5,
(iv) is given by Lemma 6.12, (v) is given by Lemma 6.8, Remark 6.6, and Lemma 6.12,
and (vi) is the content of Theorem 6.14. Finally, the first inequality in (vii) follows
from (vi) and the maximum principle applied to ux, while the last three inequalities
in (vii) are consequences of (c) and (d) of Theorem 5.4.

Remark 2.5.

(a) In general a function u and intervals (aj , bj) satisfying (v) and (vi) of Theo-
rem 2.4 are not unique: it is easy to construct a solution w of (2.5) satisfying
also the requirement

σφ
B(w(t)) = σφ

B(u0) ∀ t ∈ (0,+∞),(2.6)

and the function w in general cannot coincide with u. Indeed, w(t) = u(t)
for all times t for which w(t) ∈ Aφ(0, 1), but the property w(t) ∈ Aφ(0, 1) for
all t ∈ (0,+∞) is in general violated; see Figure 2.2. In fact, condition (4) in
Definition 2.1 cannot be satisfied for all times by w (cf. Remark 2.3), unless

σφ
G(w(·)) is allowed to expand, in contrast with (2.6).

(b) If we do not require the functions aj , bj to be monotone (nondecreasing and
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a1 =b1 a1 =b1 a1 =b1

u0

t > t∗t = t∗t = 0

Fig. 2.3. The “bouncing” solution discussed in Example 1.

nonincreasing, respectively), several different solutions could be constructed;
see Figure 2.4(b).

One can ask whether a function u and intervals (aj , bj) satisfying (iv), (v), and (vi)
of Theorem 2.4 are unique. This is not the case, as shown by the following example re-
lated, in spirit, to the so-called fattening phenomenon in mean curvature flow (see [22]
for similar behaviors concerning the evolution of the Mumford–Shah functional in one
dimension).

Example 1. Let us construct an initial datum u0 ∈ Aφ(0, 1) as follows:

u0 has only one jump point a1 = b1 = 1/2;
u0 = 0 in (0, 1/2);
u0 is a smooth function in (1/2, 1) with the following property: |u0x| < 1
and, if we flow u0|(1/2,1) by the heat equation with zero Neumann boundary
conditions in {1/2, 1}, then there is a first time t∗ > 0 for which the solution,
evaluated at the point 1/2, touches the horizontal axis with zero vertical
velocity and then, for t immediately after t∗, becomes positive at 1/2; see
Figure 2.3.

Then we can exhibit two functions u1, u2, which coincide for t ∈ [0, t∗] but differ
for t ∈ (t∗,+∞), and both satisfy (iv), (v), and (vi) of Theorem 2.4. The function u1

is defined as follows: u1 = 0 in (0, 1/2) × [0,+∞); u1 equals, in (1/2, 1) × [0, t∗), the
solution of the heat equation with zero Neumann boundary conditions in {1/2, 1};
u1 equals, in (0, 1) × [t∗,+∞), the solution of the heat equation with zero Neumann
boundary conditions in {0, 1} starting from u1(t∗−). Namely, immediately after the
time t∗ when the two graphs of the solution on the left and on the right of 1/2 join,
the evolution continues with one graph only, and the jump disappears.

The function u2 is defined as follows: u2 = 0 in (0, 1/2) × [0,+∞); u2 equals, in
(1/2, 1) × [0,+∞), the solution of the heat equation with zero Neumann boundary
conditions in {1/2, 1}. That is, the function u2 “bounces” at 1/2 at time t∗, the
evolutions in (0, 1/2) and in (1/2, 1) do not “see” each other, and 1/2 becomes again
a jump point of u2(t) for t immediately larger than t∗.

Remark 2.6.

(a) As a consequence of (v) of Theorem 2.4, the set-valued map t ∈ [0,+∞) →
σφ
G(u(t)) ⊆ (0, 1) is nondecreasing up to a finite number of points (at most m),

and the number of connected components with nonempty interior of σφ
B(u(·))

is nonincreasing. Itmay happen that at some time t̄j ∈ (0, Tj) the interval
[aj(t̄j), bj(t̄j)] is reduced to a point not belonging to Ju(t̄j) (recall conclu-
sion (iv) of Theorem 2.4 and Definition 2.1(2)) but belonging to Ju(t) for
some t ∈ (t̄j , Tj) (as it happens for the function u2 in Example 1). At time Tj

at least one of the intervals in σφ
B(u(·)) disappears (provided Tj < +∞).
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a1

u0

0

u0 u0

1a2

(a)

u0

ã2(t)0

u0 u0

1

slope > 1

(b)

Fig. 2.4. Remark 2.5(b). For the function u0 we have a0
1 = b01 and a0

2 = b02. In (a) is displayed
the solution u of Theorem 2.4 starting from u0 for which a1(t) = b1(t) ≡ a0

1, a2(t) = b2(t) ≡ a0
2,

u evolves according to the heat equation in [a1(t), a2(t)] with zero Neumann boundary conditions
(dashed curve), and u(t) ≡ u0 in [0, 1] \ [a1(t), a2(t)]. In (b) we construct a function w with
w(t) ∈ Aφ(0, 1), such that w evolves according to the heat equation in [a0

1, ã2(t)] with zero Neu-
mann boundary conditions, and ã2(t) is decreasing in time, in such a way that the corresponding
point w(ã2(t), t) slides on a line with slope greater than one; hence the function w does not satisfy
condition (v1) of Theorem 2.4.

(b) A weak formulation of (2.5) is given by∫
(0,1)×(0,+∞)

uψt dx dt−
∫

int(Γu)

uxψx dx dt = 0(2.7)

for any ψ ∈ C1
c([0, 1] × [0,+∞)).

(c) Solutions verifying conditions (iv), (v), and (vi) of Theorem 2.4 do not satisfy
the comparison principle, in the sense that it is easy to find solutions u1, u2

such that u1(·, 0) ≤ u2(·, 0) on (0, 1), but u1(x̄, t̄) > u2(x̄, t̄) for some (x̄, t̄) ∈
(0, 1) × (0,+∞); see Figure 2.5.

Remark 2.7.

(a) Under sufficient regularity on u we can predict the speed of the free boundary

∂σφ
G(u(·)). For instance, assume that aj is of class C1 in a neighborhood U

of t̄ ∈ (0, Tj) and that a′j(t̄) �= 0. Assume in addition that u(·, ·) is twice

differentiable in
⋃

t∈U σφ
G(u(t)) × {t} up to the boundary. Then from the

equality

u(aj(t), t) = u0(aj(t))
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u0

v0

v(t̄)
u0

u0

0 1

Fig. 2.5. Remark 2.6(c). In general the solution u of Theorem 2.4 cannot satisfy the comparison
principle. Indeed, let u0 and v0 be as in the figure, u0 ≤ v0, where we assume that the function v0

is one-Lipschitz, so that σφ
G(v0) = (0, 1). Moreover, u(t) ≡ u0 for any t ∈ (0,+∞). On the other

hand, the solution v starting from v0 given by Theorem 2.4 is the usual solution of the heat equation
in (0, 1) with zero Neumann boundary conditions. Hence, at some time t > 0 and at some x ∈ (0, 1)
it happens that v(x, t) < u(x, t).

valid in the neighborhood of t̄ it follows, using the third equality in (2.5), that

ut(aj(t)−, t) =
d

dt
u(aj(t), t) = u0x(aj(t)+)a′j(t).(2.8)

Hence, using the first equation in (2.5), we get

a′j(t̄) =
uxx(aj(t̄)−, t̄)

u0x(aj(t̄)+)
.(2.9)

Similarly, under the corresponding regularity assumptions and provided
b′j(t̄) �= 0, we get

b′j(t̄) =
uxx(bj(t̄)+, t̄)

u0x(bj(t̄)−)
.(2.10)

(b) We expect that if u0 ∈ C1,1(σφ
G(u0)) and limy→x, y∈σφ

G(u0)
u0x(y) = 0 for any

x ∈ ∂σφ
G(u0), then

‖uxx‖L∞(σφ
G(u(t))) ≤ ‖u0xx‖L∞(σφ

G(u0))
, t ≥ 0.(2.11)

Indeed, assuming we can differentiate aj , bj in (0, Tj) and u(·, t) in σφ
G(u(t))

up to the boundary, arguing as in (a) we get

uxx(aj(t)−, t)a
′
j(t)

u0x(aj(t)+)
≥ 0,

uxx(bk(t)+, t)b
′
k(t)

u0x(bk(t)−)
≥ 0(2.12)

for any t ≥ 0. Differentiating the equalities ux(aj(t)−, t) = ux(bk(t)+, t) = 0
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with respect to t and using (2.12), we then get

uxxx(aj(t)−, t)

u0x(aj(t)+)
= −

uxx(aj(t)−, t)a
′
j(t)

u0x(aj(t)+)
≤ 0,

uxxx(aj(t)−, t) = 0 if
uxx(aj(t)−, t)

u0x(aj(t)+)
< 0,(2.13)

uxxx(bk(t)+, t)

u0x(bk(t)−)
= −uxx(bk(t)+, t)b

′
k(t)

u0x(bk(t)−)
≤ 0,

uxxx(bk(t)+, t) = 0 if
uxx(bk(t)+, t)

u0x(bk(t)−)
> 0.

Letting v := uxx and differentiating (2.5) twice with respect to x, we obtain⎧⎪⎨⎪⎩
vt = vxx, x ∈ σφ

G(u(t)), t ∈ (0,+∞),

vt = 0, x ∈ int(σφ
B(u(t))), t ∈ (0,+∞),

v(x, 0) = u0xx(x), x ∈ (0, 1),

(2.14)

with the boundary conditions on ∂σφ
G(u(t)) given by (2.13). Note that, from

the third equality in (2.5), for any t ≥ 0 it follows that∫
σφ
G(u(t))

v(x, t) dx = 0 =⇒ max
σφ
G(u(t))

v(·, t) ≥ 0, min
σφ
G(u(t))

v(·, t) ≤ 0.

The boundary conditions (2.13) then imply that v(·, t) assumes its maximum

and minimum in the interior of σφ
G(u(t)); hence (2.11) follows from (2.14) by

the maximum principle.
Let us observe that from (2.8) and (2.11) it follows that

‖a′j‖L∞(0,Tj) ≤ ‖u0xx‖L∞(σφ
G(u0))

, ‖b′j‖L∞(0,Tj) ≤ ‖u0xx‖L∞(σφ
G(u0))

.

In particular, we also expect that the functions aj and bj are Lipschitz con-
tinuous on [0, Tj).

Remark 2.8. It is clear that Theorem 2.4 holds also for the function

φ(ξ) := min(1, φPM (ξ)) = min(1, log(1 + ξ2)).

In the present paper, solutions u to the gradient flow of Fφ are intended as those

functions satisfying (iv), (v), and (vi) (with ut = uxx replaced by ut = (φ
′
(ux))x) of

Theorem 2.4. These solutions could be compared with some notion of weak solutions of
the gradient flow of FφPM

; see [29]. We can observe that u is not a BV -distributional
solution of the Perona–Malik equation in the sense of [29, Definition 1]; see (2.7).
However, u turns out to be a Young-varifold solution of the Perona–Malik equation;
see [19], [21]. We also observe that if a = b ∈ (0, 1) is a jump point of u(t) and if u is
sufficiently smooth in a neighborhood of a (see Remark 2.7), then as a consequence
of (2.9), (2.10), we have that a′(t) = 0. This is consistent with [29, formula (3)], in
connection with the notion of generalized solution. Finally, observe that a′(t) = 0 is
also a consequence of the AC2([0,+∞);L2(0, 1)) regularity of u.
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3. First variation. In this section we want to identify the L2-gradient of the
functional Fφ in (1.2) on a suitable dense subspace X of L2(0, 1); see Definition 3.3.
We begin by computing the first variation of Fφ along functions ψ ∈ Lip(0, 1).

Proposition 3.1. Let u ∈ Aφ(0, 1) be such that σφ
B(u) =

⋃m
j=1[aj , bj ], aj < bj

for any j = 1, . . . ,m,

u ∈ H2(σφ
G(u)) and sup

σφ
G(u)

|ux| < 1.

Then for any ψ ∈ Lip(0, 1) with ψ(0) = ψ(1) we have

d

dλ
Fφ(u + λψ)|λ=0 =

∫
σφ
G(u)

uxψx dx

= −
∫
σφ
G(u)

uxxψ dx

+

m∑
j=1

(
ux(aj−)ψ(aj) − ux(bj+)ψ(bj)

)
.

(3.1)

Proof. Since supσφ
G(u) |ux| < 1 and ψ ∈ Lip(0, 1), we have σφ

G(u + λψ) = σφ
G(u)

for |λ| small enough. In addition, σφ
B(u + λψ) = σφ

B(u) for |λ| small enough. For
such λ we have

Fφ(u + λψ) =
1

2

∫
σφ
B(u+λψ)

1 dx +
1

2

∫
σφ
G(u+λψ)

(ux + λψx)2 dx

=
|σφ

B(u)|
2

+
1

2

∫
σφ
G(u)

(ux + λψx)2 dx

=
|σφ

B(u)|
2

+
1

2

∫
σφ
G(u)

(ux)2 dx + λ

∫
σφ
G(u)

uxψx dx + O(λ2).

Then (3.1) follows with an integration by parts, using the assumptions u ∈ H2(σφ
G(u))

and ψ(0) = ψ(1).
Remark 3.2. Observe that the variations u → u + λψ, as in Proposition 3.1,

cannot increase the number of singular points of u ∈ Aφ(0, 1).
If u is as in Proposition 3.1 it follows that

inf
ψ∈Lip(0,1), ψ(0)=ψ(1)

‖ψ‖L2≤1

d

dλ
Fφ(u + λψ)|λ=0

=

{
−‖uxx‖L2(σφ

G(u)) if ux(aj−) = ux(bj+) = 0, 1 ≤ j ≤ m,

−∞ otherwise.

(3.2)

Definition 3.3. We denote by X the dense subset of L2(0, 1) consisting of the
functions u as in Proposition 3.1 and satisfying ux(aj−) = ux(bj+) = 0 for any
1 ≤ j ≤ m.

Once we fix u ∈ X, the right-hand side of (3.1), if considered as a function of ψ,
is a linear functional defined on the Lipschitz functions ψ in (0, 1) with ψ(0) = ψ(1)
(which form a dense subset of L2(0, 1)), which is continuous with respect to the
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−1

(a)

1 ξ

φ

−2 −1

(b)

1 2 ξ

φ1

Fig. 3.1. (a) the function φ considered in the present paper; (b) the function φ1 of Remark 3.6.

L2(0, 1)-norm. Therefore it can be extended on the whole of L2(0, 1), thus providing
a well-defined unique left-hand side of (3.1) for any ψ ∈ L2(0, 1), and

inf
ψ∈Lip(0,1), ψ(0)=ψ(1)

‖ψ‖L2≤1

d

dλ
Fφ(u + λψ)|λ=0 = inf

ψ∈L2(0,1)
‖ψ‖L2≤1

d

dλ
Fφ(u + λψ)|λ=0.(3.3)

The infimum in (3.3) is attained at ψ̃ ∈ L2(0, 1), where

ψ̃ =

⎧⎨⎩ 0 on σφ
B(u),

‖uxx‖−1

L2(σφ
G(u))

uxx on σφ
G(u).

It follows that the L2-gradient flow of Fφ starting from u0 ∈ X is given by the free
boundary problem (2.5).

As already observed in the introduction, in general, solutions to problem (2.5)

are not unique, since the motion of the free boundary ∂σφ
G(u) is not prescribed.

However, among all φ-admissible solutions we can look for those which most decrease
the energy Fφ. This is expressed by the following proposition, which follows by a

direct computation and recalling that φ ≡ 1/2 on σφ
B(u).

Proposition 3.4. Let u be a solution of (2.5) satisfying (iv) of Theorem 2.4.
Then for almost every t ∈ (0,+∞) we have

d

dt
Fφ(u(t)) = −1

2

d

dt
|σφ

G(u(t))| −
∫
σφ
G(u(t))

|uxx(x, t)|2 dx.(3.4)

Remark 3.5. Proposition 3.4 implies that in order to most decrease the energy Fφ,

the region σφ
G(u) should expand as fast as possible, compatibly with the φ-admissibility

of u.
Remark 3.6. Our results can be extended to other integrands. Let us consider,

for example, the potential in Figure 3.1(b), i.e.,

φ1(ξ) :=

⎧⎪⎨⎪⎩
|ξ − 2|2 if ξ ≥ 1,

|ξ + 2|2 if ξ ≤ −1,

1 otherwise,

(3.5)

which is related to the ones considered in [26], [1], [36], [35]. Then Definition 2.1 still

makes sense, provided that we define σφ1

B (u) as the finite union of closed intervals

where |u(x) − u(y)| < |x − y|, and σφ1

G (u) = [0, 1] \ σφ1

B (u) as the finite union of
intervals where either u(x)−u(y) ≥ x−y or u(x)−u(y) ≤ −(x−y). Let us denote by
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σφ1

G,+(u) (resp., σφ1

G,−(u)) the subset of σφ1

G (u) where u is increasing (resp., decreasing).
The first variation of Fφ1 can be computed as in Proposition 3.1, and the evolution
equation corresponding to (2.5) reads as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = uxx, x ∈ σφ1

G (u(t)), t ∈ (0,+∞),

ut = 0, x ∈ int(σφ1

B (u(t))), t ∈ (0,+∞),

lim
y→x, y∈σ

φ1
G,±(u(t))

ux(y, t) = ±2, x ∈ ∂σφ1

G,±(u(t)) \ {0, 1}, t ∈ (0,+∞),

u(x, 0) = u0(x), x ∈ (0, 1),

u(0, t) = u(1, t), ux(0, t) = ux(1, t), t ∈ (0,+∞).

(3.6)

Since equality (3.4) still holds, also in this case the region σφ1

G (u(·)) expands as fast as
possible, compatibly with (3.6). We finally observe that the analogue of Theorem 2.4
is not expected to hold in this case; cf. Remark 7.1.

Remark 3.7. Let us consider a continuous function φ2 : R → [0,+∞) of the form
φ2(ξ) = ξ2 for |ξ| ∈ [0, 1], and φ2(ξ) = αξ + β for |ξ| ∈ [1,+∞), where α + β = 1 and
α ≥ 0. The computations leading to (3.2) can be repeated for the functional Fφ2 and
give the following result:

inf
ψ∈Lip(0,1), ψ(0)=ψ(1)

‖ψ‖L2≤1

d

dλ
Fφ2(u + λψ)|λ=0

=

{
−‖uxx‖L2(σ

φ2
G (u))

if |ux(aj−)| = |ux(bj+)| = α/2, 1 ≤ j ≤ m,

−∞ otherwise,

(3.7)

where the interior Neumann boundary condition, for example in aj , is equal to α/2
(resp., −α/2) if u0 is increasing (resp., decreasing) in [aj , bj ].

In particular, the resulting PDE arising from (3.7) is different from (2.5) (since
the conditions on the free boundary are different) unless α = 0, i.e., φ2 = φ.

4. Discretization. In this section we define the spatial discretization used to ap-
proximate problem (2.5). In particular, in Definition 4.4 we introduce the discretized
operator Av.

Let N ∈ N and i ∈ {1, . . . , N}. To simplify notation, we set i + 1 = 1 and
[i, i + 1] = [0, 1] when i = N , and i− 1 = N and [i− 1, i] = [0, 1] when i = 1.

For any i = 1, . . . , N we define the hat function hi ∈ H1(0, 1) as

hi(x) :=

⎧⎪⎨⎪⎩
Nx− (i− 1) if Nx ∈ [i− 1, i],

i + 1 −Nx if Nx ∈ [i, i + 1],

0 otherwise.

We denote by VN the N -dimensional vector subspace of H1(0, 1) generated by
h1, . . . , hN . Each function v ∈ VN is Lipschitz and is the restriction to [0, 1] of an
affine continuous periodic function defined on R.

For any i = 1, . . . , N we define the flat function ki ∈ L2(0, 1) as

ki(x) :=

{
1 if Nx ∈ (i− 1, i],

0 otherwise.
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We denote by WN the N -dimensional vector subspace of L2(0, 1) generated by
k1, . . . , kN . WN is the space of all piecewise constant functions on the grid.

The spaces
⋃

N VN and
⋃

N WN are dense in BV (0, 1) with respect to the weak∗-
topology.

Given v ∈ VN (resp., w ∈ WN ) we denote with v1, . . . , vN the coordinates of v
with respect to the basis {h1, . . . , hN} (resp., {k1, . . . , kN}), i.e.,

v =
N∑
i=1

vih
i, vi = v(i/N),

w =

N∑
i=1

wik
i, wi = w

(
i− 1

2

N

)
.

We recall that ∫
(0,1)

u dx =
1

N

N∑
i=1

ui, u ∈ VN ∪WN .

We define the scalar product 〈·, ·〉 on VN and on WN as

〈v, v〉 =
1

N

N∑
i=1

vivi, 〈w,w〉 =
1

N

N∑
i=1

wiwi, v, v ∈ VN , w, w ∈ WN .

Recall that

〈w,w〉 =

∫
(0,1)

ww dx =
1

N

N∑
i=1

wiwi, w, w ∈ WN .

Given v ∈ VN we define

‖v‖L∞ := max{|vi| : i = 1, . . . , N},
‖v‖L2 := 〈v, v〉 1

2 ,

‖∇v‖L1 :=

N∑
i=1

|vi+1 − vi| =

∫
(0,1)

|vx| dx.

Definition 4.1. We define the linear map D+ : VN → WN as the restriction of
the weak derivative taking H1(0, 1) in L2(0, 1). In coordinates,

(D+v)i = N(vi+1 − vi), i ∈ {1, . . . , N}.

We let D− : WN → VN be the adjoint operator of −D+.
The operator D− satisfies 〈D−w, v〉 = −〈w,D+v〉 for all v ∈ VN and w ∈ WN .

In coordinates,

(D−w)i = N(wi − wi−1), i ∈ {1, . . . , N}.

Definition 4.2. Given v ∈ VN we define Ψv ∈ WN in coordinates by

(Ψv)i =

{
1 if |(D+v)i| ≤ 1,

0 otherwise,
i ∈ {1, . . . , N}.
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If v is φ-admissible, the function Ψv : (0, 1) → R is the characteristic function of

the set σφ
G(v).

Note that the restriction of Fφ to VN reads as follows: given v ∈ VN ,

Fφ(v) =
1

2N

N∑
i=1

min
(
((D+v)i)

2, 1
)

=
1

2
〈ΨvD

+v,D+v〉 +
1

2

∫
(0,1)

(1 − Ψv) dx,

(4.1)

where

〈ΨvD
+v,D+v〉 =

N∑
i=1

(Ψv)i(D
+v)i(D

+v)i.

Remark 4.3. The function Fφ|VN
is Lipschitz in VN and is of class C∞ out of

the polyhedral hypersurface H :=
⋃N

i=1 Hi, where Hi := {v ∈ VN : |(D+v)i| = 1}.
Assume that v ∈ VN \H. Then, for any v ∈ VN , we have

lim
λ→0

Ψv+λv − Ψv

λ
= 0 ∈ VN .

Therefore, using also (4.1), we get

lim
λ→0

Fφ(v + λv) − Fφ(v)

λ
=

1

2
〈ΨvD

+v,D+v〉 +
1

2
〈ΨvD

+v,D+v〉

= −
〈
D−(ΨvD

+v
)
, v
〉
.

(4.2)

More generally, for v ∈ VN there exists the limit

lim
λ→0+

Fφ(v + λv) − Fφ(v)

λ

=
∑

i: |(D+v)i|<1

(D+v)i(D
+v)i +

∑
i: |(D+v)i|=1

min
((

(D+v)i(D
+v)i

)
, 0
)

= −
〈
D−(ΨvD

+v
)
, v
〉
−

∑
i: |(D+v)i|=1

max
((

(D+v)i(D
+v)i

)
, 0
)

(4.3)

≤ −
〈
D−(ΨvD

+v
)
, v
〉
.

Note that both the limits in (4.2) and (4.3) attain their minimum on {v ∈ VN :
‖v‖L2 = 1} at

v =
D−(ΨvD

+v
)∥∥D−

(
ΨvD+v

)∥∥
L2

.

We are now in a position to define the discretized operator.
Definition 4.4. Given any v ∈ VN we define the linear operator Av : VN → VN

as follows: for any v ∈ VN we let

Avv := D−(ΨvD
+v
)
.
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In coordinates, we have

(Avv)i =
(Ψv)i[vi+1 − vi] − (Ψv)i−1[vi − vi−1]

1/N2
.

Remark 4.5. By Remark 4.3, if v ∈ VN \H, then Av = −∇(Fφ|VN
)(v), where ∇

indicates the gradient of the function Fφ|VN
defined in the finite-dimensional space VN .

Note also that the equality holds in the last line of (4.3) if we take v ∈ VN and
v = Avv.

Remark 4.6. If v, v ∈ VN are such that Ψv = Ψv, then Av = Av.

5. Discretized evolution. Maximum principles. The aim of this section is
to prove Theorem 5.4, which is a key step in the proof of Theorem 2.4. We begin with
some elementary lemmata.

Lemma 5.1. Let u1, . . . , un be real continuous right-differentiable functions in
an interval [0, t1). Define M(t) := maxi=1,...,n u(t)i. Then M(t) is continuous and
right-differentiable in [0, t1) and

d

dt+
M(t) = max

i=1,...,n

{
d

dt+
u(t)i : u(t)i = M(t)

}
, t ∈ [0, t1).

Proof. It is enough to prove the lemma when n = 2. Set f := u1, g := u2, and
let t ∈ [0, t1). If f(t) �= g(t), the claim is trivial since M(t) equals one of the two
functions in a neighborhood of t. Suppose f(t) = g(t) = M(t). If d

dt+ f(t) > d
dt+ g(t),

then for all h > 0 sufficiently small M(t+h) = f(t+h); hence d
dt+M(t) = d

dt+ f(t). If
d

dt+ f(t) = d
dt+ g(t), then M(t + h) −M(t) belongs to [f(t + h) − f(t), g(t + h) − g(t)]

if f(t + h) ≤ g(t + h) or to [g(t + h) − g(t), f(t + h) − f(t)] if f(t + h) ≥ g(t + h).
Hence d

dt+M(t) = d
dt+ f(t) = d

dt+ g(t).

Lemma 5.2. Let u be a real continuous right-differentiable function in an interval
[0, t1). If d

dt+u ≤ 0 on [0, t1), then u is nonincreasing.

Proof. See, for instance, [25, p. 298].

Lemma 5.3. Let u be a real continuous right-differentiable function in an interval
[0, t1), and let g = |u|. Then g is right-differentiable on [0, t1) and

d

dt+
g(t) =

{
(signu(t)) d

dt+u(t) if u(t) �= 0,

| d
dt+u(t)| if u(t) = 0,

t ∈ [0, t1).

Proof. If u(t) �= 0, the assertion is trivial, since g is right-differentiable at t.

Suppose u(t) = 0. Given h > 0 we have g(t+h)−g(t)
h = |u(t+h)

h |. Being u right-

differentiable at t we find that d
dt+ g(t) = | d

dt+u(t)|.
Theorem 5.4. Let N ∈ N and u0 ∈ VN . Then there exists a unique function uN

such that

(a) uN : [0,+∞) → VN is continuous and right-differentiable, and satisfies⎧⎨⎩
d

dt+
uN (t) = AuN (t)uN (t), t ∈ [0,+∞),

uN (0) = u0.
(5.1)

In addition, uN satisfies the following properties:
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(b) The set-valued map t ∈ [0,+∞) → {ΨuN (t) = 1} ⊆ (0, 1) is nondecreasing,
and the set-valued map t ∈ [0,+∞) → #∂{ΨuN (t) = 1} is nonincreasing.
Moreover, for any t ≥ 0 there exists ε > 0 such that ΨuN (τ) is constant for

any τ ∈ [t, t + ε]. In particular, d
dt+ ΨuN (t) = 0 for any t ≥ 0.

(c) The function t ∈ [0,+∞) �→ supx∈(0,1) uN (x, t) is nonincreasing, and the
function t ∈ [0,+∞) �→ infx∈(0,1) uN (x, t) is nondecreasing.

(d) The function t ∈ [0,+∞) �→ ‖∇uN (t)‖L1 is nonincreasing.
(e) The function t ∈ [0,+∞) �→ Fφ(uN (t)) is continuous and right-differentiable,

and

d

dt+
Fφ(uN (t)) = −

∥∥∥∥ d

dt+
uN (t)

∥∥∥∥2

L2

≤ 0.(5.2)

(f) There exist M ∈ N, M ≤ N , and positive times t1, . . . , tM such that uN is
analytic on each interval of (0,+∞)\{t1, . . . , tM}, and {t1, . . . , tM} coincides
with the jump set of the function t ∈ [0,+∞) → ΨuN (t).

Proof. Let t0 := 0, and consider the function u : [t0,+∞) → VN ,

u(t) = u0 exp((t− t0)Au0
), t ≥ t0,(5.3)

i.e., the solution of {
d

dt+u(t) = Au0 u(t), t ∈ (t0,+∞),

u(t0) = u0,

where we view the operator Au0 as an (N ×N)-matrix.

For any t ≥ t0 let

M̃(t) := max

(
0, max

i=1,...,N
{(D+u(t))i : (Ψu0)i = 1}

)
,

m̃(t) := min

(
0, min

i=1,...,N
{(D+u(t))i : (Ψu0)i = 1}

)
.

Observe that

−1 ≤ m̃(t0) ≤ M̃(t0) ≤ 1.(5.4)

In addition, the maps t ∈ [t0,+∞) → (D+u(t))i are continuously differentiable for

any i ∈ {1, . . . , N}; hence, by Lemma 5.1, M̃(t) and m̃(t) are right-differentiable for
any t ≥ t0.

Claim 1. For any t ≥ t0 we have

d

dt+
M̃(t) ≤ 0,

d

dt+
m̃(t) ≥ 0.(5.5)

Since D+ is a linear operator, for all t ≥ t0 we have

d

dt+
D+u(t) = D+ d

dt+
u(t) = D+Au0u(t) = D+D− (Ψu0D

+u(t)
)
.
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Therefore, if i ∈ {1, . . . , N} is such that (D+u(t))i = M̃(t), we have

d

dt+
(D+u)i = N

[
(D−(Ψu0

D+u))i+1 − (D−(Ψu0
D+u))i

]
= N2

[
(Ψu0

)i+1(D
+u)i+1 − (Ψu0

)i(D
+u)i

]
−N2

[
(Ψu0)i(D

+u)i − (Ψu0)i−1(D
+u)i−1

]
(5.6)

= N2
[
(Ψu0)i+1(D

+u)i+1 − M̃(t)

+ (Ψu0)i−1(D
+u)i−1 − M̃(t)

]
,

where both sides are evaluated at t ≥ t0. Since (Ψu0D
+u)j ≤ M̃(t) for all j ∈

{1, . . . , N}, from the previous equation we obtain d
dt+ (D+u(t))i ≤ 0 for all i ∈

{1, . . . , N} such that (Ψu0)i = 1 and (D+u(t))i = M̃(t). As a consequence we get

0 ≥ max
i=1,...,N

{
d

dt+
(
D+u(t)

)
i
: (Ψu0)i = 1, (D+u(t))i = M̃(t)

}
=

d

dt+
M̃(t),

where the last equality follows from Lemma 5.1. In a similar way we can prove
that if i ∈ {1, . . . , N} is such that (Ψu0)i = 1 and (D+u(t))i = m̃(t), we have
d

dt+ (D+u(t))i ≥ 0; hence d
dt+ m̃(t) ≥ 0. This concludes the proof of Claim 1.

Claim 1 and Lemma 5.2 imply that t → M̃(t) is nonincreasing and that t → m̃(t)

is nondecreasing. Recalling (5.4) we conclude that −1 ≤ m̃(t) ≤ M̃(t) ≤ 1 for any
t ≥ t0. Hence

Ψu(t) = 1 at those nodes where Ψu0 = 1.

It follows that the set-valued map t ∈ [t0,+∞) → {|D+u(t)| ≤ 1} = σφ
G(u(t)) ⊆ (0, 1)

is nondecreasing.
Let us define

t1 := sup{t ≥ t0 : Au(s) = Au0 ∀ s ∈ [t0, t)}.(5.7)

We want to show that t1 > t0.
For all i ∈ {1, . . . , N} such that |(D+u0)i| ≤ 1 we have |(D+u(t))i| ≤ 1 for all

t ≥ t0. In addition, t → D+u(t) being a continuous function, if |(D+u0)i| > 1, then
there exists ε > 0 independent of i such that |(D+u(t))i| > 1 for any t ∈ [t0, t0 + ε).
Hence Ψu(t) = Ψu0 for any t ∈ [t0, t0+ε]. From Remark 4.6 it follows that Au(t) = Au0

for any t ∈ [t0, t0 + ε), which gives t1 ≥ t0 + ε > t0.
We have proven that the function u(t) in (5.3) satisfies (5.1) for t ∈ [t0, t1). We

have also proven that either t1 = +∞ or Ψu(t1) ≥ Ψu(t0) and (Ψu(t1))i > Ψu(t0) for
some i ∈ {1, . . . , N}.

If t1 < +∞, repeating the previous construction with t1 in place of t0 and u(t1)
in place of u0, we find a time t2 > t1 and a solution u of (5.1) defined in [t1, t2) which
satisfies (5.1). Repeating this argument, we can construct an increasing sequence (tk)
of times. Since at step k the number of nodes where Ψu(t) = 1 is nondecreasing, we
can only have a finite number M ≤ N of steps, and in the last step we find that
tM = +∞. Gluing together the solutions defined in the intervals [tk, tk+1) we find a
function uN defined for all t ≥ 0 such that (a), (b), and (f) hold.

Let us prove (c), (d), and (e). Write for notational simplicity u in place of uN .
Let t ∈ [0,+∞). We say that i ∈ {1, . . . , N} is a relative maximum (resp., minimum)
for u(t) if

u(t)i ≥ max{u(t)i−1, u(t)i+1} (resp., u(t)i ≤ min{u(t)i−1, u(t)i+1}).
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Claim 2. Let t ∈ [0,+∞). If i is a relative maximum (resp., minimum) for u(t),
then d

dt+u(t)i ≤ 0 (resp., ≥ 0).
By (5.1),

d

dt+
u(t)i = N

[
(Ψu(t))i(D

+u(t))i − (Ψu(t))i−1(D
+u(t))i−1

]
= N2

[
(Ψu(t))i(u(t)i+1 − u(t)i) − (Ψu(t))i−1(u(t)i − u(t)i−1)

]
.

(5.8)

Hence, if i is a relative maximum, we have d
dt+u(t)i ≤ 0 since u(t)i+1 − u(t)i ≤ 0

and u(t)i − u(t)i−1 ≥ 0. Similarly, we can reason when i is a relative minimum, and
Claim 2 follows.

Assertion (c) then follows from Claim 2.
Consider now the function

Si(t) :=

{
sign(u(t)i+1 − u(t)i) if u(t)i+1 �= u(t)i,

| d
dt+ (u(t)i+1 − u(t)i| if u(t)i+1 = u(t)i.

By Lemma 5.3 we have

d

dt+
‖∇u(t)‖L1 =

N∑
i=1

d

dt+
|u(t)i+1 − u(t)i| =

N∑
i=1

Si(t)

(
d

dt+
u(t)i+1 −

d

dt+
u(t)i

)

=

N∑
i=1

(Si−1(t) − Si(t))
d

dt+
u(t)i.

In order to prove that d
dt+ ‖∇u(t)‖L1 ≤ 0, it is enough to show that

(Si−1(t) − Si(t))
d

dt+
u(t)i ≤ 0 ∀ i ∈ {1, . . . , N}.(5.9)

We divide the proof into four cases. We write for simplicity u in place of u(t) and
S in place of S(t).

Case 1: the point i is simultaneously a relative maximum and a relative minimum,
i.e., ui−1 = ui = ui+1. From (5.8) we deduce that d

dt+ui = 0, and (5.9) is satisfied.
Case 2: the point i is a relative maximum but not a relative minimum. Then

either ui > ui−1 or ui > ui+1. So either Si−1 = 1 or Si = −1, and in both cases
Si−1−Si ≥ 0. With (D+u)i ≤ 0 and (D+u)i−1 ≥ 0, from (5.8) we find that d

dt+u ≤ 0,
and (5.9) follows.

Case 3: the point i is a relative minimum but not a relative maximum. Then
either Si−1 = −1 or Si = 1, while d

dt+u ≥ 0.
Case 4: the point i is neither a relative maximum nor a relative minimum. Then

either ui−1 < ui < ui+1 or ui−1 > ui > ui+1. In both cases we have Si−1 = Si, and
hence (5.9) holds.

Then (d) follows from Claim 1 and Lemma 5.2.
Let us now prove (e). Recalling that d

dt+ Ψu = 0 and using the expression of Fφ(u)
as

Fφ(u) =
1

2

∫
(0,1)

[Ψu(D+u)2 + (1 − Ψu)] dx,(5.10)
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we have

d

dt+
Fφ(u) =

1

2

∫
(0,1)

Ψu
d

dt+
(D+u)2 dx =

∫
(0,1)

ΨuD
+u

d

dt+
D+u dx

=

〈
D+ d

dt+
u,ΨuD

+u

〉
= −

〈
d

dt+
u,D− (ΨuD

+u
)〉

= −
〈

d

dt+
u,Auu

〉
= −

∫
(0,1)

(
d

dt+
u

)2

dx = −
∥∥∥∥ d

dt+
u

∥∥∥∥2

L2

≤ 0,

which proves (5.2).
For all t ≥ 0 for which Ψu(·) is continuous at t, the continuity of Fφ(u(·)) at t is

a consequence of (5.10). On the other hand, if (Ψu(·))i has a discontinuity at t̄ ≥ 0,
we know that there exists σ > 0 such that (Ψu)i = 0 in (t̄ − σ, t̄) and (Ψu)i = 1 in
[t̄, t̄ + σ). This implies that |(D+u)i| > 1 in (t̄ − σ, t̄) and |(D+u)i| ≤ 1 in [t̄, t̄ + σ).
Since (D+u(·))i is continuous, we deduce that (D+u(t̄))2i = 1. As a result,

lim
t→t̄±

Ψu(t)(D
+u(t))2 + (1 − Ψu(t)) = 1.

This implies the continuity of the map t �→ Fφ(u(t)) at t.
To conclude the proof of the theorem, we need to show that the function uN is

unique. The proof is divided into two steps.
Step 1. Let uN : [0,+∞) → VN be a continuous right-differentiable function

satisfying (5.1). Assume, in addition, that for any t ≥ 0 there exists ε > 0 such that
ΨuN (τ) is constant for any τ ∈ [t, t + ε]. Then uN = uN .

Let ε > 0 be such that ΨuN
is constant on [0, ε]. It follows that uN = uN in

[0, ε], since the solution of (5.1), in [0, ε], is uniquely given by (5.3). Without loss of
generality, we can assume that

ε < t1,(5.11)

where t1 is defined in (5.7) and is the first time for which ΨuN
is discontinuous. Recall

that, by definition, {ΨuN (ε) = 0} = {|D+uN (ε)| > 1}.
We claim that

{ΨuN (ε) = 1} = {|D+uN (ε)| < 1}.(5.12)

Indeed, denote by Ij = (j/N, (j + 1)/N) the generic interval of the grid and by σj(t)
the slope of uN (t) in Ij . A closer look at the last term in (5.6) reveals that for any
t ∈ [0, t1), if

M̃(t) = (D+u(t))i = 1, and either σi−1(t) �= 1 or σi+1(t) �= 1,(5.13)

then

d

dt+
(D+u(t))i < 0,(5.14)

where we recall that u stands for uN . Similarly, if

m̃(t) = (D+u(t))i = −1, and either σi−1(t) �= −1 or σi+1(t) �= −1,(5.15)
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then

d

dt+
(D+u(t))i > 0.(5.16)

Observe that from (5.13), (5.14), (5.15), and (5.16), we already deduce that if |σi(t)| =
1 and if either |σi−1(t)| �= 1 or |σi+1(t)| �= 1, then |σi(t + τ)| < 1 for any τ > 0
small enough. What remains is the most delicate case; namely, we have to consider
those intervals Ii of the grid where |σi(t)| = 1 and also |σi−1(t)| = |σi+1(t)| = 1.
The following observation again follows from the expression on the right-hand side of
(5.6). For any t ∈ [0, t1), if

M̃(t) = (D+u(t))i = 1, and σi−1(t) = 1 = σi+1(t),(5.17)

then

d

dt+
(D+u(t))i = 0.(5.18)

Similarly, if

m̃(t) = (D+u(t))i = −1, and σi−1(t) = −1 = σi+1(t),(5.19)

then

d

dt+
(D+u(t))i = 0.(5.20)

Hence (5.18) and (5.20) do not allow us to conclude that if |σi(t)| = 1 and if |σi−1(t)| =
1 = |σi+1(t)|, then |σi(t + τ)| < 1 for any τ > 0 small enough. However, such an
inequality is valid and can be proved as follows. Let us denote by C the connected
component of {Ψu(t) = 1} containing Ii and by Ii− (resp., Ii+) the extremal left (resp.,
right) interval of the grid belonging to C (note that thanks to the boundary conditions,
0 is not a boundary point of Ii− and 1 is not a boundary point of Ii+). By (5.14) and
(5.16) it follows that |σIi−

(t + τ)| < 1 and |σIi+
(t + τ)| < 1 for any τ > 0. Using the

previous arguments, we deduce that |σIi−+1
(t+τ)| < 1 and |σIi+−1

(t+τ)| < 1 for any

τ > 0 small enough. After a finite number of iterations, we deduce that |σi(t+τ)| < 1
for any τ > 0 small enough. This concludes the proof of the claim.

We can now repeat the reasoning taking ε as initial time, and we conclude that
uN = uN in [0, t1]. Iterating the argument for any i = 1, . . . ,M we obtain that
uN = uN in [0,+∞).

Step 2. Let uN : [0,+∞) → VN be a continuous right-differentiable function
satisfying (5.1). Then for any t ≥ 0 there exists ε > 0 such that ΨuN (τ) is constant
for any τ ∈ [t, t + ε].

Let us consider an interval Ii where the slope σi(t) of uN (t) satisfies |σi(t)| = 1.
Arguing as in Step 1, independently of the values of |σi−1(t)| and |σi+1(t)|, we deduce
that |σi(t + τ)| < 1 for any τ > 0 sufficiently small. This implies that ΨuN (t) is right
continuous and proves Step 2.

Steps 1 and 2 conclude the proof of uniqueness, and hence the proof of the theo-
rem.

Remark 5.5. We have already observed in the introduction that the right-hand
side of the ODE’s system u̇ = −∇(Fφ|VN

) (see (5.1)) is only a bounded function, since

Fφ|VN
is Lipschitz. Nevertheless, due to the special form of Fφ the solution in the
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sense of Theorem 5.4 is unique. This is not the case if we change the notion of solution
to (5.1), for instance if we consider solutions to the system (5.1) only for almost all
times. This is shown in the following example, which is related to the nonuniqueness
example (Example 1 of section 2) and also shows another interesting phenomenon:
the solution considered in Theorem 5.4 does not depend continuously on the initial
datum.

Example 2. Assume that the initial datum u0 = u0N ∈ VN (with N even, in such
a way that 1/2 is a point of the mesh) is as follows:

u0 = 0 in (0, 1/2);
u0 is increasing in (1/2, 1/2 + 1/N) with slope exactly 1;
u0 is piecewise linear, with slopes (in modulus) strictly less than 1 in (1/2 +
1/N, 1).

Note that such an initial datum can be obtained from the discretization of so-
lutions considered in the nonuniqueness example (Example 1 of section 2) at a time
slightly smaller than t∗ (and converging to t∗ as N → +∞). The (unique) solution uN

of Theorem 5.4 is such that the linear part in the interval (1/2, 1/2 + 1/N) for small
positive times decreases its slope to a value less than 1. This solution, in the limit
N → +∞, produces the solution u1(· + t∗) of Example 1 of section 2.

Given ε ∈ (0, 1) let us consider the functions uε
0
± = uε

0
±
N ∈ VN defined as follows:

uε
0
± := u0 in (0, 1/2), uε

0
± := u0 ± ε

N in (1/2 + 1/N, 1), and uε
0
± is increasing in

(1/2, 1/2 + 1/N) with slope 1± ε. Then, if uε
N

± denotes the solution of Theorem 5.4
having uε

0
± as initial datum, we have

lim
ε→0+

uε
N

− = uN ,

while

lim
ε→0+

uε
N

+ = ũN ,

where ũN ∈ VN satisfies (a) of Theorem 5.4 for any t > 0 but not for t = 0, and

lim
N→+∞

ũN (·) = u2(· + t∗),

where u2 is as in Example 1 of section 2. Hence the solution uN of Theorem 5.4 is
not continuous with respect to initial data. We can summarize the above discussion,
coupled with the remarks of section 2, with the following conclusion: solutions to (iv),
(v), and (vi) of Theorem 2.4 are not unique thanks to Example 1 of section 2 (which,
however, we believe to be nongeneric). On the other hand, solutions of Theorem 5.4
are unique; however, they do not depend in a continuous way on the initial data. It
is such an instability at the discrete level (i.e., for fixed N) which seems to produce
nonuniqueness in the limit N → +∞.

6. Convergence of the approximating schemes. In this section we prove
Theorem 2.4. We begin with the following elementary lemma.

Lemma 6.1. Let u0 ∈ Aφ(0, 1). Then there exists a sequence (uN
0 ) ⊂ VN of

functions satisfying assertion (i) of Theorem 2.4.
Proof. Define uN

0 ∈ VN as (uN
0 )i := u0(i/N). Then ‖uN

0 ‖BV (0,1) ≤ ‖u0‖BV (0,1)

for any N ∈ N, (uN
0 ) converges to u0 weakly∗ in BV (0, 1) and strongly in L2(0, 1),

and limN→+∞ ‖uN
0 ‖BV (0,1) = ‖u0‖BV (0,1). Note that for any x ∈ [0, 1] such that

dist(x, σφ
B(u0)) > 1/N (resp., dist(x, σφ

G(u0)) > 1/N), then x ∈ σφ
G(uN

0 ) (resp., x ∈
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σφ
B(uN

0 )). It follows that limN→+∞ dH(σφ
G(uN

0 ), σφ
G(u0)) = 0. Since any isolated point

in σφ
B(u) belongs to σφ

B(uN
0 ) for N large enough, we also have dH(σφ

B(uN
0 ), σφ

B(u0)) →
0 as N → +∞.

Now let K ⊂ σφ
G(u0) be an interval with K ⊂ (0, 1). Then ‖uN

0 ‖L2(K) ≤
‖u0‖L2(KN ), where KN := {x ∈ R : dist(x,K) < 1/N} and N is large enough in

such a way that KN ⊂ (0, 1). Hence ‖uN
0 ‖L2(K) ≤ ‖u0‖L2(K) + 2

N , (uN
0 ) weakly

converges to u0 in H1(K), and ‖uN
0 x‖L2(K) converges to ‖u0x‖L2(K). Therefore

limN→+∞ Fφ(uN
0 ) = Fφ(u0), and this concludes the proof.

By construction, uN
0 ∈ VN ⊂ Aφ(0, 1); moreover, we can assume that if N is large

enough, the number of connected components of σφ
B(uN

0 ) equals m, the number of

connected components of σφ
B(u0), and we can uniquely write σφ

B(uN
0 ) as in (2.2).

Definition 6.2. Let u0 ∈ Aφ(0, 1), and let (uN
0 ) be as in Lemma 6.1. We denote

by uN : [0,+∞) → VN the solution of⎧⎨⎩
d

dt+
u(t) = Au(t)u(t), t ∈ (0,+∞),

uN (0) = uN
0

(6.1)

given by Theorem 5.4 (with u0 in (5.1) replaced by uN
0 ).

Note that all assertions in Theorem 2.4(ii) are satisfied.
Remark 6.3.

(a) For any j ∈ {1, . . . ,m} we define

TN
j := sup

{
t ≥ 0: σφ

B(uN (t)) ∩ [aNj (0), bNj (0)] �= ∅
}
> 0,

[aNj (t), bNj (t)] := σφ
B(uN (t)) ∩ [aNj (0), bNj (0)], t ∈ [0, TN

j ).

Then aNj (0) = a0
j , b

N
j (0) = b0j , and

σφ
B(uN (t)) =

m⋃
j=1

[aNj (t), bNj (t)], t ∈ [0,+∞),

where we have set

[aNj (t), bNj (t)] := ∅ if t ≥ TN
j .

(b) The map t ∈ [0, TN
j ) �→ aNj (t) is continuous and nondecreasing, and the map

t ∈ [0, TN
j ) �→ bNj (t) is continuous and nonincreasing.

(c) Since uN (·, t) = uN
0 (·) on σφ

B(uN (t)), for any j ∈ {1, . . . ,m} we have that
either uN

0 x(x, t) > 1 for a.e. x ∈ [aNj (t), bNj (t)] or uN
0 x(x, t) < −1 for a.e.

x ∈ [aNj (t), bNj (t)].
Lemma 6.4. There exists a constant C > 0 depending only on u0 such that

sup
t>0

sup
N∈N

Fφ(uN (t)) ≤ C,

sup
N∈N

∥∥∥∥ d

dt+
uN

∥∥∥∥
L2((0,+∞);L2(0,1))

≤ C,

sup
N∈N

‖uN‖L∞((0,+∞);BV (0,1)) ≤ C.
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Proof. The first two inequalities follow from (2.3) and (5.2). The last one follows
from Theorem 5.4 (c) and (d) and (2.3).

Remark 6.5. Thanks to Lemma 6.4 (and extracting if necessary a not rela-
belled subsequence) the sequence (uN ) converges weakly in H1

loc((0,+∞);L2(0, 1))
and weakly∗ in L∞((0,+∞);BV (0, 1)) to a function u as N → +∞, and this gives
assertion (iii) of Theorem 2.4. In particular, for almost every x ∈ (0, 1) the func-
tion t ∈ [0,+∞) → u(x, t) is continuous, and uN (x, ·) → u(x, ·) uniformly on
[0,+∞). As a consequence the function u(·, t) is well defined for all t ∈ [0,+∞)
and ‖Du(·, t)‖ ≤ ‖Du0‖. It also follows that uN (t) → u(t) weakly∗ in BV (0, 1) for
almost every t ≥ 0.

Remark 6.6. Possibly extracting a further subsequence, we can assume that for
any j ∈ {1, . . . ,m}, TN

j → Tj as N → +∞ for some Tj ∈ [0,+∞]. If Tj > 0,

since the functions aNj (·) (resp., bNj (·)) are nondecreasing (resp., nonincreasing), there
exist nondecreasing functions aj : [0, Tj) → [0, 1] (resp., nonincreasing functions bj :
[0, Tj) → [0, 1]) such that aNj → aj (resp., bNj → bj) weakly∗ in BV (0, Tj − ε) as

N → +∞ for all ε > 0 small enough. Since aNj (t) < bNj (t) for all t ∈ [0, TN
j ), passing

to the limit we obtain that aj(t) ≤ bj(t) for all t ∈ [0, Tj). Recall that aj(0) = a0
j and

bj(0) = b0j for any j ∈ {1, . . . ,m}.
In the following, set J(0) := {1, . . . ,m}.
Definition 6.7. For any t ∈ [0,+∞) we define

J(t) := {j ∈ {1, . . . ,m} : t < Tj},

B(t) :=
⋃

j∈J(t)

[aj(t), bj(t)],

G(t) := [0, 1] \B(t),

B̃(t) :=
⋃

j∈J(t): aj(t)<bj(t)

[aj(t), bj(t)] ∪
⋃

j∈J(t): aj(t)=bj(t)∈Ju(t)

{aj(t)},

G̃(t) := [0, 1] \ B̃(t).

Note that

int(B(t)) ⊆ B̃(t) ⊆ B(t).(6.2)

Lemma 6.8. For any j ∈ {1, . . . ,m} we have Tj > 0, and the functions aj and bj
are continuous on [0, Tj).

Proof. Assume by contradiction that there exists j ∈ {1, . . . ,m} such that Tj = 0.

Then [a0
j , b

0
j ] ∈ σφ

G(u(s)) for any s > 0. Hence u(s) is one-Lipschitz in [a0
j , b

0
j ] for any

s > 0.
Case 1. Assume that a0

j < b0j . Using the triangular property and u(0) = u0, for

any x, x′ ∈ [a0
j , b

0
j ], x �= x′, we have

|u(x, s) − u(x, 0)| + |u(x′, s) − u(x′, 0)| ≥ |u0(x) − u0(x
′)| − |u(x, s) − u(x′, s)|

≥ |u0(x) − u0(x
′)| − |x− x′| > 0.

This means that s �→ u(x, s) has a discontinuity at s = 0 for a.e. x ∈ [a0
j , b

0
j ], and this

is in contradiction with u ∈ AC2([0,+∞);L2(0, 1)).
Case 2. Assume that a0

j = b0j . Let L := u0(a
0
j+

) and l := u0(a
0
j−). We can

assume l < L. Let δ := min( (L−l)
4 , a0

1, (1 − b0m),minj=1,...,m−1(a
0
j+1 − b0j )) > 0, and
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define x± := a0
j ± δ. Note that u(s) is one-Lipschitz in (x−, x+) for any s > 0. For

any x, x′ ∈ (x−, x+), x �= x′, we have

|u(x, s) − u(x, 0)| + |u(x′, s) − u(x′, 0)| ≥ |u0(x) − u0(x
′)| − |x− x′|

≥ |u0(a
0
j−) − u0(a

0
j+

)| − |u0(x) − u0(a
0
j−)|

− |u0(x
′) − u0(a

0
j+

)| − |x− x′|
≥ L− l − 4δ > 0.

As above, this is in contradiction with u ∈ AC2([0,+∞);L2(0, 1)).
Let us now prove that aj and bj are continuous. Assume by contradiction that

aj has a discontinuity at t = t̄ ∈ [0, Tj). Since aj is nondecreasing, t̄ is a jump
point of aj . If t̄ = 0, we can argue in analogy to Case 1. Assume t̄ > 0, and let
x− := limt→t̄− aj(t) < x+ := limt→t̄+ aj(t). Since uN (·, t) coincides with uN

0 (·) in

σφ
B(uN (t)), it follows that u(·, t) coincides with u0(·) in each connected component

of int(B(t)). In particular, the function u(t) coincides with u0 in (x−, x+) for all
t ∈ [0, t̄). We then obtain

|u(x, t) − u(x′, t)| = |u0(x) − u0(x
′)| > |x− x′| ∀ x, x′ ∈ (x−, x+).

On the other hand, u(s) is one-Lipschitz in (x−, x+) for any s > t̄. It follows that,
for any x, x′ ∈ (x−, x+),

|u(x, t) − u(x, s)| + |u(x′, t) − u(x′, s)| ≥ |u0(x) − u0(x
′)| − |x− x′| > 0,

which contradicts u ∈ AC2([0,+∞);L2(0, 1)). This proves the continuity of aj . The
continuity of bj follows using a similar argument.

Remark 6.9. Whenever Tj < +∞, arguing as in Lemma 6.8 with t̄ = Tj , we get
limt→T−

j
aj(t) = limt→T−

j
bj(t).

Remark 6.10.

(a) Since uN (·, t) is one-Lipschitz in each connected component of σφ
G(uN (t)), it

follows that u(·, t) is one-Lipschitz in each connected component of G̃(t).
(b) The function u(·, t) coincides with u0(·) in each connected component of

int(B(t)).
Remark 6.11. As a consequence of Lemma 6.8 the sequence (aNj ) (resp., (bNj ))

converges to aj (resp., to bj) uniformly in [0, Tj − ε) as N → +∞ for any ε > 0 small
enough. In particular, for any connected component I of B(t) there exists a connected

component IN of σφ
B(uN (t)) such that

lim
N→+∞

dH(IN , I) = 0.

Lemma 6.12. The function u(t) is φ-admissible for any t ≥ 0 and

int(B(t)) ⊆ σφ
B(u(t)) ⊆ B(t) ∀ t ∈ [0,+∞).(6.3)

Proof. Recalling Remark 6.5, let us fix t ≥ 0 such that uN (t) → u(t) weakly∗ in
BV (0, 1). From Remark 6.10(a) it follows that u(t) is one-Lipschitz in each connected

component of G̃(t); hence

G̃(t) ⊆ σφ
G(u(t)).
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Moreover, from Remarks 6.3(c) and 6.11 it follows that the assertion in Remark 2.2(c)

holds with u replaced by u(t) for any connected component I of B̃(t) and any Borel
set A ⊆ I. Indeed, if A is compactly contained in I, then DuN (A) = DuN

0 (A)
for N ∈ N large enough, and by construction (see Lemma 6.1) in the first case
|A| < limN→+∞ DuN

0 (A) = Du(A) or in the second case −|A| > limN→+∞ DuN
0 (A) =

Du(A). If A is a boundary point of I, then (using Remarks 6.11 and 6.10(a)) in the
first case 0 ≤ limN→+∞ DuN (A) = Du(A) or in the second case 0 ≤ limN→+∞
DuN (A) = Du(A). To obtain the desired inequalities when A is a generic Borel set
in I, it is enough to write A = (A ∩ int(I)) ∪ (A ∩ ∂I), to approximate A ∩ int(I)
with a sequence of subsets of A compactly contained in I, and to use the previous
arguments. It follows that

B̃(t) ⊆ σφ
B(u(t)).

In particular, for almost every t ≥ 0, u(t) is φ-admissible, σφ
B(u(t)) = B̃(t), and (6.3)

follows from (6.2).

Assume now that t ≥ 0 is generic, and pick a sequence (tn) ⊂ (0,+∞) converging
to t as n → +∞ such that u(tn) ∈ Aφ(0, 1) and for which (6.3) holds with tn in place
of t. Since u ∈ AC2([0,+∞);L2(0, 1)) and u(t) ∈ BV (0, 1), we have u(tn) → u(t)
weakly∗ in BV (0, 1) as n → +∞. It is then enough to repeat the previous arguments,
and the assertion follows.

Remark 6.13.

(a) We have limN→+∞ dH(ΓuN ,Γu) = 0, where ΓuN :=
⋃

t∈(0,+∞)(σ
φ
G(uN (t)) ×

{t}). In particular, by Lemma 6.8, for all t ∈ [0,+∞) we have

lim
N→+∞

dH

(
σφ
G(uN (t)), σφ

G(u(t))
)

= 0,

lim
N→+∞

dH

(
int(σφ

B(uN (t))), int(σφ
B(u(t)))

)
= 0.

(6.4)

(b) Since uN ⇀ u weakly∗ in L∞([0,+∞);BV (0, 1)) and uN ≡ uN
0 in [0, 1] ×

[0,+∞) \ ΓuN by Remark 6.3(c), we have u ≡ u0 in [0, 1] × [0,+∞) \ Γu.

Theorem 6.14. The function u satisfies uxx ∈ L2(Γu) and is a solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = uxx, x ∈ σφ
G(u(t)), t ∈ (0,+∞),

ut = 0, x ∈ int(σφ
B(u(t))), t ∈ (0,+∞),

lim
y→x, y∈σφ

G(u(t))
ux(y, t) = 0, x ∈ ∂σφ

G(u(t)) \ {0, 1}, t ∈ (0,+∞),

u(x, 0) = u0(x), x ∈ (0, 1),

u(0, t) = u(1, t), ux(0, t) = ux(1, t), t ∈ (0,+∞).

(6.5)

Proof. Let ψ ∈ C1
c([0,+∞) × [0, 1]), and let ψN : [0,+∞) → VN , ψN ∈

Lipc([0,+∞) × [0, 1]), be such that ψN (t) → ψ(t) in H1(0, 1) for any t ≥ 0. We
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have

IN (t) :=

∫
σφ
G(uN (t))

uN
x (t)ψN

x (t) dx =
∑

i: (ΨuN (t))i=1

D+uN
i (t)D+ψN

i (t)

N

= −
∫

(0,1)

D−(ΨuN (t)D
+uN (t))ψN (t) dx

= −
∫

(0,1)

AuN (t)u
N (t)ψN (t) dx

= −
∫

(0,1)

d

dt+
uN (t)ψN (t) dx =: IIN (t).

(6.6)

From (6.4) (which is valid for any t ≥ 0 thanks to Lemma 6.8) and from the weak
H1

loc(int(Γu))-convergence of (uN ) to u, using (6.3) it follows that

lim
N→+∞

IN (t) =

∫
σφ
G(u(t))

ux(t)ψx(t) dx for a.e. t ≥ 0.(6.7)

On the other hand, d
dt+u

N ⇀ d
dt+u in L2((0, 1) × (0,+∞)) as N → +∞; hence

lim
N→+∞

IIN (t) =

∫
(0,1)

d

dt+
u(t)ψ(t) dx for a.e. t ≥ 0.(6.8)

Recalling also Remark 6.13(b), equalities (6.7), (6.8) coupled with (6.6) imply that u
solves the problem ⎧⎪⎨⎪⎩

ut = uxx in int(Γu),

ut = 0 in [0, 1] × [0,+∞) \ Γu,

u(0) = u0 in [0, 1] × {0}.
(6.9)

In particular, we have u ∈ C∞(int(Γu)). Moreover, since ut ∈ L2((0, 1) × (0,+∞)),
we also get uxx ∈ L2(Γu). It then follows that there exists the limit

lim
x→x̄, x∈σφ

G(u(t))
ux(x, t) = 0 for a.e. t ≥ 0, x̄ ∈ ∂σφ

G(u(t));(6.10)

i.e., u|int(Γu) satisfies zero Neumann boundary conditions on ∂Γu. Problem (6.9),
together with the boundary condition (6.10), is equivalent to problem (6.5).

The periodic boundary conditions are a consequence of u being φ-admissible.
Remark 6.15. The same results of Theorem 2.4 hold if we replace in the definition

(1.1) of φ the function ξ2 with a function f ∈ C∞(R) which satisfies f(0) = 0, f(1) = 1,
f(ξ) = f(−ξ), and f ′′(ξ) > 0 for all ξ ∈ (−1, 1). It is clear that the equation ut = uxx

in (2.5) is replaced by ut = 1
2f

′′(ux)uxx.
Remark 6.16. Let N ∈ N, and set φN (ξ) := min(ξ2, N) for any ξ ∈ R. Define

the functional FφN ,N : L1(0, 1) → [0,+∞] as

FφN ,N (v) :=
1

2N

N∑
i=1

min
(
((D+v)i)

2, N
)
, v ∈ VN

(and extended to +∞ elsewhere). In [14] it is proved that the sequence (FφN ,N )
Γ-converges, as N → +∞, to the Mumford–Shah functional. Let u ∈ BV (0, 1), with
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u(0) = u(1), having a finite set x1, . . . , xn of jump points in (0, 1), and of class C1(I),
for any interval I ⊂ (0, 1)\{x1, . . . , xn}. Then u is φN -admissible for N large enough;
i.e., u satisfies Definition 2.1, where (1) is replaced by |u(x) − u(y)| ≤

√
N |x − y|

whenever [x, y] ⊂ σφN

G (u), and where the inequality involving u in (3) is replaced by

|u(x)− u(y)| >
√
N |x− y|. Let us consider the solutions ωN to the rescaled gradient

flow system of ODEs {
ωN
t = −N∇(FφN ,N |VN

)(ωN ),

ωN (0) = uN ,
(6.11)

uN as in Lemma 6.1. Reasoning as in Theorem 2.4 we get that, as N → +∞,
the sequence (ωN ) converges, up to a subsequence, to a function ω which satisfies
the heat equation with zero Neumann interior conditions on each interval of (0, 1) \
{x1, . . . , xn} (except in {0, 1}), has periodic conditions in {0, 1}, and keeps the points
x1, . . . , xn fixed in time (xj may disappear at time tj < +∞ if limx→xj−

ω(x, tj) =

limx→xj+
ω(x, tj)). Therefore ω can be considered as a reasonable global solution to

the gradient flow of the Mumford–Shah functional in one dimension starting from u
(compare [22], [20]).

7. Numerical simulations. In this section we show a numerical simulation
which confirms the behaviors predicted by Theorem 2.4. Let u0 ∈ Aφ(0, 1) be the
upper graph in Figure 7.2; see also Figure 7.1. We have

σφ
B(u0) = [a0

1, b
0
1] ∪ [a0

2, b
0
2] ∪ [a0

3, b
0
3],

where a0
1 = 0.05, b01 = 0.2, a0

2 = b02 = 0.6, a0
3 = 0.9, and b03 = 0.99. Note that

Ju0 = {a0
2, a

0
3}.

The sequence of graphs displayed in Figures 7.1 and 7.2 presents the solution u
starting from u0 at subsequent times. The computation solves the discrete evolution
presented in section 5 with space discretization Δx = 1/N with N = 500. The
algorithm used is a forward Euler scheme with time step Δt = (Δx)2/10. Let us list
the main features of the computed evolution u, all of which are in accordance with
Theorem 2.4.

(1) We have a1(t) ≡ a0
1 for all t > 0, and on the interval (0, a1(t)) the solu-

tion u evolves according to the heat equation with zero Neumann boundary
condition at a1(t). In addition,

a1(t) ∈ Ju(t) ∀ t > 0.

Since a0
1 /∈ Ju0 , a1(t) “instantly” becomes a discontinuity point of the solution;

see also Figure 7.1.
(2) The function t → b1(t) is decreasing for positive times. The interval

[a1(t), b1(t)] is gradually eroded, from the right, by the interval [b1(t), a2(t)],
where the solution evolves according to the heat equation, with zero Neumann
boundary conditions.

(3) There exists T2 > 0 such that a2(t) ≡ a0
2 and a0

2 ∈ Ju(t) for t ∈ [0, T2), and
then a0

2 becomes a continuity point of u(t) for t ≥ T2. In the region [b02, a3(t)],
for all times t ∈ (0, T2), the solution evolves according to the heat equation
with zero Neumann boundary conditions at b02 and a3(t). Note that

σφ
B(u(t)) = [a1(t), b1(t)] ∪ [a3(t), b3(t)], t ≥ T2,
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b01 a0
3 b03a0

1

a0
2 = b02

t = 0.200
t = 0.017
t = 0.011
t = 0.004
t = 0.001
t = 0.000

Fig. 7.1. A simulation of the discretized evolution. The function is plotted in black for some
relevant time values. The initial datum u0 is plotted thick. The gray regions represent the intervals
[aj(t), bj(t)].

0.01

t = 0

0.02

0.03

0.04

0.05

0.06

0.05 0.2 0.6 0.9x = 0

τ1

τ2

T2

0.99

Fig. 7.2. A vertical translation has been added to the evolution to distinguish the functions.
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and u evolves accordingly to the heat equation in the interval (b1(t), a3(t))
with zero Neumann boundary conditions.

(4) There exist two positive times 0 < τ1 < τ2 such that a3(t) ≡ a0
3 ∈ Ju(t) for

t ∈ [0, τ1), the point a3(t) becomes a continuity point of u for t ∈ [τ1, τ2], and
the function t → a3(t) is strictly increasing in that interval, a3(t) ≡ a3(τ2) ∈
Ju(t) for all t > τ2. The function t → b3(t) is strictly decreasing.

(5) On the interval (b3(t), 1) the solution u evolves according to the heat equation
with zero Neumann boundary conditions for all t > 0.

Remark 7.1. We conclude the paper by observing that, for energy densities
different from (1.1), in particular for the function φ1 considered in Figure 3.1 (the
nonconvex region of which is bounded), the discrete approximation scheme discussed
in sections 5 and 6, which keeps fixed in time the nodes of the mesh in (0, 1), could
converge to functions ũ which are not solutions to (3.6). In particular, the functions ũ

might not satisfy the condition ũt = 0 in int(σφ1

B (ũ(t))); see also the comments in [21,
p. 590]. This behavior of ũ, which is related to the interactions of the nonconvex region
of φ1 with the numerical scheme with fixed nodes, deserves further investigation.
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