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Abstract. An Ansatz for the Poincar~ metric on compact Riemann surfaces is proposed. This implies that 
the Liouville equation reduces to an equation resembling a nonchiral analogous of the higher genus 
relationships (KP equation) arising within the framework of Schottky's problem solution. This approach 
connects uniformization (Fuchsian groups) and moduli space theories with KP hierarchy. Besides its 
mathematical interest, the Ansatz has some applications within the framework of quantum Riemann 
surfaces arising in 2D gravity. 

Mathematics Subject Classifications (1991). 14H42, 32G15. 

I. Schottky Problem and KP Hierarchy 

Let us consider a genus h compact Riemann surface ~. A fundamental object 
defining the complex structure of Y, is the Riemann period matrix 

f~ij = fp, coj, (1.1) 

where the O)k'S denote the h holomorphic differentials with the standard normaliz- 
ation ~,, coj = 6ij. By means of the Riemann bilinear relations, it can be proved that 
f~ij is symmetric with positive definite imaginary part (see, for example, [1]). Let us 
consider the Siegel space 

d ,  = J f  h/Sp(h, Z), (1.2) 

where ~h,  called the Siegel upper half-plane, is the space of symmetric h x h 
matrices with a positive definite imaginary part. Recognizing the locus in dh of the 
Riemann period matrices is the famous Schottky problem. This problem has been 
essentially solved by Dubrovin, Mulase and Shiota [2M]. The solution is based on 
the proof of the Novikov conjecture stating that 

u(x ,y , t )  = 2~  log ®(Ux + Vy + Wt  + zolf~), (1.3) 

~r Partly supported by a SERC fellowship and by the European Community Research Programme 'Gauge 
Theories, applied supersymmetry and quantum gravity', contract SC1-CT92-0789. 
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satisfies the KP equation if and only if f~ is the period matrix of some I2. The 
corresponding equations on ['1 (see Equation (2.15)) were derived in [2] where it was 
proved that they determine an algebraic variety with a component given by the 
matrices of the fl-periods. In [4], Shiota pointed out that if u in Equation (1.3) 
satisfies the KP  equation, then there are vectors U k such that the function 

u( t l , t2 , . . . )=2O]log® Uktklf~ , t l = x ,  t 2=y ,  t a=t ,  (1.4) 
k =  

determines the solutions of the KP hierarchy 

- L j , ~  - Lk = 0, (1.5) 

where the order k differential operators Lk have coefficients depending on 
t - (tl, t2, ...) and are determined by the equation (~rk - Lk)~b(t, z) = 0, ~b being the 
Baker-Akhiezer function on Z. Since the space of vectors U k is h-dimensional, there 
are two commuting operators of coprime order which are linear combinations of the 
Lk's. Therefore, one can apply the results in [5] to show that ~ is the Riemann 
matrix of the surface defined by these operators. 

2. T h e  A n s a t z  

Let Z be a compact Riemann surface of genus h > 1. It is well known that the 
Liouville equation on E 

3zS~p(z, 5) : ½e o(z'~), (2.1) 

is uniquely satisfied by the Poincar6 metric (with Gaussian curvature - t ) .  This 

metric can be written in terms of the inverse map of uniformization 

j ~  1 : £ __. H, (2.2) 

where H = {wlIm w > 0} denotes the upper half-plane. The Poincar~ metric on 

H is 

d s 2  [dwl 2 
(Im w) 2' (2.3) 

so that on Z -- H/F (with F a hyperbolic Fuchsian group) 

e,0¢z,~)- [JHI(Z)'[2 
(Im J~  1 (z))2, (2.4) 

which is invariant under SL(2, R) fractional transformations of J~  1. Unfortunately, 
no one has succeeded in writing down J~  1 in terms of the moduli of Z. Here we 
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consider the following Ansatz for the Poincar~ metric* on compact Riemann 
surfaces of genus h >~ 4 

h 

e ~ = ~ coiAi j (~)  j .  (2.5) 
i,j = 1 

We do not consider this A n s a t z  for lower genus because the Liouville equation for 
(2.5) is equivalent to nontrivial relations for the holomorphic differentials. On the 
other hand it is well known that interesting relations for C~k arise for h ~> 4 (see, for 
example, III.8.6. in [1]). To get the inverse map from (2.5) one has to solve the 
Schwarzian equation 

{ j ~  1, z }  = TF(z), (2.6) 

where 

1 2 (2.7) TF(z)  = ~o~ --  ~ P z ,  

is the classical Liouville stress tensor (or Fuchsian projective connection) that by (2.5) 
reads 

~,j=I(Di Aijco j 3 E h . , , j= 1 (D'i A I j ( D j  (2.8) 
TF(z) = E~, j=lcoiAi jchj  2 ~ - -  " i , j= i (Di A i j ( f ) j  J 

Observe that Equation (2.1) implies that 

O~ Tr ( z )  = 0. (2.9) 

A crucial property of Equation (2.6) is that it can be reduced to the linear equation 

(202 + T(z))~b = 0. (2.10) 

Actually, it turns out that, up to SL(2, C) linear fractional transformations, 

J H  1 ~- @ 1 / ~ / 2 ,  ( 2 . 1 1 )  

with ~bl and 02 two linearly independent solutions of (2.10) (see [7] for a discussion 
on this point). 

Let us now consider the Liouville equation for (2.5). We have 

~oZO2(~oi/co,)AijA,k&ZO~(~j/Cbk) = ~ A f / b j  , h / >  4. (2.12) 
i,j,k,l = 1 i , j= 1 

This equation has a strict similarity with the relations between the periods of 
holomorphic differentials on Riemann surfaces [2]. Thus, one should expect that A~j 
depends on the moduli through the Riemann period matrix. To show this similarity, 
we write down the fundamental relations given in [2]. Let us set 

U,  = - -Ok(P) ,  Vk = --~oi(P) ,  Wk = 1 ,, ---~COk(P) --  ½c(P)Uk ,  (2.13) 

*Notice  that a possible choice for the matrix to be positive definite is to set A~j = of~)- ~ in this case (2.5) --zj , 
coincides with the Bergman metric. 
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where c(P)  is a projective connection [2] and P is an arbitrary point on E. In [2], 
Dubrovin proved that the function (1.3) is a solution of the KP equation 

Uyy = (4Ut -- 6UUx -- Ux~:,)x (2.14) 

if and only if the following relations between U, V, W, f~ and an additional constant 
d are satisfied (see [2] for notation) 

h 

U~ Uj Uk U~ Oijk~ In] + 
i,j,k,l= l 

h 

+ Y', ( ¼ V i V ; -  U i W j ) O i j [ n ] + d O [ n ] = O ,  n e Z ~ .  (2.15) 
i , j= l  

We emphasize that this result is a fundamental step to solve Schottky's problem. 
Our remark is that Equation (2.12) looks like a non-chiral generalization of (2.15). 

In the notation introduced above, Equation (2.12) reads 

2 ( U  l V i - U i V l ) A i j A l k ( U  k V j  - -  U j  Vk)  = U i A i j  U;  . (2.16) 
i,j,k, l = 1 i,j = 1 

We stress that solving this equation is equivalent to solving crucial questions arising 
in uniformization theory, Fuchsian groups, and related subjects. In particular, 
Weil-Petersson's 2-form COwp can be recovered using the fact that its K~ihler 
potential is given by the Liouville action evaluated on the classical solution [6]. 

Another aspect that should be investigate is whether Equation (2.16) furnishes 
conditions on the period matrix in a more manageable form than KP equation 
(2.14)-(2.15). 

A possible approach to study Equation (2.12) is using Krichever-Novikov's 
differentials ~b~. ") [8]. These differentials are holomorphic on E\{P+ P_} with r j  

prescribed behaviour at P+. In particular, in terms of local coordinates z+ vanishing 
at P+ E Z, we have 

h 
0}")(z+)(dz+)" = a} ")+- z++vJ-s(")(1 -4- (9(z+))(dz+)", s(n) = ~ - n(h - 1), (2.17) 

wherej ~ Z + hi2 and n e Z. There are few exceptions to (2.17) concerning essentially 
the h = 1 and n = 0, 1 cases [8, 9]. By the Riemann-Roch theorem, ~/t (.") is uniquely r j  

fixed by choosing the value of a~ ")+ or a j(")-. In the following, we set a~ ")+ = 1. 
These differentials can be written in terms of theta functions* [9] 

~(z)2 , -  1 E(z,  P+ )j-s(,) 
O~ ") (z) = C~ ") O ( I (z )  + ~;;" I n) E(z,  P_ )j+s(,) , (2.18) 

where 

~J;" = ( j  - s(n)) I ( P  + ) - ( j  + s(n)) I ( P _  ) + (1 - 2n)A, 

*In the appendix we illustrate a general method to construct differentials in higher genus Riemann 
surfaces. 
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(") 1. Let g be a homologieally trivial and constant C~ ") is fixed by the condition aj = 
contour separating P+ and P_.  The dual of ~9~ n) is defined by 

1 ~ ,I,(,) ,I,k k (2.19) 
2hi v'j ~,(,) ~j, 

which implies 

0~,) = ~'-J~/~(17,). (2.20) 

Note that (2.17) provides a basis for the 1 - 2 s ( n ) =  ( 2 n -  1 ) (h -  1) holomorphic 
n-differentials on Z (h ~> 2) 

J/f(") = {~(k")[s(n) ~< k ~< -s(n)}, n ~> 2. (2.21) 

Furthermore, from 

~(" )  = {~(k')l 1 -- s(m) <~ k <~ s(m) - 1}, m ~< - 1 ,  (2.22) 

one can define the space of generalized Beltrami differentials. They are vanishing 
everywhere on Z except in a disk where they coincide with [7] 

~(m) = {0~(k,0[ 1 __ s(m) <~ k ~ s(m) - 1}, m <~ - 1 ,  (2.23) 

(for m = - 1, one gets the Beltrami differentials considered in [9]). Observe that the 
differentials in (2.22) have poles both in P+ and P_.  In particular, ~ ( 1 - , )  is the dual 
space of Yf("). 

We now expand the holomorphic 3-differentials in (2.12) in terms of the basis 
introduced above. We have 

5h--5 

0)2 ~z(O)J/o)i) = 2 ap ,/,(3) ~i jW p+s(3)- 1, 
p = l  

(2.24) 

5 a - 5  1 ~¢ 
0)i0)j0)k = ~ "~''ijk 'ep'1"(3)+,(3) - 1, b~k = ~ i  t~(--P2)-s(3)+ ~ 0)'0)J0)k" (2.25) 

p = l  

Inserting these expansions in (2.12), we get the 'Liouville relations' 

h h 
Z p -q aijAikAjlakt ~ b~,, -q = Aig Ajl Am, b kt," (2.26) 

i,j,k,l= 1 i,j,k,l,m,n= 1 

Note that aft and b~t, are functionals of the 0)k'S and their derivatives computed at 
P+ and coincide with the vectors of fl-periods of second-kind differentials. 

The above expansions provide relations involving the holomorphic differentials, 
theta functions, and their derivatives. To see this, it is sufficient to notice that the 
coefficients a~ and b~k are vanishing for p < 1 and p > 5h - 5. The reason is that 
in this range the O(_-pZ_)s(3)+~'s are holomorphic in P_ or P÷. This implies that 
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for p < 1 and p > 5h - 5, the contribution to a~ and b~k coming from the poles 
at P_ or P+ add to zero. Notice that this 'residue formula' is crucial to get 
important relations such as Hirota's formulation of the KP hierarchy (see for 
example [10]). 

3. The Accessory Parameters 

Here we consider some aspects concerning the Fuchsian accessory parameters. First 
of all, we introduce the projective connection 

TS(z) = {j61, z}, (3.11 

where Jn: O ~ E denote the Schottkian uniformization map. Here, O denotes the 
region of discontinuity in (2 = C u { oe } of the Schottky group 5 ~ and I2 - O/ow. Let 
us introduce the following notation for the Krichever-Novikov vector fields and 
quadratic differentials 

ek =-- O(k -'), O k = O(2_)k. (3.2) 

Let 3-z be the holomorphic projective connection on 12 obtained from the symmetric 
bidifferential of the second kind with biresidue 1 and zero e-periods. Let us consider 
the expansions 

3 h - 3  
T F = ff-z + ~ 2(ke)O k+~-h°, 

k = l  

3 h - 3  (3.3) 
r s = ~ - z +  ~ 2(kS)O k+l-a°, ho-=-a2h. 

k = l  

The 2~kF)'S (2(kS)'s) are called Fuchsian (Schottkian) accessory parameters. 
In order to write ~ explicitly, we consider an arbitrary nonsingular point f of the 

theta divisor, that is ® ( f )  = 0 and grad ®( f )  # O. We define 

h 

HI(z ) = ~ ®k(S)COk(Z), (3.4) 
k = l  

h 

Qs(z) : ~, ®~k(f)a~j(Z)COk(Z), (3.5t 
j , k= 1 

h 

T i ( z ) :  ~, ®Uk(fl~oi(zloJj(z)OJk(z). (3.6) 
i , j ,k= l 

The holomorphic projective connection is [11] 

I[ ~ } 3(Q'(z)] 2 TI(z) 
(3.7) 
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At a zero of HI,  we have 

Qy(zo) = +_H'f(Zo), Ti(zo) = --H}(zo) +_ ~Q'i(Zo), (3.8) 

with the sign + chosen accordingly as O(z - z0 T- f )  =- 0, Vz e Z. 
Besides T v and T s, also J-~ can be expressed as a Schwarzian derivative. To do 

this, we simply note that, according to the general rule described above, the ratio of 
two arbitrary linearly independent solutions q51, ~b2 of the equation 

+ ~ y~(z) ~b(z) = 0, (3.9) 

is the solution of the Schwarzian equation 

{d~ ~(z), z} = J~(z), (3.10) 

where 

J f  l(z) = 0~/4)1. (3.11) 

Note that, by (3.3), it follows that 

2rc---i ({JHI(Z), z} -- {J~t(z),z})e k+l-h°, (3.12) 

and by (2.8), (3.7) we get 

E t° ' i 'Ai j (bJ  
- -  i,J =1 x~" 1 

h 
27ri ~ o) iA i j~ )J  

i,j= 1 

h 2 

z -If 
\ i j = l  / 

3 (QI(z)~ 2 + 2 Tf(Z)lek+'-h° (3.13) 
2 LHAz)) HAz)) 

It is interesting to note that by the chain rule for the Schwarzian derivative 

{w(t(z)), z} (dz) 2 - {t(z), z} (dz) 2 = {w(t), t} (dt) 2, (3.14) 

it follows that 

1 f 2(k e) = ~ ({J~l(Jfl(z)), Jffl(z)}(OzJfl(z))Z)ek+l-h° (3.15) 

In the second reference in [6], where the results for the punctured Riemann sphere 
are generalized to higher genus Riemann surfaces, a relationship has been established 
between c~ h) = 2~ v) --'~k~(S), the Liouville action computed on the classical solution and 
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the Weil-Petersson metric. In particular, it turns out that 

lc~S(~ ) _(h) ~Cl h) 1 ( 0 ,  Q)  , (3.16) 
2 azi - c i '  agj - 2 ~ ~zj wP 

where the brackets denote the Weil-Petersson metric on the Teichmfiller space Th 
projected onto the Schottky space whose coordinate are z , , . . . ,  Zah-a' Since 

3 h - 3  
tO(z) = TF(z)- TS(z)= ~ C(kh)~k+l-ho(z), (3.17) 

k = l  

is a holomorphic quadratic differential (i.e. a section of T* Th), the formulas in 
Equation (3.16) are equivalent to 

"~l = -2iCOwp, (3.18) 

where d = 0 + ~ is the exterior differentiation on the Schottky space and COwp is the 
Weil-Petersson 2-form on this space. Because the Schottky projective connection 
depends holomorphically on the moduli, we have 

~T ~ = - i(.OWp , (3.19) 

that by (2.8) gives 

/ ~ ~oTAiflhj 3 /  ~ (n'iA,j°Sj~ 2 ) 
COwa = i~ [ ~  - -  - - | ~ _ t  _ _ 1  . (3.20) 

\i,j=l \i0=1 / 

A result analogous to (3.16)-(3.19) has been derived by Fay [-12], in particular 

{Jn l ' z }=Jx-247 t i  ~ ( ~ 0--~jk log CO COj(Z)Ogk(Z), (3.21) 

where Co is the anomaly in the spin-l/2 bosonization formula computed with respect 
to the Poincar6 metric eL i.e. 

F8~2 det 'A~-  t/2 
c0 = I de| Im f~ J (3.22) 

The relation with the Weil-Petersson metric on Th arises in considering the quasi- 
conformal mapping 

O=f p = p~?zf p, p = ttva + t2V2. (3.23) 

It turns out that 

- 247r0~ log Co = (vl, rE) wP, (3.24) 
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where (vl ,  Vz)wp = ~ e~°vl v2 and 

h ~ 
0 = at(p): 2 ~ - - ~  jk, (3.25) 

j , k = l  

is the Schiffer variation (see [12] for details). 
Another possible way to investigate Equation (2.5) is by noticing that both the first 

and second variations of the Poincar6 area vanish for the deformation of the 
complex structure induced by the harmonic Beltrami differentials [13, t4]. Applying 
this condition to (2.5) should give further information on the form of matrix A~j. 

As a final remark, we observe that, besides any mathematical interest, the solution 
for the Poincar6 metric is crucial to get explicit expressions for correlators in string 
theory. In particular, in the 'uniformization approach' to 2D quantum gravity 
[15, 7], one needs the explicit expression of ~"(h)c~ to compute the 'VEV of quantum 
Riemann surfaces' (12) (see [16, 17]). 

4. Appendix 

Here we illustrate a general method to express differentials in terms of theta 
functions. In particular, we will construct a n-differential f(n) with poles only at 
Q1, ..., Qp-2,(h-~) and zeroes at Ph+~, ..., Pp. Since the degree of f(") is 2n(h - 1), it 
follows (by Riemann-Roch) that f(") is uniquely fixed up to a multiplicative 
constant. As we will see, the remainder h-zeroes are fixed by the singlevaluedness 
condition. 

Let us introduce the theta function with characteristic 

O[~](Z I ~) = ~ e ~i(k+")'n'(k+a)+2~i{k+a)'(z+b), O(z ]~) ---- O [  °] (z [~), (A.1) 
k ~ Z  h 

where z s C ~', a, b e R h. When ak, bk ~ {0, 1/2}, O [~](z [~) is even or odd depending on 
the parity of 4a" b. The G-function is multivalued under a lattice shift in the 
z-variable 

® [g](z + n + f2.m [f~) = e -Itim'f~'m-2~zim'z+2~zi(a'n-b'm) O [~](Z [ ~'-~). (A.2) 

The 'building block' to construct differentials on 12 is the prime form E(z, w). It is a 
holomorphic -1/2-differential both in z and w, vanishing for z = w only 

O [~](I(z) - I(w)l n) 
E(z, w) = (A.3) 

h(z)h(w) 

Here h(z) denotes the square root of 12h=lCOk(Z)a,kO[~](Ulf~)[,~=O; it is the 
holomorphic 1/2-differential with nonsingular (i.e. ~u~ O [~] (u [ f2)I,~=o ¢ 0) odd spin 
structure [g]. The function I(z) in (A.3) denotes the Jacobi map 

Ik(z) = e)k, Po, z e Z. (A.4) 
o 
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This map is an embedding of Z into the Jacobian 

J(Z) = Ch/La, Z h + f~Z h. (A.5) 

By (A.2), it follows that the multivaluedness of E(z, w) is 

E(z + n'~ + m" fl, z) = e -~im'a'm-z~im'(I(Z)-t(w)) E(z, w). (A.6) 

In terms of E one can construct the following h/2-differential with empty divisor 

a(z) = exp (--k~=e f ,k~Ok(W) log E(z, w) ) ,  (A.7) 

whose multivaluedness is 

(7(Z + n ° O~ -~ m o i l )  = e ~ i ( h -  1 ) m . ~ . m -  2 ~ i m . ( A - ( h -  1)I(z)) if(Z), (A.8) 

where A is (essentially) the vector of Riemann constants [11]. Finally, we quote two 
theorems: 

ABEL THEOREM [1]. A necessary and sufficient condition for ~ to be the divisor of 
a meromorphic Junction is that 

1(9) = 0 mod (Ln) and deg ~ = 0. (A.9) 

RIEMANN VANISHING THEOREM Ell]. The function 

O(l(Z)--k=l ~ I (Pk)+A[~) ,  z, Pk~Z, (A.IO) 

either vanishes identically or else it has h zeroes at z = P1, ..., Ph. 

We are now ready to explicitly construct the differential f(") defined above. First 
of all, note that 

P 
[] Pk) 

j7(,) = o-(z)2,-1 g=h+l (A.11) 
p -  2n(h - 1) 

[[ Q j) 
j : l  

is a multivalued n-differential with Div ~ (") P Z p- 2n(h - 1) = Ek=h+l Pk-- k=~ Qk" Therefore, 
we set 

f~")(z) = g(z)~ t"), (1.12) 

where g is fixed by the requirement t h a t f  ~") be single-valued. From the multivalued- 
ness of E(z, w) and a(z), it follows that 

g(z) = o(I(z) + Din) ,  (A.13) 
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with 
p p - 2 n ( h  - -  1 )  

= ~ I(Pk)-- ~ I(Qk) + (1 -- 2n)A. (A.14) 
k=h+l k=l  

By the Riemann vanishing theorem, 9(z) has just h-zeroes P1, ...,Ph fixed by @. 
Thus, the requirement of single-valuedness also fixes the position of the remainder h 
zeroes. To make manifest the divisor in the RHS of (A.12), we first recall that the 
image of the canonical line bundle K on the Jacobian of Z coincides with 2A [11]. 
On the other hand, since 

I p p -  2~h- 1) 1 
[ K " ] =  k~lPk-- k=l Qk , 

by Abel theorem we have* 

DivO(I(z) + ~lf~)= DivO(I(z)- k=l ~ I (Pk)  + A ' ~ )  ' 

and by Riemann vanishing theorem 

h 
Div O (I(z) + ~l  f~) = ~ I(Pk). 

k=l 

(A.15) 

(A.16) 

(A.17) 
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