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Abstract

We study the so-called Fekete points which maximize Vandermonde determi-
nants of the form

Vα(x1, ..., xN ) =
∣∣∣xαj

i

∣∣∣ , i, j = 1, ..., N ,

where the xi are distinct points belonging to an interval [a, b] of the real line and
the αj ’s are ordered integers α1 > α2 > · · · > αN ≥ 0 obtained as the exponents
for the monomial basis of bivariate polynomials of degree n, restricted to the curve
y = xm. We prove that every Vandermonde determinant, so generalized, can be
factored as a product of the corresponding classical Vandermonde determinant and
a homogeneous symmetric function of the points, a Schur function, and that the
resulting generalized Fekete points have the same asymptotic distribution as the
classical ones.
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1 Introduction

In the classical study of the convergence properties of the Lagrange interpolation the
Lebesgue function

λn(X;x) =
n∑
i=0

|`i(x)| ,(1)

and the corresponding Lebesgue constant

Λn(X) = max
x∈[−1,1]

λn(X;x)(2)

play a fundamental role. As usual, `i(x) denotes the i-th fundamental Lagrange polyno-
mial of degree n on the set X = {x0, ..., xn} of distinct nodes in the canonical interval
[−1, 1]. The Lebesgue constant is also the norm of the Lagrange operator, which takes
f ∈ C[−1, 1] to its interpolant (as an operator on C[−1, 1]).

One may also consider the several variable analogues of such problems. Given a
compact set K ⊂ IRd, the polynomials of degree n restricted to K form a certain vector
space of dimension N = dn(K), say. Suppose that {pi, : 1 ≤ i ≤ N} is a basis for this
space. Then given N points X = {xi} ⊂ K and a function f ∈ C(K), one may ask
for the polynomial p =

∑
k akpk, such that p(xi) = f(xi), 1 ≤ i ≤ N. This interpolating

polynomial exists and is unique provided the Vandermonde determinant

det[pi(xj)]1≤i,j≤N 6= 0

If this is indeed the case then we may also form the corresponding fundamental Lagrange
polynomials `i, defined by the condition that `i(xj) = δij (the Kronecker delta). Then we
may write the interpolant in the form

p(x) =
∑
k

f(xk)`k(x).

Just as in the univariate case, the Lebesgue function is defined to be

λn(X;x) =
N∑
i=1

|`i(x)|

and its maximum over K is the norm of the projector that takes f ∈ C(K) to its inter-
polant.

In one variable, there is a very beautiful and useable characterization of the points that
minimize the Lebesgue constant (see e.g. the monograph [10] Chapter 3) but in several
variables this is far from the case. In fact, the multivariate theory is still in its relative
infancy and not nearly complete. Moreover, it appears that multivariate analysis of the
Lebesgue function is a rather imposing problem, and this has a lead to the consideration
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of a set of extremal points which are known to be near optimal in the univariate case, but
that generalize much more readily to higher dimensions, i.e. to the so-called Fekete points.
These may succintly be defined as those points in K which maximize the Vandermonde
determinant, det[pi(xj)].

For the interval [−1, 1], Fejér [5] showed that the set of Fekete points, Fn say, consists
of the zeros of the polynomial (x2 − 1)P ′n(x), where Pn(x) is the Legendre polynomial of
degree n. Moreover, he showed that

∑
k `

2
k(x) ≤ 1 on [−1, 1] from which it follows that

the associated Lebesgue constant

Λn(Fn) ≤
√
n+ 1 .

This bound was improved by Sündermann ([9]) who showed that

Λn(Fn) = O(log n),(3)

the order of the optimal points (cf. [10]). We would point out that from this explicit
characterization of Fn, but also from the more abstract considerations of complex Poten-
tial Theory, it follows that the Fekete points have asymptotically the so-called arcsin or
Chebyshev distribution (which is also the equilibrium distribution from Potential Theory).

In general, we have only that

max
x∈K
|`k(x)| = 1, 1 ≤ k ≤ N

from which follows the estimate
Λn(X) ≤ N.

This implies already that the Fekete points are always quite good interpolation points, but
the upper bound N is almost certainly rather pessimistic. From numerical experiments,
one may expect that in fact the Fekete points are very close to optimal (see e.g. [7]).

We hope that the reader is convinced by our preamble, or by other means, that the
Fekete points for a given set K ⊂ IRd, are interesting and important for the study of
multivariate polynomial interpolation. An especially intriguing problem is to determine
their asymptotic distribution. Likely, this several variable problem is intimately related
to complex Pluripotential Theory (see e.g. [6]) but to date very little is known.

In this paper we begin by considering the case when K ⊂ IR2 is a piece of an algebraic
curve of the form

K = {(x, y) : y = xm, a ≤ x ≤ b}.

We show that a basis for the polynomials restricted to such K are a certain collection of
monomials (Proposition 1 below) and then consider a more general class of Vandermonde
type determinants, involving the so-called Schur functions, and show by means of direct,
elementary calculations that the associated Fekete points always have the same asymptotic
distribution as the classical ones.
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2 The polynomials restricted to the curve y = xm

Proposition 1 Bivariate polynomials of degree n ≥ m restricted to y = xm are the

span



xk k ≡ 0 mod m 0 ≤ k ≤ mn
xk k ≡ 1 mod m 0 ≤ k ≤ m(n− 1) + 1
xk k ≡ 2 mod m 0 ≤ k ≤ m(n− 2) + 2
...

...
...

xk k ≡ (m− 1) mod m 0 ≤ k ≤ m(n− (m− 1)) +m− 1


.

Proof. Any integer k ≥ 0 is congruent to one of 0, 1, ...,m − 1 mod m. Indeed suppose
k ≡ i mod m, 0 ≤ i ≤ m − 1, then k = jm + i for some j and xk is the restriction of
yjxi. In fact, this is the monomial of lowest degree which restricts to xk.

For yj
′
xi
′

|y=xm
= xk if and only if mj′ + i′ = k = mj + i.

If j′ > j then mj′ + i′ ≥ m(j + 1) + i′ = mj + m + i′ > mj + i + i′ > k which is a
contradiction. Therefore, j′ ≤ j.

If j′ = j then i′ = i and there is nothing more to prove. Suppose then that j′ < j. For
the sake of simplicity let j′ = j− t, t ≥ 1. Then m(j− t)+ i′ = mj+ i, that is i′ = i+mt
and then i′ + j′ = i+mt+ j − t = i+ j + (m− 1)t > i+ j. Hence

xk, k ≡ i mod m,(4)

is the restriction of xiyj, i+ j ≤ n if and only if

k = mj + i ≤ m(n− 1) + i .(5)

This concludes the proof.

Remark. The space of bivariate polynomials restricted to y = xm consists of univariate
polynomials of degree at most mn. However, the dimension of this space is

N =

(
n+ 2

2

)
−
(
n+ 2−m

2

)
= mn− m(m− 3)

2
≤ mn+ 1(6)

with strict inequality for m > 2. Hence, for m > 2, the basis consists of a strict subset of
the monomials of degree at most mn, i.e. there are “missing” powers or gaps.

It does however include all univariate polynomials of degree

m(n− (m− 1)) + 2(m− 1) = mn− (m− 1)(m− 2) .

In fact, we may describe the basis more precisely as

∪n−(m−1)k=0 ∪m−1j=0 {xkm+j}
⋃
∪m−2k=0 ∪kj=0 {x(n−k)m+j}(7)
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so that the missing powers are precisely

∪m−2k=1 ∪m−1j=k+1 {x(n−k)m+j}.

Let then
{xα1 , xα2 , · · · , xαN}

with α1 > α2 > · · · > αN ≥ 0 be the basis described in Proposition 1, and consider, for
given N distinct points x1 < x2 < · · · < xN , the associated Vandermonde determinant

Vα(x1, · · · , xN) := det[x
αj

i ]1≤i,j≤N .(8)

Such determinants are intimately connected to the so-called Schur functions (cf. [8]),
defined as follows.

Definition 1 Given a partition λ = (λ1, ..., λN) ∈ INN , and N distinct points x1, ..., xN ,
the associated Schur function, sλ, defined on IRN , is the ratio

sλ(x1, ..., xN) =
det(x

λj+N−j
i )

det(xN−ji )
, 1 ≤ i, j ≤ N.(9)

Note that in this definition the denominator is the classical Vandermonde determinant

V DM(x1, · · · , xN) = det(xN−ji ).

Since the αj are positive integers we must have αj ≥ N − j and thus by taking
λj = αj − (N − j) we have

Vα(x1, · · · , xN) = det(x
λj+N−j
i ) = V DM(x1, ..., xN) sλ(x1, · · · , xN) .(10)

Of importance in what follows is the fact that λ depends only on m, i.e., is constant with

respect to N. More precisely we have:

Lemma 1 If λ is defined as above, then

λ = (
m−2∑
k=1

k︸ ︷︷ ︸
1

,
m−3∑
k=1

k,
m−3∑
k=1

k︸ ︷︷ ︸
2

,
m−4∑
k=1

k,
m−4∑
k=1

k,
m−4∑
k=1

k︸ ︷︷ ︸
3

, · · · ,
1∑

k=1

k, · · · ,
1∑

k=1

k︸ ︷︷ ︸
m−2

, 0, · · · , 0).
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Proof. This is just a technical fact that follows easily (albeit with some tedium) from
the representataion of the basis (7).

Some simple consequences are that

|λ| =
m−2∑
j=1

j m−1−j∑
k=1

k

 =

(
m+ 1

4

)
.(11)

We may also compute `(λ), the length of λ, i.e., the index of the last non-zero term, to
be

`(λ) =
m−2∑
j=1

j =

(
m− 1

2

)
.(12)

3 The Main Theorem

Consider now the Vandermonde type determinant Vα(x1, · · · , xN) defined by (8) for points

a ≤ x1 < x2 < · · · < xN ≤ b.

The points xj which maximize |Vα| we will refer to as Fekete points for the piece of the
curve K = {(x, xm) : a ≤ x ≤ b}. The points fj in [a, b] which maximize the classical
Vandermonde determinant |V DM(f1, · · · , fN)| are the classical Fekete points. Our main
Theorem is as follows.

Theorem 1 The Fekete points for the piece of the curve K have the same asymptotic
distribution as do the classical Fekete points for [a, b].

Proof. By Theorem 1.5 of [1] it suffices to show that

lim
N→∞

|V DM(x1, · · · , xN)|1/(
N
2 ) = lim

N→∞
|V DM(f1, · · · , fN)|1/(

N
2 ).(13)

We will show that this is indeed the case, by means of a sequence of lemmas. To begin,
we will need some of the standard symmetric polynomials. Let pr = pr(t1, · · · , tN) denote
the rth power sum of N variables, i.e.,

pr(t1, · · · , tN) :=
N∑
k=1

trk.

Then, since the classical Fekete points have asymptotically the arcsin distribution, we
have

lim
N→∞

pr(f1, · · · , fN)

N
=

1

π

∫ b

a

xr√
(x− a)(b− x)

dx

=
1

π

∫ π

0

(
a+ b

2
+
b− a

2
cos(θ)

)r
dθ.(14)
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Also, let hr = hr(t1, · · · , tN) denote the rth so-called complete symmetric function of N
variables. It is defined as the sum of all the monomials of exact degree r, in the variables
t1, · · · , tN , but may also be computed from the Newton like formula (see [8, formula
(2.11)])

khk =
k∑
r=1

prhk−r.(15)

Lemma 2

lim
N→∞

hk(f1, · · · , fN)

Nk
=

1

k!

(
a+ b

2

)k

Proof. We proceed by induction. If k = 1, then h1 = p1 and the result follows easily
from (14) with r = 1. Hence, suppose that the Lemma is true up to k − 1 and consider

hk
Nk

=
1

k

k∑
r=1

pr
N

hk−r
Nk−r

1

N r−1

=
1

k

(
p1
N

hk−1
Nk−1 +

k∑
r=2

pr
N

hk−r
Nk−r

1

N r−1

)
.

Because of the N−(r−1) factor, the terms in the summation tend to zero, and hence,

lim
N→∞

hk
Nk

=
1

k
lim
N→∞

p1
N

lim
N→∞

hk−1
Nk−1

=
1

k

(
a+ b

2

)
1

(k − 1)!

(
a+ b

2

)k−1

=
1

k!

(
a+ b

2

)k
.

This concludes the proof.

Lemma 3 For any fixed λ,

lim
N→∞

sλ(f1, · · · , fN)

N |λ|
=

(
a+ b

2

)|λ| ∑
ω ∈ S`

λ+ δ − ω(δ) ≥ 0

ε(ω)
1

(λ+ δ − ω(δ))!
(16)

where δ = (`− 1, `− 2, ..., 1, 0) and ` = `(λ) and S` denotes the group of permutations of
` objects.
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Proof. By formula [8, (3.4)′, p. 42] with

sλ =
∑
ω∈S`

ε(ω)hλ+δ−ω(δ) =
∑

ω ∈ S`
λ+ δ − ω(δ) ≥ 0

ε(ω)hλ+δ−ω(δ)

since hr = 0 for r < 0.
Hence,

sλ
N |λ|

=
∑

ω ∈ S`
λ+ δ − ω(δ) ≥ 0

ε(ω)
hλ+δ−ω(δ)
N |λ|

=
∑

ω ∈ S`
λ+ δ − ω(δ) ≥ 0

ε(ω)
hλ1+δ1−ω(δ)1
Nλ1+δ1−ω(δ)1

· · ·
hλ`+δ`−ω(δ)`
Nλ`+δ`−ω(δ)`

Now, letting N →∞, by Lemma 2, the right side tends to

∑
ω ∈ S`

λ+ δ − ω(δ) ≥ 0

ε(ω)

(
a+b
2

)λ1+δ1−ω(δ)1
(λ1 + δ1 − ω(δ)1)!

· · ·

(
a+b
2

)λ`+δ`−ω(δ)`
(λ` + δ` − ω(δ)`)!

=

(
a+ b

2

)|λ| ∑
ω ∈ S`

λ+ δ − ω(δ) ≥ 0

ε(ω)
1

(λ+ δ − ω(δ))!
.

This concludes the proof.

Lemma 4 Letting k! = 0 for k < 0, then

∑
ω ∈ S`

λ+ δ − ω(δ) ≥ 0

ε(ω)
1

(λ+ δ − ω(δ))!
=

1

(λ+ δ)!
V DM(λ+ δ) ,(17)

where V DM(λ+δ) is the classical Vandermonde determinant of the points λ1+δ1, ..., λ`+
δ`.

Proof.
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∑
ω ∈ S`

λ+ δ − ω(δ) ≥ 0

ε(ω)
1

(λ+ δ − ω(δ))!
= det

(
1

(λi − i+ j)!

)
1≤i,j≤`

,(18)

since sλ = det (hλi−i+j), formula [8, (3.4),p. 41] (this is just an expression of the same
determinant in two different manners). Now,

det(
1

(λi − i+ j)!
) = det



1
(λ1)!

1
(λ1+1)!

. . . 1
(λ1+`−1)!

1
(λ2−1)!

1
(λ2)!

. . . 1
(λ2+`−2)!

...
. . .

...

1
(λ`−`+1)!

1
(λ`−`+2)!

. . . 1
(λ`)!



= Λ` det



(λ1+`−1)!
(λ1)!

(λ1+`−1)!
(λ1+1)!

. . . (λ1+`−1)!
(λ1+`−2)! 1

(λ2+`−2)!
(λ2−1)!

(λ2+`−2)!
(λ2)!

. . . (λ2+`−2)!
(λ2+`−3)! 1

...
...

. . .
...

(λ`)!
(λ`−`+1)!

(λ`)!
(λ`−`+2)!

. . . (λ`)!
(λ`−1)!

1



= Λ` det



[λ1+`−1]`−1 [λ1+`−1]`−2 . . . [λ1+`−1]1 1

[λ2+`−2]m−1 [λ2+`−2]m−2 . . . [λ2+`−2]1 1

...
...

. . .
...

[λ`]`−1 [λ`]`−2 . . . [λ`]1 1


where

Λ` =
1

(λ1 + `− 1)!

1

(λ2 + `− 2)!
· · · 1

(λ`)!

and [x]k = x(x− 1)(x− 2) · · · (x− k + 1) is the Pochammer symbol.
Hence we have

det(
1

(λi − i+ j)!
) =

1

(λ+ δ)!
det

(
[λi + `− i]`−j

)
1≤i,j≤`
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But, since the basis x(x− 1) · · · (x− `+ 2), x(x− 1) · · · (x− `+ 3), . . . , x, 1 is equivalent
to the basis

x`−1, x`−2, . . . , x, 1

then we can conclude that

det(
1

(λi − i+ j)!
) =

1

(λ+ δ)!
det

(
(λi + `− i)`−j

)
=

1

(λ+ δ)!

∏
j>i

((λi + `− i)− (λj + `− j))

=
1

(λ+ δ)!

∏
j>i

((λi − λj) + (j − i)))

This latter is > 0 since λi ≥ λj and j − i > 0.

We now return to the proof of the main theorem. Our goal is to establish (13) and we
will first assume that a+ b 6= 0.

Now, since the classical Fekete points maximize |V DM |, we have

|V DM(x1, · · · , xN)| ≤ |V DM(f1, · · · , fN)|.

But also, the generalized Fekete points maximize |Vα| and so

|Vα(f1, · · · , fN)| ≤ |Vα(x1, · · · , xN)|,

i.e.,

|sλ(f1, · · · , fN)| |V DM(f1, · · · , fN)| ≤ |sλ(x1, · · · , xN)| |V DM(x1, · · · , xN)|.(19)

Thus ∣∣∣∣∣ sλ(f1, · · · , fN)

sλ(x1, · · · , xN)

∣∣∣∣∣ |V DM(f1, · · · , fN)| ≤ |V DM(x1, · · · , xN)|.

Hence our result follows once we have established that

lim
N→∞

∣∣∣∣∣ sλ(f1, · · · , fN)

sλ(x1, · · · , xN)

∣∣∣∣∣
1/(N

2 )
= 1.

But from Lemma 4, (provided a+ b 6= 0) we have

lim
N→∞

|sλ(f1, · · · , fN)|1/(
N
2 ) = 1

and so are left with the problem of showing that

lim
N→∞

|sλ(x1, · · · , xN)|1/(
N
2 ) = 1.(20)
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Now, from (19), since |V DM(x1, · · · , xN)| ≤ |V DM(f1, · · · , fN)| we must have

|sλ(x1, · · · , xN)| ≥ |sλ(f1, · · · , fN)|

and so (20) follows from

Lemma 5 There are constants C = C(λ) and k = k(λ) such that for all a ≤ x1 ≤ · · · ≤
xN ≤ b,

|sλ(x1, · · · , xN)| ≤ CNk.

Proof. By Hadamard’s determinant inequality applied to the identity sλ = det (hλi−i+j)
[8, (3.4),p. 41], we need only provide a polynomial bound for hλi−i+j. But, r = λi−i+j ≤
λ1 + `(λ)− 1 and recall that hr is defined to the sum of all the monomials of exact degree
r. Hence

|hr(x1, · · · , xN)| ≤
(
N + r − 1

r

)
max{|a|, |b|}r.

The case a + b = 0 can be handled by replacing,e.g., b by −a + ε and then letting
ε→ 0 + . The details are not instructive and so we do not include them here.

The proof of Theorem 1 is now complete.

Remark. Although we have stated our main theorem in terms of polynomial bases
obtained by restricting bivariate polynomials to the curves y = xm, the proof is valid as
long as the associated λ is constant, i.e., independent of N. In particular the conclusion
remains valid for a basis of monomials with any fixed number of gaps in the sequence of
powers (beginning with the highest power).
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