Beta function, C-theorem and WDVV equations in 4D $N=2$ SYM

Gaetano Bertoldi ${ }^{1}$, Marco Matone ${ }^{2}$
Department of Physics '‘G. Galilei’’ and INFN, Padova, Italy
Received 15 December 1997
Editor: L. Alvarez-Gaumé

Abstract

We show that the exact beta-function of $4 \mathrm{D} N=2$ SYM plays the role of the metric whose inverse satisfies the WDVV-like equations $\mathscr{F}_{i k l} \beta^{l m} \mathscr{F}_{m n j}=\mathscr{F}_{j k l} \beta^{l m} \mathscr{F}_{m n i}$. The conjecture that the WDVV-like equations are equivalent to the identity involving the u-modulus and the prepotential \mathscr{F}, seen as a superconformal anomaly, sheds light on the recently considered c-theorem for the $N=2$ SYM field theories. © 1998 Elsevier Science B.V. All rights reserved.

The Seiberg-Witten results about $N=2$ SUSY Yang-Mills [1] have been recently rederived, in the $S U(2)$ case, in [2]. The approach, based on uniformization theory, uses reflection symmetry of quantum vacua, asymptotics analysis and the identity [3]
$u=\pi i\left(\mathscr{F}-a_{a} \mathscr{F} / 2\right)$.
This identity, first checked up to two-instanton in [4], has been proved to any order in the instanton expansion in [5]. Furthermore, Eq. (1) has been obtained as an anomalous superconformal Ward identity in [6].

As a consequence of the Seiberg-Witten results, it has been possible to derive the explicit expression for the beta-function [7-10] which has been recently reconsidered in [11-13].

The above results suggested looking for the analogue of the Zamolodchikov c-theorem [14] in the framework of $4 D N=2$ SYM. In particular, very

[^0]recently, it has been shown in [15] that the results in [12] can be understood from the c-theorem point of view (see [16] for related aspects). Furthermore, it has been shown that for the $\operatorname{SU}(n)$ case there is a Lyapunov function which is naturally determined and related to the classical discriminant of the Seiberg-Witten curve. It has been also observed that the c-theorem point of view actually fits with the fact that, according to [6], Eq. (1) means that u is proportional to the (super)conformal anomaly.

In this paper, we first shortly consider the role of the beta-function in the framework of the WDVVlike equations which have been introduced in [9] for the $S U(3)$ case. While for $S U(3)$ the beta-function satisfies a basic equation, derived from the reduced Picard-Fuchs equations, the identification of the inverse of the beta-function with the WDVV metric results in the identity
$\mathscr{F}_{i k l} \beta^{l m} \mathscr{F}_{m n j}=\mathscr{F}_{j k l} \beta^{l m} \mathscr{F}_{m n i}$.
This naturally suggests considering this equation for the groups $S U(n) n>3$. It turns out that in this case
(2) is no longer an identity and actually is a consequence of the WDVV-like equations derived in [17] (see [18] for related aspects).

The appearance of the beta-function in (2), and the way we derive it, suggests considering it as related to the superconformal anomaly. This would be in agreement with the general setting considered in [15] and the results in $[3,6,19]$. A consequence of this identification is the natural conjecture that the WDVV-like Eqs. (2) be equivalent to the higher rank version of the identity (1), namely [19]
$u=\frac{i}{4 \pi b_{1}}\left(\mathscr{F}-\sum_{i} \frac{a^{i}}{2} a_{i}^{D}\right)$,
that satisfies the equation [9]
$\mathscr{L}_{\beta} u=u$,
where \mathscr{L}_{β} is a second-order modular invariant operator.

Let us start by recalling the derivation of the WDVV-like equations for the $\operatorname{SU}(3)$ case whose curve and its extension to $S U(n)$ has been derived in [20]. Let us denote by $a^{i}=\left\langle\phi^{i}\right\rangle$ and $a_{i}^{D}=\left\langle\phi_{i}^{D}\right\rangle=$ $\partial \mathscr{F} / \partial a^{i}, i=1,2$, the vev's of the scalar component of the chiral superfield and its dual. The effective couplings are given by $\tau_{i j}=\partial^{2} \mathscr{F} / \partial a^{i} \partial a^{j}$. We also set $u^{2} \equiv u=\left\langle\operatorname{tr} \phi^{2}\right\rangle, \quad u^{3} \equiv v=\left\langle\operatorname{tr} \phi^{3}\right\rangle \quad$ and $\quad \partial_{k} \equiv$ $\partial / \partial a^{k}, \partial_{\alpha} \equiv \partial / \partial u^{\alpha}$. The reduced Picard-Fuchs equations (RPFE's) for $S U(3)$ are [21]
$\mathscr{L}_{\beta}\binom{a_{i}^{D}}{a^{i}}=0, \quad \beta=2,3$,
where
$\mathscr{L}_{2}=(P / u) \partial_{u}^{2}+\mathscr{L}, \quad \mathscr{L}_{3}=(P / 3) \partial_{v}^{2}+\mathscr{L}$,
and $P=27\left(v^{2}-\Lambda^{6}\right)+4 u^{3}, \quad \mathscr{L}=12 u v \partial_{u} \partial_{v}+3 v \partial_{v}$ +1 .

Let us set

$$
\begin{align*}
& \mathscr{U}=u_{2}^{2} \partial_{11}-2 u_{1} u_{2} \partial_{12}+u_{1}^{2} \partial_{22}, \\
& \mathscr{V}=v_{2}^{2} \partial_{11}-2 v_{1} v_{2} \partial_{12}+v_{1}^{2} \partial_{22}, \\
& \mathscr{C}=\left(u_{1} v_{2}+v_{1} u_{2}\right) \partial_{12}-u_{2} v_{2} \partial_{11}-u_{1} v_{1} \partial_{22}, \\
& \text { and } \quad D=u_{1} v_{2}-u_{2} v_{1}, \quad \text { where } \partial_{i_{1}, \ldots i_{n}} \equiv \partial^{n} / \\
& \partial a^{i_{1}} \ldots \partial a^{i_{n}}, u_{i} \equiv \partial_{i} u \text { and } v_{i} \equiv \partial_{i} v . \text { We have } \\
& {\left[12 u v \mathscr{C}+\frac{1}{3} P \mathscr{U}+D^{2}\left(1-a_{i}^{i} \partial_{i}\right)\right] \mathscr{F}_{l}=0} \\
& \quad=\left[12 u v \mathscr{C}+\frac{1}{u} P \mathscr{V}+D^{2}\left(1-a_{i} \partial_{i}\right)\right] \mathscr{F}_{l}, \tag{7}
\end{align*}
$$

where $l=1,2$ and $\mathscr{F}_{i_{1} \ldots i_{n}} \equiv \partial_{i_{1} \ldots i_{n}} \mathscr{F}$. Subtracting the LHS from the RHS of Eqs. (7), we obtain
$A_{l} \equiv x_{11} \mathscr{F}_{22 l}+x_{22} \mathscr{F}_{11 l}-2 x_{12} \mathscr{F}_{12 l}=0$,
where $l=1,2$ and
$x_{i j}=3 v_{i} v_{j}-u u_{i} u_{j}$.
Next, considering

$$
\begin{aligned}
& A_{1}\left(y_{22} \mathscr{F}_{112}-2 y_{12} \mathscr{F}_{122}+y_{11} \mathscr{F}_{222}\right) \\
& \quad-A_{2}\left(-2 y_{12} \mathscr{F}_{112}+y_{11} \mathscr{F}_{122}+y_{22} \mathscr{F}_{111}\right)=0,
\end{aligned}
$$

where $y_{j k}$ are arbitrary parameters, we get
$\mathscr{F}_{i k l} \eta^{l m} \mathscr{F}_{m n j}=\mathscr{F}_{j k l} \eta^{l m} \mathscr{F}_{m n i}$,
for $i, j, k, n=1,2$, where
$\eta^{l m}=\left(\begin{array}{cc}2 x_{22} y_{12}-2 x_{12} y_{22} & x_{11} y_{22}-x_{22} y_{11} \\ x_{11} y_{22}-x_{22} y_{11} & 2 x_{12} y_{11}-2 x_{11} y_{12}\end{array}\right)$.

For any choice of the parameters $y_{j k}$, there is only one nontrivial equation in (10) which can be rewritten in the form
$\eta^{11} \Theta_{11}+2 \eta^{12} \Theta_{12}+\eta^{22} \Theta_{22}=0$,
where $\Theta_{i j}=\left(\mathscr{F}_{11 i} \mathscr{F}_{22 j}+\mathscr{F}_{11 j} \mathscr{F}_{22 i}\right) / 2-\mathscr{F}_{12 i} \mathscr{F}_{12 j}$, which satisfies the identity

$$
\begin{equation*}
2 \mathscr{F}_{12 l} \Theta_{12}=\mathscr{F}_{22 l} \Theta_{11}+\mathscr{F}_{11 l} \Theta_{22}, \quad l=1,2 \tag{13}
\end{equation*}
$$

The fact that $\tau_{i j}$ is dimensionless implies that
$\left(\Lambda \partial_{\Lambda}+\Delta_{u^{\gamma}}\right) \tau_{i j}=0$,
where
$\Delta_{u^{\gamma}}=\sum_{\gamma=2}^{n} \gamma u^{\gamma} \frac{\partial}{\partial u^{\gamma}}$,
is the scaling invariant vector field.
Let us consider the beta-function
$\beta_{i j}=\left.\Lambda \frac{\partial \tau_{i j}}{\partial \Lambda}\right|_{u^{\alpha}, u^{\gamma}, \ldots}$.
By (14) we have for $S U(3)$
$\beta_{i j}=-\left(2 u \frac{\partial a^{k}}{\partial u}+3 v \frac{\partial a^{k}}{\partial v}\right) \mathscr{F}_{i j k}$.
Let us denote by $\beta^{i j}$ the inverse of the matrix $\beta_{i j}$. Setting
$\eta^{i j}=\beta^{i j}$,
implies the equation
$x_{22} \beta^{22}+x_{11} \beta^{11}+2 x_{12} \beta^{12}=0$.

This equation, which arises as a consistency condition, is equivalent to $A_{1}=0=A_{2}$ and
$\mathscr{F}_{i k l} \beta^{l m} \mathscr{F}_{m n j}=\mathscr{F}_{j k l} \beta^{l m} \mathscr{F}_{m n i}$,
for $i, j, k, n=1,2$, is an identity.
We now consider the β-function for $\operatorname{SU}(n)$ with $n \geq 4$. We have
$\beta_{i j}=-\Delta^{k} \mathscr{F}_{k i j}$,
where
$\Delta^{k}=\Delta_{u^{\gamma}} a^{k}=\sum_{\gamma=2}^{n} \gamma u^{\gamma} \frac{\partial a^{k}}{\partial u^{\gamma}}, \quad k=1, \ldots, n-1$.

Let us set
$F_{i}=\mathscr{F}_{i j k}$.
For the inverse of the beta matrix function $\beta_{i j}$ we have
$\beta^{i j}=-\left(\Delta^{k} F_{k}\right)_{i j}^{-1}$,
We now show that Eq. (20) holds also for $\operatorname{SU}(n)$ $n>3$ (and is no longer an identity). In particular, Eq. (20) can be derived by the WDVV equations in [17]. These have the form
$F_{i} F_{k}^{-1} F_{j}=F_{j} F_{k}^{-1} F_{i}$.
These equations have the property of being invariant if
$F_{k}^{-1} \rightarrow \beta^{-1}=-\left(\Delta^{k} F_{k}\right)^{-1}$.
To see this, we simply observe that by (25) one has $F_{i}^{-1} F_{k} F_{j}^{-1}=F_{j}^{-1} F_{k} F_{i}^{-1}$, so that $F_{i}^{-1} \beta F_{j}^{-1}=$ $F_{j}^{-1} \beta F_{i}^{-1}$, implying
$F_{i} \beta^{-1} F_{j}=F_{j} \beta^{-1} F_{i}$,
that is
$\mathscr{F}_{i k l} \beta^{l m} \mathscr{F}_{m n j}=\mathscr{F}_{j k l} \beta^{l m} \mathscr{F}_{m n i}$.
It is a pleasure to thank G. Bonelli, J. Isidro and M. Tonin for discussions. MM was supported in part
by the European Commission TMR programme ERBFMRX-CT96-0045.

References

[1] N. Seiberg, E. Witten, Nucl. Phys. B 426 (1994) 19; B 431 (1994) 484.
[2] G. Bonelli, M. Matone, M. Tonin, Phys. Rev. D 55 (1997) 6466.
[3] M. Matone, Phys. Lett. B 357 (1995) 342; Phys. Rev. D 53 (1996) 7354.
[4] F. Fucito, G. Travaglini, Phys. Rev. D 55 (1997) 1099.
[5] N. Dorey, V.V. Khoze, M.P. Mattis, Phys. Lett. B 390 (1997) 205.
[6] P.S. Howe, P.C. West, Nucl. Phys. B 486 (1996) 425.
[7] J.A. Minahan, D. Nemechansky, Nucl. Phys. B 468 (1996) 72.
[8] G. Bonelli, M. Matone, Phys. Rev. Lett. 76 (1996) 4107.
[9] G. Bonelli, M. Matone, Phys. Rev. Lett. 77 (1996) 4712.
[10] E. D'Hoker, I.M. Krichever, D.H. Phong, Nucl. Phys. B 494 (1997) 89; B 489 (1997) 211; E. D'Hoker, D.H. Phong, Phys. Lett. B 397 (1997) 94.
[11] A. Ritz, hep-th/9710112.
[12] B.P. Dolan, hep-th/9710161.
[13] J.I. Latorre, C.A. Lütken, hep-th/9711150.
[14] A.B. Zamolodchikov, JETP Lett. 43 (1986) 730.
[15] G. Bonelli, M. Matone, hep-th/9712025.
[16] J.L. Cardy, Phys. Lett. B 215 (1988) 749; H. Osborn, Phys. Lett. B 222 (1989) 97; A. Cappelli, D. Friedan, J.I. Latorre, Nucl. Phys. B 352 (1991) 616; D. Anselmi, D.Z. Freedman, M.T. Grisaru, A.A. Johansen, hep-th/9708042; D. Anselmi, J. Erlich, D.Z. Freedman, A.A. Johansen, hep-th/9711035; H. Osborn, J.I. Latorre, hep-th/9703196; F. Bastianelli, Phys. Lett. B 369 (1996) 249.
[17] A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B 389 (1996) 43.
[18] R. Carroll, Phys. Lett. A 234 (1997) 171; hep-th/9712110; J. Chang, R. Carroll, solv-int/9612010.
[19] J. Sonnenschein, S. Theisen, S. Yankielowicz, Phys. Lett. B 367 (1996) 145. T. Eguchi, S.-K. Yang, Mod. Phys. Lett. A 11 (1996) 131.
[20] A. Klemm, W. Lerche, S. Theisen, S. Yankielowicz, Phys. Lett. B 344 (1995) 169. P. Argyres, A.E. Faraggi, Phys. Rev. Lett. 74 (1995) 3931.
[21] A. Klemm, W. Lerche, S. Theisen, Int. J. Mod. Phys. A 11 (1996) 1929.

[^0]: ${ }^{1}$ E-mail: bertoldi@padova.infn.it.
 ${ }^{2}$ E-mail: matone@padova.infn.it.

