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We find the nonperturbative relation betweenktrf2l, ktrf3l the prepotentialF and kfil in N ­ 2
supersymmetric Yang-Mills theory (SYM) with gauge group SU(3). Nonlinear differential equation
for F including the Witten-Dijkgraaf-Verlinde-Verlinde equation are obtained, indicating thatN ­ 2
SYM theories are essentially topological field theories which should be seen as the low-energy limit
some topological string theory. Furthermore, we construct relevant modular invariant quantities, der
canonical relations between the periods, and find theb function in terms of the moduli. In doing this
we discuss the uniformization problem for the quantum moduli space. [S0031-9007(96)01665-1]
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Seiberg-Witten exact results aboutN ­ 2 supersym-
metric Yang-Mills theory (SYM) [1] concern the low
energy Wilsonian effective action with at most tw
derivatives and four fermions. These terms are c
pletely described by the so-called prepotentialF whose
most important property is holomorphicity [2]. Furthe
more, it has been shown in [3] thatF gets perturbative
contributions only up to one loop. Higher-order terms
the asymptotic expansion come as instanton contribu
implicitly determined in [1].

In [4], where a method to invert functions was propos
a nonperturbative equation has been derived which re
in a simple wayF and the vev’s (vacuum expectati
values) of the scalar fields. In [5], proving a conject
in [6], it has been shown that the above relation unde
the nonperturbative renormalization group equation
the exact expression for the beta function in the SU
case has been obtained. The problem of extending
results to the case of higher rank groups is a nontr
task. An important step in this direction is the res
in [6,7] where the nonperturbative relation in [4] h
been generalized. However, there remains the prob
of finding the nonperturbative relations betweenktrfkl for
k . 2 andF . Also, one should find a set of equations
F in a similar way to the SU(2) case [4].
0031-9007y96y77(23)y4712(4)$10.00
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In this Letter we will solve these problems for th
SU(3) case. In particular, we will find a complete s
of nonlinear differential equations completely characte
ing F including the Witten-Dijkgraaf-Verlinde-Verlinde
(WDVV) equation [8]. This indicates thatN ­ 2 SYM
theories are essentially topological field theories and
they should be seen as the low-energy limit of some to
logical string theory. Furthermore, we introduce a
of modular invariant quantities which will be useful
find the relation betweenktrfkl andF and to formulate
canonical relations between the periods. We also inve
gate the structure of the beta function and give its exp
form in the moduli coordinates.

The Seiberg-Witten curve for SU(n), n $ 3, has been
found in [9]. Let us denote byai ­ kfil and aD

i ­
kfD

i l ­ ≠F y≠ai , i ­ 1, 2 the vev’s of the scalar com
ponent of the chiral superfield and its dual. The
fective couplings are given bytij ­ ≠2F y≠ai≠aj . We
also setu2 ; u ­ ktrf2l, u3 ; y ­ ktrf3l, and ≠k ;
≠y≠ak , ≠a ; ≠y≠ua. Our starting point is the reduce
Picard-Fuchs equations (RPFE’s) for SU(3) introduced
[10]

Lb

√
aD

i

ai

!
­ 0, b ­ 2, 3 , (1)

where
L2 ­
1
u

P≠2
u 1 L , L3 ­

1
3

P≠2
y 1 L ,

P ­ 27sy2 2 L6d 1 4u3, L ­ 12uy≠u≠y 1 3y≠y 1 1 .
(2)

Let us recall that in the SU(n) case, under the action of

µ
A B
C D

∂
[ Sps2n 2 2, Zd we havesãD , ãd ­ sAaD 1

Ba, CaD 1 Dad and [4,6,11]F̃ sãd ­ F sad 1
1
2 aDCtAaD 1

1
2 aBtDa 1 aBtCaD .

We now rewrite Eq. (1) as nonlinear differential equations with respect to theai coordinates. To this end it is
convenient to introduce the following notation:

U ­ u2
2≠11 2 2u1u2≠12 1 u2

1≠22, V ­ y2
2≠11 2 2y1y2≠12 1 y2

1≠22 ,

C ­ su1y2 1 y1u2d≠12 2 u2y2≠11 2 u1y1≠22, D ­ u1y2 2 u2y1 ,
© 1996 The American Physical Society
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where ≠i1···in ; ≠ny≠ai1 · · · ≠ain , ui ; ≠iu, and yi ;
≠iy. We have∑
12uyC 1

1
3

Psu, y, LdU 1 D2s1 2 ai≠id
∏
Fl ­ 0

­

∑
12uyC 1

1
u

Psu, y, LdV 1 D2s1 2 ai≠id
∏
Fl ,

(3)

where l ­ 1, 2 and Fi1...in ; ≠i1···inF . Note that D is
the Jacobian ofsu, yd ! sa1, a2d and therefore generally
nonvanishing. Subtracting the left-hand side from t
right-hand side of Eq. (3), we obtain

Al ; x11F22l 1 x22F11l 2 2x12F12l ­ 0 , (4)

wherel ­ 1, 2 and

xij ­ 3yiyj 2 uuiuj . (5)

We stress that (4) has been obtained from (1). Theref
since ãi and ãD

i are still solutions of (1), it follows that
(4) is modular invariant by construction.

In general, it seems that the Picard-Fuchs equations
related to the WDVV equation. The above constructi
allows us to show that this is actually true for the Picar
Fuchs equations underlyingN ­ 2 SYM with gauge
group SU(3). Actually, a suitable linear combination
the equationsAl ­ 0, namely,

A1s y22F112 2 2y12F122 1 y11F222d2

A2s22y12F112 1 y11F122 1 y22F111d ­ 0 ,

whereyjk are arbitrary parameters, can be written in t
WDVV form

Fiklh
lmFmnj ­ Fjklh

lmFmni , (6)

for i, j, k, n ­ 1, 2, where

hlm ­

µ
2x22y12 2 2x12y22 x11y22 2 x22y11
x11y22 2 x22y11 2x12y11 2 2x11y12

∂
. (7)

We observe that for each choice of the metric, that is
the parametersyjk, there is only one nontrivial equation i
(6) which can be rewritten as

h11Q11 1 2h12Q12 1 h22Q22 ­ 0 , (8)

where Qij ­ sF11iF22j 1 F11jF22idy2 2 F12iF12j ,
which satisfy the identity

2F12lQ12 ­ F22lQ11 1 F11lQ22, l ­ 1, 2 . (9)

Let us introduce some modular invariant quantiti
which will be used later on. We set

I
g
b ­ s≠kzd s≠btd21kl

≠lu
g , (10)

where b, g ­ 2, 3 and z is the modular invariantz ­
ai≠iF 2 2F . Other useful invariants are

y
a
sbd ­ I

g
bs≠g≠kuad≠bak 1 ak≠kua , (11)

wherea, b ­ 2, 3. Let us define the brackets
e

re,

are
n
-

f

e

of

s

hX, Y jsbd ; ≠iXs≠btd21ij

≠b≠jY 2 ≠iYs≠btd21ij

≠b≠jX .

(12)
For the vector field componentsy

a
sbd we have

y
a
sbd ­ hua , zjsbd . (13)

Furthermore, the periods satisfy the canonical relations

hai , ajjsbd ­ 0 ­ haD
i , aD

j jsbd, hai , aD
j jsbd ­ di

j . (14)

In order to extract the differential equations forF , we
rewrite the operators in (2) in the following general form

Lb ­ jsbd≠b 1 hsbd 1 1 , (15)

where jsbd ­ j
a
sbd≠a ­ j

i
sbd≠i and hsbd ­ h

a
sbd≠a ­

h
i
sbd≠i are vector fields. Considering the action ofLb

on fg with f andg arbitrary functions, we haveLbfg ­
gLbf 1 fLbg 2 fg 1 ≠bfjsbdg 1 jsbdf≠bg, and by
Eq. (1)

LbsaiaD
i 2 2F d ­ aiaD

i 2 2F , (16)

that is Lbz ­ z. Note that in (15), as in (2), for eac
value of b the second-order derivative terms conta
always at least one≠b [note that Eq. (16) is independen
from this peculiarity].

In order to find jsbd and hsbd, we impose that the
operators defined in (15) satisfy (1). From the low
components of (1) we obtainhi

sbd ­ 2ai 2 jsbd≠bai ,
which substituted in the upper components of (1), yie
j

i
sbd ­ s≠kzd s≠btd21ki

. Therefore

Lb ­ I
g
b≠g≠b 2 y

g

sbd≠g 1 1 . (17)

Comparing (17) with (2) we obtain a complete s
of nonlinear differential equations forF and its exact
relation with the moduli coordinates, namely,

y
2
s2d ­ 0 ­ y

2
s3d , (18)

y
3
s2d ­ 23y ­ y

3
s3d , (19)

I3
2 ­ 12uy ­ I2

3 , (20)

uI2
2 ­ P ­ 3I3

3 . (21)

The above procedure when applied to the SU(2) c
gives [4] u ­ 2ipzy2, and I2

2 ­ 4su2 2 L4d, which is
the equation for the prepotential obtained in [4,12]. L
us now define the modular invariant 1 form

W ­ sai≠baD
i 2 aD

i ≠baiddub ­ dz , (22)

which, due to the existence of the prepotential, is clos
i.e., dW ­ 0. Substituting in (22) the expression of th
periods in terms of Appell’sF4 functions derived in [10],
we obtainW ­ s3iypddu. On the other hand, by (16) i
4713
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follows that the components ofW ­ Wbdub satisfy the
linear differential equations

jsbdWb ­ y
a
sbdWa , b ­ 2, 3 , (23)

which are satisfied byW2 ­ 3iyp , W3 ­ 0. Therefore,
we havez ­ s3iypdu; that is,

u ­
2pi

3

µ
F 2

ai

2
≠iF

∂
, (24)

in agreement with [6,7]. Note that by (24), thanks to (1
Eq. (18) is identically satisfied. We now use Eq. (4)
face the problem of finding the explicit relation betwe
y andF . In general, it can be shown that the propert
of special geometry imply thatQii fi 0 [13]. By (9) the
general solution of Eq. (4) is given by

xij ­ rQij , (25)

where r is determined by the compatibility conditio
s3y1y2d2 ­ s3y

2
1d s3y

2
2 d applied to (5) and (25); that is,

r2D ­ ursQ11u2
2 1 Q22u2

1 2 2u1u2Q12d , (26)

where D ­ Q
2
12 2 Q11Q22. Notice thatr fi 0; other-

wise,3yiyj ­ uuiuj, which would implyD ­ 0. Since
r2D ­ x2

12 2 x11x22 ­ 3uD2, we haveD fi 0, so that
(26) can be solved asr ­ D21usQ11u2

2 1 Q22u2
1 2

2u1u2Q12d, which impliesµ
y1

y2

∂
­ e

r
u

3D

µ
Q12 2Q11
Q22 2Q12

∂ µ
u1

u2

∂
, (27)

wheree ­ 61 and the relative sign betweeny1 and y2
has been fixed byx12 ­ rQ12. Observe that we ca
set e ­ 1 by a suitable transformation on the mod
variables (we use the fact that the RPFE’s are invar
under the transformationsu ! e2ipky3u andy ! 2y).

In order to findy we first explicitly evaluate theI
g
b

invariants in terms ofui , yi , and Fijk. Then, by (24)
and (27) we will obtain the relation betweeny and F

and nonlinear differential equations forF as well. The
essential point is that by (20) and (21) we have

y ­
I2

3 I2
2

36I3
3

. (28)

On the other hand (10) can be written asIa
2 ­

3i
p Dsy2

2Q11 1 y
2
1Q22 2 2y1y2Q12d21sy2ga

1 2 y1ga
2 d, and

Ia
3 ­

3i
p Dsu2

2Q11 1 u2
1Q22 2 2u1u2Q12d21 su1 ga

2 2

u2ga
1 d, where ga

i ­ u2ua
2 F11i 1 u1ua

1 F22i 2 su1ua
2 1

u2ua
1 dF12i. By (24) and (27) theIa

b ’s are explicitly
known in terms ofai andF . It follows that (28) solves
the problem of finding the relation betweeny andF . By
(13), we can rewrite Eq. (19) in the form

hy, ujsbd ­ ipy, b ­ 2, 3 , (29)

which by (28) are two nonlinear differential equatio
for F , that together with the two-parameter WDV
4714
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equations correspond to the four nonlinear differen
equations (3).

Let us now consider the modular properties ofF

and its homogeneity. The fact thattij is dimensionless
implies that

sL≠L 1 Du,ydtij ­ 0 , (30)

where Du,y ­ 2u≠u 1 3y≠y is the scaling invari-
ant vector field. Let j be an arbitrary modu-
lar invariant vector field. We havejt ! jt̃ ­
stCt 1 Dtd21jtsCt 1 Dd21, implying that (30)
is a modular invariant equation. We also ha
sL≠L 1 Du,ydai ­ ai , sL≠L 1 Du,ydaD

i ­ aD
i , which

are compatible with a pseudohomogeneity of degree 2
F : sL≠L 1 Du,ydF ­ 2F 1 L2 3 const. In our case
the semiclassical analysis gives const­ 0.

Let us now discuss in the SU(3) case the uniformi
tion mechanism which generalizes the structure unde
ing the SU(2) case [4]. The structure of the coveri
of the quantum moduli spaceMSUs3d is encoded in the
properties of the Appell’s functions. The Appell syste
F4 is a two-dimensional generalization of the hyperge
metric system also endowed with algebraic relations
volving the functions and their derivatives. It is know
[10] that the period matrixtij is a rational combination
of Appell’s functions. By (30), the dependence onu, y,
andL is of the formt ­ tsuyL2, yyL3d. Therefore the
t space is a subvarietyS of the genus 2 Siegel uppe
half space of complex codimension 1 coveringMSUs3d.
S can be characterized by sstd ­ 0, where the struc-
ture of s is related to the equations satisfied byF . Let
MSUs3d , Sps4, Zd be the monodromy group ofN ­ 2
SYM with gauge group SU(3) [10]. The above remar
imply that the Picard-Fuchs equations, from which Eq.
is derived, are the uniformizing equations forMSUs3d.
ThereforeMSUs3d > S yMSUs3d. The polymorphic matrix
function t is the inverse covering withMSUs3d mon-
odromy. LetuyL2 ­ ustd, yyL3 ­ vstd, t [ S , be the
covering map. From the above data we now derive
beta function of the theory. Let us consider the followi
equations:

0 ­ L≠Lsstd ­ Ssbdsstd ,

0 ­ L≠Lu ­ L2fSsbdustd 1 2ustdg , (31)

0 ­ L≠Ly ­ L3fSsbdvstd 1 3vstdg ,

wherebij ­ L≠Ltij is the b function andSsbd is the
scaling operatorSsbd ­ b11≠t11 1 b12≠t12 1 b22≠t22 .
Note that the solution of the system (31) complete
determines theb function of the theory. We now
derive the exactb function projected on the natura
moduli directions in terms of the modular invarian
Jabg ­ ≠aai≠btij≠gaj , which are completely symmet
ric in their indices. Actually, defining the projectedb
functionbag ­ ≠aaibij≠gaj , and using (30), we have

bag ­ 22uJa2g 2 3yJa3g . (32)
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The Jabg ’s are related to theI
g
b ’s by I

g
bJgb2 ­

p

3i , I
g
bJgb3 ­ 0; that is, P

u J223 1 12uyJ233 ­ 0 ­
P
3 J333 1 12uyJ233, P

u J222 1 12uyJ223 ­
3i
p ­

P
3 J233 1

12uyJ223. Inserting the solution of this system in (32), w
obtain

b22 ­
2Au

3
fP 2 54y2g , (33)

b23 ­ b32 ­
3Ay

u
fP 2 8u3g , (34)

b33 ­ 2AfP 2 54y2g , (35)

whereA ­
3i
p fs12uyd2 2 P2y3ug21.

Let us make some concluding remarks. First of
we note that similar structures can be generalized to
case of gauge group SU(n), n . 3. Furthermore the
condition sstd ­ 0 and the WDVV equation suggest
relation with the condition on the lattices obtained
[14] [see Eq. (5.22) there]. In this framework one shou
be able to connect the mass formula with the area
degenerate metrics on a suitable Riemann surface.
surface should be related to the two-dimensional sp
which arises in compactifyingN ­ 1 in D ­ 6 to obtain
N ­ 2 in D ­ 4. In [12] a similar structure for the SU(2
case has been obtained.

We also observe that the way we use the Picard-Fu
equations could be useful in investigating some algebr
geometrical structure and some aspects concerning m
symmetry (see [15] for related aspects). In this cont
we note that by considering the branching points
the hyperelliptic Riemann surfaces as punctures on
Riemann sphere, it should be possible to describe
Seiberg-Witten moduli space in terms of moduli space
Riemann spheres with punctures. Observe that alre
in the SU(2) case the moduli space is the Riema
sphere with three punctures which can be essenti
seen asM0,4, the moduli space of Riemann spher
with four punctures. In this framework one can u
relevant structures such as the Deligne-Knudsen-Mum
compactificationMh,p, were “punctures never collide,
which allows us to consider natural embeddings (t
problem is of interest also for softly supersymme
breaking [16]). We also observe that the WDVV equati
can be seen as an associativity condition for divisors
M0,p [17]. These structures together with the restricti
phenomenon of the Weil-Petersson metric, whose Kä
potential is the on-shell Liouville action, are at the ba
of recursion relations arising in 2D quantum gravity [18

In conclusion, we obtained nonperturbative relations
N ­ 2 SYM with gauge groups SU(3) which generaliz
the results in [4] where the relation betweenu and the
prepotential has been found in the SU(2) case. T
relation has been recently proved in [19]. The results
our investigation should be similarly verified for a mo
complete proof of the Seiberg-Witten theory.
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