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We find the nonperturbative relation betwegnp?), (tr¢p°) the prepotentialF and{¢;) in N = 2
supersymmetric Yang-Mills theory (SYM) with gauge group SU(3). Nonlinear differential equations
for F including the Witten-Dijkgraaf-Verlinde-Verlinde equation are obtained, indicating Ahat 2
SYM theories are essentially topological field theories which should be seen as the low-energy limit of
some topological string theory. Furthermore, we construct relevant modular invariant quantities, derive
canonical relations between the periods, and find@heinction in terms of the moduli. In doing this
we discuss the uniformization problem for the quantum moduli space. [S0031-9007(96)01665-1]

PACS numbers: 11.30.Pb, 11.15.Tk

Seiberg-Witten exact results aboitt = 2 supersym- In this Letter we will solve these problems for the
metric Yang-Mills theory (SYM) [1] concern the low- SU(3) case. In particular, we will find a complete set
energy Wilsonian effective action with at most two of nonlinear differential equations completely characteriz-
derivatives and four fermions. These terms are coming F including the Witten-Dijkgraaf-Verlinde-Verlinde
pletely described by the so-called prepotenffalwhose (WDVV) equation [8]. This indicates thaV = 2 SYM
most important property is holomorphicity [2]. Further- theories are essentially topological field theories and that
more, it has been shown in [3] thgt gets perturbative they should be seen as the low-energy limit of some topo-
contributions only up to one loop. Higher-order terms inlogical string theory. Furthermore, we introduce a set
the asymptotic expansion come as instanton contributionsf modular invariant quantities which will be useful to
implicitly determined in [1]. find the relation betweefir¢*) and F and to formulate

In [4], where a method to invert functions was proposedgcanonical relations between the periods. We also investi-
a nonperturbative equation has been derived which relategte the structure of the beta function and give its explicit
in a simple wayF and the vev's (vacuum expectation form in the moduli coordinates.
values) of the scalar fields. In [5], proving a conjecture The Seiberg-Witten curve for Sb), n = 3, has been
in [6], it has been shown that the above relation underliefound in [9]. Let us denote by’ = (¢’) and a” =
the nonperturbative renormalization group equation and¢?”) = oF /oa’, i = 1,2 the vev’'s of the scalar com-
the exact expression for the beta function in the SU(2ponent of the chiral superfield and its dual. The ef-
case has been obtained. The problem of extending thesective couplings are given by;; = 9> F/da’da’. We
results to the case of higher rank groups is a nontriviahlso setu? = u = (tr¢p2), u®> = v = (tr¢p?), and 9, =
task. An important step in this direction is the resulto/aa*, 9, = 9/0u®. Our starting point is the reduced
in [6,7] where the nonperturbative relation in [4] has Picard-Fuchs equations (RPFE’s) for SU(3) introduced in
been generalized. However, there remains the problerfiQ]

of finding the nonperturbative relations betweawp*) for r al —0 — 53 (1)
k > 2andF. Also, one should find a set of equations for B\ i | — % B =23,
F in a similar way to the SU(2) case [4]. where
|
L=t P2+ L. L[i—~PR+1
2 u u ’ 3 3 v ’ (2)

P =270 — A% + 4>, £ =12uvd,d, + 3vd, + 1.

Let us recall that in the SWj case, under the action {fé g) € Sp(2n — 2,Z) we have(a®?,a) = (Aa” +

Ba,CaP + Da) and [4,6,11]F (@) = F(a) + %aDC’AaD + %aB’Da + aB'Ca®.
We now rewrite Eq. (1) as nonlinear differential equations with respect taztheoordinates. To this end it is
convenient to introduce the following notation:

Uu = u%&n — 2uiupdq1p + u%ézz, V= U%au — 2ujv2012 + v12822,

C = (ujvy + viup)dip — upv2d11 — ujv1dn, D = ujvy — uwpvy,
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where 9;,..;,, = 9"/da" ---da, u; = du, and v; =  {X,Y}p = 0, X(9g7) " ag0;Y — 9, Y(9g7) 959, X .
d;v. We have (12)

For the vector field componenigy, we have

| vig) = {u”, p) - (13)

_ 2 i . . . .

= [lzqu +— P, NV +D*(1-a ‘9i)}~7:l’ Furthermore, the periods satisfy the canonical relations:
@) {d.allp = 0 ={aP.allp). {a'.aPlp = 8l (14)

where!l = 1,2 and F;, ; = 9;,..;,,F. Note thatD is

the Jacobian ofu, v) — (a', a?) and therefore generally  In order to extract the differential equations @, we
nonvanishing. Subtracting the left-hand side from therewrite the operators in (2) in the following general form:
right-hand side of Eq. (3), we obtain

|:12qu + %P(u,v, AU + D*(1 - diai)i|:lrl =0

A =xnou + xnfiu — 2xpFiu =0,  (4) Lp=&pdp + mp + 1, (15)
Xij = 3viv; — uuiu;. (5) ngﬁ)a,- are vector fields. Considering the action 6f

We stress that (4) has been obtained from (1). Thereforé" f, with f andg arbitrary functions, we havetsfg =

sincea’ anda” are still solutions of (1), it follows that ‘éﬁﬁq + S Lpg — f8 + 9pféps + £ip)fdpg. and by

(4) is modular invariant by construction. g (1)
In general, it seems that the Picard-Fuchs equations are i D i D

related to the WDVV equation. The above construction Lyla'ay —2F) =a'a; —2F, (16)

allows us to show that this is actually true for the Picard- ] ) ,

Fuchs equations underlying/ = 2 SYM with gauge thatis Lgz =z. Note that in (15), as in (2), for each

group SU(3). Actually, a suitable linear combination of value of B the second-order derivative terms contain

the equationgt; = 0, namely, ?rl(\)lvn?{f]igtplsgjltiaorﬂg]ﬁ [note that Eq. (16) is independent
AilynFiz = 2ynFin + ynfm) - In order to find &) and (s, we impose that the
Aa(=2y12F 12 + yuFie + ynFin) =0, operators defined in (15) satisfy (1). From the lower

i , i components of (1) we obtaimz = —a' — £g)dpa’,
whereyj, are arbitrary parameters, can be written in thewhich substituted in the upper components of (1), yields
WDVV form 1 1 g = (0c2) (9g7)~". Therefore

Fia™ Fonj = Fian™ Founi (6) Lp=1}0,05 — vigdy + 1. (17)
for i,j,k,n = 1,2, where Comparing (17) with (2) we obtain a complete set
of nonlinear differential equations foff and its exact

n'm = <2x22y12 — 2Xpyn  Xuy:n T Xayn > @ relation with the moduli coordinates, namely,
X11Y22 — X2¥11 2X12¥11 — 2X11y12 5 5
‘U(z) =0= ‘U(3) N (18)

We observe that for each choice of the metric, that is of

the parameters;,, there is only one nontrivial equation in v(32) = -3y = vé), (19)

(6) which can be rewritten as

L= 12uv = I3, 20
70y + 2720, + 920y, =0, (8) ? : (20)

where 0, = (Finidrj + FuijF0i)/2 — FiaiFra, ul; = P =3I3. (21)

which satisfy the identity The above procedure when applied to the SU(2) case

2F12012 = Fou®u + Fiu®n, [=1,2. (9) gives [4lu = —imz/2, and I3 = 4(u® — A%), which is

Let us introduce some modular invariant quantitiesth® €quation for the prepotential obtained in [4,12]. Let
which will be used later on. We set us now define the modular invariant 1 form

Y _ —14 i i

Ig = (@k2) (9p7) " 007, (10) W = (a'9ga? — aPaga)du’ = dz,  (22)
where 8, ¥ = 2,3 and z is the modular invariant =
alo; F — 2F. Other useful invariants are which, due to the existence of the prepotential, is closed,

a 7 o X ke i.e., dW = 0. Substituting in (22) the expression of the
Vg = Lp(0ydiu®)oga” + a”ou’, (1) beriods in terms of Appell'F, functions derived in [10],
wherea, 8 = 2,3. Let us define the brackets we obtainW = (3i/7)du. On the other hand, by (16) it
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follows that the components o = Wzdu? satisfy the
linear differential equations

EpWp =vipWa, B =23, (23)
which are satisfied bW, = 3i/7, W3 = 0. Therefore,
we havez; = (3i/m)u; that is,

(7 - %iaif),

27
u =
3

(24)

in agreement with [6,7]. Note that by (24), thanks to (13)

Eq. (18) is identically satisfied. We now use Eg. (4) tois a modular
face the problem of finding the explicit relation between(Aoxy + A, )a’ = ai, (Ada + A,)al =a

equations correspond to the four nonlinear differential
equations (3).

Let us now consider the modular properties $f
and its homogeneity. The fact thaf; is dimensionless
implies that

(AaA + Au,u)Tij =0,

where A,, = 2ud, + 3vd,
ant vector field.

(30)

is the scaling invari-
Let ¢ be an arbitrary modu-

lar invariant vector field. We haveér — é7 =

(rC" + D) '¢ér(Cr + D)™', implying that (30)
invariant equation. We also have

P, which

v and F. In general, it can be shown that the propertiesare compatible with a pseudohomogeneity of degree 2 for

of special geometry imply thad;; # 0 [13]. By (9) the

general solution of Eq. (4) is given by
xij = p09ij, (25)

where p is determined by the compatibility condition
(Bv1v2)? = (3v7) (3v3) applied to (5) and (25); that is,
p?A = up(®113 + Onui — 2uu01,), (26)
where A = 0, — ©,,0,,. Notice thatp # 0; other-
wise, 3v;v; = uu;u;, which would implyD = 0. Since
p2A = x3, — x11x: = 3uD?, we haveA # 0, so that
(26) can be solved ap = A~ 'u(@u3 + Orpul —

2uiu;015), which implies
(o). e
us

() = e i

wheree = =1 and the relative sign betwean and v,
has been fixed by, = p®,,. Observe that we can
set e = 1 by a suitable transformation on the moduli

Vi

O
0

_®11
_®12

U2

F:(Adpy + A)F =2F + A% X const In our case
the semiclassical analysis gives coasD.

Let us now discuss in the SU(3) case the uniformiza-
tion mechanism which generalizes the structure underly-
ing the SU(2) case [4]. The structure of the covering
of the quantum moduli spac sy is encoded in the
properties of the Appell’s functions. The Appell system
F,4 is a two-dimensional generalization of the hypergeo-
metric system also endowed with algebraic relations in-
volving the functions and their derivatives. It is known
[10] that the period matrixr;; is a rational combination
of Appell’s functions. By (30), the dependence onw,
and A is of the formr = 7(u/A% v/A3). Therefore the
7 space is a subvariet§ of the genus 2 Siegel upper-
half space of complex codimension 1 coveritdsys).

S can be characterized by(7$ = 0, where the struc-
ture of s is related to the equations satisfied By Let
Msy@3) C Sp(4,Z) be the monodromy group oV = 2
SYM with gauge group SU(3) [10]. The above remarks
imply that the Picard-Fuchs equations, from which Eq. (1)

variables (we use the fact that the RPFE'’s are invarianis derived, are the uniformizing equations fo¥lsys).

under the transformations— ¢%7/3y andv — —v).

In order to findv we first explicitly evaluate the
invariants in terms ofy;, v;, and Fx. Then, by (24)
and (27) we will obtain the relation betweenand F
and nonlinear differential equations fgf as well. The
essential point is that by (20) and (21) we have

B

= 32 28
YT 3603 (28)

On the other hand (10) can be written d§ =
= D30 + v10x — 2v11,012) ' (vagf — vi1g5), and
I3 %D(M%(@n + 1100 — 2ujur®10) 7" () g5 —
urgy), where g =uyus Fii; + ujui Fooi — (wyuy +
uwui) Frai. By (24) and (27) thelg’s are explicitly
known in terms ofz’ and F. It follows that (28) solves
the problem of finding the relation betweerand F. By
(13), we can rewrite Eqg. (19) in the form

B =123,

(29)

{v,ufpy = imv,

which by (28) are two nonlinear differential equations
for F, that together with the two-parameter WDVV
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Therefore Msy@s) = S/Msu). The polymorphic matrix
function 7 is the inverse covering withVsy3) mon-
odromy. Letu/A* = u(r),v/A? =v(r),7 € S, be the
covering map. From the above data we now derive the
beta function of the theory. Let us consider the following
equations:

0 = Adxs(7) = 3(B)s(7),
0= Adyu = A’[S(B)u(r) + 2u(7)],
0= Adyv = A[S(B)V() + 3v(7)],

(31)

where B;; = Ad,7;; is the B function andX(B) is the
scaling operatorS(8) = B119s, + Bidr, + Bror,.
Note that the solution of the system (31) completely
determines theB function of the theory. We now
derive the exactB function projected on the natural
moduli directions in terms of the modular invariants
Japy = 0qa'dp7;j0,a/, which are completely symmet-
ric in their indices. Actually, defining the projecte@l
function By = 944’ Bi;dya’, and using (30), we have

,Bay = _21/!.]0[27 - 3U.Ia3y. (32)
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