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We obtain the exact beta function forN  2 supersymmetric SUs2d Yang-Mills theory and
prove the nonperturbative renormalization group equation≠LF sa, Ld  sLyL0d≠L0F sa0, L0d 3
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Montonen-Olive duality [1] and related versions su
gest the existence of deep structures underlying rele
quantum field theories (QFT’s). As a remarkable exa
ple, the Seiberg-Witten exact results aboutN  2 super-
symmetric (SUSY) Yang-Mills theory [2] (see [3] fo
reviews and related aspects), extensively studied in
31], are strictly related to topics such as uniformizat
theory, Whitham dynamics, and integrable systems.

In the case ofN  2 SUSY Yang-Mills theory with
compact gauge groupG, the terms in the low-energ
Wilsonian effective action with at most two derivatives a
four fermions are completely described by the so-ca
prepotentialF [33]
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µ Z
d4xd2ud2ūFi
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d4xd2utijWiWj

∂
, (1)

whereWi is a vector multiplet,Fi
D ; ≠F y≠Fi is the dual

of the chiral superfieldFi , tij ; ≠2F y≠Fi≠Fj are the
effective couplings, andi [ f1, rg with r the rank ofG.

The prepotentialF plays a central role in the theory
The most important property ofF is holomorphicity
[32,33]. Furthermore, it has been shown in [33] th
F gets perturbative contributions only up to one loo
Higher-order terms in the asymptotic expansion come
instanton contribution implicitly determined in [2].

We stress that the exact results obtained by Seiberg
Witten concern the Wilsonian effective action in the lim
considered in (1). In this context it is useful to rec
that, when there are no interacting massless particles
Wilsonian action and the standard generating functiona
one-particle irreducible Feynman diagrams are identi
In the case of supersymmetric gauge theories the situa
is different. In particular, due to IR ambiguities (Konis
anomaly), the 1PI effective action might suffer fro
holomorphic anomalies [34].

An interesting question concerning the Seiberg-Wit
theory is whether, using their nonperturbative results
is possible to reconstruct the full quantum field theor
cal structure. In this context we note that in [17], whe
a method to invert functions was proposed. A nonp
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turbative equation [see Eq. (7)] which relates in a simp
way the prepotential and the vacuum expectation value
the scalar fields has been derived. In [20] Sonnensch
Theisen, and Yankielowicz conjectured that the above
lation should be interpreted in terms of renormalizati
group ideas.

In this Letter we will prove this conjecture. In particu
lar, we will obtain the nonperturbative renormalizatio
group equation (RGE) and the exact expression for
beta function ofN  2 SUSY SUs2d Yang-Mills theory.

Let us denote byai ; kfil and ai
D ; kfi

Dl the vac-
uum expectation values of the scalar component of
chiral superfield. For gauge group SUs2d the moduli
space of quantum vacua, parametrized byu ; ktr f2l, is
S3  Cnh2L2, L2j, the Riemann spherêC  C < h`j
with punctures at6L2 and`, whereL is the dynamically
generated scale. It turns out that [2]

aDsu, Ld  ≠aF 
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p

Z u

L2

dx
p

x 2 u
p

x2 2 L4
,
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x2 2 L4
.

(2)

A crucial step in recognizing the full QFT structure
underlying the Seiberg-Witten theory is the fact that [
(see also [17])∑

≠2

≠u2 1
1

4su2 2 L4d

∏
aD  0



∑
≠2

≠u2 1
1

4su2 2 L4d

∏
a ,

(3)

which is the “reduction” of the uniformizing equation fo
S3, the Riemann sphere with punctures at6L2, and `

[6,8,17]∑
≠2

≠u2 1
u2 1 3L4

4su2 2 L4d2

∏p
L4 2 u2 ≠aD

≠u
 0



∑
≠2

≠u2 1
u2 1 3L4

4su2 2 L4d2

∏p
L4 2 u2 ≠a

≠u
. (4)

A related aspect concerns the transformation proper
© 1996 The American Physical Society 4107
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ofF . It turns out that [17,35]
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(5)

wherey  s aD
a d andGg  s a11a12

a21a22
d [ SLs2, Cd. Observe

thatg2 ? fg1 ? F sadg  sg1g2d ? F sad and

Gt
g

≥ 0
1

1
0

¥
Gg 2

≥ 0
1

1
0

¥
 2

≥ a11a21

a12a21

a12a21

a12a22

¥
. (6)

We stress that ifGg [ Gs2d then F̃  F , that is,
g ? F sad  F sãd. The transformation properties ofF
have been obtained for more general cases in [20,35
Equation (5) implies that2F 2 a≠aF is invariant under
SLs2, Cd. In particular, it turns out that [17]

2F 2 a ≠F y≠a  28pib1ktr f2l , (7)

where, as stressed in [20,21],b1  1y4p2 is the one-loop
coefficient of the beta function. Relevant generalizatio
of the nonperturbative relation (7) have been obtain
by Sonnenschein, Theisen, and Yankielowicz [20] and
Eguchi and Yang [21].

We note that the relation (7) turns out to be cruc
in obtaining the Seiberg-Witten theory from the tree-lev
type II string theory in the limita0 ! 0 [37].

In Ref. [20] it has been suggested that Eq. (7) sho
be understood in terms of RG ideas. In particular,
was suggested to consider the left hand side of (7)
a measure of the anomalous dimension ofF . Actually,
we will see thatktr f2l involves the nonperturbative bet
function in a natural way. This allows us to find the RG
for F .

In order to specify the functional dependence ofu we
use the notation of [18] by settingu  L2G1sad and
u  L2G3std, wheret  ≠2

aF . Equation (3) implies

s1 2 G 2
1 d≠2

aG1 1 say4d s≠aG1d3  0 , (8)

and by (7) and (8) [17,18]

≠3
aF  sa≠2

aF 2 ≠aF d3y4f64p2b2
1L4

1 sa≠aF 2 2F d2g , (9)

which provides recursion relations for the instant
contribution [17]. By (2) we haveasu  2L2, Ld
 2i4Lyp and asu  L2, Ld  4Lyp so that the
initial conditions for the second-order equation (8) a
G1s2i4Lypd  21 andG1s4Lypd  1.
4108
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Equations (7) and (9) are quite basic for our purpo
For example, by (7) we have [18]

F sa, Ld  8pib1L2a2
Z a

4Lyp
dxG1sxdx23 2

ib1p3

4
a2,

(10)
and [18]

≠t̂ktr f2l  kfl2y8pib1 , (11)

which is the quantum version of the classical relatio
u  a2y2. In this context we observe thatt̂  aDya has
the same monodromy oft, and their fundamental domain
differ only for the values of the opening angle at the cus
[38]. These facts and (11) suggest consideringt andt̂ as
dual couplings. In particular, a “dual theory” should exi
with t̂ playing the role of gauge coupling.

As noticed in [20,21], the fact thatt  ≠2
aF is

dimensionless implies

as≠aF dL 1 Ls≠LF da  2F . (12)

Thus, according to (7), we have

L≠LF  28pib1ktr f2l . (13)

In [18] it has been shown thatG3 satisfies the equation

2s1 2 G 2
3 d2hG3, tj  2s3 1 G2

3 d s≠tG3d2, (14)

with initial conditions

G3s21d  G3s1d  21, G3s0d  1 . (15)

The solution of (14) is

u  L2G3std  L2h1 2 2fQ2s0jtdyQ3s0jtdg4j , (16)

that by the “inversion formula”(7) implies [18]

2F 2 a
≠F

≠a
 8pib1L2

Ω
2

∑
Q2

°
0j≠2

aF
¢

Q3

°
0j≠2

aF
¢∏4

2 1

æ
,

(17)

showing that such a combination of theta functions a
on ≠2

aF as integral operators.
Before considering the beta function, we observe th

the scaling properties ofaD anda suggest introducing the
following notation:

L21aDsu, Ld  aDsy, 1d ; bDsyd ,

L21asu, Ld  asy, 1d ; bsyd , (18)

y ; uyL2.

We now start to evaluate the nonperturbative be
function. First of all, note that in taking the derivative o
t with respect toL we have to distinguish between≠Lt

evaluated atu or a fixed. We introduce the following
notation:

bstd  sL≠Ltdu , bsadstd  sL≠Ltda . (19)

Acting with L≠L on G3std  uyL2, we have

bstdG0
3std  22uyL2, (20)
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bstd  22G3yG0
3 . (21)

Integrating this expression and considering the ini
conditionG3s0d  1 in (15), we obtain

ktr f2lt  L2e
22

R
t

0
dxb21sxd

, (22)

or equivalently

ktrf2lt  sLyL0d2ktrf2lt0e
22

R
t

t0
dxb21sxd

. (23)

Using once again the relation (7), we obtain

sa≠a 2 2dF sa, Ld  8pib1L2e
22

R
t

0
dxb21sxd

, (24)

or equivalently

sa≠a 2 2dF sa, Ld  sLyL0d2sa0≠a0 2 2d

3 F sa0, L0de
22

R
t

t0
dxb21sxd

,

(25)

which provides the anomalous dimension ofF . Note that
in (25) we used the notationa0 to denotea at t0 ; tsL0d.
By Eqs. (12), (24), and (25) we obtain the nonperturbat
RGE

≠LF  28pib1Le
22

Rt

0
dxb21sxd

, (26)

that is,

≠LF sa, Ld 
L

L0
≠L0F sa0, L0de

22
R

t

t0
dxb21sxd

. (27)

We note that, due to thetsLd dependence, this equatio
is highly nonlinear, reflecting its nonperturbative nature

We now start in deriving from Eq. (9) an alternativ
expression for the beta function. Let us consider
by

h
e

l

differentials

dt  s≠LtdadL 1 s≠atdLda

 s≠LtdudL 1 s≠utdLdu , (28)

da  s≠LadudL 1 s≠uadLdu

 bdL 1 Lb0dy  sb 2 2yb0ddL 1 L21b0du .

(29)

Equations (28) and (29) yield

s≠Ltdu  s≠Ltda 1 sb 2 2yb0d s≠atdL . (30)

By (12) we haveLs≠Ltda  2as≠atdL, so that

bstd  22yb0Ls≠atdL  2ysb0ybdbsadstd . (31)

Let us introduceG and s defined bybD  ≠bG and
s  ≠

2
bG  b0

Dyb0. By a suitable rescaling of (9), it
follows that s≠bsdL  1y2pib03s1 2 y2d. On the other
hand,G  L22F ands  t, so that

s≠btdL  1y2pib03s1 2 y2d . (32)

Being Ls≠Ltda  2bs≠btdL, we have

bstd  yypib02sy2 2 1d , (33)

bsadstd  by2pib03sy2 2 1d . (34)

By using Eqs. (2), (16), (18), (33), and (34) an
Riemann’s theta relation Q

4
3  Q

4
2 1 Q

4
4 , where

Qi ; Qis0jtd, we obtain
bstd 
2pisQ4

4 2 Q
4
2d

sQ8
2 2 Q

4
2Q

4
3d f

R1
21 dx

q
1ysx2 2 1d sxQ

4
3 1 Q

4
2 2 Q

4
4 d g2

, (35)
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2pi
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q
sxQ

4
3 1 Q

4
2 2 Q

4
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4
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Let us discuss some properties ofbstd and bsadstd.
First of all, by (34), it follows thatbsadstd is nowhere
vanishing. This is a consequence of the fact thatjbj

has a lower bound that, as noticed in [39], is given
bs0d , 0.76. Both bstd and bsadstd diverge at u 
6L2, where dyons and monopoles are massless. T
happens att [ Z, corresponding to a divergent gaug
coupling constant.

By (33), thebstd function is vanishing atu  0. We
can find the corresponding values oft by (16). On the
other hand, by uniformization theory, we know thatu  0
corresponds totn  si 1 2n 1 1dy2, n [ Z.
is

As a by-product of our investigation we observe th
(21) and (35) yield

Q0
2Q3 2 Q2Q0

3 
Q

5
2Q3 2 Q2Q

5
3

8pi

3

"Z 1

21
dx

s
1

sx2 2 1d sxQ
4
3 1 Q

4
2 2 Q

4
4 d

#2

, (37)

whereQ
0
i ; ≠tQis0jtd.

We note that, in a different context, an express
for the beta function was derived in [40], whereas ve
recently Minahan and Nemeschansky [41], using differ
4109
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techniques, obtained an expression for the beta func
which has the same critical points ofbstd in (35). If one
identifies (up to normalizations)bstd with that in [41], one
obtains a relation involving the fourQi ’s (includingQ1).

The beta function also has a geometrical interpretati
To see this, we use the Poincaré metric onS3 expressed
in terms of vacuum expectation values in [18]. In term
of b we have

ds2
P  jby2yImtj2jduj2  ew jduj2, (38)

so thatbyy is the chiral block of the Poincaré metric. W
observe that (3) is essentially equivalent to the Liouvi
equation2≠u≠ūw  ew (see, e.g., [42]).

An important aspect of the Seiberg-Witten th
ory concerns the structure of the critical curveC on
which ImaDya  0. The structure and the role o
this curve have been studied in [2,18,38,39,43,44].
particular, in [18], using the Koebe 1y4 theorem and
Schwarz’s lemma, inequalities involving the correlato
and L≠LF  28piu have been obtained. Expandin
the beta function in the regions of weak and stro
coupling, one has to consider Borel summability f
which the inequalities in [18] should provide estimatio
for convergence domains.

Finally, we observe that the way the results in this pa
have been obtained suggest an extension to more
eral cases.
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