Instantons and recursion relations in $N=2$ SUSY gauge theory *

Marco Matone ${ }^{1}$
Department of Physics "G. Galilei" - Istituto Nazionale di Fisica Nucleare, University of Padova, Via Marzolo, 8-35I31 Padova, Italy

Received 26 June 1995
Editor: L. Alvarez-Gaumé

Abstract

We find the transformation properties of the prepotential \mathcal{F} of $N=2$ SUSY gauge theory with gauge group $\operatorname{SU}(2)$. Next we show that $\mathcal{G}(a)=\pi i\left(\mathcal{F}(a)-\frac{1}{2} a \partial_{a} \mathcal{F}(a)\right)$ is modular invariant. We also show that $u=\mathcal{G}(a)$, so that $\mathcal{F}(\langle\phi\rangle)=$ $\frac{1}{\pi i}\left\langle\operatorname{tr} \phi^{2}\right\rangle+\frac{1}{2}\langle\phi\rangle\left\langle\phi_{D}\right\rangle$. This implies that $\mathcal{G}(a)$ satisfies the non-linear differential equation $\left(1-\mathcal{G}^{2}\right) \mathcal{G}^{\prime \prime}+\frac{1}{4} a \mathcal{G}^{\prime 3}=0$. We use this equation to derive recursion relations for the instanton contributions. These results can be extended to more genera! cases.

1. Recently the low-energy limit of $N=2$ super Yang-Mills theory with gauge group $G=S U(2)$ has been solved exactly [1]. This result has been generalized to $G=S U(n)$ in [2] whereas the large n analysis has been investigated in [3]. Other intcrcsting results concern the generalization to $\operatorname{SO}(2 n+1)$ [4] and non-locality at the cusp points in moduli spaces [5].

The low-energy effective action $S_{\text {eff }}$ is derived from a single holomorphic function $\mathcal{F}\left(\Phi_{k}\right)$ [6]

$$
\begin{equation*}
S_{\mathrm{eff}}=\frac{1}{4 \pi} \operatorname{Im}\left(\int d^{2} \theta d^{2} \bar{\theta} \Phi_{D}^{i} \bar{\Phi}_{i}+\frac{1}{2} \int d^{2} \theta \tau^{i j} W_{i} W_{j}\right), \tag{1}
\end{equation*}
$$

where $\Phi_{D}^{i} \equiv \partial \mathcal{F} / \partial \Phi_{i}$ and $\tau^{i j} \equiv \partial^{2} \mathcal{F} / \partial \Phi_{i} \partial \Phi_{j}$. Let us denote by $a_{i} \equiv\left\langle\phi^{i}\right\rangle$ and $a_{D}^{i} \equiv\left\langle\phi_{D}^{i}\right\rangle$ the vevs of the scalar component of the chiral superfield. For $S U(2)$ the moduli space of quantum vacua, parametrized by $u=\left\langle\operatorname{tr} \phi^{2}\right\rangle$, is the Riemann sphere with punctures at $u_{1}=-\Lambda, u_{2}=\Lambda$ (we will set $\Lambda=1$) and $u_{3}=\infty$ and a \mathbf{Z}_{2} symmetry acting by $u \leftrightarrow-u$. The asymptotic expansion of the prepotential has the structure [1]

$$
\begin{equation*}
\mathcal{F}=\frac{i}{2 \pi} a^{2} \log a^{2}+\sum_{k=0}^{\infty} \mathcal{F}_{k} a^{2-4 k} . \tag{2}
\end{equation*}
$$

[^0]In [1] the vector $\left(a_{D}, a\right)$ has been considered as a holomorphic section of a flat bundle. In particular in [1] the monodromy properties of ($a_{D}(u), a(u)$) have been identified with $\Gamma(2)$

$$
\begin{equation*}
\binom{a_{D}}{a} \Rightarrow\binom{\tilde{a}_{D}}{\tilde{a}}=M_{u_{i}}\binom{a_{D}}{a}, \quad i=1,2,3 \tag{3}
\end{equation*}
$$

where

$$
M_{-1}=\left(\begin{array}{ll}
-1 & 2 \\
-2 & 3
\end{array}\right), \quad M_{1}=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right), \quad M_{\infty}=\left(\begin{array}{cc}
-1 & 2 \\
0 & -1
\end{array}\right) .
$$

The asymptotic behaviour of this section, derived in [1], and the geometrical data above completely determine ($a_{D}(u), a(u)$). In particular the explicit expression of the section $\left(a_{D}, a\right)$ has been obtained by first constructing tori parametrized by u and then identifying a suitable meromorphic differential [1].

Before considering the framework of uniformization theory, we find the explicit expression of \mathcal{F} in terms of u. Next we will find the modular properties of \mathcal{F} by solving a linear differential equation which arises from defining properties. We will use uniformization theory in order to explicitly find $u=u(a)$. More interestingly we will show that $\mathcal{F}(\langle\phi\rangle)=\frac{1}{\pi i}\left\langle\operatorname{tr} \phi^{2}\right\rangle+\frac{1}{2}\langle\phi\rangle\left\langle\phi_{D}\right\rangle$. This result implies that \mathcal{F} satisfies a non-linear differential equation in \boldsymbol{a}. This equation furnishes, as expected, recursion relations which determine the instanton contributions to \mathcal{F}. Our general formula is in agreement with the results in [7] where the first terms of the instanton expansion have been computed.

Let us start with the explicit expression of \mathcal{F} as function of u. Let us recall that [1]

$$
\begin{equation*}
a_{D}=\frac{\sqrt{2}}{\pi} \int_{1}^{u} \frac{d x \sqrt{x-u}}{\sqrt{x^{2}-1}}, \quad a=\frac{\sqrt{2}}{\pi} \int_{-1}^{1} \frac{d x \sqrt{x-u}}{\sqrt{x^{2}-1}} \tag{4}
\end{equation*}
$$

In order to solve the problem we use integrability of the I-differential

$$
\begin{equation*}
\eta(u)=a \partial_{u} a_{D}-a_{D} \partial_{u} a=\frac{1}{\pi^{2}} \int_{1}^{u} d x \int_{-1}^{1} d y \frac{y-x}{\sqrt{\left(x^{2}-1\right)(x-u)\left(y^{2}-1\right)(y-u)}} . \tag{5}
\end{equation*}
$$

Let us set $g(u)=\int_{1}^{u} d z \eta(z)$. We have

$$
\begin{equation*}
g(u)=\frac{1}{\pi^{2}} \int_{1}^{u} d x \int_{-1}^{1} d y \frac{y-x}{\sqrt{\left(x^{2}-1\right)\left(y^{2}-1\right)}} \log \left[\frac{2 u-x-y+2 \sqrt{(u-x)(u-y)}}{x-y}\right] . \tag{6}
\end{equation*}
$$

On the other hand notice that

$$
\partial_{u} \mathcal{F}=a_{D} \partial_{u} a=\frac{1}{2}\left[\partial_{u}\left(a a_{D}\right)-\eta(u)\right],
$$

so that, up to an additive constant, we have

$$
\begin{equation*}
\mathcal{F}(a(u))=\frac{1}{2 \pi^{2}} \int_{1}^{u} d x \int_{-1}^{1} d y \frac{4 \sqrt{(x-u)(y-u)}-(y-x) \log \left[\frac{2 u-x-y+2 \sqrt{(u-x)(u-y)}}{x-y}\right]}{\sqrt{\left(x^{2}-1\right)\left(y^{2}-1\right)}} \tag{7}
\end{equation*}
$$

Later, in the framework of uniformization theory, we will show that η is a constant (in the u-patch), so that g is proportional to u.

We now find the transformation properties of $\mathcal{F}(a)$. We have

$$
\begin{equation*}
\frac{\partial^{2} \tilde{\mathcal{F}}(\tilde{a})}{\partial \tilde{a}^{2}}=\frac{A^{\frac{\partial^{2} \mathcal{F}(a)}{\partial a^{2}}}+B}{C \frac{\partial^{2} \mathcal{F}(a)}{\partial a^{2}}+D} \tag{8}
\end{equation*}
$$

where $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma(2)$ and $\tilde{a}=C a_{D}+D a$. On the other hand

$$
\begin{equation*}
\frac{\partial^{2} \widetilde{\mathcal{F}}(\tilde{a})}{\partial \tilde{a}^{2}}=\left[-\left(\frac{\partial \tilde{a}}{\partial a}\right)^{-3} \frac{\partial^{2} \tilde{a}}{\partial a^{2}} \frac{\partial}{\partial a}+\left(\frac{\partial \tilde{a}}{\partial a}\right)^{-2} \frac{\partial^{2}}{\partial a^{2}}\right] \tilde{\mathcal{F}}(\tilde{a}) \tag{9}
\end{equation*}
$$

Eqs. (8), (9) imply that

$$
\begin{equation*}
\left(C \mathcal{F}^{(2)}+D\right) \partial_{a}^{2} \widetilde{\mathcal{F}}(\tilde{a})-C \mathcal{F}^{(3)} \partial_{a} \widetilde{\mathcal{F}}(\tilde{a})-\left(A \mathcal{F}^{(2)}+B\right)\left(C \mathcal{F}^{(2)}+D\right)^{2}=0 \tag{10}
\end{equation*}
$$

where $\mathcal{F}^{(k)} \equiv \partial_{a}^{k} \mathcal{F}(a)$, whose solution is

$$
\begin{equation*}
\tilde{\mathcal{F}}(\tilde{a})=\mathcal{F}(a)+\frac{A C}{2} a_{D}^{2}+\frac{B D}{2} a^{2}+B C a a_{D} \tag{11}
\end{equation*}
$$

This means that the function

$$
\begin{equation*}
\mathcal{G}(a)=\pi i\left(\mathcal{F}(a)-\frac{1}{2} a \partial_{a} \mathcal{F}(a)\right)=-\frac{\pi i}{2} g(u) \tag{12}
\end{equation*}
$$

is modular invariant, that is

$$
\begin{equation*}
\tilde{\mathcal{G}}(\tilde{a})=\mathcal{G}(a) . \tag{13}
\end{equation*}
$$

By (2) we have asymptotically

$$
\begin{equation*}
\mathcal{G}=\sum_{k=0}^{\infty} \mathcal{G}_{k} a^{2-4 k}, \quad \mathcal{G}_{0}=\frac{1}{2}, \quad \mathcal{G}_{k}=2 \pi i k \mathcal{F}_{k} \tag{14}
\end{equation*}
$$

2. In order to find $u=u(a)$ and $\mathcal{F}=\mathcal{F}(a)$, we need few facts about uniformization theory. Let us denote by $\widehat{\mathbf{C}} \equiv \mathbf{C} \cup\{\infty\}$ the Riemann sphere and by H the upper half plane endowed with the Poincaré metric $d s^{2}=|d z|^{2} /(\operatorname{Im} z)^{2}$. It is well known that n-punctured spheres $\Sigma_{n} \equiv \widehat{\mathbf{C}} \backslash\left\{u_{1}, \ldots, u_{n}\right\}, n \geq 3$, can be represented as H / Γ with $\Gamma \subset \operatorname{PSL}(2, \mathbf{R})$ a parabolic (i.e. with $|\operatorname{tr} \gamma|=2, \gamma \in \Gamma$) Fuchsian group. The map $J_{H}: H \rightarrow \mathbf{\Sigma}_{n}$ has the property $J_{H}(\gamma \cdot z)=J_{H}(z)$, where $\gamma \cdot z=(A z+B) /(C z+D), \gamma=\left(\begin{array}{c}A \\ C\end{array} B\right) \in \Gamma$. It follows that after winding around nontrivial loops the inverse map transforms as

$$
\begin{equation*}
J_{H}^{-1}(u) \longrightarrow \tilde{J}_{H}^{-1}(u)=\frac{A J_{H}^{-1}(u)+B}{C J_{H}^{-1}(u)+D} . \tag{15}
\end{equation*}
$$

The projection of the Poincaré metric onto $\Sigma_{n} \cong H / \Gamma$ is

$$
\begin{equation*}
d s^{2}=e^{\varphi}|d u|^{2}=\frac{\left|J_{H}^{-1}(u)^{\prime}\right|^{2}}{\left(\operatorname{Im} J_{H}^{-1}(u)\right)^{2}}|d u|^{2}, \tag{16}
\end{equation*}
$$

which is invariant under $\operatorname{SL}(2, \mathbf{R})$ fractional transformations of J_{H}^{-1}. The fact that e^{φ} has constant curvature -1 means that φ satisfies the Liouville equation

$$
\begin{equation*}
\partial_{u} \partial_{\bar{u}} \varphi=\frac{e^{\varphi}}{2} . \tag{17}
\end{equation*}
$$

Near a puncture we have $\varphi \sim-\log \left(\left|u-u_{i}\right|^{2} \log ^{2}\left|u-u_{i}\right|\right)$. For the Liouville stress tensor we have the following equivalent expressions

$$
\begin{equation*}
T(u)=\partial_{u} \partial_{u} \varphi-\frac{1}{2}\left(\partial_{u} \varphi\right)^{2}=\left\{J_{H}^{-1}, u\right\}=\sum_{i=1}^{n-1}\left(\frac{1}{2\left(u-u_{i}\right)^{2}}+\frac{c_{i}}{u-u_{i}}\right) . \tag{18}
\end{equation*}
$$

where $\left\{J_{H}^{-1}, u\right\}$ denotes the Schwarzian derivative of J_{H}^{-1} and the c_{i} 's, called accessory parameters, satisfy the constraints

$$
\begin{equation*}
\sum_{i=1}^{n-1} c_{i}=0, \quad \sum_{i=1}^{n-1} c_{i} u_{i}=1-\frac{n}{2} \tag{19}
\end{equation*}
$$

Let us now consider the covariant operators introduced in the formulation of the KdV equation in higher genus [8]. We use $1 /{J_{H}^{-1}}^{\prime}$ as covariantizing polymorphic vector field [9]

$$
\begin{equation*}
\mathcal{S}_{J_{H}^{-1}}^{(2 k+1)}=(2 k+1){J_{H}^{-1^{\prime k}}}^{\prime k} \partial_{u} \frac{1}{J_{H}^{-1^{\prime}}} \partial_{u}-\frac{1}{J_{H}^{-1^{\prime}}} \ldots \partial_{u} \frac{1}{J_{H}^{-1^{1}}} \partial_{u}{J_{H}^{-1^{\prime}}}^{k} \tag{20}
\end{equation*}
$$

where the number of derivatives is $2 k+1$ and ${ }^{\prime} \equiv \partial_{\mu}$. Univalence of J_{H}^{-1} implies holomorphicity of $\mathcal{S}_{J_{H}^{-1}}^{(2 k+1)}$. An interesting property of the equation $S_{J_{n}^{-1}}^{(2 k+1)} \cdot \psi=0$ is that its projection on H reduces to the trivial equation $(2 k+1) z^{\prime k+1} \partial_{z}^{2 k+1} \tilde{\psi}=0$, where $z=J_{H}^{-1}(u)$. Operators $\mathcal{S}_{J_{H}^{-1}}^{(2 k+1)}$ are covariant, holomorphic and $S L\left(2, \mathbf{C}\right.$) invariant, which by (15) implies singlevaluedness of $\mathcal{S}_{J_{H}^{-1}}^{(2 k+1)}$. Furthermore, Möbius invariance of the Schwarzian derivative implies that $\mathcal{S}_{J_{H}^{-1}}^{(2 k+1)}$ depends on J_{H}^{-1} only through the stress tensor (18) and its derivatives. For $k=1 / 2$, we have the uniformizing equation

$$
\begin{equation*}
\left(J_{H}^{-1^{\prime}}\right)^{\frac{1}{2}} \partial_{u} \frac{1}{J_{H}^{-1}} \partial_{u}\left(J_{H}^{-1^{\prime}}\right)^{\frac{1}{2}} \cdot \psi=\left(\partial_{u}^{2}+\frac{T}{2}\right) \cdot \psi=0 \tag{21}
\end{equation*}
$$

that, by construction, has the two linearly independent solutions

$$
\begin{equation*}
\psi_{1}=\left(J_{H}^{-1}\right)^{-\frac{1}{2}} J_{H}^{-1}, \quad \psi_{2}=\left(J_{H}^{-1^{\prime}}\right)^{-\frac{1}{2}}, \tag{22}
\end{equation*}
$$

so that

$$
\begin{equation*}
J_{H}^{-1}=\psi_{1} / \psi_{2} . \tag{23}
\end{equation*}
$$

By (15) and (22) it follows that

$$
\binom{\psi_{1}}{\psi_{2}} \rightarrow\binom{\tilde{\psi}_{1}}{\tilde{\psi}_{2}}=\left(\begin{array}{ll}
A & B \tag{24}\\
C & D
\end{array}\right)\binom{\psi_{1}}{\psi_{2}} .
$$

In the case of $\Sigma_{3} \cong H / \Gamma(2)$, Eq. (19) gives $c_{1}=-c_{2}=1 / 4$ and the uniformizing Eq. (21) becomes

$$
\begin{equation*}
\left(\partial_{u}^{2}+\frac{3+u^{2}}{4\left(1-u^{2}\right)^{2}}\right) \psi=0 \tag{25}
\end{equation*}
$$

which is solved by Legendre functions

$$
\begin{equation*}
\psi_{1}=\sqrt{1-u^{2}} P_{-1 / 2}, \quad \psi_{2}=\sqrt{1-u^{2}} Q_{-1 / 2} \tag{26}
\end{equation*}
$$

These solutions define a holomorphic section that by (24) has monodromy $\Gamma(2)$. We note that formulas (25)(26) and some related consequences have been considered also in the framework of special geometry [10]. In a similar context [11] it has been given the explicit expression of u as function of $\partial_{a}^{2} \mathcal{F}$.

In order to find (a, a_{D}) we observe that by (22) ψ_{1} and ψ_{2} are (polymorphic) - $1 / 2$-differentials whereas both a_{D} and a are 0 -differentials. This fact and the asymptotic behaviour of (a_{D}, a) given in [1] imply that

$$
\begin{equation*}
\binom{\psi_{1}}{\psi_{2}}=\binom{\sqrt{1-u^{2}} \partial_{u} a_{D}}{\sqrt{1-u^{2}} \partial_{u} a}, \tag{27}
\end{equation*}
$$

where $\sqrt{1-u^{2}}$ is considered as a $-3 / 2$-differential. Comparing with (26) we get (4).
3. By Eqs. (25) and (27) it follows that a_{D} and a are solutions of the third-order equation

$$
\begin{equation*}
\left(\partial_{u}^{2}+\frac{3+u^{2}}{4\left(1-u^{2}\right)^{2}}\right) \sqrt{1-u^{2}} \partial_{u} \phi=0 . \tag{28}
\end{equation*}
$$

Let us consider some aspects of this equation. First of all note that, as observed in [7],

$$
\begin{equation*}
\left(\partial_{u}^{2}+\frac{3+u^{2}}{4\left(1-u^{2}\right)^{2}}\right) \sqrt{1-u^{2}} \partial_{u} \phi=\frac{1}{\sqrt{1-u^{2}}} \partial_{u}\left[\left(1-u^{2}\right) \partial_{u}^{2}-\frac{1}{4}\right] \phi=0 . \tag{29}
\end{equation*}
$$

It follows that $\left[\left(1-u^{2}\right) \partial_{u}^{2}-\frac{1}{4}\right] \phi=c$ with c a constant. A check shows that a_{D} and a in (4) satisfy this equation with $c=0$

$$
\begin{equation*}
\left[\left(1-u^{2}\right) \partial_{u}^{2}-\frac{1}{4}\right] a_{D}=\left[\left(1-u^{2}\right) \partial_{u}^{2}-\frac{1}{4}\right] a=0 . \tag{30}
\end{equation*}
$$

As noticed in [7], this explains also why, despite of the fact that a and a_{D} satisfy the third-order differential Eq. (28), they have two-dimensional monodromy. Eq. (30) is the crucial one to find $u=u(a)$ and to determine the instanton contributions. In our framework the problem of finding the form of \mathcal{F} as a function of a is equivalent to the following general basic problem which is of interest also from a mathematical point of view:

Given a second-order differential equation with solutions ψ_{1} and ψ_{2} find the function $\mathcal{F}_{1}\left(\psi_{1}\right)\left(\mathcal{F}_{2}\left(\psi_{2}\right)\right)$ such that $\psi_{2}=\partial \mathcal{F}_{1} / \partial \psi_{1}\left(\psi_{1}=\partial \mathcal{F}_{2} / \partial \psi_{2}\right)$.

It can be shown that, in general, these functions satisfy a non-linear differential equations. We prove that for the case at hand (the procedure can be extended also to higher-order equations). The first step is to observe that by (30) it follows that

$$
\begin{equation*}
a a_{D}^{\prime}-a_{D} a^{\prime}=c \tag{31}
\end{equation*}
$$

Since (a_{D}, a) are (polymorphic) 0-differentials, it follows that in changing patch the constant c in (31) is multiplied by the Jacobian of the coordinate transformation. Another equivalent way to see this, is to notice that Eq. (30) gets a first derivative under a coordinate transformation. Therefore in another patch the r.h.s. of (31) is no longer a constant. This aspect is related to covariance. In particular, we have seen that covariance of the equation such as

$$
\left(\partial_{z}^{2}+F(z) / 2\right) \psi(z)=0,
$$

is ensured if and only if ψ transforms as a $-1 / 2$-differential and F as a Schwarzian derivative. In terms of the solutions ψ_{1}, ψ_{2} one can construct the 0 -differential $\psi_{1}^{\prime} \psi_{2}-\psi_{1} \psi_{2}^{\prime}$ that, by the structure of the equation, is just a constant c. In another patch we have $\left(\partial_{w}^{2}+\widetilde{F}(w) / 2\right) \widetilde{\psi}(w)=0$, so that $\psi_{t}(z) \partial_{z} \psi_{2}(z)-\psi_{2}(z) \partial_{z} \psi_{1}(z)=$ $\tilde{\psi}_{1}(w) \partial_{w} \tilde{\psi}_{2}(w)-\widetilde{\psi}_{2}(w) \partial_{w} \tilde{\psi}_{1}(w)=c$.

This discussion shows that flatness of $\left(a_{D}, a\right)$ is at the heart of the reduction mechanism from the third-order to second-order equation. Flatness of (a_{D}, a) also implies that $\partial a_{D} / \partial a=\partial_{u} a_{D} / \partial_{u} a$ is covariantly definite. This unusual way to express the inverse map J_{H}^{-1} suggests considering as inverse map also the covariantly defined function a_{D} / a ($\partial a_{D} / \partial a$ and a_{D} / a have the same monodromy). This point is of interest to study the critical curve on which $\operatorname{Im} a_{D} / a=0[1,12,13]$.

By (5), (6), (12) and (31) it follows that

$$
\begin{equation*}
u=A \mathcal{G}(a)+B \tag{32}
\end{equation*}
$$

where B is a constant which we will show to be zero. To determine the constant A, we note that asymptotically $a \sim \sqrt{2 u}$, therefore by (14) one has $A=1$. By (4) and (32) it follows that

$$
\begin{equation*}
a_{D}=\frac{\sqrt{2}}{\pi} \int_{1}^{\mathcal{G}(a)+B} \frac{d x \sqrt{x-\mathcal{G}(a)-B}}{\sqrt{x^{2}-1}}, \quad a=\frac{\sqrt{2}}{\pi} \int_{-1}^{1} \frac{d x \sqrt{x-\mathcal{G}(a)-B}}{\sqrt{x^{2}-1}} . \tag{33}
\end{equation*}
$$

Apparently to solve these two equivalent integro-differential equations seems a difficult task. However we can use the following trick. First notice that

$$
\begin{equation*}
\left[\left(1-u^{2}\right) \partial_{u}^{2}-\frac{1}{4}\right] \phi=0=\left\{\left[1-(\mathcal{G}+B)^{2}\right]\left(\mathcal{G}^{\prime} \partial_{a}^{2}-\mathcal{G}^{\prime \prime} \partial_{a}\right)-\frac{1}{4} \mathcal{G}^{\prime 3}\right\} \phi \tag{34}
\end{equation*}
$$

where now ${ }^{\prime} \equiv \partial_{a}$. Then, since $\phi=a$ (or equivalently $\phi=a_{D}=\partial_{a} \mathcal{F}$) is a solution of (34), it follows that $\mathcal{G}(a)$ satisfies the non-linear differential equation $\left[1-(\mathcal{G}+B)^{2}\right] \mathcal{G}^{\prime \prime}+\frac{1}{4} a \mathcal{G}^{\prime 3}=0$. Inserting the expansion (14) one can check that the only way to compensate the $a^{-2(2 k+1)}$ terms is to set $B=0$. Therefore

$$
\begin{equation*}
\left(1-\mathcal{G}^{2}\right) \mathcal{G}^{\prime \prime}+\frac{1}{4} a \mathcal{G}^{3}=0 \tag{35}
\end{equation*}
$$

which is equivalent to the following recursion relations for the instanton contribution (recall that $\mathcal{G}_{k}=2 \pi i k \mathcal{F}_{k}$)

$$
\begin{align*}
& \mathcal{G}_{n+1}=\frac{1}{8 \mathcal{G}_{0}^{2}(n+1)^{2}} \\
& \quad \times\left\{(2 n-1)(4 n-1) \mathcal{G}_{n}+2 \mathcal{G}_{0} \sum_{k=0}^{n-1} \mathcal{G}_{n-k} \mathcal{G}_{k+1} c(k, n)-2 \sum_{j=0}^{n-1} \sum_{k=0}^{j+1} \mathcal{G}_{n-j} \mathcal{G}_{j+1-k} \mathcal{G}_{k} d(j, k, n)\right\}, \tag{36}
\end{align*}
$$

where $n \geq 0, \mathcal{G}_{0}=1 / 2$ and

$$
c(k, n)=2 k(n-k-1)+n-1, \quad d(j, k, n)=[2(n-j)-1][2 n-3 j-1+2 k(j-k+1)] .
$$

The first few terms are $\mathcal{G}_{0}=\frac{1}{2}, \mathcal{G}_{1}=\frac{1}{2^{2}}, \mathcal{G}_{2}=\frac{5}{2^{6}}, \mathcal{G}_{3}=\frac{9}{2^{2}}$, in agreement ${ }^{2}$ with the results in [7] where the first terms of the instanton expansion have been computed by first inverting $a(u)$ as a series for large a / Λ and then inserting this in a_{D}.

The above results imply that the prepotential has a very simple structure. This is the content of the relation $u=\mathcal{G}(a)$ which is equivalent to

$$
\begin{equation*}
\mathcal{F}(\langle\phi\rangle)=\frac{1}{\pi i}\left\langle\operatorname{tr} \phi^{2}\right\rangle+\frac{1}{2}\langle\phi\rangle\left\langle\phi_{D}\right\rangle . \tag{37}
\end{equation*}
$$

[^1]Finally note that

$$
\begin{equation*}
a a_{D}^{\prime}-a_{D} a^{\prime}=\frac{2 i}{\pi} . \tag{38}
\end{equation*}
$$

These results are useful to explicitly determine the critical curve on which $\operatorname{Im} a_{D} / a=0$, whose structure has been considered in [1,12,13].

It is a pleasure to thank P. Argyres, F. Baldassarri, G. Bonelli, J. de Boer, J. Fuchs, W. Lerche, P.A. Marchetti, P. Pasti and M. Tonin for useful discussions.

References

[1] N. Seiberg and E. Witten, Nucl. Phys. B 426 (1994) 19.
|2| P. Argyres and A. Faraggi, Phys. Rev. Lett. 74 (1995) 3931;
A. Klemm, W. Lerche, S. Theisen and S. Yankielowicz, Phys. Lett. R 344 (1995) 169.
|3| M. Douglas and S. Shenker, Dynamics of $S U(N)$ Supersymmetric Gauge Theory, RU-95-12, hep-th/9503163.
$14 \mid$ U. Danielsson and B. Sundborg, The Moduli Space and Monodromies of $N=2$ Supersymmetric $\operatorname{SO}(2 \mathrm{r}+1)$ Yang-Mills Theory, USIP-95-06, UUITP-4/95, hep-th/9504102.
[5] P. Argyres and M. Douglas, New Phenomena in SU(3) Supersymmetric Gauge Theory, IASSNS-HEP-95/31, RU-95-28, hepth/9505062.
[6] N. Seiberg, Phys. Lett. B 206 (1988) 75.
17] A. Klemm, W. Lerche and S. Theisen, Nonperturbative Effective Actions of $N=2$ Supersymmetric Gauge Theories, CERN-TH/95104, LMU-TPW 95-7, hep-th/9505150.
18| L. Bonora and M. Matone, Nucl. Phys. B 327 (1990) 415.
19] M. Matone, Int. J. Mod. Phys. A 10 (1995) 289.
| 101 A. Ceresole, R. D'Auria and S. Ferrara, Phys. Lett. B 339 (1994) 71.
$\| 11 \mid$ M. Billó, A. Ceresole, R. D’Auria, S. Ferrara, P. Fré, T. Regge, P. Soriani and A. Van Proeyen, A Search for Non-Perturbative Dualities of Local $N=2$ Yang-Mills Theories from Calabi-Yau Threefolds, SISSA 64/95/EP. POLFIS-TH 07/95, CERN-TH/95140, UCLA/95/TEP/19, IFUM 508FT, KUL-TF-95/18, hep-th/9506075.
112| A. Fayyazuddin, Some Comments on $N=2$ Supersymmetric Yang-Mills, Nordita 95/22, hep-th/9504120.
|13| P. Argyres, A. Faraggi and A. Shapere, Curves of Marginal Stability in $N=2$ super-QCD, IASSNS-HEP-94/103, UK-HEP/95-07, hep-th/9505190.

[^0]: * Partly supported by the European Community Research Programme Gauge Theories. applied supersymmetry and quantum gravity, contract SC1-CT92-0789.
 ${ }^{1} \mathrm{E}$-mail: matone@padova.infn.it.

[^1]: ${ }^{2}$ Concerning a, \mathcal{F} and Λ, we are using different normalizations with respect to those chosen in [7], thus to compare \mathcal{F}_{k} in (36) with $\mathcal{F}_{k}^{\text {KLT }}$ in $|7|$ one should check the k-independence of $\frac{\mathcal{F}_{k}}{\mathcal{F}_{k}^{\mathrm{KKT}}} \frac{\mathcal{F}_{k+1}^{\mathrm{KLT}}}{\mathcal{F}_{k+1}}$.

