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Abstract 

We find the transformation properties of the prepotential .F of N = 2 SUSY gauge theory with gauge group SU( 2). 

Next we show that B(a) = pi (F(a) - $&F(a)) . IS modular invariant. We also show that u = B(a), so that F( (4)) = 

$(tr&j + i(6)&& Th is implies that B(a) satisfies the non-linear differential equation (1 - 9’) g” + fa@ = 0. We 
use this equation to derive recursion relations for the instanton contributions. Thzse results can be extended to more general 
cases. 

1. Recently the low-energy limit of N = 2 super Yang-Mills theory with gauge group G = SU(2) has been 

solved exactly [ 11. This result has been generalized to G = SU( n) in [ 21 whereas the large n analysis has been 

investigated in [ 31. Other interesting results concern the generalization to S’0(2n + 1) [ 41 and non-locality at 

the cusp points in moduli spaces [ 51. 
The low-energy effective action Seff is derived from a single holomorphic function 3 (@k) [ 61 

where $, 5 JF/aQi and .ij E d2J’=/dQid@j. Let us denote by ai E (#) and ub E (&) the vevs of the 

scalar component of the chiral superfield. For SU(2) the moduli space of quantum vacua, parametrized by 

u = (trd2), is the Riemann sphere with punctures at UI = -A,uz = A (we will set A = 1) and ~3 = co and a 
Z2 symmetry acting by u t+ --u. The asymptotic expansion of the prepotential has the structure [ I] 

3 = $2 log a2 + 2 3k&4k. 

k=O 

(2) 
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In [ I] the vector (a~, a) has been considered as a holomorphic section of a flat bundle. In particular in [ 1 ] 
the monodromy properties of (a~ (u) , a(u) ) have been identified with I( 2) 

(a~)*(~)=h4U,(a~), i=1,2,3, 

where 

A+(:; :), h4,=(y2 y), A&=(;1 ‘,). 
The asymptotic behaviour of this section, derived in [ 1 I, and the geometrical data above completely determine 
(a~ (u) , a(u) ). In particular the explicit expression of the section (a~, a) has been obtained by first constructing 
tori parametrized by u and then identifying a suitable meromorphic differential [ I]. 

Before considering the framework of uniformization theory, we find the explicit expression of .F in terms of u. 
Next we will find the modular properties of .F by solving a linear differential equation which arises from defining 
properties. We will use uniformization theory in order to explicitly find u = u(a). More interestingly we will 
show that 3( (4)) = $(tr4*) + i(4)(&). Th is result implies that 3 satisfies a non-linear differential equation 
in a. This equation furnishes, as expected, recursion relations which determine the instanton contributions to 
3. Our general formula is in agreement with the results in [7] where the first terms of the instanton expansion 
have been computed. 

Let us start with the explicit expression of 3 as function of u. Let us recall that [ l] 

aD = $ ’ dxJx-u s ] Lx--i’ 
a=\/2 'dxG 

n- IT s _] &z-i’ 

In order to solve the problem we use integrability of the l-differential 

1, I 

T(u) = a&aD - aD&a = $ y - .x 

dy2/(X*- I)(x-u)(y*- l)(y-u)’ 

Let us set g(u) = srU dzv( z). We have 

u 1 

g(u) = f JS Y-X 

dX_, dyJ(X* - l)(y2 - 1) 
’ % I [ 

2u - X - Y + 2J(u - x) (u - Y) 

X-Y I. 
On the other hand notice that 

Ju3=a&a= i[d.(aao) -q(u)], 

so that, up to an additive constant, we have 

u 1 4J(x_u)(y -u) - (y-x)log *"-x-Y+*A<,;-x)(u-Yf 

J(x* - l)(y2 - 1) I. I -1 

(4) 

(5) 

(6) 

(7) 

Later, in the framework of uniformization theory, we will show that v is a constant (in the u-patch), so that g 
is proportional to II. 
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We now find the transformation properties of F(a). We have 

where ($ E) E I( 2) and ii = CUD + Da. On the other hand 

d*F( ii) 
---#-= [-(g)-3gy.&+(g)-2;],,,. 

Eqs. (8), (9) imply that 

( CFT’*’ + 0) a,‘?( 6) - CF’3’&?( 5) - ( A.F'*' + B) (CF’*’ + II)* = 0, 

where F(k) = a,“F( a), whose solution is 

F(S) = 3(u) + $u:, + yu* + BCUUD. 

(8) 

(9) 

(10) 

(11) 

This means that the function 

G(a) = Ti 

( 
F(u) - ~uda.F(u) 

is modular invariant, that is 

G(G) = G(a). 

By (2) we have asymptotically 

(12) 

(13) 

1 
Go = -, 

2 
& = 2ITik3k. (14) 

2. In order to find u = u(u) and 3 = 3(u), we need few facts about uniformization theory. Let us 
denote by E = C U {co} the Riemann sphere and by H the upper half plane endowed with the Poincare metric 

ds* = (dz(*/(Imz)*. It is well known that n-punctured spheres Z, - ~\(uI, . . . ,un), n 2 3, can be represented 

as H/T with I c PSL(2, R) a parabolic (i.e. with ItrY/ = 2, y E I) Fuchsian group. The map JH : H t Xn 
has the property JH ( y . z ) = J”(z), where y’ z = (AZ + B)/(Cz + D), y = (i g) E r. It follows that after 

winding around nontrivial loops the inverse map transforms as 

J$(U) - 7;‘(u) = 
A.&‘(u) + B 

C.&‘(u) + D’ 

The projection of the Poincare metric onto I;,, g H/I is 

ds* = epldu12 = lJ;’ @)‘I2 l&12, 

(ImJ;‘(u))* 

(15) 

(16) 

which is invariant under SL( 2, R) fractional transformations of JH1. The fact that ep has constant curvature 

-1 means that q satisfies the Liouville equation 

(17) 
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Near a puncture we have 9 N - log (]u - ui12 log* ]u - ui]). For the Liouville stress tensor we have the following 

equivalent expressions 

~(u)=d,d,~-~(a~~)*={J~i.U}=~(2~~~~.~~+~). 
i=l 

I 1 
(18) 

where { 1;' , u} denotes the Schwarzian derivative of J,ij’ and the ci’s, called accessory parameters, satisfy the 

constraints 

n-1 ,I- I 

c c; = 0, c CiUi= 1 - 5. 
i=l i=l 

(19) 

Let us now consider the covariant operators introduced in the formulation of the KdV equation in higher 

genus [ 81. We use 1 /J;” as covariantizing polymorphic vector field [9] 

sY+‘) = (2k + 
J,, ’ 

(20) 

where the number of derivatives is 2k + 1 and ’ = a,,. Univalence of Ji’ implies holomorphicity of $!{+*). 

An interesting property of the equation $?t”’ . qb = 0 is that its projection on H reduces to the %ivial 

equation (2k + 1 )z’k’la~k’l & = 0, where ‘i = J;‘(u). Operators sj:+‘) are covariant, holomorphic and 

SL(2, C) invariant, which by ( 15) implies singlevaluedness of S_, (2k+‘) Furthermore, Mobius invariance of . 
H 

the Schwarzian derivative implies that ~~?~“’ depends on J;’ only through the stress tensor ( 18) and its 

derivatives. For k = l/2, we have the un&rmizing equation 

1’ 4 ( > JH au (21) 

that, by construction, has the two linearly independent solutions 

@, = (J,-l))-’ J-1 
H' t+b2 = (J;“)-‘, 

so that 

(22) 

JH' =Icl1/$2. 

By (IS) and (22) it follows that 

(23) 

(24) 

In the case of 23 z H/r(2), Eq. (19) gives CI = -Q = l/4 and the uniformizing Eq. (21) becomes 

( 

3 + u* 
a,” + 4(] _ u2)2 

> 
@ =o, (25) 

which is solved by Legendre functions 

$1 = JI-u2P-1,2, $2 = J1-ll’Q-,/2. (26) 
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These solutions define a holomorphic section that by (24) has monodromy I’(2). We note that formulas 
(25) (26) and some related consequences have been considered also in the framework of special geometry 

[ lo]. In a similar context [ 111 it has been given the explicit expression of u as function of $3. 

In order to find (a, a~) we observe that by (22) +I and $2 are (polymorphic) - 1 /Zdifferentials whereas 
both aD and a are O-differentials. This fact and the asymptotic behaviour of (a~, a) given in [ I] imply that 

where d&? is considered as a -3/2-differential. Comparing with (26) we get (4). 

3. By Eqs. (25) and (27) it follows that no and a are solutions of the third-order equation 

( a2+4(;-;)2) lK&d=o. 
” 

Let us consider some aspects of this equation. First of all note that, as observed in [7], 

(27) 

(28) 

It follows that [( 1 - u2)a; - t] 4 = c with c a constant. A check shows that a~ and a in (4) satisfy this 

equation with c = 0 

[ 
(I -u2)a:-$ aD= I [ (i-~')a,2-$ 1 ~=o. 

As noticed in [ 71, this explains also why, despite of the fact that a and a~ satisfy the third-order differential Eq. 

(28), they have two-dimensional monodromy. Eq. (30) is the crucial one to find u = u(u) and to determine the 

instanton contributions. In our framework the problem of finding the form of 3 as a function of a is equivalent 
to the following general basic problem which is of interest also from a mathematical point of view: 

Given a second-order difserential equation with solutions +$ and $2 Jind the function Fl (@I ) (32 (@2 ) ) such 

that ti2 = a3,;af+b, (el = a32/afj22>. 
It can be shown that, in general, these functions satisfy a non-linear differential equations. We prove that for 

the case at hand (the procedure can be extended also to higher-order equations). The first step is to observe 

that by (30) it follows that 

aah - @Ju’ = c. (31) 

Since (a~, a) are (polymorphic) O-differentials, it follows that in changing patch the constant c in (31) is 

multiplied by the Jacobian of the coordinate transformation. Another equivalent way to see this, is to notice 

that Eq. (30) gets a first derivative under a coordinate transformation. Therefore in another patch the r.h.s. of 
(3 1) is no longer a constant. This aspect is related to covariance. In particular, we have seen that covariance 
of the equation such as 

(a,2 + F(z)/2Mz) = 0, 

is ensured if and only if $ transforms as a -l/2-differential and F as a Schwarzian derivative. In terms of the 

solutions $1, $2 one can construct the O-differential (cl;& - +I Ic/!, that, by the structure of the equation, is just 

a constant c. In another patch we have (a;, + F( w) /2)q( w) = 0, so that $1 (z >a;$2 (z ) - @2 (z 18, @I ( z 1 = 

(cl, w)aw,&cw) - &wad& 64 = C. 
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This discussion shows that flatness of (a~, a) is at the heart of the reduction mechanism from the third-order 
to second-order equation, Flatness of (ao, a) also implies that &~/~?a = 
unusual way to express the inverse map J;’ 

Qzo/d,u is covariantly definite. This 
suggests considering as inverse map also the covariantly defined 

function Q/U (&Q/&Z and Q/U have the same monodromy). This point is of interest to study the critical 
curve on which Imun/u = 0 [ 1,12,13]. 

By (5), (6), (12) and (31) it follows that 

u = AC?(u) + B, (32) 

where B is a constant which we will show to be zero. To determine the constant A, we note that asymptotically 
a N 6, therefore by ( 14) one has A = 1. By (4) and (32) it follows that 

dx,./x -G(a) - B 

VP? ’ 
u= $ ’ dxd.x-G(a) -B J m_, &c-i 

I 

(33) 

Apparently to solve these two equivalent integro-differential equations seems a difficult task. However we can 
use the following trick. First notice that 

c1 - U*)d,2 - ;] d’ = 0 = {[I - (G + I?)*] @‘ai _ G”&) _ !__‘1} 4, (34) 

where now ’ E ~7,. Then, since 4 = a (or equivalently C# = uo = JJ) is a solution of (34), it follows that 
G’(u) satisfies the non-linear differential equation [1 - (0 + B)*] G”+ ~uQ’~ = 0. Inserting the expansion (14) 
one can check that the only way to compensate the a- 2(2k+‘) terms is to set B = 0. Therefore 

(1 - 62) g” + $zG1’ = 0, (35) 

which is equivalent to the following recursion relations for the instanton contribution (recall that Gk = 27rikFk) 

G 
1 

‘+’ = 8$(n + I)* 

n-l n-l j+l 

x (2n- 1)(4n- ~)A+~G~CG - 9 II k k+lc(k,n) - 2~:~,~~-j~j+l-kFkd(j, k,n) , (36) 
h=o j=O k=O 

where n > 0, Ga = l/2 and 

c(k,n)=2k(n-k-l)+n-1, d(j,k,n)=[2(n-j)-l][2n-3j-1+2k(j-k+1)]. 

The first few terms are G’a = 1, 61 = $, $72 = $, G’s = $, in agreement * with the results in [7] where the first 
terms of the instanton expansion have been computed by first inverting u(u) as a series for large u/A and then 
inserting this in a~. 

The above results imply that the prepotential has a very simple structure. This is the content of the relation 
u = G(u) which is equivalent to 

(37) 

‘Concerning n, T and A, we are using different normalizations with respect to those chosen in [ 71, thus to compare 3k in (36) with 
3rnT 

3fLT in 17 I one should check the k-independence of 2% A. 
3kmT 3k,1 
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Finally note that 

aah - 
2i 

aDa’ = -. 
lr 

(38) 

These results are useful to explicitly determine the critical curve on which Im aD/a = 0, whose structure has 

been considered in [ 1,12,13]. 

It is a pleasure to thank P. Argyres, F. Baldassarri, G. Bonelli, J. de Boer, J. Fuchs, W. Lerche, I?A. Marchetti, 
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