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UNIVARIATE RADIAL BASIS FUNCTIONS WITH
COMPACT SUPPORT CARDINAL FUNCTIONS

Len Bos and Stefano De Marchi

We discuss the class of univariate Radial Basis Functions for which
the ith cardinal function ui for interpolation at x1 < x2 < · · · < xn

has support [xi−1, xi+1]. We also give an explicit example where it can
be proven that the points in an interval [a, b] for which the associated
Lebesgue constant is minimal, are equally spaced.

1. Introduction

Radial Basis Function interpolation (RBF) is an important method of
(multivariate) interpolation of typically scattered data, which has been much
used in applications. The basic form of RBF is quite simple. Given a function
g : R+ → R, the associated RBF interpolant of a data set {(xj , yj)} ⊂ Rd+1

with n “sites” xj ∈ Rd and function values yj ∈ R, is the function of the form

s(x) =
n∑

j=1

aig(|x− xj |) such that s(xi) = yi, 1 ≤ i ≤ n

(if it exists).
The theory of RBF has been by now rather well developed (cf. the mono-

graphs [6],[3]) but there remain some interesting, and important, questions.
One of these is the question of the upper bound for the associated Lebesgue
constant of the interpolation process. To describe what this is, it can be
shown that the RBF interpolant can be written in Lagrange form

s(x) =
n∑

j=1

yjuj(x)

where the uj(x) are the so-called cardinal functions, defined by the property
that uj(xi) = δij , the Kronecker delta. If the sites xi are restricted to lie in a
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compact set K ⊂ Rd, then the Lebesgue constant is defined to be

Λn := max
x∈K

n∑

j=1

|uj(x)|.

The value of Λn gives important information on the stability of the interpolation
process (see [4] for a discussion of this property for kernels g with limited
smoothness). A particularly interesting question is to determine an optimal
bound for Λn when the sites are “equally spaced” in K, as it is understood
that such sites are near optimal (cf. [5]) for RBF interpolation. This remains
a largely open and likely difficult problem.

Given this typical difficulty of analyzing multivariate interpolation schemes
and procedures, it is often useful to look more carefully at the univariate case
for some suggestion as to how the general case might behave. This is the goal
of this paper.

2. The case of g(x) = x

For the rest of the paper we will be considering only the univariate case, i.e.,
with sites x1 < x2 < · · · < xn belonging to some interval [a, b]. It is instructive
to first consider the case g(x) = x, for which the interpolant is of the form

(1) s(x) =
n∑

j=1

aj |x− xj |, aj ∈ R.

It is easy to see that this interpolation problem is correct, i.e., for every set of
function values yi, 1 ≤ i ≤ n, there is a unique s of the form (1) such that

s(xi) = yi, 1 ≤ i ≤ n.

This can be done in one of two ways. The first, perhaps the most direct,
follows from the fact that the determinant of the associated linear system,
also known as the associated Vandermonde determinant, may be computed
(cf. [1]) to be

(2) det ([|xi − xj |]1≤i,j≤n) = (−1)n−12n−2




n−1∏

j=1

hj







n−1∑

j=1

hj


 ,

where hj := xj+1 − xj . Clearly this is non-zero and hence the interpolation
problem is indeed correct.

A second, more instructive way, is to give formulas for the cardinal functions
uj . In fact, since |x−xi| is piecewise linear, our interpolant is just the ordinary
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“connect the dots” piecewise linear interpolant of the data. The cardinal
functions must then be

(3) uj(x) =





0 if x ≤ xj−1
x−xj−1

xj−xj−1 if xj−1 < x ≤ xj

xj+1−x
xj+1−xj

if xj < x ≤ xj+1

0 if x > xj+1

for 2 ≤ j ≤ n− 1, i.e., xj an interior point. For the two boundary points x1

and xn the formulas are slightly different:

(4) u1(x) =

{
x2−x
x2−x1

if x1 ≤ x ≤ x2

0 if x > x2,

(5) un(x) =

{
0 if x ≤ xn−1
x−xn−1

xn−xn−1
if xn−1 < x ≤ xn.

These are none other than the classical piecewise linear “hat” functions. What
remains to show is that these “hat” functions can be written in the form (1).
But this is easy. Indeed, one may check that

uj(x) =
1

2(xj − xj−1)
|x− xj−1| − xj+1 − xj−1

2(xj+1 − xj)(xj − xj−1)
|x− xj |

+
1

2(xj+1 − xj)
|x− xj+1|(6)

for 2 ≤ j ≤ n − 1, i.e., xj an interior point. Note that the formula (6) is
defined for all x ∈ R, but is identically zero outside the interval [xj−1, xj+1].

The boundary points x1 and xn are again slightly different. For u1, if we
were to add a site x0 < x1, then the same formula as (6) with j = 1 would
hold for u1. However, this would involve a multiple of |x − x0| which is not
in the basis of allowed translates given by (1). But, restricted to the interval
[x1, xn], |x− x0| = (x− x0), which way be expressed as

|x− x0| = x− x0 =
xn − x0

xn − x1
(x− x1) +

x1 − x0

xn − x1
(xn − x)

=
xn − x0

xn − x1
|x− x1|+ x1 − x0

xn − x1
|x− xn|,

again restricted to [x1, xn].
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It follows that

u1(x) =
1

2(x1 − x0)
|x− x0|(7)

− x2 − x0

2(x2 − x1)(x1 − x0)
|x− x1|+ 1

2(x2 − x1)
|x− x2|

=
1

2(x1 − x0)

{
xn − x0

xn − x1
|x− x1|+ x1 − x0

xn − x1
|x− xn|

}

− x2 − x0

2(x2 − x1)(x1 − x0)
|x− x1|+ 1

2(x2 − x1)
|x− x2|

= − xn − x2

2(x2 − x1)(xn − x1)
|x− x1|+ 1

2(x2 − x1)
|x− x2|

+
1

2(xn − x1)
|x− xn|.

Similarly,

un(x) =
1

2(xn − x1)
|x− x1|+ 1

2(xn − xn−1)
|x− xn−1|(8)

− xn−1 − x1

2(xn − x1)(xn − xn−1)
|x− xn|.

Remark. Note that each uj is a combination of just three translates,
|x− xj−1|, |x− xj | and |x− xj+1|. This also holds for u1 and un if we make
the cyclic identification x0 = xn and xn+1 = x1. This is reflected in the fact
that the inverse of the Vandermonde matrix [|xi−xj |] is cyclically tridiagonal,
i.e., is tridiagonal, except that the (1, n) and (n, 1) entries are also non-zero.
2

3. The case of g′′(x) = λ2g(x)

We will show that, remarkably, for g(x) a solution of the differential equation

g′′(x) = λ2g(x), λ ∈ C

the cardinal functions have the same structure (6), as for the simple linear
function g(x) = x. Specifically, we show that the cardinal functions for interpo-
lants of the form

(9) s(x) =
n∑

j=1

ajg(|x− xj |)
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are a linear combination of three consecutive translates of g(|x|) and are
supported in [xj−1, xj+1]. Moreover, we will then show that this is the unique
class of such functions.

To begin, note that the λ = 0 case corresponds (essentially) to g(x) = x
and hence we assume that λ 6= 0. We may then write

(10) g(x) = aeλx + be−λx

for some a, b ∈ C. We first observe that the interpolation problem for functions
of the form (9) is correct provided b 6= a and aeλxn 6= ±beλx1 . This follows
easily from the following formula for the associated Vandermonde determinant.

Theorem 1. For g(x) of the form (10) we have

det ([g(|xi − xj |)]1≤i,j≤n) =

(b− a)n−2e−2λ
Pn

j=1 xj




n−1∏

j=1

(e2λxj+1 − e2λxj )


(

b2e2λx1 − a2e2λxn
)
.

Proof. This follows from the same types of calculations as in Proposition
2.1 of [1] where the formula for the b = −a case is given. 2

Proposition 3.1. For functions g(x) of the form (10) with a, b so that
the interpolation problem is correct, we have for 2 ≤ j ≤ n− 1,

uj(x) = A1g(|x− xj−1|) + A2g(|x− xj |) + A3g(|x− xj+1|)

where

A1 = − eλxj−1eλxj

(e2λxj − e2λxj−1)(b− a)
,

A2 =
(e2λxj+1 − e2λxj−1)e2λxj

(e2λxj+1 − e2λxj )(e2λxj − e2λxj−1)(b− a)
,

A3 = − eλxj eλxj+1

(e2λxj+1 − e2λxj )(b− a)
.

Proof. It is easily verified that the stated formula for uj has all the
properties of a cardinal function. Note that, again, uj is identically zero
outside the interval [xj−1, xj ]. 2

The cardinal functions for the boundary points x1 and xn have exactly
the same structure as those for g(x) = x, i.e, (7) and (8).
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Proposition 3.2. For functions g(x) of the form (10) with a, b so that
the interpolation problem is correct, we have

u1(x) = B1g(|x− x1|) + B2g(|x− x2|) + B3g(|x− xn|)
un(x) = C1g(|x− x1|) + C2g(|x− xn−1|) + C3g(|x− xn|)

where

B1 =
e2λx1(b2e2λx2 − a2e2λxn)

(b− a)(b2e2λx1 − a2e2λxn)(e2λx2 − e2λx1)
,

B2 = − eλx2eλx1

(b− a)(e2λx2 − e2λx1)
,

B3 = − eλx1eλxnab

(b− a)(b2e2λx1 − a2e2λxn)

and

C1 = − eλx1eλxnab

(b− a)(b2e2λx1 − a2e2λxn)
,

C2 = − eλxn−1eλxn

(b− a)(e2λxn − e2λxn−1)
,

C3 =
e2λxn(b2e2λx1 − a2e2λxn−1)

(b− a)(b2e2λx1 − a2e2λxn)(e2λxn − e2λxn−1)
.

Proof. Again, once given these formulas are easy to verify. Notice that if
either a or b are zero, then C1 = B3 = 0 and u1 and u2 are linear combinations
of just two translates. In this case the inverse of the Vandermonde matrix is
exactly tridiagonal. 2

In Figure 1 we show an example with the plot of the cardinals made by using
the previous formulas.

4. The uniqueness of this class of functions

Theorem 2. Suppose that g : R+ → R is analytic. Suppose further that
for any x1 < x2 < · · · < xn, the cardinal functions for interpolation of the
form (9) can be given as a linear combination of three consecutive translates,
i.e., there exist constants αj , βj and γj such that

uj(x) = αjg(|x− xj−1|) + βjg(|x− xj |) + γjg(|x− xj+1|),
2 ≤ j ≤ n−1. Suppose further that uj has support in the interval [xj−1, xj+1].
Then there exists a λ ∈ C such that

g′′(x) = λ2g(x).
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Figure 1: Cardinal functions for the nodes [1, 2, 3.5, 6, 7.5]

Proof. Since the xi are arbitrary, for every three points t1 < t2 < t3 we
must be able to find constants α, β, γ, not all zero, such that

s(x) := αg(|x− t1|) + βg(|x− t2|) + γg(|x− t3|)
has support inside [t1, t3]. In other words,

αg(x− t1) + βg(x− t2) + γg(x− t3) ≡ 0, x ≥ t3(11)
αg(t1 − x) + βg(t2 − x) + γg(t3 − x) ≡ 0, x ≤ t1.(12)

Consider first (11). Since g is assumed to be analytic then this must be
an identity for all x ∈ R. We consider several cases. First, it can certainly not
be the case that two of the coefficients α, β, γ are zero, for then g would be
identically zero. Secondly, if one of them is zero, for example, say γ = 0, then

αg(x− t1) + βg(x− t2) ≡ 0.

Setting s := x− t1 and y := t2 − t1 > 0, we would have

αg(s) + βg(s− y) ≡ 0.

In other words g would be such that for all y > 0 there existed α and β both
non-zero, such that

αg(s) + βg(s− y) ≡ 0.
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In fact, since g 6≡ 0 there must exist s0 ∈ R such that g(s0) 6= 0 so that

αg(s0) + βg(s0 − y) = 0

and so the vector 〈α, β〉 = k〈g(s0− y),−g(s0)〉 for some multiple k. It follows
that

(13) g(s0 − y)g(s)− g(s0)g(s− y) ≡ 0.

Hence,

(14) g(s) =
g(s0)

g(s0 − y)
g(s− y).

Moreover, differentiating (13) with respect to y we obtain

−g′(s0 − y)g(s)− g(s0)g′(s− y) ≡ 0

so that

g′(s− y) = −g′(s0 − y)
g(s0)

g(s)

= −g′(s0 − y)
g(s0)

g(s0)
g(s0 − y)

g(s− y) by (14)

= −g′(s0 − y)
g(s0 − y)

g(s− y).

This implies that g′(s− y)/g(s− y) is independent of s and hence g(s) =
Keks for some constants K and k. Such a g is already in our class (with λ = k
and b = 0), but it is easily seen that in this case (with one coefficient zero) the
second equation (12) can not also be satisfied. In other words, three translates
are needed to construct the cardinal functions.

Lastly, consider the case when all three of α, β and γ are non-zero. In (11)
and (12) we may set s := x− t1, y1 := x2 − x1 > 0 and y2 := x3 − x1 > y1 to
obtain

αg(s) + βg(s− y1) + γg(s− y2) ≡ 0,

αg(−s) + βg(−s + y1) + γg(−s + y2) ≡ 0.

If we then solve for g(s) and g(−s) we arrive at the equivalent conditions that
for every y2 > y1 > 0 there must exist constants c1 and c2, both non-zero,
such that

g(s) ≡ c1g(s− y1) + c2g(s− y2),(15)
g(−s) ≡ c1g(−s + y1) + c2g(−s + y2).(16)



Len Bos and Stefano De Marchi 37

The coefficients c1 and c2 can again be obtained from (two) certain specific
values of s and hence are smooth functions of y1 and y2. Differentiating (15)
with respect to y1 and y2 we obtain

0 ≡ ∂c1

∂y1
g(s− y1)− c1g

′(s− y1) +
∂c2

∂y1
g(s− y2),(17)

0 ≡ ∂c1

∂y2
g(s− y1) +

∂c2

∂y2
g(s− y2)− c2g

′(s− y2).

It follows that g′(s−y1) and g′(s−y2) are both in the two-dimensional space,
span(g(s− y1), g(s− y2)).

Now, differentiate (17) with respect to s to obtain

0 ≡ ∂c1

∂y1
g′(s− y1)− c1g

′′(s− y1) +
∂c2

∂y1
g′(s− y2).

It follows that the three functions g(s− y1), g′(s− y1) and g′′(s− y1) are all
members of the same two dimensional space, span(g(s − y1), g(s − y2)), and
hence are linearly dependent. Equivalently, g(s) is the solution of some second
order, constant coefficient, differential equation. By considering (16) it can
be seen (after somewhat tedious calculations) that, in fact, the coefficient of
g′(s) must be zero, and indeed g′′(s) = λ2g(s) for some λ ∈ C, as claimed. 2

Remark. In the conclusion of Theorem 2 it may be that λ = 0 or not.
If λ = 0 then g′′(x) = 0, i.e., g(x) = ax + b for some constants a, b. This is
essentially the case considered in §2. If λ 6= 0 then g has the form g(x) =
aeλx + be−λx, for some constants a, b.

5. The cardinal functions in piecewise form

There remains another surprise.

Theorem 3. Suppose that x1 < · · · < xn and that g(x) = aeλx + be−λx

is such that the interpolation problem is correct. Then, independently of the
values of a and b,

uj(x) = eλ(xj−x)





e2λx−e2λxj−1

e2λxj−e2λxj−1
if x ∈ [xj−1, xj ]

e2λx−e2λxj+1

e2λxj−e2λxj+1
if x ∈ [xj , xj+1]

0 otherwise

2 ≤ j ≤ n− 1 ,

u1(x) = eλ(x1−x)

{
e2λx−e2λx2

e2λx1−e2λx2
if x ∈ [x1, x2]

0 otherwise
,
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un(x) = eλ(xn−x)

{
e2λx−e2λxn−1

e2λxn−e2λxn−1
if x ∈ [xn−1, xn]

0 otherwise
.

Proof. This is just a straightforward calculation. We leave the details to
the reader. 2

From this it follows easily that for λ ∈ R, the uj(x) are non-negative on
[x1, xn] and, in particular that the Lebesgue function

n∑

j=1

|uj(x)| =
n∑

j=1

uj(x).

Using the formulas of Theorem 3 we then easily arrive at

Proposition 5.1. Suppose that x1 < x2 < · · ·xn and that g(x) = aeλx +
be−λx for λ ∈ R, is such that the interpolation problem is correct. Then,
independently of the values of a and b,

n∑

j=1

|uj(x)| = eλx + eλ(xj+xj+1−x)

eλxj + eλxj+1
, x ∈ [xj , xj+1].

In particular,

max
x1≤x≤xn

n∑

j=1

|uj(x)| = 1.

Proof. That the maximum is one follows from the fact that the formula
for the Lebesgue function restricted to [xj , xj+1] equals 1 at xj and xj+1, and
has a strictly positive second derivative. 2

6. The case of λ complex

A particularly instructive case is when λ = i with a = −i/2 and b = i/2 so
that g(x) = sin(x). If we make the restriction that xn − x1 < π, then the
determinant of Theorem 1 will be non-zero and the interpolation problem is
correct.

The formulas for the cardinal functions given in Theorem 3 still hold and
indeed simplify to

uj(x) =





sin(x−xj−1)
sin(xj−xj−1)

if x ∈ [xj−1, xj ]
sin(xj+1−x)
sin(xj+1−xj)

if x ∈ [xj , xj+1]

0 otherwise

; 2 ≤ j ≤ n− 1 ,
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u1(x) =

{
sin(x−x2)
sin(x1−x2)

if x ∈ [x1, x2]

0 otherwise
,

un(x) =

{
sin(x−xn−1)
sin(xn−xn−1)

if x ∈ [xn−1, xn]

0 otherwise
.

It follows easily that uj(x) ≥ 0 on [x1, xn] under our assumption that
xn−x1 < π. Hence, the formula for the Lebesgue function given by Proposition
5.1 is also still valid. Indeed, it may easily be simplified to

n∑

j=1

|uj(x)| = cos(x− xj+xj+1
2 )

cos(xj+1−xj

2 )
, x ∈ [xj , xj+1].

The maximum is clearly attained at the midpoint x = (xj +xj+1)/2 at which

n∑

j=1

|uj(x)| = 1
cos(xj+1−xj

2 )
.

Hence

Λn := max
x1≤x≤xn

n∑

j=1

|uj(x)|(18)

= max
1≤j≤n−1

1
cos(xj+1−xj

2 )

=
1

cos(max1≤j≤n−1
xj+1−xj

2 )
.

Consequently we have

Theorem 4. Suppose that g(x) = sin(x). Then, among all distributions
of points a = x1 < x2 < · · · < xn = b in the interval [a, b] with b − a < π,
the one for which Λn is uniquely minimized is the equally spaced one, i.e, for
xj = a + (j − 1)(b− a)/(n− 1), 1 ≤ j ≤ n.

Proof. For any other distribution one of the spacings xj+1 − xj must be
greater than the average spacing (b− a)/(n− 1). Hence, by (??),

Λn =
1

cos(max1≤j≤n−1
xj+1−xj

2 )
>

1
cos( b−a

2(n−1) )
,

the value of the Lebesgue constant for the equally spaced distribution. 2
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Figure 2: Lebesgue functions for λ = i and equally spaced points (left) and
non-equally spaced points [0 0.2 0.5 1.2 1.5 2] (right)
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