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Abstract

We discuss various properties of Probabilistic Cellular Automata, such as the structure of
the set of stationary measures and multiplicity of stationary measures (or phase transition) for
reversible models.

1 Introduction

Probabilistic Cellular Automata (PCA) are discrete-time Markov chains on a product space SΛ (con-
figuration space) whose transition probability is a product measure. In this paper, S is assumed to
be a finite set (spin space), and Λ (set of sites) a subset, finite or infinite, of ZZd. The fact that the
transition probability P (dσ|σ′), σ, σ′ ∈ SΛ, is a product measure means that all spins {σi : i ∈ Λ}
are simultaneously and independently updated (parallel updating). This transition mechanism differs
from the one in the most common Gibbs samplers (e.g. [8], [3]), where only one site is updated at
each time step (sequential updating).

Several properties of PCA’s, mainly of general and qualitative nature, have been investigated
([14, 7, 23, 5, 18]). As far as we know, however, sharper properties like e.g. rate of convergence to
equilibrium or use of parallel dynamics in perfect sampling, have not yet been investigated. PCA’s
are hard to analyze mainly for the following reason. Suppose Λ is a finite subset of ZZd, and let µ be
a given probability on SΛ. To fix ideas, we may think of µ as a finite volume Gibbs measure for a
given interaction and assigned boundary conditions. It is simple to construct Markov chains on SΛ

with sequential updating which have µ as reversible measure. Transition probabilities are given in
simple form in terms of µ, and reversibility immediately implies that µ is an stationary measure for
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the dynamics. Quite differently, for a given µ, there is no general recipe to construct a PCA for which
µ is stationary. In particular, there exists Gibbs measures on SZZ2

such that no PCA admits them as
stationary measures (Theorem 4.2 in [5]).

Despite of this descouraging starting point, other aspects of PCA’s make them interesting stochas-
tic models, and motivate further investigation.

1. For simulation and sampling, PCA’s are natural stochastic algorithms for parallel computing.
At least in some simple models (see Section 3) it is interesting to evaluate their performance
versus algorithms with sequential updating. This will be the subject of a forthcoming paper.

2. In opposition to dynamics with sequential updating, it is simple to define PCA’s in infinite
volume without passing to continuous time. One may try to study, for instance, convergence to
equlibrium in infinite volume, or in finite volume uniformly in the volume size. Although some
perturbative methods are available (see [20] Chapter 7, [17, 18]), a theory corresponding the one
in ([21]) in continuous time, is yet to be developed.

3. PCA’s that are reversible with respect to a Gibbs measure µ have been completely characterized
in [11]. In particular it has been shown that only a small class of Gibbs measures may be
reversible for a PCA. For such PCA’s one can investigate metastable behavior. A first step in
this direction is done in [2].

The present paper is a small step toward a better understanding of PCA’s. Our objective is first
to present some links between the sets of reversible, resp. stationary, resp. Gibbs measures for general
PCA’s. We then illustrate these results on a particular class of reversible PCA’s already introduced
in [2].

More precisely it was proved in [11] that for PCA’s possessing a reversible Gibbs measure w.r.t. a
potential Φ, all reversible measures are gibbsian w.r.t the same potential. We prove a similar statement
on the set of stationary measures : For a general PCA, if one shift invariant stationary measure is
Gibbsian for a potential Φ, then all shift invariant stationary measures are Gibbsian w.r.t. the same
potential Φ (see Proposition 2.2). This induce that for a class of local, shift invariant, non-degenerated,
reversible PCA the reversible measures coincide with the Gibbsian stationary ones (Remark 3.2).

Applying this general statements to the class of PCA’s considered in [2], one can do explicit a
stationary measure which is in fact Gibbsian w.r.t. a certain potential Φ we write down (cf Proposition
3.2); we show that, for sufficiently small values of the temperature parameter, phase transition occurs,
that is there are several Gibbs measures w.r.t. Φ. At least in certain cases, existence of phase transition
would follow from general expansion arguments, like Pirogov-Sinai theory. We have preferred here,
however, to use “softer” contour arguments. The understanding of the right notion of contour for a
specific model is in any case useful in many respects (percolation, block dynamics,. . . ).

However, unlike what happens with sequential updating, not all these Gibbs measures need to be
stationary for the infinite volume PCA, the non-stationary ones being periodic with period two. To
conclude, we exhibit a Gibbs measure which is not stationary for the associated PCA.

2 Shift invariant Probabilistic Cellular Automata

Let S be a finite set. For σ ∈ SZZd , σ = (σi)i∈ZZd , and Λ ⊂ ZZd, we let σΛ ∈ SΛ its restriction to Λ.
Sometimes, when no confusion arises, we omit the index Λ in σΛ.

A time-homogeneous Markov chain on SΛ is determined, in law, by its transition probabilities
PΛ(dσ|η). If PΛ(dσ|η) is a product measure, as a probability measure on SΛ, then we say that the
Markov chain is a Probabilistic Cellular Automaton. More explicitely

PΛ(dσ|η) = ⊗i∈ΛPi(dσi|η),

and
Pi(σi = s|η) ≡ pi(s|η), s ∈ S. (2.1)
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In the case Λ = ZZd, we omit the index Λ in PΛ(dσ|η). In this case, we say that a PCA is shift
invariant if, for every i ∈ ZZd, s ∈ S, η ∈ SZZd , we have

pi(s|η) = p0(s|θiη),

where θi is the shift in ZZd: (θiη)j = ηi+j for every j ∈ ZZd. A shift invariant PCA is said to be local
if, for each s ∈ S, the map η → p0(s|η) is local, i.e. it depends on a finite number of components of η.

From now on, all PCA’s we consider in this paper satisfy the non degeneration condition :

p0(s|η) > 0, ∀s ∈ S, η ∈ SZZd .

This means that we are dealing with dynamics which can not contain a deterministic component.
In this paper we are mostly interested in stationary measures for PCA’s. For this purpose we recall

the notion of Gibbs measure on SZZd . A shift invariant potential Φ is a family {ΦΛ : Λ ⊂ ZZd, |Λ| <
+∞} of maps ΦΛ : SΛ → IR with the properties

i. For all i ∈ ZZd, Λ ⊂ ZZd finite:
ΦΛ+i = ΦΛ ◦ θi.

ii. ∑
Λ30

‖ΦΛ‖∞ < +∞.

Here and later |Λ| denotes the cardinality of Λ. Letting HΛ(σ) =
∑
A∩Λ6=∅ ΦA(σ) and choosing

τ ∈ SZZd , also write Hτ
Λ(σΛ) = HΛ(σΛτΛc), where σΛτΛc is the element of SZZd which coincides with σ

on Λ and with τ on Λc. The finite volume Gibbs measure on SΛ with boundary condition τ is given
by

µτΛ(σΛ) =
exp [−Hτ

Λ(σΛ)]
ZτΛ

,

where ZτΛ is the normalization factor. A probability measure µ on SZZd is said to be Gibbsian for the
potential Φ, and we write µ ∈ G(Φ) if for every Λ ⊂ ZZd finite and σ ∈ SZZd

µ({η : ηΛ = σΛ}|ηΛc = τΛc) = µτΛ(σΛ)

for µ-a.e. τ . If µ is shift-invariant, i.e. µ ◦ θi = µ for all i ∈ ZZd, then we write µ ∈ Gs(Φ). More
generally, we let P (resp. Ps) be the set of probability measures (resp. shift-invariant probability
measures) on SZZd .

Given Λ ⊂ ZZd, we denote by FΛ the σ-field on SZZd generated by the projection σ → σΛ. For
ν ∈ P, πΛν is the restriction of ν to FΛ. We will use, for ν, µ ∈ P, the notion of local relative entropy:

hΛ(ν|µ) =
∑
σΛ

πΛν(σΛ) log
πΛν(σΛ)
πΛµ(σΛ)

(2.2)

with Λ ⊂ ZZd finite, and of specific relative entropy

h(ν|µ) = lim sup
Λ↑ZZd

1
|Λ|

hΛ(ν|µ) (2.3)

where in the limit above Λ varies over hypercubes centered in the origin. It is easily seen that
0 ≤ h(ν|µ) ≤ +∞. In the case of µ ∈ Gs(Φ) for a potential Φ, in (2.2) πΛµ(σΛ) can be replaced by
µτΛ(σΛ), for an arbitrary τ , without changing the limit in (2.3). Moreover, for µ ∈ Gs(Φ) and ν ∈ Ps,
the limsup in (2.3) is actually a limit. In this case the Gibbs variational principle states that, for
ν ∈ Ps, h(ν|µ) = 0 if and only if ν ∈ Gs(Φ); so h(ν|µ) represents a notion of (pseudo-) distance of ν
from Gs(Φ).
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We now define a corresponding notion of specific relative entropy for transition probabilities, that
will be used to measure distance between two dynamics. Let P (dσ|η) and Q(dσ|η) two transition
probabilities on SZZd , and ν ∈ P. We define

Hν(P |Q) = lim sup
Λ↑ZZd

1
|Λ|

∫
hΛ(P (·|η)|Q(·|η))ν(dη).

Clearly Hν(P |Q) ≥ 0. By conditioning to σ the joint law Qν(dσ, dη) ≡ P (dσ|η)ν(dη) we obtain the
backward transition probability, that we denote by P̂ν(dη|σ). We also let Pν(dσ) be given by

Pν(A) =
∫
P (A|η)ν(dη)

for A ⊂ SZZd measurable. If Pν = ν we say that ν is stationary for P (dσ|η).
Our first result concerns the entropy production for a PCA (cf. [4]). The corresponding result in

continuous time has appeared in [9].

Proposition 2.1 Suppose µ is a stationary measure for a shift invariant, local PCA with transition
probability P (dσ|η). If µ is also a shift invariant Gibbs measure w.r.t. a certain potential Φ ( µ ∈
Gs(Φ)), then, for any shift invariant measure ν,

h(ν|µ)− h(Pν|µ) = Hν(P̂ν |P̂µ).

In particular, if ν ∈ Gs(Φ), then Pν ∈ Gs(Φ), that is the set of shift-invariant Gibbs measures w.r.t.
the potential Φ is stable under the action of this PCA dynamics.

Proof. Let Λ be a finite subset of ZZd, and consider

PΛ(σ|η) =
∏
i∈Λ

pi(σi|η).

This expression depends on the restriction of η to a neighborhood of Λ, that we denote by Λ.
Consider now the measure Qν(dσ, dη) defined above. For A,B ⊂ ZZd with A finite, we denote by

Qν(σA|ηB) the restriction to the σ-field generated by the projection (σ, η) → σA of the measure Q
conditioned to the σ-field generated by the projection (σ, η)→ ηB . So, e.g., PΛ(σ|η) = Qν(σΛ|ηZZd) ≡
Qν(σΛ|η), independently of ν. Similarly, Q̂ν(ηA|σB) denotes the time-reversed conditioning, so that

πΛP̂ν(ηΛ|σ) = Q̂ν(ηΛ|σ). (2.4)

For C ⊂ ZZd we will also use conditionings of the form

Q̂(ηA|σB , ηC),

with the obvious meaning.
A simple computation, using the fact that Pµ = µ, yields

hΛ(ν|µ)− hΛ(Pν|µ) =

=
∑
σΛ

πΛ(Pν)(σΛ)
∑
ηΛ

Q̂ν(ηΛ|σΛ) log
Q̂ν(ηΛ|σΛ)

Q̂µ(ηΛ|σΛ)

= EQ

[
log

Q̂ν(ηΛ|σΛ)

Q̂µ(ηΛ|σΛ)

]
.

Since
h(ν|µ)− h(Pν|µ) = lim

Λ↑ZZd
1
|Λ|

[hΛ(ν|µ)− hΛ(Pν|µ)],
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then the conclusion follows provided we show (see (2.4))

lim
Λ↑ZZd

1
|Λ|

EQ

[
log

Q̂ν(ηΛ|σΛ)

Q̂ν(ηΛ|σ)

]
= 0 (2.5)

and

lim
Λ↑ZZd

1
|Λ|

EQ

[
log

Q̂µ(ηΛ|σΛ)

Q̂µ(ηΛ|σ)

]
= 0. (2.6)

Note that (2.6) is a special case of (2.5).

Let now λ⊗ be the probability measure on SZZd obtained by taking the infinite product of the
uniform measure λ in S. We denote by λ⊗(σΛ) the projection of λ⊗ on FΛ. Let also {i1, . . . , i|Λ|} be
the lexicographic ordering of the elements of Λ; define Λk = {i1, . . . , ik} for 1 ≤ k ≤ |Λ|, and Λ0 = ∅.
By the chain rule for conditional measures

log
Q̂(ηΛ|σΛ)
λ⊗(ηΛ)

=
|Λ|∑
k=1

log
Q̂(ηik |σΛ, ηΛk−1

)

λ(ηik)
. (2.7)

Moreover, by shift invariance of Q

EQ

[
log

Q̂(ηik |σΛ, ηΛk−1
)

λ(ηik)

]
= EQ

log
Q̂(η0|σθ−ikΛ, ηθ−ikΛk−1

)

λ(η0)

 . (2.8)

Let ZZd− = {i ∈ ZZd : i ≺ 0}, where “≺” is the lexicographic order. By the Shannon-Breiman-McMillan
Theorem ([1]), for every ε > 0 there are A ⊂ ZZd, B ⊂ ZZd− finite such that if A ⊂ V and B ⊂W ⊂ ZZd−
then ∣∣∣∣∣EQ

[
log

Q̂(η0|σV , ηW )
λ(η0)

]
− EQ

[
log

Q̂(η0|σA, ηB)
λ(η0)

]∣∣∣∣∣ < ε. (2.9)

Note that, if we take Λ large enough and ik ∈ Λ is far enough from the boundary of Λ, then A ⊂ θ−ikΛ,
and B ⊂ θ−ikΛk−1. For the other values of ik ∈ Λ,

EQ

log
Q̂(η0|σθ−ikΛ, ηθ−ikΛk−1

)

λ(η0)

 ≤ log |S|,

which is the upper bound for the entropy of any probability measure is S with respect to λ. Summing
all up

lim
Λ↑ZZd

1
|Λ|

EQ

[
log

Q̂(ηΛ|σΛ)
λ⊗(ηΛ)

]
= EQ

log
Q̂(η0|σZZd , ηZZd−

)

λ(η0)

 . (2.10)

Exactly in the same way one shows that

lim
Λ↑ZZd

1
|Λ|

EQ

[
log

Q̂(ηΛ|σ)
λ⊗(ηΛ)

]
= EQ

log
Q̂(η0|σZZd , ηZZd−

)

λ(η0)

 . (2.11)

Thus (2.10) and (2.11) establish (2.5).

Next result shows that the measures in Ps for which the entropy production is zero are exactly
those in Gs(Φ). This result goes back to [10], where it has been proved for reversible systems in
continuous time. The assumption of reversibility has been dropped in [12]. In discrete-time, the proof
for a special class of reversible PCA is given in [11], Proposition 1. In the generality given here, the
first proof was contained (but unpublished) in one of the authors’ PhD Thesis ([4]). Later, a proof
using general entropy arguments was given in [19]. In this paper we have preferred to emphasize
the fact that the following result comes from the precise entropy production formula presented in
Proposition 2.1.

5



Proposition 2.2 Under the same assumptions of Proposition 2.1, suppose ν ∈ Ps is such that

h(ν|µ) = h(Pν|µ) (2.12)

(in particular, this happens when ν is stationary). Then ν ∈ Gs(Φ).

Proof. By what seen in Proposition 2.1, (2.12) amounts to

Hν(P̂ν |P̂µ) = 0. (2.13)

We now adapt a classical argument for Gibbs measures (see e.g. [22], Th. 7.4). Let V be a fixed
hypercube and, for k > 0,

∂kV = {i ∈ V c : dist(i, V ) ≤ k},

where dist(·) is the Euclidean distance. Take, now, a hypercube Λm,k that is obtained as disjoint
union of md translates of V ∪ ∂kV , say

Λm,k = ∪m
d

i=1Wi,k,

where Wi,k = Ti(V ∪ ∂kV ), and Ti is a suitable translation. We also write Vi = TiV . Defining, for
i ∈ {1, . . . ,md}

Bi,k = Wi,k \ Vi
we have (we use the notations introduced in the proof of Proposition 2.1)

log
Q̂ν(ηΛm,k |σ)

Q̂µ(ηΛm,k |σ)
=

md∑
i=1

log
Q̂ν(ηVi |ηBi,k , σ)

Q̂µ(ηVi |ηBi,k , σ)
+ log

Q̂ν(ηB1,k |σ)

Q̂µ(ηB1,k |σ)
.

By positivity of relative entropy:

EQ

[
log

Q̂ν(ηB1,k |σ)

Q̂µ(ηB1,k |σ)

]
≥ 0

so that

EQ

[
log

Q̂ν(ηΛm,k |σ)

Q̂µ(ηΛm,k |σ)

]
≥

md∑
i=1

EQ

[
log

Q̂ν(ηVi |ηBi,k , σ)

Q̂µ(ηVi |ηBi,k , σ)

]
. (2.14)

By translation invariance of Q:

EQ

[
log

Q̂ν(ηVi |ηBi,k , σ)

Q̂µ(ηVi |ηBi,k , σ)

]
= EQ

[
log

Q̂ν(ηV |ηT−1
i
Bi,k

, σ)

Q̂µ(ηV |ηT−1
i
Bi,k

, σ)

]
. (2.15)

Moreover, since Bi,k ↑ V ci as k ↑ +∞, using again the Shannon-Breiman-McMillan Theorem, for each
ε > 0 we can choose k large enough so that∣∣∣∣∣EQ

[
log

Q̂ν(ηV |ηT−1
i
Bi,k

, σ)

Q̂µ(ηV |ηT−1
i
Bi,k

, σ)

]
− EQ

[
log

Q̂ν(ηV |ηV c , σ)
Q̂µ(ηV |ηV c , σ)

]∣∣∣∣∣ ≤ ε. (2.16)

Summing up (2.14), (2.15) and (2.16), we get

1
md

EQ

[
log

Q̂ν(ηΛm,k |σ)

Q̂µ(ηΛm,k |σ)

]
≥ EQ

[
log

Q̂ν(ηV |ηV c , σ)
Q̂µ(ηV |ηV c , σ)

]
− ε. (2.17)

But md is proportional to |Λm,k|, so, by (2.13)

lim
m→+∞

1
md

EQ

[
log

Q̂ν(ηΛm,k |σ)

Q̂µ(ηΛm,k |σ)

]
= 0.
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Thus, since ε is arbitrary, (2.17) yields

EQ

[
log

Q̂ν(ηV |ηV c , σ)
Q̂µ(ηV |ηV c , σ)

]
= 0

that, by elementary properties of relative entropy, implies

Q̂ν(ηV |ηV c , σ) = Q̂µ(ηV |ηV c , σ) Q− a.s. (2.18)

At this point we use Proposition 3.2 in [13], which implies that if (2.18) holds for a µ ∈ Gs(Φ), then
ν(ηV |ηV c) = µ(ηV |ηV c) a.s. and then ν ∈ Gs(Φ) too. This completes the proof.

3 A class of reversible dynamics

In this section we introduce a class of reversible PCA’s we will be dealing with in the rest of the
paper, and give some general results on their stationary measures, resp. reversible measures. Let us
remember that a PCA P is called reversible if there exists at least one probability measure µ such
that the Markov process with initial law µ and dynamics P is reversible.

We choose S = {−1, 1} as spin space. Consider a function k : ZZd → IR that is of finite range, i.e.
there exists R > 0 such that k(i) = 0 for |i| > R, and symmetric, i.e. k(i) = k(−i) for every i ∈ ZZd

(this last assumption being necessary to assure the reversibility of the PCA, cf [11]). Moreover, let
τ ∈ {−1, 1}ZZd be a fixed configuration, that will play the role of boundary condition. For Λ ⊂ ZZd,
we define the transition probability P τΛ(dσ|η) = ⊗i∈ΛP

τ
i (dσi|η) by

P τi (σi = s|η) = pi(s|η̃) =
1
2

1 + s tanh(β
∑
i∈ZZd

k(i− j)η̃j + βh),

 (3.1)

where η̃ = ηΛτΛc ; h ∈ IR, β > 0 are given parameters. According to [11], this particular form of pi is
indeed the most general one for a shift invariant non degenerate local PCA on {−1, 1}ZZd .

In the case Λ is a hypercube, we can also consider periodic boundary conditions. The associated
transition probability is denoted by P perΛ . In general, when Λ is finite, we write P τΛ(σ|η) in place of
P τΛ({σ}|η). In the case Λ = ZZd, the boundary condition τ plays no role, and will be omitted.

In the rest of this section we establish some simple facts about stationary measures for these
PCA’s.

Proposition 3.1 Let Λ ⊂ ZZd finite, and τ ∈ {−1, 1}ZZd . Then the finite volume PCA with transition
probability P τΛ(σ|η) has a unique stationary measure ντΛ given by

ντΛ(σ) =
1
W τ

Λ

∏
i∈Λ

eβhσi cosh

β ∑
j∈ZZd

k(i− j)σ̃j + βh

 eβσi∑j∈Λc
k(i−j)τj ,

where, as before, σ̃ = σΛτΛc , and W τ
Λ is the normalization. Moreover, ντΛ is reversible for P τΛ.

Proof. It is clear that P τΛ(σ|η) > 0 ∀ σ, η, so that the Markov chain with transition probability P τΛ
has a unique stationary measure. Thus, we only have to show that ντΛ is reversible, i.e.

P τΛ(σ|η)ντΛ(η) ≡ P τΛ(η|σ)ντΛ(σ). (3.2)

Observe that, since σi ∈ {−1, 1}, P τΛ may be written in the form

P τΛ(σ|η) =
∏
i∈Λ

e
βσi
(∑

j
k(i−j)η̃j+h

)
2 cosh

(
β
∑
j k(i− j)η̃j + βh

) .
7



Thus (3.2) amounts to∑
i∈Λ

∑
j∈ZZd

σiη̃jk(i− j) +
∑
i∈Λ

∑
j 6∈Λ

ηiτjk(i− j) =
∑
i∈Λ

∑
j∈ZZd

ηiσ̃jk(i− j) +
∑
i∈Λ

∑
j 6∈Λ

σiτjk(i− j)

which is easily checked.

The above result on stationary measures for PCA’s in finite volume, has an immediate consequence
in infinite volume.

Proposition 3.2 Let τ be any fixed boundary condition, and µ be any limit point of ντΛ as Λ ↑ ZZd.
Then µ is reversible for the infinite volume PCA defined in (3.1), and µ is Gibbsian for the shift-
invariant potential Φ given by

Φ{i}(σi) = −βhσi
ΦUi(σUi) = − log cosh

[
β
∑
j k(i− j)σj + βh

]
ΦΛ(σΛ) = 0 otherwise ,

(3.3)

where Ui = {j : k(i− j) 6= 0}, that is finite by assumption.

Proof. Note that the finite volume Gibbs measure for Φ is

µτΛ(σ) =
1
ZΛ

∏
i:dist(i,Λ)≤R

cosh

β∑
j

k(i− j)σ̃j + βh

 eβhσi ,
that differs from ντΛ only for boundary terms. The fact that the limit of ντΛ is Gibbsian for Φ follows
therefore from general facts on Gibbs measures ([6]). The reversibility of µ for the infinite volume
PCA is obtained as follows. Let f : {−1, 1}ZZd × {−1, 1}ZZd → IR be a function which is local in both
variables. For Λ large enough, reversibility of ντΛ yields∑

σ,τ

P τΛ(σ|η)ντΛ(η)f(σ, η) =
∑
σ,τ

P τΛ(η|σ)ντΛ(σ)f(σ, η). (3.4)

Note that, for Λ large enough, the boundary condition τ in P τΛ does not play any role in (3.4). Thus,
letting Λ ↑ ZZd in (3.4) obtaining∫

P (dσ|η)µ(dη)f(σ, η) =
∫
P (dη|σ)µ(dσ)f(σ, η), (3.5)

that establishes reversibility of µ.

Remark 3.1 Instead of fixed boundary conditions, one can choose periodic boundary conditions. In
this case, the finite volume measure defined by

νperΛ (σ) =
1

W per
Λ

∏
i∈Λ

cosh

β ∑
j∈ZZd

k(i− j)σ̃j + βh

 eβhσi
where σ̃ is the periodic continuation of σ, is the unique stationary reversible measure for P perΛ . Remark
that, in opposition to fixed boundary conditions, we now have that νperΛ = µperΛ , which means that
the finite volume stationary measure for the finite volume PCA is equal to the local specification of
the associated Gibbs measure.

Moreover, the following result gives a complete description of the links between the set of reversible
measures for the PCA P (which will be denoted by R), the set of stationary ones denoted by S, the
set G(Φ) of Gibbs measures with respect to the potential Φ defined by (3.3), and their respective
intersections with the set of shift-invariant measures : Rs, Ss, Gs(Φ).
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Proposition 3.3 The reversible measures for the PCA P defined in (3.1) are exactly those Gibbs
measures w.r.t. Φ given in (3.3) which are also stationary :

R = S ∩ G(Φ). (3.6)

Moreover, the subset of shift invariant reversible measures is equal to the set of shift invariant sta-
tionary measures :

Rs = Ss. (3.7)

Proof. The proof of the first assertion is based on the following proposition proved in [11] :
Let P be a non degenerate local reversible PCA. Each reversible measure µ for P is Gibbs w.r.t.

a certain potential ΦP . Reciprocally, any Gibbs measure w.r.t. ΦP is either a reversible measure for
P or periodic of period two.

Since obviously R ⊂ S, the abovementioned proposition implies R ⊂ S ∩G(Φ). For the reciprocal
inclusion, since stationary measures can not be 2-periodic, a stationary Gibbsian measure is necessarely
a reversible one.

To prove the second assertion, note that by Proposition 3.2 and Remark 3.1, Ss ∩ Gs(Φ) 3 µper.
Thus Proposition 2.2 applies, that is : Ss ⊂ Gs(Φ). On the other hand, from the first assertion:
Rs = Ss ∩ Gs(Φ). Then Rs = Ss.

Remark 3.2 The proof of Proposition 3.3 doesn’t use the specific form of the PCA P . So equalities
(3.6) and (3.7) hold as soon as Proposition 2.2 and the abovementioned result of [11] apply, that is
for the general class of local, shift invariant, non degenerate reversible PCA dynamics on SZZd for any
S finite.

4 Phase transition

In this section we show that for some reversible PCA it is indeed the case that not all Gibbs measures
for the potential in (3.3) are stationary. We treat those PCA defined in (3.1) for which k(i) = 0 for
|i| > 1 (id est R=1), h = 0 and d = 2. Besides β, there are three parameters in the game: k(0), k(e1)
and k(e2), where e1, e2 are the basis vectors in IR2. The first result concernes the existence of phase
transition for the potential Φ.

Proposition 4.1 Assume k(e1) 6= 0, k(e2) 6= 0. Then there exists βc ∈ (0,+∞) such that for β > βc
|G(Φ)| > 1.

Proof. We divide the proof into different cases, depending on the signes of k(0), k(e1), k(e2). Note
that the transformation k(·)→ −k(·) leaves invariant the potential Φ.
Case 1: k(0) ≥ 0, k(e1) > 0, k(e2) > 0.

For a given square Λ ⊂ ZZ2, let Clm(Λ) = {i ∈ ZZd : dist(i,Λ) ≤ m}. Consider a fixed configuration
σ ∈ {−1,+1}ZZ2

such that σi ≡ +1 for i 6∈ Λ ( σΛc ≡ +1). Moreover let ZZ2
∗ = ZZ2 + (1/2, 1/2). We

recall the classical notion of Peierls contour associated to σ. We say that the segment joining two
nearest neighbors a, b ∈ ZZ2

∗ is marked if this segment separates two nearest neighbors i, j ∈ ZZ2 for
which σiσj = −1. Marked segments form a finite family of closed, non self-intersecting, piecewise
linear curves, that we call Peierls contours. Each segment of a contour γ separates two nearest
neighbors whose spins have different signes (they necessarily belong to Cl1(Λ)). If i, j are nearest
neighbors separated by γ and σi = −1 we write i ∈ ∂−γ and j ∈ ∂+γ. We call the union of the sets
of sites ∂−γ and ∂+γ the boundary of the contour γ. For each i ∈ Λ for which σi = −1, there is a
minimal Peierls contour γ around i, i.e. such that i is in the interior of the closed curve γ.

This notion of minimal contour is the one used for the Ising model. Here we have to modify it as
follows. Two Peierls contours γ, γ′ are called adjacent if their boundaries have a common point. We say
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that two Peierls contours γ, γ′ communicates if they belong to a sequence of Peierls contours γ1, . . . , γn
such that for all k, γk and γk+1 are adjacent. The relation of communicating is an equivalence relation.
We call simply contour the union of the Peierls contours in an equivalence class. The minimal contour
around i with σi = −1 is the one formed by the equivalence class which contains the minimal Peierls
contour around i. The boundary (∂+ or ∂−) of a contour is simply the union of the boundaries of the
Peierls contours that form it.

Let now µ+
Λ be the finite volume Gibbs measure with + boundary condition, that we write as

follows:

µ+
Λ(σ) =

1
ZZ+

Λ

∏
i∈Cl1(Λ)

cosh(β
∑
j k(i− j)σ+

j )
cosh(β

∑
j k(i− j))

with σ+ = σΛ(+1)Λc .

We have modified the normalization for later convenience. A given σ+ ∈ {−1,+1}ZZ2
corresponds, as

described above, to a collection of contours Γ = {c1, . . . , cm}. Each contour ci is a union of Peierls
contours. Peierls contours belonging to different ci’s do not communicate. We can write:

µ+
Λ(σ) =

1
ZZ+

Λ

m∏
k=1

F (ck),

where

F (ck) =
∏
i∈∂ck

cosh(β
∑
j k(i− j)σj)

cosh(β
∑
j k(i− j))

and ∂ck = ∂+ck ∪ ∂−ck. Observing that if σ0 = −1 then there is a contour around 0, we have:

µ+
Λ(σ0 = −1) =

1
ZZ+

Λ

∑
c1 around 0

F (c1)
∑
Γ3c1

F (Γ \ c1),

where, for Γ = c1 ∪ c2 ∪ · · · ∪ cm, we let F (Γ \ c1) =
∏m
k=2 F (ck). Note that, if Γ is a contour, Γ \ c1

is also a contour, that corresponds to the configuration obtained by flipping all the spins −1 inside c1
in the configuration associated to Γ. It follows that∑

Γ3c1

F (Γ \ c1) ≤ Z+
Λ ≡

∑
Γ

F (Γ),

and therefore
µ+

Λ(σ0 = −1) ≤
∑

c1 around 0

F (c1). (4.1)

Now note that if c1 is a contour and i ∈ ∂c1, then the spins σi, σi±e1 , σi±e2 do not have the same sign,
so that

cosh(β
∑
j k(i− j)σj)

cosh(β
∑
j k(i− j))

≤ cosh(βA)
cosh(βB)

,

where B =
∑
j k(j), A is the maximum value of |

∑
j k(i− j)σj)| for σ such that σ0, σ±e1 , σ±e2 do not

have the same sign, and therefore A < B. Thus, we have to compare for a contour c1, the cardinal of
its boundary |∂c1| with its length denoted by l(c1). But remark that to any point of ∂c1 correspond
at most 4 marked segments on c1. So, l(c1) ≤ 4|∂c1|, and we have

F (c1) ≤
[

cosh(βA)
cosh(βB)

]|∂c1|
≤
[

cosh(βA)
cosh(βB)

]l(c1)/4

.

On the other hand, for a given length l, it is easily checked that the number of contours around 0 of
length l is bounded by l33l−1. Thus, by (4.1),

µ+
Λ(σ0 = −1) ≤

∑
l≥0

l33l−1

[
cosh(βA)
cosh(βB)

]l/4
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that goes to zero as β ↑ +∞. Thus, taking β large enough and letting L ↑ ZZd in µ+
Λ , we construct

a Gibbs measure µ for which µ+(σ0 = −1) < 1/2. Simmetrically, taking minus boundary conditions,
we obtain a Gibbs measure µ− for which µ−(σ0 = −1) > 1/2, and this proves phase transition.
Case 2: k(0) < 0, k(e1) > 0, k(e2) > 0.

Define

k∗(i) =
{
k(i) for i 6= 0
−k(0) for i = 0,

and let Φ∗ be the associated potential. Consider also the map T : {−1, 1}ZZ2 → {−1, 1}ZZ2
given by

(Tσ)i =
{
σi for i ∈ ZZ2

e

−σi for i ∈ ZZ2
o.

To stress dependence on the potential Φ we write µτΛ,Φ for µτΛ. It is easily seen that

µτΛ,Φ(σ) = µTτΛ,Φ∗(Tσ),

so that the map µ → µ ◦ T is a bijection between G(Φ) and G(Φ∗). The conclusion follows from the
fact that |G(Φ∗)| > 1, as seen in case 1.
Case 3: k(0) ≥ 0, k(e1) > 0, k(e2) < 0.

This case is treated as case 2, with the following choices:

k∗(i) =
{
k(i) for i 6= e2

−k(e2) for i = e2,

and

(Tσ)i =
{
σi for i = (x, y) with y even
−σi otherwise .

the proof is now completed.

Remark 4.1 The special case k(0) = 0 was already treated in [11] example 2 (for k(e1) = k(e2) = 1) ,
where a remarkable relation with Ising model was pointed out. We recall here in some more generality
the principal steps of the argumentation :

let ZZ2
o = {(x, y) ∈ ZZ2 : x + y is odd }, ZZ2

e = ZZ2 \ ZZ2
o and, similarly, Λo = Λ ∩ ZZ2

o, Λe = Λ ∩ ZZ2
e.

Note that since k(0) = 0, σΛo and σΛe are independent under µτΛ, i.e. µτΛ = µτΛe ⊗ µ
τ
Λo

. Consider the
following anisotropic Ising model on {−1, 1}Λ:

ρτΛ(σ) =
1
Nτ

Λ

exp

[
β
∑
i∈Λ

(k(e1)σiσ̃i+e1 + k(e2)σiσ̃i+e2)

]
,

where Nτ
Λ is the normalization and σ̃ = σΛτΛc . Restricting this measure to the sites in Λe we obtain

πΛeρ
τ
Λ(σΛe) =

∑
σΛo

ρτΛ(σ)

=
2
Nτ

Λ

∏
i∈Λo

cosh

β∑
j

k(i− j)σ̃j


= µτΛo(σΛe).

Therefore, phase transition for G(Φ) follows from phase transition for the Ising model:
since ρ−(σ0 = +1) < 1

2 < ρ+(σ0 = +1), the restrictions πΛeρ
− and πΛeρ

+ are different, and then

(µ+
ZZ2
o

= πΛeρ
+) 6= (πΛeρ

− = µ−
ZZ2
o
).
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We now show that, in certain cases, there are elements in G(Φ) that are not stationary.

Proposition 4.2 Suppose k(0) ≤ 0, k(e1) < 0, k(e2) < 0, and let µ+ be the Gibbs mesure corre-
sponding to plus boundary conditions. Suppose β is large enough so that µ+ 6= µ−. Then µ+ is not
stationary.

Proof. We first observe that the transformation k(·)→ −k(·) do not change the elements of G(Φ), but it
does change the dynamics. We recall few basic notions on stochastic ordering. Given σ, η ∈ {−1, 1}ZZ2

,
we say that σ ≤ η if σi ≤ ηi for every i ∈ ZZ2. Monotonicity of functions {−1, 1}ZZ2 → IR is defined
with respect to this partial order. Finally, for ν, µ probabilities on {−1, 1}ZZ2

, we say that ν ≤ µ if∫
fdν ≤

∫
fdµ for every increasing f .

The key observation consists in the fact that, under our assumptions on k(·), the transition prob-
ability P (dσ|η) is decreasing, i.e.

ν ≤ µ implies Pν ≥ Pµ.

This follows from the facts that p0(1|η) is decreasing in η, while p0(−1|η) is increasing in η (see [14] or
[16] for details). Let now µ0 be a limit point of the sequence νperΛ defined in Remark 3.1. By using the
criterion in [15], Th. II 2.9, it is easy to check that νperΛ ≤ ν+

Λ for every Λ, and so µ0 ≤ µ+. Moreover,
0 = µ0(σ0 = −1) < 1

2 < µ+(σ0 = −1). So µ0 6= µ+. On the other hand, by Proposition 3.2, µ0 is
stationary. Therefore Pµ+ ≤ Pµ0 = µ0 < µ+, which completes the proof.
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