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Abstract

We postulate that physical states are equivalent under coordinate transformations. We then implement this equivalence
principle first in the case of one-dimensional stationary systems showing that it leads to the quantum analogue of the
Hamilton–Jacobi equation which in turn implies the Schrodinger equation. In this context the Planck constant plays the role¨

Ž .of covariantizing parameter. The construction is deeply related to the GL 2,C -symmetry of the second-order differential
equation associated to the Legendre transformation which selects, in the case of the quantum analogue of the Hamiltonian
characteristic function, self-dual states which guarantee its existence for any physical system. The universal nature of the
self-dual states implies the Schrodinger equation in any dimension. q 1999 Published by Elsevier Science B.V. All rights¨
reserved.

PACS: 03.65.-w
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While general relativity is based on a simple
fundamental principle, a similar geometrical struc-
ture does not seem to underlie quantum mechanics.
This suggests that the problems arising in quantizing
gravity are deeply connected with the apparently
different origin of the two theories. In this letter we
postulate that physical systems are equivalent under
coordinate transformations. We will see that while
the equivalence principle cannot be consistently im-
plemented in the Classical Stationary Hamilton–
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Ž .Jacobi Equation CSHJE , it leads to its quantum
analogue and then to the Schrodinger equation. This¨
quantum stationary Hamilton–Jacobi equation is a
third-order differential equation whose solution de-
fines SS , denoting the quantum analogue of the0

Hamilton characteristic function, or reduced action,
SS cl. Here we consider the case of stationary one-di-0

mensional systems. The higher dimensional, time
dependent systems will be considered in forthcoming
papers.

Our formulation is strictly related to the
Ž .GL 2,C -symmetry underlying the recently observed

relationship between second-order differential equa-
tions and Legendre transformation. In particular, as
we will see, this identifies in the case of the reduced
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action SS , a basic self-dual state which guarantees0

the existence of its Legendre transformation for any
system. This is the starting point in a chain of
deductions culminating with the Schrodinger equa-¨
tion. In particular, the existence of the self-dual state
implies that for any one-dimensional stationary state
with potential V and energy E, there is always a

Ž . Ž .coordinate choice q for which WW q 'V q yE˜
˜ Ž .corresponds to WW q s0. In this context the Planck˜

constant, which determines the universal self-dual
state, naturally arises as a covariantizing parameter.

Let us denote by q the coordinate and by p the
momentum of a stationary physical system. We as-
sume the existence of TT , the Legendre dual of SS ,0 0

that is

psE SS q , qsE TT p , 1Ž . Ž . Ž .q 0 p 0

SS spE TT yTT . 2Ž .0 p 0 0

Ž .Let us consider the GL 2,C -transformations

AqqB 2y1qs , psr CqqD p , 3Ž . Ž .˜ ˜
CqqD

where rsADyBC/0. These transformations are
Ž .equivalent to say that SS is GL 2,C -invariant up to0

an additive constant

S̃S q sSS q . 4Ž . Ž . Ž .˜0 0

Note that

˜ y1 2TT p sTT p qr ACpq qBDpq2 BCpq .Ž . Ž . Ž .˜0 0

5Ž .
Ž . ŽThe transformations 3 are equivalent to es

.'" 1rr

' ''q p se Aq p qB p ,˜ ˜ Ž .
' ''p se Cq p qD p , 6Ž .˜ Ž .

and can be seen as a rotation of the elements in the
kernel of a second-order operator. The second

Ž . Ž .derivative of 2 with respect to ssSS q gives the0

‘‘canonical equation’’

2 2' 'E qUU s q p s0s E qUU s p , 7Ž . Ž . Ž .Ž . Ž .s s

Ž . � 4 � Ž . 4 XXX Xwhere UU s s q,s r2, with h x , x s h rh y
Ž .Ž XX X.23r2 h rh denoting the Schwarzian derivative.

The above method, used in the framework of the
w xSchrodinger equation in 1 , has been introduced in¨

w x2 for deriving the inversion formula in Ns2 super
w xYang-Mills, and has been further investigated in 3 .

Involutivity of the Legendre transformation and
the duality

SS lTT , qlp , 8Ž .0 0

Ž .imply another GL 2,C -symmetry, with the dual ver-
Ž . Ž Ž ..sions of 7 being tsTT p0

2 2' 'E qVV t p q s0s E qVV t q , 9Ž . Ž . Ž .Ž . Ž .t t

Ž . � 4where VV t s p,t r2. Now observe that in the case
Ž . Ž .in which psgrq, the solutions of 7 and 9

Ž . 2 Ž .coincide and UU s sy1r4g sVV t . We will call
self-dual the states parametrized by g . These states
correspond to

SS sg lng q , TT sg lng p. 10Ž .0 q 0 p

Since

SS qTT spqsg , 11Ž .0 0

it follows that the dimensional constants g , g andp q

g , satisfy the relation

g g gse. 12Ž .p q

We observe that as q and p above are not
Ž .considered independent, the transformations in 3

are not canonical ones. Nevertheless, note that, as in
the search for canonical transformations leading to a
system with vanishing Hamiltonian one obtains the
Hamilton–Jacobi equation, we may similarly look
for the equation one obtains by considering the
transformation of q, which induces the transforma-

Ž .tion of the dependent variable psE SS q , reduc-q 0

ing to the free system with vanishing energy. An-
swering this basic question will lead to the formula-
tion of the equivalence principle and then to the
quantum analogue of the Hamilton–Jacobi equation.

Ž .Let us first generalize 3 to arbitrary coordinate
˜Ž . Ž .transformations q™q q . Note that setting SS q˜ ˜0

Ž Ž ..sSS q q is a natural way to associate a new˜0

reduced action to the coordinate transformation. As
˜ Ž .psE SS q , it follows that in passing from SS to˜ ˜q 0 0˜

S̃S , p transforms as E . Similarly, the dual version0 q

q;E arises by associating to an arbitrary transfor-p
˜ ˜Ž . Ž .mation p™p p the state TT defined by TT p s˜ ˜0 0

Ž Ž ..TT p p .˜0
Ž .Under q™q q , the associated Legendre trans-˜

˜ ˜ ˜Ž . Ž . Ž .formation SS q s pE TT p y TT p generates˜ ˜ ˜ ˜0 p 0 0˜
˜Ž . Ž .Eq. 7 with the ‘‘canonical potential’’ UU s . While˜
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' 'for a Mobius transformation both q p and p¨ ˜ ˜ ˜
˜Ž . Ž . Ž . Ž .are by 6 still solutions of 7 , so that UU s sUU s ,˜

this is no longer the case for arbitrary coordinate
transformations. This is a consequence of the proper-

� 4 � 4ties of the Schwarzian derivative, as q,s s q,s if˜
Ž . Ž . w xand only if qs AqqB r CqqD 4 . Observe˜

that for a given UU, the ratio of two linearly indepen-
Ž .dent solutions of 7 gives, up to a Mobius transfor-¨

Ž .mation, qs f s . Inverting it we get the solution of
Ž .the equation of motion ssSS q . Hence, states with0

the same UU correspond to specifying different initial
Ž .conditions of 7 . However, under arbitrary transfor-

˜Ž . Ž .mations we have UU s /UU s , unless one considers˜
Ž .the transformations 3 . It follows that different UU ’s

can be connected by coordinate transformations.
˜Similarly, as we noticed, two systems SS and SS0 0
Ž .are related by the transformation q™q q defined˜

˜ Ž . Ž Ž ..by SS q sSS q q . Therefore, to find the coordi-˜ ˜0 0
˜nate transformation connecting SS with SS is0 0

equivalent to solving the inversion problem

˜ y1q™qsSS (SS q . 13Ž . Ž .˜ 0 0

This suggests the following ‘‘equivalence principle’’:
For each pair WW a,WW b there is a coordinate

a ˜ a b( ) ( ) ( )transformation such that WW q ™WW q sWW q .˜ ˜
Observe that this implies that there always exists

a coordinate transformation reducing to WWs0 corre-
sponding to the free system with vanishing energy.

We now show the basic fact that this principle is
not consistent with classical mechanics. Let us con-
sider the CSHJE

2cl1 E SS qŽ .0
qV q yEs0. 14Ž . Ž .ž /2m E q

˜ cl 2 clŽ . Ž . Ž . Ž .Under 3 we have E SS q s CqqD E SS q˜q 0 q 0˜
˜ cl cl clŽ . � 4 Ž .and UU s s q,s r2sUU s . On the other hand,˜ ˜ ˜

1 cl 2˜ ˜Ž Ž .. Ž .as E SS q qWW q s0, consistency, i.e. co-˜ ˜q 02m ˜
˜ 4Ž . Ž . Ž .variance, implies that WW q s Cq q D WW q .˜

Similarly, in the case of Õ cl-transformations q™ q̃
cl ˜ cl clŽ . Ž . Ž Ž ..sÕ q , defined by SS q sSS q q , the state˜ ˜0 0

˜ ˜ clcorresponding to WW associated to SS , satisfies0
˜ 2 2Ž .Ž . Ž .Ž . Ž .WW q dq sWW q dq . In other words WW q˜ ˜

would belong to QQ cl, the space of functions trans-
forming as quadratic differentials under Õ cl-transfor-
mations. It follows that

y2˜WW q s0™WW q s E q WW q s0, 15Ž . Ž . Ž . Ž .˜ ˜Ž .q

that is, due to the homogeneity of the transformation
properties of the quadratic differentials, the state
corresponding to WWs0 is a fixed point in the space
HH of all possible WW . In other words, in classical
mechanics the space HH cannot be reduced to a point
upon factorizing by the Õ cl-transformations.

In the following we will derive a differential
equation for SS with the following properties0

1. Covariance, i.e. consistency, under the Õ-transfor-
˜Ž . Ž .mations q ™ q sÕ q , defined by SS q s˜ ˜0

Ž Ž ..SS q q .˜0

2. In a suitable limit it reduces to the CSHJE.
3. All the states WWgHH are equivalent under the

Õ-transformations.
While point 1. is nothing else but a consistency

condition and 2. is a consequence of the existence of
classical mechanics, point 3. has a highly nontrivial
dynamical content as will play the basic role in
fixing the differential equation for SS .0

Without loss of generality, we can write the equa-
tion we are looking for in the form

21 E SS0
qWW q qQ q s0. 16Ž . Ž . Ž .ž /2m E q

Observe that if QQ denotes the space of functions
transforming as quadratic differentials under the Õ-

1 2˜ ˜ Ž .transformations, then as E SS q qWW q qŽ .˜ ˜ž /q 02m ˜
˜Ž . Ž .Q q s0 we have by consistency that WWqQ gQQ.˜

Ž .On the other hand, Eq. 15 and point 3. imply that
WWfQQ, so that we also have QfQQ. We also note

Ž .that the classical limit Q™0, for which Eq. 16
Ž .reduces to Eq. 14 , corresponds to the covariance

breaking limit, so that Q has the geometrical nature
of a covariantizing term.

Let us now consider the free system with vanish-
Ž . 2

ing energy. In this case Eq. 16 becomes E SSŽ .q 0

sy2mQ. Observe that as E SS
2
gQQ, and QfŽ .q 0

QQ, covariance would apparently imply Qs0 so that
˜ Ž . Ž .SS scnst. Therefore, as SS q sSS q , any choice˜0 0 0

˜of coordinates would always give SS scnst, so that,0

in contradiction with 3., SS scnst would be a fixed0

point in the space KK of all possible SS . This aspect0

is related to the existence of the Legendre transfor-
mation. In particular, SS -TT duality holds unless0 0

SS scnst or SS Aq, for which the formalism breaks0 0

down. On the other hand, one expects that the basic



( )A.E. Faraggi, M. MatonerPhysics Letters B 450 1999 34–40 37

properties of the equations underlying physical sys-
tems should be independent from the specific system
one considers. In particular, we have that the formal-
ism breaks down for the system corresponding to
WWs0. Similarly, whereas SS -TT duality holds for0 0

an accelerated particle, this would not be the case in
its rest frame. We will see that there is a remarkable
mechanism, direct consequence of the equivalence
principle, which solves the above problems.

Let us first introduce the basic identity
2 i2 2 SSE SS b 00 b � 4s e ,q y SS ,q , 17Ž .0½ 5ž / ž /E q 2

which forces us to use the dimensional constant b.
Ž . Ž .By 16 and 17 we have

2 i2 SSb 0
b� 4WW q s SS ,q y e ,q yQ q .Ž . Ž .0 ½ 5ž /4m

18Ž .

Since there is no universal constant in the CSHJE
with the dimension of an action, we see that b is the
only natural parameter we can use in order to reach
the covariance breaking phase in which Qs0.

We now consider the natural solution

b 2

� 4Q q s SS ,q , 19Ž . Ž .04m

w xwhich we will show in Ref. 5 to be unique. It
Ž . Ž .follows from 18 and 19 that

2 i2 SSb 0
b

WW q sy e ,q , 20Ž . Ž .½ 54m

which is equivalent to the differential equation
2 21 E SS b0 � 4qV q yEq SS ,q s0,Ž . 0ž /2m E q 4m

21Ž .
Ž .that in the b™0 limit reduces to the CSHJE 14 .

Ž .Eq. 20 and the identities

E hX1r2hXy1r2 s0sE hXy1
E hX1r2hXy1r2h , 22Ž .x x x

X1r2 Xy1 X1r2 2 � 4and h E h E h sE q h, x r2, implyx x x

2 i DSS Ac qBc0
be s , 23Ž .DCc qDc

ADyBC/0, where c D and c are linearly inde-
pendent solutions of the stationary Schrodinger equa-¨
tion

2 2b E
y qV q csEc . 24Ž . Ž .22m E q

Thus, for the ‘‘covariantizing parameter’’ b we have

bs" , 25Ž .
where "shr2p with h the Planck constant.

The formulation manifests explicit SS -TT duality0 0

as both SS scnst and SS Aq do not belong to KK.0 0

Due to the Mobius invariance of the Schwarzian¨
'w xderivative 4 , instead of SS s 2mE q, correspond-0

2 i2
" SS 0"Ž . � 4ing to WW q sy e ,q syE/0, we can4m

choose

2 i'2 m E q
"

" Ae qB
SS s ln , 26Ž .0 2 i2 i '2 m E q

"Ce qD

where the constants are chosen in such a way that
SS Au q.0

For WW s 0, the equation E SS
2

sŽ .q 0
2 i2 SS 0"� 4 Ž Ž . � 4 .y" SS ,q r2, by 17 equivalent to e ,q s00

" Ž . Ž .has the solutions SS s ln AqqB r CqqD . We0 2 i

therefore have the important fact that SS is never a0
Ž .constant! Comparing with 10 and relaxing the real-

ity condition on SS , we can choose for WWs0 the0

pair of self-dual states

"
sdSS s" lng q , 27Ž .0 q2 i

that for "™0 reduce to the classical result. Physical
solutions for SS correspond to values of A, B,C, D0

Ž .in 23 such that SS is real, that is we have0

2 i Dc q i llcSS0 i a"e se , 28Ž .Dc y i llc

Ž .where agR and Re ll/0. Thus, while 27 is a
complex solution and corresponds to the state with
WWs0, the physical solution, still corresponding to
WWs0, is given by

2 i
qq i llSS0 i a"e se . 29Ž .
qy i ll



( )A.E. Faraggi, M. MatonerPhysics Letters B 450 1999 34–4038

The above analysis shows that while in the stan-
dard approach the solutions corresponding to the
state with WWscnst coincide with the classical ones,
here we have a basic difference related to the exis-
tence of the Legendre transformation of SS for any0

Ž .Ž .system. The solutions 26 27 have been overlooked
Ž .in the literature. Note that by 23 the general solu-

Ž .tion of 24 is

i
SSi1 0

"y SS0cs Ae qBe , 30Ž ."X ž /SS( 0

Ž .Ž .that for 26 27 gives, as it should, the solutions
i i' 'y 2 m E q 2 m E q
" "csAe qBe and csAqqB.

Let us compare the above equations with those of
w x Ž .the standard notation 6 . While Eq. 21 is written in

ˆŽ .terms of SS only, substituting csRexp i SS r" in0 0
Ž .24 yields

2
2 2ˆE SS r2mqV q yEy" E R r2mRs0,Ž . Ž .ž /q 0 q

31Ž .

2 ˆE R E SS s0. 32Ž .ž /q q 0

We can distinguish the cases cAu c and cAc . In
Dthe first one we can choose c sc , i.e.

i ˆ iSS Ž .0 q ˆD y SS" Ž .0 qc q sR q e , c q sR q e ,Ž . Ž . Ž . Ž . "

33Ž .

ˆ Ž .so that we can set SS sSS . The continuity Eq. 320 0
X 2Ž . � 4gives Rs1r SS so that Q q s" SS ,q r4ms( 0 0

2Ž 2 . Ž .y" E R r2mR and Eq. 31 corresponds to Eq.q
Ž .21 .

ˆIn the cAc case one has that SS is a constant,0
ˆand we can set SS s0. This fact shows that identi-0

ˆŽ .fying the wave function with Rexp i SS r" , typical0

of Bohmian mechanics, is problematic as it would
imply a rather involved classical limit. Since the case
cAc corresponds to bound states, we would have
systems, such as the harmonic oscillator, in which in
the "™0 limit one has to recover a nontrivial

ˆclassical reduced action from SS s0. This fact can0

be seen as further evidence that the quantum ana-
logue of the classical reduced action is SS rather0

ˆthan SS . This also implies that Q is the genuine0
2Ž 2 .quantum potential rather than y" E R r2mR.q

Let us further consider the cAc case. Since
ŜS s0, we have0

c q sR q . 34Ž . Ž . Ž .
Ž . Ž .Furthermore, Eqs. 31 and 32 give

V q yEy"
2 E 2R r2mRs0, 35Ž . Ž .Ž .q

so that in this case the relation between the standard
quantum potential

"
2 E 2Rq

Q̂sy , 36Ž .
2m R

and Q is

21 E SS0
Q̂sQq . 37Ž .ž /2m E q

The existence of the self-dual state makes it possi-
ble to find a coordinate q, solution of the Schwarzian˜
equation

� 4 2q ,q q4m V q yE r" s0, 38Ž . Ž .Ž .˜
˜ Ž .in which any WWgHH reduces to WW q s0. In˜

complete analogy with the fact that the existence of
Ž .the classical trivializing conjugate variables Q, P ,

defined by the canonical transformation

cl <q™Q, p™PscnstsyE SS q ,Q ,Ž . Qs cn stQ 0

39Ž .
cl ˜Ž . Ž .implies the CSHJE H q,E SS yEsH Q, P s0,q 0

Ž .we have that 38 is a consequence of the existence
of the trivializing map

2 i
SS0 y1"y1q™qsg e , p™ps E q ps i"r2 q ,˜ ˜ ˜ ˜Ž .q q

40Ž .

leading to the free system with vanishing energy. Eq.
Ž . Ž .40 is the solution of the inversion problem 13

˜when SS is the reduced action of the state with0

W̃Ws0. Therefore, given an arbitrary state WWgHH,
˜Ž . Ž . Ž .the transformation 40 gives WW q s0, and by 30˜

3r2 2 ˜Ž . Ž . Ž .Eq. 24 becomes E q E c q s0, where˜ ˜q q̃

y1r2 y1r2
c̃ q dq sc q dq . 41Ž . Ž . Ž . Ž . Ž .˜ ˜

We note that the trivializing map can be trans-
formed to a real map by performing a Cayley trans-
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2 i SS 0"formation of e . Since this map is a Mobius¨
transformation, it is a symmetry of WW s

2 i2 SS 0"� 4y" e ,q r4m.
Remarkably, the quantum correction to the CSHJE

Ž .14 , can be also seen as modification by a ‘‘confor-
mal factor’’ defined by the canonical potential

21 E SS0 21y" UU SS qV q yEs0,Ž . Ž .0ž /2m E q

42Ž .

� 4where we used the identity q , SS s0
Ž .y2 � 4y E SS SS ,q . This shows the basic role of theq 0 0

Ž .purely quantum mechanical self-dual states 27 as in
this case

"
21y" UU " lng q s0, 43Ž .qž /2 i

Ž .which are two possible solutions of 42 for WWs0,
the other possible solutions are given by S0

" Ž . Ž .s ln AqqB r CqqD , ADyBC/0.2 i

Ž .We note that an additional term in 19 would
imply a differential equation for SS which could0

w xnot satisfy conditions 1.-3. 5 .
Ž .We observe that by 41 it follows that, in gen-

eral, diffeomorphisms do not preserve the transition
amplitudes and are not unitary. This is of course
expected as these transformations connect any pair
of different physical systems.

We have seen that the requirement of preserving
the original structures observed in the Legendre
transformation can be consistently satisfied. This
brings us to the Schrodinger equation which¨

Ž .can be characterized by the equation WW q s
2 i2 SS 0"� 4y" e ,q r4m, or equivalently by the term

Ž . 2� 4Q q s" SS ,q r4m which added to the CSHJE0

leads to the Schrodinger equation. Recalling the¨
Ž .structure of the canonical potential, namely UU SS0

� 4s q, SS r2, we explicitly see how the basic Mobius¨0

symmetry, a characteristic property of the Schwarzian
derivative, still survives in quantum theory. Thus,
the canonical formalism by itself unavoidably con-
tains an intrinsic Mobius ambiguity which actually¨
turns out to be at the heart of quantum mechanics. In
particular, the fact that the relevant equations remain
invariant under Mobius transformations of the canon-¨
ical variables and the related existence of the self-dual

states, characterized by gs""r2 i, reflect in the
reconsideration of these classical variables.

We stress that an important aspect in our con-
Ž .struction concerns the identity 17 which contains

both the classical and quantum parts WW and Q
respectively. In particular, note that it includes in the

2 i SS 0"same equation both e and SS . If one considers0

SS as a scalar field operator, then the ‘‘vertex’’0
2 i SS 0"e resembles the bosonization of a fermionic op-

erator. It is amusing that inspired by duality in SUSY
w xYang-Mills 1,2 , we obtained a quantum mechanical

expression reminiscent of supersymmetry.
Though it may seem specifically one-dimensional,

our formulation implies quantum mechanics also in
w xhigher dimensions 7 . This is just like the Heisen-

berg uncertainty relations D p Dq G"r2, which, ink k

spite of being intrinsically one-dimensional, actually
encode quantum mechanics in any dimension. In
particular, since the formulation trivially extends to
the case when

D

V q s V q , 44Ž . Ž . Ž .Ý k k
ks1

we have that the state with WWs0 still corresponds
to the nontrivial universal solution

D"
sdSS s" lng q . 45Ž .Ý0 q k2 i ks1

This guarantees that the Legendre transformation

D ETT0
SS s p yTT , 46Ž .Ý0 k 0E pkks1

is defined for any physical system and, as in the
one-dimensional case, its involutivity implies SS -TT0 0

duality. Therefore, in higher dimensions one should
derive an equation that, for potentials of the form
Ž .44 , is equivalent to decoupled one-dimensional
Schrodinger equations. Furthermore, in the classical¨

w xlimit it should reproduce the CSHJE. In Ref. 7 it
will be shown how these conditions yield the
Schrodinger equation in any dimension.¨

Finally, in the time-dependent case the equation
for the action SS is determined by considering that
in the classical limit it should correspond to the
Hamilton–Jacobi equation and that in the time-inde-
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pendent case it reproduces the above results. This
implies the quantum Hamilton–Jacobi equation in
the general case and then the time-dependent

w xSchrodinger equation 7 .¨
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