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ON THE ATTAINABLE SET FOR TEMPLE CLASS SYSTEMS WITH
BOUNDARY CONTROLS∗

FABIO ANCONA† AND GIUSEPPE MARIA COCLITE‡

Abstract. Consider the initial-boundary value problem for a strictly hyperbolic, genuinely
nonlinear, Temple class system of conservation laws

ut + f(u)x = 0, u(0, x) = u(x),

{
u(t, a) = ũa(t),

u(t, b) = ũb(t),
(1)

on the domain Ω = {(t, x) ∈ R
2 : t ≥ 0, a ≤ x ≤ b}. We study the mixed problem (1) from the

point of view of control theory, taking the initial data u fixed and regarding the boundary data ũa,
ũb as control functions that vary in prescribed sets Ua, Ub, of L∞ boundary controls. In particular,
we consider the family of configurations

A(T )
.
= {u(T, ·); u is a sol. to (1), ũa ∈ Ua, ũb ∈ Ub}

that can be attained by the system at a given time T > 0, and we give a description of the attainable
set A(T ) in terms of suitable Oleinik-type conditions. We also establish closure and compactness of
the set A(T ) in the L1 topology.
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1. Introduction. Consider the initial-boundary value problem for a strictly hy-
perbolic, genuinely nonlinear, system of conservation laws in one space dimension

ut + f(u)x = 0,(1.1)

u(0, x) = u(x),(1.2)

u(t, a) = ũa(t),(1.3)

u(t, b) = ũb(t)(1.4)

on the strip Ω = {(t, x) ∈ R
2; t ≥ 0, x ∈ [a, b]}. Here, u = u(t, x) ∈ R

n is the vector
of the conserved quantities, ũa, ũb are measurable, bounded boundary data, and the
flux function f : U �→ R

n is a smooth vector field defined on some open set U ⊆ R
n

that belongs to a class of fields introduced by Temple [29, 28] for which rarefaction and
Hugoniot curves coincide. We recall that, for problems of this type, classical solutions
may develop discontinuities in finite time, regardless of the regularity of the initial
and boundary data. Hence, it is natural to consider weak solutions in the sense of
distributions. Moreover, since, in general, the Dirichlet conditions (1.3)–(1.4) cannot
be fulfilled pointwise a.e. (see [7, 19]), different weaker formulations of the boundary
condition have been considered in the literature (see [1, 20, 27] and references therein).
Here, following Dubois and LeFloch [19], we will adopt a formulation of (1.3)–(1.4)
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based on the definition of a time-dependent set of admissible boundary data that is
related to the notion of the Riemann problem.

In the present paper, having in mind applications of Temple systems to problems
of oil reservoir simulation, multicomponent chromatography, and traffic flow models,
we study the effect of the boundary conditions (1.3)–(1.4) on the solution of (1.1)–
(1.2) from the point of view of control theory. Namely, following the same approach
adopted in [4, 5, 21] for scalar conservation laws, we fix an initial data u ∈ L∞([a, b])
and consider the family of configurations

A(T ;Ua,Ub)
.
= {u(T, ·); u sol. to (1.1)–(1.4), ũa ∈ Ua, ũb ∈ Ub}(1.5)

that can be attained at a given time T > 0 by solutions to (1.1)–(1.4), with boundary
data ũa, ũb that vary in prescribed sets Ua, Ub ⊂ L∞(R+) of admissible boundary
controls. In the case of scalar, convex conservation laws, it was proved in [4], by
using the theory of generalized characteristics [17], that the profiles w(x) which can

be attained at a fixed time T > 0 are only those for which the map x �→ f ′(w(x))
x

is nonincreasing. Under the assumption that f ′(u) ≥ 0 for all u, and for solutions
of the mixed problem (1.1)–(1.4) on the region Ω, this condition is equivalent to the
Oleinik-type inequalities

D+w(x) ≤ f ′(w(x))

(x− a)f ′′(w(x))
for a.e. x ∈ [a, b](1.6)

(D+w denoting the upper Dini derivative of w). For general n×n systems, a complete
characterization of the attainable set does not seem possible, due to the complexity of
repeated wave-front interactions. However, in the particular case of Temple systems,
wave interactions can change only the speed of wave-fronts without modifying their
amplitudes, due to the special geometric features of such systems. Therefore, the only
restriction to boundary controllability is the decay due to genuine nonlinearity. We
then consider here a convex, compact set Γ ⊂ U and provide a description of the
attainable set

A(T )
.
= A(T ;U∞,U∞), U∞ .

= L∞([0, T ],Γ)

in terms of certain Oleinik-type conditions. We also establish the compactness of
A(T ) in the L1 topology, as was shown in [4] for the scalar case. These results are
useful in applications to calculus of variations and optimal control problems where the
cost functional depends on the profile of the solution to (1.1)–(1.4) at a fixed time T .
An example is given by a model of two-component chromatography that describes a
liquid flowing through a tube packed with solid particles that absorbs (with different
rates of adsorption) two interacting chemical substances dissolved in the liquid. In
case one is interested in producing the separation of the two substances, the controller
acts by varying the concentration of the solutes entering the tube to maximize the
concentration of each substance in the liquid phase on opposite sides of the tube.

The paper is organized as follows. Section 2 contains the basic definitions and
the statement of the main results, together with a discussion of the two-component
chromatography problem. We also provide in this section a review of the existence
and well-posedness theory for the mixed problem (1.1)–(1.4), and a description of
a front tracking algorithm that will be used throughout the paper. In section 3 we
establish some preliminary estimates and a regularity result concerning the global
structure of solutions to the mixed problem (1.1)–(1.4) generated by a front tracking
algorithm. The proof of the main results is contained in section 4.
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2. Preliminaries and statement of the main results.

2.1. Formulation of the problem. Let f : U �→ R
n be the flux function of

the strictly hyperbolic system (1.1) defined on a neighborhood of the origin U ⊆ R
n.

Denote by λ1(u) < · · · < λn(u) the eigenvalues of the Jacobian matrix Df(u), and let
{r1(u), . . . , rn(u)} be a basis of right eigenvectors of Df(u). By possibly considering
a sufficiently small restriction of the domain U , we may assume that the following
uniform strict hyperbolicity condition holds.

(SH) For every u, v ∈ U , the characteristic speeds at these points satisfy

λi(u) < λj(v) ∀1 ≤ i < j ≤ n.(2.1)

We also assume that there is a fixed set of characteristic lines entering the interior
of the strip [a, b] × R

+ at the boundaries x = a, x = b, i.e., that for some index
p ∈ {1, . . . , n}, there holds

λp(u) < 0 < λp+1(u) ∀u ∈ U,(2.2)

and we let λmin, λmax denote the minimum and maximum characteristic speed so that
there holds

0 < λmin ≤ |λi(u)| ≤ λmax ∀u ∈ U.(2.3)

Moreover, we assume that each ith characteristic field ri is genuinely nonlinear
in the sense of Lax [22], and that system (1.1) is of Temple class according to the
following definition.

Definition 2.1. A system of conservation laws is of Temple class if there exists
a system of coordinates w = (w1, . . . , wn) consisting of Riemann invariants, and such
that the level sets {u ∈ U ; wi(u) = constant} are hyperplanes (see [28]).

By possibly performing a translation of coordinates, it is not restrictive to assume
that the Riemann invariants are chosen so that ∂iλi(w) > 0, i = 1, . . . , n, for all
w = w(u), u ∈ U . Throughout the paper, we will often write wi(t, x)

.
= wi(u(t, x)) to

denote the ith Riemann coordinate of a solution u = u(t, x) to (1.1). We recall that,
for a Temple class system, Hugoniot curves and rarefaction curves coincide and are
straight lines [29]. Moreover, as observed in [3], thanks to the existence of Riemann
coordinates one can show that the assumption (SH) implies the invertibility of the
map f : U �→ f(U).

We next introduce a definition of weak solution to (1.1)–(1.4) which includes an
entropy admissibility condition of Oleinik type on the decay of positive waves, to
achieve uniqueness. The boundary conditions (1.3)–(1.4) are formulated in terms of
the weak trace of the flux f(u) at the the boundaries x = a, x = b and are related
to the notion of the Riemann problem in the same spirit of [19]. To this purpose,
letting u(t, x) = W (ξ = x/t;uL, uR), uL, uR ∈ U , denote the self-similar solution of
the Riemann problem for (1.1) with initial data

u(0, x) =

{
uL if x < 0,
uR if x > 0

for any given boundary state ũ ∈ U , we define the set of admissible states at the
boundaries

Va(ũ)
.
= {W (0+; ũ, uR); uR ∈ U},

(2.4)
Vb(ũ)

.
= {W (0−;uL, ũ); uL ∈ U}.
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Definition 2.2. A function u : [0, T ]× [a, b] �→ U is an entropy weak solution of
the initial-boundary value problem (1.1)–(1.4) on ΩT

.
= [0, T ]× [a, b] if it is continuous

as a function from ]0, T ] into L1, and the following properties hold:
(i) u is a distributional solution to the Cauchy problem (1.1)–(1.2) on ΩT in the

sense that, for every test function φ ∈ C1
c with compact support contained in the set

{(t, x) ∈ R
2; a < x < b, t < T}, there holds∫ T

0

∫ b

a

(u(t, x) · φt(t, x) + f(u(t, x)) · φx(t, x))dx dt +

∫ b

a

u(x) · φ(0, x)dx = 0;

(ii) the flux f(u) admits weak∗ traces at the boundaries x = a, x = b, i.e., there
exist two measurable functions Ψa,Ψb : [0, T ] �→ R

n such that

f(u(·, x))
∗

−−⇀
x→a+

Ψa, f(u(·, x))
∗

−−⇀
x→b−

Ψb in L∞([0, T ]),(2.5)

and the boundary conditions (1.3)–(1.4) are satisfied in the following sense:

Ψa(t) ∈ f(Va(ũa(t))), Ψb(t) ∈ f(Vb(ũb(t))) for a.e. 0 ≤ t ≤ T ;(2.6)

(iii) u satisfies the following entropy conditions on the decay of positive waves in
time and space. There exists some constant C > 0, depending only on the system
(1.1), so that

(a) for any 0 < t ≤ T , and for a.e. a < x < y < b, there holds

wi(t, y) − wi(t, x) ≤ C ·
{
y − x

t
+ log

(
y − b

x− b

)}
if i ∈ {1, . . . , p},(2.7)

wi(t, y) − wi(t, x) ≤ C ·
{
y − x

t
+ log

(
y − a

x− a

)}
if i ∈ {p + 1, . . . , n};(2.8)

(b) for a.e. a < x < b, and for a.e. 0 < τ1 < τ2 ≤ T , there holds

wi(τ2, x) − wi(τ1, x) ≤ C ·
{
τ2 − τ1
x− b

+ log

(
τ2
τ1

)}
if i ∈ {1, . . . , p},(2.9)

wi(τ2, x) − wi(τ1, x) ≤ C ·
{
τ2 − τ1
x− a

+ log

(
τ2
τ1

)}
if i ∈ {p + 1, . . . , n}.(2.10)

Remark 2.3. The set of admissible flux values at the boundaries x = a, x = b,
can be expressed in Riemann coordinates as

f(Va(ũ)) = {f(u); wi(u) = wi(ũ) ∀i = p + 1, . . . , n},
f(Vb(ũ)) = {f(u); wi(u) = wi(ũ) ∀i = 1, . . . , p}.

(2.11)

Hence, by the invertibility of the map f : U �→ f(U), the above boundary conditions
(2.6) are equivalent to the set of equalities

wi(f
−1(Ψa(t))) = wi(ũa(t)) for a.e. 0 ≤ t ≤ T, di = p + 1, . . . , n,

wi(f
−1(Ψb(t))) = wi(ũb(t)) for a.e. 0 ≤ t ≤ T, i = 1, . . . , p.

(2.12)

This means that the boundary conditions (2.6) guarantee that, at almost every time
t ∈ [0, T ], the solution to the Riemann problem for (1.1), having left and right initial
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states uL = ũa(t), u
R = f−1(Ψa(t)), contains only waves with negative speeds, while

the solution to the Riemann problem with initial states uL = f−1(Ψb(t)), u
R = ũb(t),

contains only waves with positive speeds. Thus, in particular, such solutions do not
contain any front entering the domain [t,+∞[×]a, b[.

In the present paper we regard the boundary data as admissible controls and, in
connection with a fixed convex, compact set Γ ⊂ U having the form

Γ = {u ∈ U ; wi(u) ∈ [αi, βi], i = 1, . . . , n},(2.13)

we study the basic properties of the attainable set for (1.1)–(1.2), i.e., of the set

A(T )
.
= {u(T, ·); u is a sol. to (1.1)–(1.4), ũa, ũb ∈ L∞([0, T ],Γ)}(2.14)

which consists of all profiles that can be attained at a fixed time T > 0 by entropy
weak solutions of (1.1)–(1.4) (according to Definition 2.2) with a fixed initial data
u ∈ L∞([a, b],Γ) and boundary data ũa, ũb that vary in

U∞
T

.
= L∞([0, T ],Γ).(2.15)

We will establish a characterization of (2.14) in terms of certain Oleinik type estimates
on the decay of positive waves, and we will prove the compactness of (2.14) in the L1

topology.

2.2. Statements of the main results. For any ρ > 0, consider the set of maps

Kρ .
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩ϕ∈L∞([a, b],Γ);

wi(ϕ(y)) − wi(ϕ(x))

y − x
≤ ρ

x− a

{
for a.e. a < x < y < b,
if i ∈ {p + 1, . . . , n}

wi(ϕ(y)) − wi(ϕ(x))

y − x
≤ ρ

b− y

{
for a.e. a < x < y < b,
if i ∈ {1, . . . , p}

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

(2.16)

The inequalities in (2.16) reflect the fact that positive waves entering through the
boundaries x = a, x = b decay in time. Therefore, their density (expressed in terms
of Riemann coordinates) is inversely proportional to their distance from their entrance
point on the boundary.

Theorem 2.4. Let (1.1) be a system of Temple class with all characteristic
fields genuinely nonlinear, and assume that the strict hyperbolicity condition (SH) is
verified. Then, for every fixed τ > 0, there exists ρ = ρ(τ) > 0 such that

A(τ) ⊆ Kρ ∀τ ≥ τ .(2.17)

Moreover, taking T
.
= 4(b−a)

λmin , there exists ρ′ < ρ(T ) such that

Kρ′ ⊆ A(τ) ∀τ > T.(2.18)

Remark 2.5. Observe that, given ϕ ∈ Kρ, any map x �→ wi(ϕ(x)), i ∈ {1, . . . , n},
is essentially bounded and has finite total increasing variation on subsets of [a, b]
bounded away from the end points a, b. Hence, any map x �→ wi(ϕ(x)), i ∈ {1, . . . , n},
also has finite total variation on such sets and, in particular, it admits left and right
limits in any point x ∈]a, b[. Moreover, since an element ϕ of Kρ is defined up to L1
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equivalence, we may always assume that there is a right continuous representative of
wi(ϕ), i ∈ {1, . . . , n}, that satisfies the inequalities appearing in the definition of Kρ.

Remark 2.6. It can be easily seen that, no matter how small we choose ρ, it is not

possible, in general, to reach at a time T < 2(b−a)
λmax any prescribed profile ϕ ∈ Kρ with

an entropy weak solution u to (1.1)–(1.4) that starts with a fixed initial data u. This
is due to the fact that in this case the domains of determinacy of the line segments
t = 0, a ≤ x ≤ b, and t = T , a ≤ x ≤ b have a nonempty intersection and hence
the determination of the possible solution u induced by u(T, x) = ϕ(x), x ∈ [a, b],
and u(0, x) = u(x), x ∈ [a, b] would be, in general, inconsistent. We expect that the

same type of noncontrollability result holds for time larger than 2(b−a)
λmax . This raises

the question concerning the identification of a minimum time Tm < 4(b−a)
λmin for which

the inclusion (2.18) of Theorem 2.4 is verified, although a definite answer to such a
problem does not seem possible due to the complexity of the wave-front structure of
a solution to the mixed problem (1.1)–(1.4).

Theorem 2.7. Under the same assumptions of Theorem 2.4, the set A(T ) is a
compact subset of L1([a, b],Γ) for each T > 0.

2.3. An application: Chromatography of two solutes. Chromatography is
a process used by chemists and engineers to separate two (or more) chemical species
in a fluid phase by selective adsorption on a solid medium. We consider here the
case of a mixture of two interacting solutes S1 and S2 dissolved in a liquid with
concentrations c1 and c2 which passes through the interstices of a solid bed of particles
packed in a tube. The solid surface of the filtering bed absorbs different amounts of
the two solutes, while it is possible for the particles of each substance to pass from
the fluid to the solid phase, and vice versa. The different rates of adsorption of
the two solutes causes the less strongly adsorbed solute, say S2, to move ahead of
the more strongly adsorbed one S1, thus inducing a separation of the two chemical
substances. If we make the assumption of local equilibrium in the tube between the
liquid and solid phase for each substance, one can express the solid concentrations of
the two substances n1, n2 as functions of both liquid concentrations. In the case of
the Langmuir isotherm equilibrium, the solid concentrations take the form (see [24])

ni
.
=

Nikici
1 + k1c1 + k2c2

, i = 1, 2,(2.19)

where k1, k2 are constitutive constants depending on the temperature, while Ni de-
notes the limiting value of ni (representing the maximum concentration of the solute
that can be adsorbed by the solid medium). After performing a suitable transforma-
tion of the independent variables, one can express the mass conservation equations
for the two species as (see [26])

[c1]x +

[
γc1

1 + c1 + c2

]
t

= 0,

[c2]x +

[
c2

1 + c1 + c2

]
t

= 0

(2.20)

for some constant γ ∈]0, 1]. Notice that the mathematical roles played by the space-
like variable x and by the timelike variable t in (2.20) is the opposite of the typical
roles played by such variables in most physical hyperbolic systems. Because of the
particular nonlinearity relation (2.19) of the Langmuir isotherm, (2.20) enjoy the
special geometric properties of Temple systems. Moreover, by direct computations,
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one can verify that (2.20) satisfies all the other assumptions made in Theorems 2.4–
2.7, namely the following hold (see [26]):

• system (2.20) is strictly hyperbolic if we assume that the state variables ci
take values in some fixed interval [ci, di] (which corresponds to requiring that the
concentrations are nonnegative and do not approach infinity);

• both characteristic speeds of (2.20) are positive and genuinely nonlinear if
γ ∈]0, 1[ (while, in the case γ = 1, the first characteristic speed is genuinely nonlinear
and the second is linearly degenerate).

A general introduction to the mathematical modeling of chromatography and a de-
tailed analysis of the equilibrium system in the special case of Langmuir isotherm is
provided by Rhee, Aris, and Amundson in [25, 26].

We are concerned here with the problem of controlling the feed data cf1 , cf2 , i.e.,
the concentrations of the two solutes S1, S2 entering the tube in a time interval [0, T ],
to maximize the separation of the two substances at time T . Namely, we are interested
in maximizing the difference between the distributions of S1 and S2 on opposite sides
of the tube at a fixed time T . Let x = 0 and x = L denote the locations, respectively,
of the inlet and outlet of the tube, and suppose that c1, c2 are the initial distributions
in the liquid of S1 and S2 at time t = 0. Then, consider the functional

J(x, cf )
.
=

∫ x

0

(c1(T, ξ) − c2(T, ξ))dξ +

∫ L

x

(c2(T, ξ) − c1(T, ξ))dξ,(2.21)

where (c1, c2)(t, x) denotes the solution to the mixed problem for (2.20) on the strip

[0,∞[×[0, L], with initial data c = (c1, c2) and boundary data cf = (cf1 , c
f
2 ). Notice

that, since both characteristic speeds are positive, the set VL(c̃) of admissible states
at the right boundary x = L (defined as in (2.4)) turns out to be equal to the whole
space R

2 for every c̃ ∈ R
2. Hence, the only significant boundary condition is assigned

at the left boundary x = 0. Then, assuming that Ci denotes the maximum amount of
concentration of the solute Si that can be introduced in the tube in the time interval
[0, T ], we are led to study the maximization problem

max
x∈[0,1],cf∈U∞

T cf∈U∞
T

J(x, cf ),(2.22)

where the set of admissible boundary controls is given by

U∞
T

.
=

{
c̃ ∈ L∞([0, T ]) : c̃i(t) ∈ [ci, di],

∫ T

0

c̃i(t) ≤ Ci

}
.(2.23)

With the same arguments we will use to establish Theorem 2.7 one can prove the
compactness of the attainable set A(T ) in the case of a system like (2.20) where the
mathematical roles played by the x-t variables is reversed w.r.t. (1.1) and in connection
with a set of admissible boundary controls that satisfy an additional integral constraint
as in (2.23). Then, observing that the map

(x, c) �→
∫ x

0

(c1(ξ) − c2(ξ)) dξ +

∫ L

x

(c2(ξ) − c1(ξ)) dξ(2.24)

is continuous as a functional from [0, L] × L1([0, T ]) to R, we deduce that the maxi-
mization problem (2.22) admits a solution.
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2.4. Existence and uniqueness of solutions. We describe here a front track-
ing algorithm that generates approximate solutions to (1.1) on the strip [a, b] × R

+

continuously depending on the initial and boundary data, which represents a natural
extension of [3, 12]. Fix an integer ν ≥ 1 and consider the discrete set of points in Γ
whose coordinates are integer multiples of 2−ν :

Γν .
= {u ∈ Γ; wi(u) ∈ 2−ν

Z, i = 1, . . . , n}.(2.25)

Moreover, consider the domain

Dν .
= {(u, u′, u′′); u ∈ L∞([a, b],Γν), u′, u′′ ∈ L∞(R+,Γν), u, u′, u′′ piecew. const.}.

(2.26)
On Dν we now construct a flow map Eν whose trajectories are front tracking approxi-
mate solutions of (1.1). To this end, we first describe how to solve a Riemann problem
with left and right initial states uL, uR ∈ Γν . In Riemann coordinates, assume that

w(uL)
.
= wL = (wL

1 , . . . , w
L
n ), w(uR)

.
= wR = (wR

1 , . . . , w
R
n ).

Consider the intermediate states

z0 .
= uL, . . . , zi

.
= u(wR

1 , . . . , w
R
i , w

L
i+1, . . . , w

L
n ), . . . , zn

.
= uR.(2.27)

The solution to the Riemann problem (uL, uR) is constructed by piecing together the
solutions to the simple Riemann problems (zi−1, zi), i = 1, . . . , n. If wR

i < wL
i , the

solution of the Riemann problems (zi−1, zi) will contain a single i-shock, connecting
the states zi−1, zi and traveling with the Rankine–Hugoniot speed λi(z

i−1, zi). Here
and in what follows, by λi(u, u

′) we denote the ith eigenvalue of the averaged matrix

A(u, u′)
.
=

∫ 1

0

Df(θu + (1 − θ)u′) dθ.(2.28)

If wR
i > wL

i , the exact solution of the Riemann problem (zi−1, zi) would contain a
centered rarefaction wave. This is approximated by a rarefaction fan as follows. If
wR

i = wL
i + pi2

−ν we insert the states

zi,�
.
= (wR

1 , . . . , w
L
i + �2−ν , wL

i+1, . . . , w
L
n ), � = 0, . . . , pi,(2.29)

so that zi,0 = zi−1, zi,pi = zi. Our front tracking solution will then contain pi fronts
of the ith family, each connecting a couple of states zi,�−1, zi,� and traveling with
speed λi(z

i,�−1, zi,�).
For any given triple of (piecewise constant) initial and boundary data (u, ũa, ũb)

∈ Dν , the approximate solution u(t, ·) .
= Eν

t (u, ũa, ũb) is now constructed as follows.
At time t = 0, for a < x < b we solve the initial Riemann problems determined by the
jumps in u according to the above procedure, while at x = a we construct the solution
to the Riemann problem with left and right initial states uL = ũa(0+), uR = u(a+)
and take its restriction to the interior of the domain Ω. In the same way, at x = b we
take the restriction to the interior of Ω of the solution to the Riemann problem with
initial states uL = u(b−), uR = ũb(0+). This yields a piecewise constant function with
finitely many fronts, traveling with constant speeds. The solution is then prolonged
up to the first time t1 at which one of the following events takes place:

(a) two or more discontinuities interact in the interior of Ω;
(b) one or more discontinuities hit the boundary of Ω;
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(c) the boundary data ũa has a jump;
(d) the boundary data ũb has a jump.

If case (a) occurs, we then solve the resulting Riemann problems applying again the
above procedure, while in cases (b), (c), and (d) we construct the solution to the
Riemann problem with left and right initial states uL = ũa(t1+), uR = u(t1, a+), or
uL = u(t1, b−), uR = ũb(t1+) and take its restriction to the interior of the domain Ω.
This determines the solution u(t, ·) until the time t2 > t1 where one of the events (a),
(b), or (c) again takes place, etc. Notice that at any time where case (b) occurs but
(c) or (d) do not take place, no new wave is generated. Therefore, waves entering
the domain Ω at the boundaries x = a, x = b are produced only by the jumps of the
boundary data ũa, ũb.

As in [3, 12], one checks that the approximate solution u constructed with this
algorithm is well defined for all times t ≥ 0. Indeed, the following properties hold.

• The total variation of u(t, ·), measured w.r.t. the Riemann coordinates
w1(t, ·), . . . , wn(t, ·) is nonincreasing in time.

• The number of wave-fronts in u(t, ·) is nonincreasing at each interaction.
Hence, the total number of wave-fronts in u(t, ·) remains finite.

It is then possible to define a flow map

p �→ Eν
t p, p

.
= (u, ũa, ũb) ∈ Dν , t ≥ 0,(2.30)

of approximate solutions of (1.1). By construction, each trajectory t �→ Eν
t p is a weak

solution of (1.1) (because all fronts of u(t, ·) .
= Eν

t p satisfy the Rankine–Hugoniot
conditions) but may contain discontinuities that do not satisfy the usual Lax stability
conditions (due to the presence of rarefaction fronts). On the other hand, one can
verify as in [3, Lemma 4.4] that, due to genuine nonlinearity, the amount of positive
waves in u(t, ·), measured w.r.t. the Riemann coordinates w1(t, ·), . . . , wn(t, ·), decays
in time and space. Hence, for a.e. a < x < y < b, one obtains the Oleinik-type
estimates

wi(t, y) − wi(t, x) ≤ C ·
{
y − x

t
+ log

(
y − b

x− b

)}
+ Nν2

−ν if i ∈ {1, . . . , p},

wi(t, y) − wi(t, x) ≤ C ·
{
y − x

t
+ log

(
y − a

x− a

)}
+ Nν2

−ν if i ∈ {p + 1, . . . , n},

(2.31)
where Nν denotes the maximum number of shocks of each family present in the
initial data u, and in the boundary data ũa, ũb. Similarly, one can check that along
the x-sections, for a.e. 0 < τ1 < τ2, there holds

wi(τ2, x) − wi(τ1, x) ≤ C ·
{
τ2 − τ1
x− b

+ log

(
τ2
τ1

)}
+ Nν2

−ν if i ∈ {1, . . . , p},

wi(τ2, x) − wi(τ1, x) ≤ C ·
{
τ2 − τ1
x− a

+ log

(
τ2
τ1

)}
+ Nν2

−ν if i ∈ {p + 1, . . . , n}.

(2.32)

Remark 2.8. Observe that if u(t, x) is a front tracking solution of the Cauchy
problem for (1.1) (with initial data u(x)

.
= u(0, x)) constructed by the algorithm in

[12] on the upper half plane R
+ ×R, then the restriction of u(t, ·) to the interval [a, b]

coincides with the front tracking solution Eν
t (u, ũa, ũb) of the mixed problem for (1.1),

with boundary data ũa(t)
.
= u(t, a), ũb(t)

.
= u(t, b).
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As ν → ∞, the domains Dν become dense in

D .
= {(u, ũaũb); u ∈ L∞([a, b],Γ), ũa, ũb ∈ L∞(R+,Γ)}.(2.33)

Thus, following the same technique adopted in [3], one can define a flow map Et on
D as a suitable limit of the flows Eν

t in (2.30) that depends Lipschitz continuously on
the initial and boundary data. Namely, the following holds.

Theorem 2.9. Let (1.1) be a system of Temple class with all characteristic fields
genuinely nonlinear, and assume that the strict hyperbolicity condition (SH) holds.
Then, there exists a continuous map

(t, u, ũa, ũb) �→ Et(u, ũa, ũb), t ≥ 0, (u, ũa, ũb) ∈ D,(2.34)

and some constant C > 0 depending only on the system (1.1) and on the domain Γ, so
that, for every fixed 0 < δ < (b−a)/2 and for all p1

.
= (u, ũa, ũb), p2

.
= (v, ṽa, ṽb) ∈ D,

letting Lt
.
= Lt(δ) = C(1 + log(t/δ)), there holds

‖Etp1 − Etp2‖L1 ([a+δ,b−δ])

≤ Lt ·
{
‖u− v‖L1 ([a,b]) + ‖ũa − ṽa‖L1 ([0,t]) + ‖ũb − ṽb‖L1 ([0,t])

}(2.35)

for all t ≥ δ. Moreover, the map (t, x) �→ Et(u, ũa, ũb)(x) yields an entropy weak
solution (in the sense of Definition 2.2) to the initial-boundary value problem (1.1)–
(1.4) on Ω that admits strong L1 traces at the boundaries x = a and x = b, i.e., there
exist two measurable maps ψa, ψb : R

+ �→ U such that

lim
x→a+

∫ τ

0

|Et(u, ũa, ũb)(x) − ψa(t)| dt = 0,

lim
x→b−

∫ τ

0

|Et(u, ũa, ũb)(x) − ψb(t)| dt = 0

(2.36)

∀τ ≥ 0.
The proof of Theorem 2.9 can be obtained with arguments entirely similar to

those used to establish [3, Theorem 2.1], where a continuous flow of solutions to (1.1)
is constructed in the case of a mixed problem on the quarter of plane {(t, x) ∈ R

2; t ≥
0, x ≥ 0}, with a single boundary at x = 0.

Concerning uniqueness, with the same arguments in [3] one obtains the following
result which is the extension of [3, Theorem 2.2] to the present case of a domain Ω
with two boundaries at x = a and at x = b.

Theorem 2.10. Let (1.1) be a system of Temple class satisfying the same as-
sumptions as in Theorem 2.9. Let u = u(t, x) be an entropy weak solution to the mixed
problem (1.1)–(1.4) on the region ΩT

.
= [0, T ] × [a, b] (in the sense of Definition 2.2).

Assume that the following conditions hold.
(i) The map (t, x) → (u(t, ·), u(·, x)) takes values within the domain

DT
.
= {(u, ũa, ũb); u ∈ L∞([a, b],Γ), ũa, ũb ∈ L∞([0, T ],Γ)}.(2.37)

(ii) There holds

ess sup
t→0+

∫ b

a

|u(t, x) − u(x)| dx = 0.(2.38)



2176 FABIO ANCONA AND GIUSEPPE MARIA COCLITE

(iii) There holds

ess sup
x→a+

∫ T

0

|wi(u(t, x)) − wi(ũa(t))| dt = 0 ∀i = p + 1, . . . , n,(2.39)

ess sup
x→b−

∫ T

0

|wi(u(t, x)) − wi(ũb(t))| dt = 0 ∀i = 1, . . . , p.(2.40)

Then, u coincides with the corresponding trajectory of the flow map Et provided by
Theorem 2.9, namely one has

u(t, ·) = Et(u, ũa, ũb)(·) ∀0 ≤ t ≤ T.(2.41)

The next result shows that the conditions (2.38)–(2.40) are certainly satisfied by
entropy weak solutions to the mixed problem (1.1)–(1.4) obtained as the limit of front
tracking approximations.

Theorem 2.11. Let (1.1) be a system of Temple class satisfying the same as-
sumptions as in Theorem 2.9. Consider a sequence uν(t, ·) : [a, b] �→ Γν of wave-front
tracking approximate solutions of the mixed problem for (1.1) (constructed with the
above algorithm) that converges in L1, as ν → ∞, to some function u(t, ·) : [a, b] �→ Γ,
for every t ∈ [0, T ], and assume that the corresponding sequences of boundary data
ũν
a, ũν

b converge in L1 to ũa
.
= u(·, a), ũb

.
= u(·, b). Then, there exist the right limit

at x = a and the left limit at x = b of the map x → u(t, x) for every t ∈ [0, T ],
and the right limit at t = 0 of the map t → u(t, x) for every x ∈ [a, b]. Moreover,
there is a countable set N ⊂ R such that u(t, a) = u(t, a+), u(t, b) = u(t, b−) for all
t ∈ [0, T ] \ N , and u(0, x) = u(0+, x) for all x ∈ [a, b] \ N , and setting u

.
= u(0, ·),

there holds (2.41).

Remark 2.12. It was shown in [3, Lemma 2.1] that an alternative way to prove
the essential limits (2.39)–(2.40) is to employ the distributional entropy inequalities
associated with the “boundary entropy pairs” for (1.1), introduced by Chen and Frid
in [14, 15].

In order to prove Theorem 2.11, we will show in the next section that, for Temple
systems, solutions of the mixed problem (1.1)–(1.4) with possibly unbounded variation
enjoy the same regularity property (of being continuous outside a countable number of
Lipschitz curves) possessed by solutions with small total variation of a general system,
thus extending the regularity results obtained under the smallness assumption of the
total variation by DiPerna [18] and Liu [23] (for solutions constructed by the Glimm
scheme) and by Bressan and LeFloch [13] (for solutions generated by a front tracking
algorithm).

Proposition 2.13. In the same setting as Theorem 2.11, consider a sequence
uν(t, ·) : [a, b] �→ Γν of wave-front tracking approximate solutions of the mixed problem
for (1.1) (constructed with the above algorithm) that converges in L1, as ν → ∞, to
some function u(t, ·) : [a, b] �→ Γ, for every t ∈ [0, T ]. Then, there exist a countable
set of interaction points Θ

.
= {(τl, xl); l ∈ N} ⊂ ΩT

.
= [0, T ] × [a, b], and a countable

family of Lipschitz continuous shock curves Υ
.
= {x = ym(t); t ∈]rm, sm[, m ∈ N},

such that the following hold.

(i) For each m ∈ N, and for any τ ∈]rm, sm[ with (τ, ym(τ)) �∈ Θ, there exist the
derivative ẏm(τ) and the left and right limits

lim
(s,y)→(τ,ym(τ)), y<ym(τ)

u(s, y)
.
= u−, lim

(s,y)→(τ,ym(τ)), y>ym(τ)
u(s, y)

.
= u+.(2.42)
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Moreover, these limits satisfy the Rankine–Hugoniot relations

ẏm(τ) · (u+ − u−) = f(u+) − f(u−)(2.43)

and for some i ∈ {1, . . . , n} there hold the Lax entropy inequalities

λi(u
+) < ẏm(t) < λi(u

−).(2.44)

(ii) The map u is continuous outside the set Θ ∪ Υ.

3. Preliminary results. In this section we first provide some estimates on the
distance between two rarefaction fronts of a front tracking solution (constructed by
the algorithm described in section 2.4) similar to [12, Lemma 4], [8, Proposition 4.5].
We next show how to approximate the profile u(t, ·) of a solution of the mixed prob-
lem (1.1)–(1.4), with a function taking values in the discrete set Γν defined at (2.25),
which enjoys the same type of estimates on the positive waves as u(t, ·). We con-
clude the section establishing the regularity result stated in Proposition 2.13 on the
global structure of solutions to the mixed problem for (1.1), which in turn yields
Theorem 2.11.

Lemma 3.1. There exists some constant C1 > 0 depending only on the system
(1.1) such that the following holds. Consider a front tracking solution u(t, x) with
values in Γν , constructed by the algorithm of section 2.4 on the region [τ, τ ′] × [a, b].
Then, given any two adjacent rarefaction fronts of u located at x(t) ≤ y(t), t ∈ [τ, τ ′],
and belonging to the same family, there holds

|y(τ ′) − x(τ ′)| ≤ |y(τ) − x(τ)| + C1(τ
′ − τ)2−ν .(3.1)

Proof. Consider two adjacent rarefaction fronts of the kth family x(t) ≤ y(t),
t ∈ [τ, τ ′], and let τ1 < · · · < τN be the interaction times of x(t) in the interval [τ, τ ′].
Set τ0

.
= τ , τN+1

.
= τ ′, and fix α ∈ {0, . . . , N}. Let t → z(t; s, x) be the characteristic

curve of the kth family starting at (s, x), i.e., the solution to the ODE

ż = λk(u(t, z)), z(s; s, x) = x.

Notice that, although the above ODE has a discontinuous right-hand side (because
of the discontinuities in the front tracking solution u), its solution z(·; s, x) is unique
and depends Lipschitz continuously on the initial data x since it crosses only a finite
number of jumps (see [10]). Choose t0 < t1 < τα+1 so that the characteristic curve
z(·; t0, x(t0)) does not cross any wave-front of the other families in the interval [t0, t1],
and then, by induction, define a sequence of times {ti}i∈Z ⊂ ]τα, τα+1[ so that

τα < t−i−1 < t−i ≤ t0 ≤ ti < ti+1 < τα+1, i ∈ N,

lim
i→−∞

ti = τα, lim
i→+∞

ti = τα+1,
(3.2)

with the properties that the characteristic curve of the kth family starting at (ti, x(ti)),
does not cross any wave-front of the other families in the interval [ti, ti+1], for each
i ∈ Z. Thus, setting

u+
i

.
= u(ti, x(ti)+), u−

i
.
= u(ti, x(ti)−)

and observing that, by construction, one has |w(u+
i ) − w(u−

i )| < 2−ν , we derive

|z(ti+1; ti, x(ti)) − x(ti+1)| ≤ (ti+1 − ti) · |λk(u
+
i ) − λk(u

+
i , u

−
i )|

≤ c · (ti+1 − ti) · |w(u+
i ) − w(u−

i )|
≤ c · (ti+1 − ti) · 2−ν

(3.3)
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for some constant c > 0 depending only on the system. Relying on (3.3), and since
z(τ ′; ti+1, x) depends Lipschitz continuously on the initial data x, we deduce that
there exists some other constant c′ > 0, depending only on the system and on the set
Γ, so that there holds

|z(τ ′; ti, x(ti)) − z(τ ′; ti+1, x(ti+1))| ≤ c′ · |z(ti+1; ti, x(ti)) − x(ti+1)|
≤ c′ · c · (ti+1 − ti) · 2−ν

(3.4)

for any i ∈ Z. Thus, by (3.2) and thanks to (3.4), we obtain

|z(τ ′; τα, x(τα)) − z(τ ′; τα+1, x(τα))| ≤
∑
i∈Z

|z(τ ′; ti, x(ti)) − z(τ ′; ti+1, x(ti+1))|

≤ c′ · c · (τα+1 − τα) · 2−ν .

(3.5)

Repeating this computation for every interval ]τα, τα+1[, α ∈ {0, . . . , N}, we get

|z(τ ′; τ, x(τ)) − x(τ ′)| ≤
N∑

α=0

|z(τ ′; τα, x(τα)) − z(τ ′; τα+1, x(τα))|

≤ c′ · c · (τ ′ − τ) · 2−ν .

(3.6)

Clearly, one obtains the same type of estimate as (3.6) for the other rarefaction front
y(t), i.e., there holds

|z(τ ′; τ, y(τ)) − y(τ ′)| ≤ c′ · c · (τ ′ − τ) · 2−ν .(3.7)

On the other hand, by (2.3), we have

|z(τ ′; τ, x(τ)) − z(τ ′; τ, y(τ))| ≤ |x(τ) − y(τ)| + 2λmax · (τ ′ − τ).(3.8)

Thus, (3.6)–(3.8) together yield (3.1), concluding the proof.
In the following, in connection with any (right continuous) piecewise constant

map ψ : [a, b] �→ 2−ν
Z, we will let π(ψ) = {x0 = a < x1 < · · · < x� = b} denote the

partition of [a, b] induced by ψ, in the sense that ψ(x) is constant on every interval
[x�, x�+1[, 0 ≤ � < �. Then, given ρ > 0, for any ν ≥ 1, consider the set of piecewise
constant maps

Kρ
ν
.
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
ϕ : [a, b] �→ Γν ;

wi(ϕ(xk)) − wi(ϕ(xh))

xk − xh
≤ 5ρ

xh − a

⎧⎨⎩for
a < xh < xk < b,
xh, xk ∈ π(wi ◦ ϕ),

if i ∈ {p + 1, . . . , n}

wi(ϕ(xk)) − wi(ϕ(xh))

xk − xh
≤ 5ρ

b− xk

⎧⎨⎩for
a < xh < xk < b,
xh, xk ∈ π(wi ◦ ϕ),

if i ∈ {1, . . . , p}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(3.9)
The next lemma shows that we can approximate in L1 any map ϕ ∈ Kρ with a
piecewise constant function ϕν ∈ Kρ

ν .
Lemma 3.2. For any given ϕ ∈ Kρ, there exists a sequence of right continuous

maps ϕν ∈ Kρ
ν , ν ≥ 1, such that

(a) for every i ∈ {1, . . . , n}, and for any xh ∈ π(wi ◦ ϕν), there holds

wi(ϕν(xh+1)) > wi(ϕν(xh)) =⇒ wi(ϕ(xh+1)) = wi(ϕ(xh)) + 2−ν ;(3.10)
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(b) there holds

ϕν → ϕ in L1([a, b]).(3.11)

Proof. (1) First observe that, by Remark 2.5, any map x �→ wi(ϕ(x)), i ∈
{1, . . . , n}, has finite total variation on [a + ε, b − ε], ε > 0. Hence, we may assume
that wi(ϕ(·)) admits left and right limits in any point x ∈]a, b[ and that wi(ϕ(x)) =
wi(ϕ(x+))

.
= limξ→x+ wi(ϕ(ξ)) for all i ∈ {1, . . . , n}. Let {yi,m; m ∈ N} be the

countable set of discontinuities of wi(ϕ(·)), i ∈ {1, . . . , n}. Then, we can find a

partition ξ1
i,m = yi,m < ξ2

i,m < · · · < ξ
�i,m
i,m = yi,m′ of each interval [yi,m, yi,m′ [ where

x �→ wi(ϕ(x)) is continuous, so that
(i) for every 1 < � < �i,m there holds

wi(ϕ(ξ�i,m)) ∈ 2−ν
Z;(3.12)

(ii) for every 1 ≤ � < �i,m one has

|wi(ϕ(x)) − wi(ϕ(ξ�i,m))| ≤ 2−ν ∀x ∈ [ξ�i,m, ξ�+1
i,m [.(3.13)

Notice that the Oleinik-type conditions stated in the definition of Kρ imply that, at
any discontinuity point yi,m of wi(ϕ(·)), one has

lim
ξ→y−

i,m

wi(ϕ(ξ)) > wi(ϕ(yi,m)).(3.14)

(2) Let ϕν : [a, b] �→ Γν be the piecewise constant, right continuous map defined
by setting, for every i ∈ {1, . . . , n} and for any interval [yi,m, yi,m′ [, where wi(ϕ(·)) is
continuous,

wi(ϕν(x))
.
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2−ν�2νwi(ϕ(ξ1
i,m))� if

⎧⎪⎨⎪⎩
x ∈ [ξ1

i,m, ξ2
i,m[, and

wi(ϕν(ξ
1
i,m))

≤ 2−ν(�2νwi(ϕ(ξ1
i,m))� + 2−1),

2−ν(�2νwi(ϕ(ξ1
i,m))� + 1) if

⎧⎪⎨⎪⎩
x ∈ [ξ1

i,m, ξ2
i,m[, and

wi(ϕν(ξ
1
i,m))

> 2−ν(�2νwi(ϕ(ξ1
i,m))� + 2−1),

wi(ϕ(ξ�i,m)) if x ∈ [ξ�i,m, ξ�+1
i,m [, 1 < � < �i,m,

(3.15)

where �·� denotes the integer part. Notice that, by construction and because of
(3.12)–(3.14), the map ϕν : [a, b] �→ Γν enjoys the following property:

wi(ϕν(xk)) > wi(ϕν(xh))
xh < xk ∈ π(wi ◦ ϕν)

}
=⇒ wi(ϕ(xk)) > wi(ϕ(xh)) + 2−(ν+1).(3.16)

Therefore, since ϕ ∈ Kρ, relying on (3.13), (3.16), we deduce that for every wi(ϕν(·)),
i ∈ {p + 1, . . . , n}, and for any xh < xk ∈ π(wi ◦ ϕν) such that wi(ϕν(xk)) >
wi(ϕν(xh)), there holds

wi(ϕν(xk)) − wi(ϕν(xh))

xk − xh
≤ wi(ϕ(xk)) − wi(ϕ(xh)) + 2−(ν−1)

xk − xh

≤ 5(wi(ϕ(xk)) − wi(ϕ(xh)))

xk − xh

≤ 5ρ

xh − a
.

(3.17)
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Clearly, with the same computations we can show that, for every wi(ϕν(·)), i ∈
{1, . . . , p}, and for any xh < xk ∈ π(wi ◦ ϕν), there holds

wi(ϕν(xk)) − wi(ϕν(xh))

xk − xh
≤ 5ρ

b− xk
.(3.18)

The estimates (3.17)–(3.18), together, imply that ϕν ∈ Kρ
ν , while (3.13) yields (3.11).

On the other hand, observe that, by construction and because of (3.14), the map ϕν

satisfies condition (3.10), which completes the proof of the lemma.
We now provide a further estimate on the distance between two rarefaction fronts

of a front tracking solution that, at a fixed time τ , attains a profile belonging to the
set (3.9).

Lemma 3.3. Consider a front tracking solution u(t, x) with values in Γν , ν ≥ 1,
constructed by the algorithm of section 2.4 on the region [τ, τ ′] × [a, b]. Assume that
u(τ ′, ·) is right-continuous, verifies condition (a) of Lemma 3.2, and satisfies

u(τ ′, ·) ∈ Kρ′

ν , ρ′
.
=

λmin

6C1
,(3.19)

where λmin, C1 are the minimum speed in (2.3) and the constant of Lemma 3.1. Then,
given any two adjacent rarefaction fronts of u located at x(t) ≤ y(t), t ∈ [τ, τ ′], and
belonging to the same family, there holds

x(τ) < y(τ).(3.20)

Proof. To fix the ideas, assume that x(t) ≤ y(t) are the locations of two adjacent
rarefaction fronts of the k ∈ {p+1, . . . , n}th family and hence, by (2.2), have positive
speeds. Observe that, by condition (a) of Lemma 3.2, one has

wk(u(τ ′, y(τ ′))) − wk(u(τ ′, x(τ ′))) = 2−ν .(3.21)

Moreover, since u is a front tracking solution constructed by the algorithm of sec-
tion 2.4 on the region [τ, τ ′]× [a, b], we can apply Lemma 3.1. Thus, using (2.3), (3.1),
and (3.21), and recalling the definition (3.9) of Kρ′

ν , we deduce

y(τ ′) − x(τ ′) ≤ y(τ) − x(τ) + C1(τ
′ − τ)2−ν

≤ y(τ) − x(τ) + C1
x(τ ′) − x(τ)

λmin
· (wk(ϕν(y(τ

′))) − wk(ϕν(x(τ ′))))

≤ y(τ) − x(τ) + C1
5ρ′

λmin
· (y(τ ′) − x(τ ′))

which, because of (3.19), implies

y(τ) − x(τ) ≥
(

1 − C1
5ρ′

λmin

)
· (y(τ ′) − x(τ ′)) > 0,

proving (3.20).
We next derive a regularity property enjoyed by general solutions of Temple sys-

tems with boundary variation defined as a limit of front tracking approximations,
which allows us to establish Proposition 2.13. This is an extension of the regularity
results obtained in [18, 23, 13] for the solution with small total variation of general
systems. The arguments of the proof are quite similar to the corresponding result
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in [13], but we will repeat some of them for completeness, referring to [13] (see also
[9, Theorem 10.4]) for further details.

Lemma 3.4. Let (1.1) be a system of Temple class satisfying the same assump-
tions as in Theorem 2.9. Consider a sequence uν(t, ·) : [c, d] �→ Γν , t ∈ [r, s], of
front tracking approximate solutions of the mixed problem for (1.1) (constructed by
the algorithm of section 2.4) that converges in L1, as ν → ∞, to some function
u(t, ·) : [c, d] �→ Γ, for every t ∈ [r, s] ⊂ R

+. Assume that

Tot.Var.(uν(t, ·)) ≤ M, Tot.Var.(uν(·, x)) ≤ M ∀t, x, ν,(3.22)

for some constant M > 0, here and throughout the following, Tot. V ar.(w) denotes
the total variation of the function w. Then, there exist a countable set of interaction
points Θ

.
= {(τl, xl); l ∈ N} ⊂ D

.
= [r, s] × [c, d], and a countable family of Lipschitz

continuous shock curves Υ
.
= {x = ym(t); t ∈]rm, sm[, m ∈ N}, such that the following

hold.
(i) For each m ∈ N, and for any τ ∈]rm, sm[ with (τ, ym(τ)) �∈ Θ, there exist

the left and right limits (2.42) of u at (τ, ym(τ)) and the shock speed ẏm(τ). More-
over, these limits satisfy the Rankine–Hugoniot relations (2.43) and the Lax entropy
inequality (2.44), for some i ∈ {1, . . . , n}.

(ii) The map u is continuous outside the set Θ ∪ Υ.
Proof. 1. To establish (i) we need to recall some technical tools introduced in

[13] (see also [9, Theorem 10.4]). For every front tracking solution uν , we define the
interaction and cancellation measure μIC

ν that is a positive, purely atomic measure
on D, concentrated on the set of points P where two or more wave-fronts of uν

interact. Namely, if the incoming fronts at P have size σ1, . . . , σ� (w.r.t. the Riemann
coordinates) and belong to the families i1, . . . , i�, respectively, we set

μIC
ν (P )

.
=

∑
α,β

|σασβ | +
∑
i

⎛⎝ ∑
{iα; iα=i}

|σα| −

∣∣∣∣∣∣
∑

{iα; iα=i}
σα

∣∣∣∣∣∣
⎞⎠ .(3.23)

Since μIC
ν have a uniformly bounded total mass, by possibly taking a subsequence we

can assume the weak convergence

μIC
ν ⇀ μIC(3.24)

for some positive, purely atomic measure μIC on D. Call Θ the countable set of atoms
of μIC , i.e., set

Θ
.
=

{
P ∈ D; μIC(P ) > 0

}
.

For every approximate solution uν taking values in Γν , ν ≥ 1, and for any fixed
ε ≥ 2−ν , by an ε-shock front of the ith family in uν we mean a polygonal line in D,
with nodes (τ0, x0), . . . , (τN , xN ), having the following properties.

(I) The nodes (τh, xh) are interaction points or lie on the boundary of D, and
the sequence of times is increasing τ0 < τ1 < · · · < τN .

(II) Along each segment joining (τh−1, xh−1) with (τh, xh), the function uν has
an i-shock with strength |σh| ≥ ε.

(III) For h < N , if two (or more) incoming i-shocks of strength ≥ ε interact at
the node (τh, xh), then the shock coming from (τh−1, xh−1) has the larger speed, i.e.,
is the one coming from the left.
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An ε-shock front, which is maximal with respect to the set theoretical inclusion,
will be called a maximal ε-shock front. Observe that, because of (III), two maximal
ε-shock fronts of the same family either are disjoint or coincide. Moreover, by (3.22),
the number of maximal ε-shock fronts that start at the boundary of D is uniformly
bounded by 3M/ε. On the other hand, the special geometric features of Temple class
systems guarantee that no new shock front can arise in the interior of D. Indeed, the
coinciding shock and rarefaction assumption together with the existence of Riemann
invariants prevents the creation of shocks of other families than those of the incoming
fronts at any interaction point. Therefore, for fixed ε > 0, and i ∈ {1, . . . , n}, the
number of maximal ε-shock fronts of the ith family remains uniformly bounded by
Mε

.
= 3M/ε in all uν , ν ≥ 1. Denote such curves by

yεν,m : [tε,−ν,m, tε,+ν,m] �→ R, m = 1, . . . ,Mε.

By possibly extracting a further subsequence, we can assume the convergence

yεν,m(·) −→ yεm(·), tε,±ν,m −→ tε,±m , m = 1, . . . ,Mε,

for some Lipschitz continuous paths yεm : [tε,−m , tε,+m ] �→ R, m = 1, . . . ,Mε. Repeating
this construction in connection with a sequence εk → 0, and taking the union of all the
paths thus obtained, we find, for each characteristic family i ∈ {1, . . . , n}, a countable
family of Lipschitz continuous curves ym : [t−m, t+m] �→ R, m ∈ N. Call Υ the union of
all such curves.

2. Consider now a point P = (τ, ym(τ)) �∈ Θ along a curve ym ∈ Υ of a family
i ∈ {1, . . . , n}. Notice that, by construction and because of (3.24), no curve in Υ can
cross ym at P . Moreover, by (3.22), the function u(τ, ·) has bounded variation, and
hence there exist the limits

lim
x→ym(τ)−

u(τ, x)
.
= u−, lim

x→ym(τ)+
u(τ, x)

.
= u+.(3.25)

We claim also that the limits (2.42) exist and thus coincide with those in (3.25). To
this end observe that, by construction, there exists a sequence of shocks curves yν,m
of the ith family converging to ym, along which each approximate solution uν has a
jump of strength ≥ ε∗, for some ε∗ > 0. Then, relying on the assumption

μIC({P}) = 0(3.26)

and letting B(P, r) denote the ball centered at P with radius r, one can establish the
limits

lim
r→0+

lim sup
ν→+∞

(
sup

(t,x)∈B(P,r)x<yν,m(t)

|uν(t, x) − u−|
)

= 0,(3.27)

lim
r→0+

lim sup
ν→+∞

(
sup

(t,x)∈B(P,r)x>yν,m(t)

|uν(t, x) − u−|
)

= 0,(3.28)

which clearly yield (2.42). Indeed, if, for example, (3.27) do not hold, by possibly
taking a subsequence we would find ε > 0 and points Pν

.
= (tν , ξν) → P on the left of

yν,m such that

|uν(tν , ξν) − u−| ≥ ε ∀ν.



ATTAINABLE SET FOR TEMPLE SYSTEMS WITH BOUNDARY 2183

On the other hand, by the first limit in (3.25), and since uν(τ, x) → u(τ, x) for a.e.
x ∈ [α, β], we could also find points Qν

.
= (τ, ξ′ν) → P on the left of yν,m such that

uν(τ, ξ′ν) → u−,
|ξν − ξ′ν |
|tν − τ | > λmax ∀ν,

where λmax denotes the maximum speed at (2.3). But then, for each solution uν , the
segment PνQν would be crossed by an amount of waves of strength ≥ ε. Hence, by
strict hyperbolicity and genuine nonlinearity, this would generate a uniformly positive
amount of interaction and cancellation within an arbitrary small neighborhood of P
(see [9, Theorem 10.4, Step 5]) which by the definition (3.23) and because of (3.24)
contradicts the assumption (3.26).

To complete the proof of (i), observe that, by construction, the states u−
ν,m(τ),

u+
ν,m(τ) to the left and right of the jump in uν at yν,m(τ) satisfy the Rankine–Hugoniot

conditions. Thus, relying on (3.27)–(3.28) and on the convergence yν,m → yν , one
deduces (2.43). The proof of (ii) can be established with the same type of arguments
(see [9, Theorem 10.4, Step 8]).

As an immediate consequence of Lemma 3.4, we derive Proposition 2.13, stated
in section 2.4.

Proof of Proposition 2.13. Consider a sequence uν(t, ·) : [a, b] �→ Γν of front
tracking approximate solutions of the mixed problem for (1.1) on the region ΩT

.
=

[0, T ] × [a, b] that converges in L1, as ν → ∞, to some function u(t, ·) : [a, b] �→ Γ for
every t ∈ [0, T ]. Observe that by Theorem 2.9 one can find another sequence {vν}ν≥1

of approximate solutions of (1.1) on the region ΩT , whose initial and boundary data
have a number of shocks Nν ≤ ν for each characteristic family, and such that

‖uν(t, ·) − vν(t, ·)‖L1([a,b]) ≤ 1/ν ∀t ∈ [1/ν, T ].

Then, thanks to the Oleinik estimates (2.31)–(2.32) and because all vν take values in
the compact set (2.13), there will be, for every fixed ε > 0, some constant Mε > 0
such that

Tot.Var.{vν(t, ·); [a + ε, b− ε]} ≤ Mε ∀t ∈ [ε, T ],

Tot.Var.{vν(·, x); [ε, T ]} ≤ Mε ∀x ∈ [a + ε, b− ε]
(3.29)

∀ν ∈ N. Thus, writing ΩT as the countable union

ΩT = ∪kDk, Dk
.
= [1/k, T ] × [a + (1/k), b− (1/k)],

and applying Lemma 3.4 to each sequence of maps vνk
.
= vν �Dk

, ν ≥ 1, defined as
the restriction of vν to the domain Dk, we clearly reach the conclusion of Proposi-
tion 2.13.

We are now in position to establish Theorem 2.11, relying on Proposition 2.13
and Theorem 2.10.

Proof of Theorem 2.11. Let uν(t, ·) : [a, b] �→ Γν be a sequence of front tracking
approximate solutions of the mixed problem for (1.1) on the region ΩT

.
= [0, T ]× [a, b]

that converges in L1, as ν → ∞, to some function u(t, ·) : [a, b] �→ Γ for every t ∈ [0, T ].
Since, by construction, each uν is a weak solution of (1.1) and because uν(0, ·) →
u(0, ·) = u, the limit function u also is a weak solution of the Cauchy problem (1.1)–
(1.2) on the region ΩT . Moreover, applying Proposition 2.13, we deduce that u admits
at t = 0 and at x = a, x = b the left and right limits stated in Theorem 2.11. On
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the other hand, by the same arguments used in the proof of Proposition 2.13, we may
assume that the initial and boundary data of each approximate solution uν have at
most Nν ≤ ν shocks for every characteristic family. Then, letting ν → ∞ in (2.31)–
(2.32), by the lower semicontinuity of the total variation we find that u satisfies the
entropy conditions (2.7)–(2.10) on the decay of positive waves. It follows that u is an
entropy weak solution of the mixed problem (1.1)–(1.4) according to Definition 2.2.
Hence, observing that by construction the map (t, x) → (u(t, ·), u(·, x)) takes values
within the domain DT defined in (2.37), and applying Theorem 2.10, we deduce that
(2.41) is verified.

4. Proof of Theorems 2.4–2.7.
Proof of Theorem 2.4. We shall first prove that, for every fixed τ > 0, there exists

some constant ρ = ρ(τ) > 0 so that (2.17) holds. Given ũa ∈ U∞
τ , ũb ∈ U∞

τ , τ ≥ τ ,
let u = u(t, x) be an entropy weak solution of (1.1)–(1.4) on the region [0, τ ] × [a, b]
according to Definition 2.2. Then, the Oleinik-type estimates (2.8) on the decay of
positive waves imply that, for i ∈ {p + 1, . . . , n}, τ ≥ τ , and for a.e. a < x < y < b,
there holds

wi(τ, y) − wi(τ, x)

y − x
≤ C ·

{
y − x

τ
+ log

(
y − a

x− a

)}
≤ (b− a)C ·

{
1

τ
+

1

x− a

}
≤ C(b− a)((b− a) + τ)

τ
· 1

x− a
.

(4.1)

Clearly, with the same computations, relying on the Oleinik-type estimates (2.7), we
deduce that, for i ∈ {1, . . . , p}, τ ≥ τ , and for a.e. a < x < y < b, there holds

wi(τ, y) − wi(τ, x)

y − x
≤ C(b− a)((b− a) + τ)

τ
· 1

b− y
.(4.2)

Hence, taking

ρ ≥ C(b− a)((b− a) + τ)

τ
(4.3)

from (4.1)–(4.2), we derive u(τ, ·) ∈ Kρ, which proves (2.17).
Concerning the second statement of the theorem, we will show that, letting λmin

and ρ′ be the minimum speed in (2.3) and the constant (3.19) of Lemma 3.1 and
taking

T
.
=

4(b− a)

λmin
,(4.4)

the relation (2.18) is verified, i.e., given ϕ ∈ Kρ′
and τ > T , there exist ũa ∈ U∞

τ , ũb ∈
U∞
τ , and a solution u(t, x) of (1.1)–(1.4) on [0, τ ]× [a, b] (according to Definition 2.2),

such that u(τ, ·) ≡ ϕ. Notice that, by Remark 2.5, we may assume that wi(ϕ(x))
admits left and right limits in any point x ∈]a, b[ and that wi(ϕ(x)) = wi(ϕ(x+))

.
=

limξ→x+ wi(ϕ(ξ)) for all i ∈ {1, . . . , n}. The proof is divided into two steps.
Step 1. Backward construction of front tracking approximations. Letting ρ′ > 0

be the constant in (3.19), consider a sequence {ϕν}ν≥1 of (right continuous) piecewise

constant maps in Kρ′

ν , satisfying the conditions (a) and (b) of Lemma 3.2, and take
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a piecewise constant approximation uν : [a, b] �→ Γν of the initial data u, so that
uν → u in L1. Given τ > T (T being the time defined in (4.4)), for each ν ≥ 1, we
will construct here a front tracking solution uν(t, x) of (1.1) on the region [0, τ ]× [a, b],
with initial data uν(0, ·) = uν , so that

uν(τ, ·) = ϕν .(4.5)

This goal is accomplished by proving the following two lemmas.
Lemma 4.1. Let T, ρ′ > 0 be the constants in (4.4) and (3.19). Then, for every

(right continuous) ϕν ∈ Kρ′

ν , ν ≥ 1, satisfying condition (a) of Lemma 3.2 and
for any τ > T , there exists a front tracking solution uν(t, x) of (1.1) on the region
[(3/4)T, τ ]×[a, b], with boundary data ũν

a
.
=uν(·, a), ũν

b
.
=uν(·, b)∈L∞([(3/4)T, τ ],Γν),

so that

uν((3/4)T, x) ≡ ω, uν(τ, x) = ϕν(x) ∀x ∈ [a, b](4.6)

for some constant state ω ∈ Γν .
Proof. Given τ > T and ϕν ∈ Kρ′

ν , ν ≥ 1, satisfying condition (a) of Lemma 3.2,
we will use the algorithm described in section 2.4 to construct backward in time a
front tracking solution that takes value ϕν at time τ . To this end, we first observe
that according to the algorithm of section 2.4, we can always construct the backward
solution of a Riemann problem with terminal data

u(t, x) =

{
uL if x < ξ,
uR if x > ξ

(4.7)

if the terminal states uL, uR ∈ Γν have Riemann coordinates

w(uL)
.
= wL = (wL

1 , . . . , w
L
n ), w(uR)

.
= wR = (wR

1 , . . . , w
R
n )

that satisfy

wL
i < wR

i =⇒ wR
i = wL

i + 2−ν ∀i.(4.8)

Indeed, if we consider the intermediate states

zi =

⎧⎪⎨⎪⎩
uL if i = 0,

u(wL
1 , . . . , w

L
n−i, w

R
n−i+1, . . . , w

R
n ) if 0 < i < n,

uR if i = n,

(4.9)

we realize that, because of (4.8), the solution of every Riemann problem with initial
states (zi−1, zi) (defined as in section 2.4) contains only a single front. Thus, we can
construct the solution to the Riemann problem with terminal data (4.7) in a back-
ward neighborhood of (t, ξ) by piecing together the solutions to the simple Riemann
problems (zi−1, zi), i = 1, . . . , n.

A front tracking solution uν can now be constructed backward in time starting
at t = τ and piecing together the backward solutions of the Riemann problems deter-
mined by the jumps in ϕν . The resulting piecewise constant function uν(τ−, ·) is then
prolonged for t < τ tracing backward the incoming fronts at t = τ , up to the first time
τ1 < τ at which two or more discontinuities cross in the interior of Ω. Observe that,
since uν is a front tracking solution constructed by the algorithm of section 2.4 on
the region [τ1, τ ]× [a, b], we can apply Lemma 3.3. Hence, it follows that the left and
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ba

τ
φ

ν

Fig. 1.

right states of the jumps occurring in uν(τ1, ·) satisfy condition (4.8), because (3.20)
guarantees that two (or more) adjacent rarefaction fronts of the same family cannot
cross at time τ1. We then solve backward the resulting Riemann problems applying
again the above procedure. This determines the solution uν(t, ·) until the time τ2 < τ1
at which another intersection between its fronts takes place in the interior of Ω, and
so on (see Figure 1).

With this construction we define a front tracking solution uν(t, x) on the whole
region [(3/4)T, τ ]× [a, b] that verifies the first equality in (4.6) and corresponds to the
boundary data ũν

a
.
= uν(·, a), ũν

b
.
= uν(·, b) ∈ L∞([(3/4)T, τ ],Γν). Clearly, the total

number of wave-fronts in uν(t, ·) decreases, as t ↓ (3/4)T , whenever a (backward) front
crosses the boundary points x = a, x = b. Since (2.3) implies that the maximum time
taken by fronts of uν to cross the interval [a, b] is (b− a)/λmin, the definition (4.4) of
T guarantees that all the (backward) fronts of uν will hit the boundaries x = a, x = b
within some time τ ′ ∈](3/4)T, τ [, which shows also that the second equality in (4.6)
is verified, thus completing the proof.

Lemma 4.2. Let T > 0 be the constant in (4.4). Then, for any piecewise constant
function uν ∈ L∞([a, b],Γν) and for every state ω ∈ Γν , there exists a front track-
ing solution uν(t, x) of (1.1) on the region [0, (3/4)T ] × [a, b], corresponding to some
boundary data ũν

a, ũ
ν
b ∈ L∞([0, (3/4)T ],Γν), so that

uν(0, x) = uν(x), uν((3/4)T, x) ≡ ω ∀x ∈ [a, b].(4.10)

Proof. The approximate solution uν is constructed as follows. By Remark 2.8,
for t ∈ [0, T/4], we can define uν(t, x) as the restriction to the region [0, T/4] × [a, b]
of the front tracking solution to the Cauchy problem for (1.1), with initial data

u(x) =

⎧⎨⎩
uν(a+) if x < a,
uν(x) if a ≤ x ≤ b,
uν(b−) if x > b

(constructed as in [12] with the same type of algorithm described in section 2.4).
Observe that, since uν contains only fronts originated at the points of the segment
{(0, x); x ∈ [a, b]}, because of (2.3), (4.4), these wave-fronts cross the whole interval
[a, b] and exit from the boundaries x = a, x = b before time T/4 (see Figure 2).
Hence, there will be some state ω′ ∈ Γν such that

uν(T/4, x) ≡ ω′ ∀x ∈ [a, b].(4.11)

Thus, introducing the intermediate state
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ω̃
.
= (ω1, . . . , ωp, ω

′
p+1, . . . , ω

′
n)

between ω′ and ω, we will define uν(t, x), for t ∈ [T/4, T/2], as the restriction to
the region [T/4, T/2]× [a, b] of the approximate solution to the Riemann problem for
(1.1), with initial data

uν(T/4, x) =

{
u(ω′) if x < b,
u(ω̃) if x > b,

(4.12)

while, for t ∈ [T/2, (3/4)T ], we will let uν(t, x) be the restriction to the region
[T/2, (3/4)T ] × [a, b] of the approximate solution to the Riemann problem for (1.1),
with initial data

uν(T/2, x) =

{
u(ω) if x < a,
u(ω̃) if x > a.

(4.13)

By the definition of ω̃, and because of (2.3), (4.4), on [T/4, T/2] the solution of the
Riemann problems with initial data (4.12) contains only wave-fronts originated at the
point (T/4, b) that cross the whole interval [a, b] and exit from the boundary x = a
before time T/2. Similarly, still by (2.3), (4.4), for t ∈ [T/2, (3/4)T ] the solution of
the Riemann problem with initial data (4.13) contains only wave-fronts originated at
(T/2, a) that cross the whole interval [a, b] and exit from the boundary x = b before
time (3/4)T (see Figure 2). Hence, uν(t, x) is a front tracking solution defined on the
whole region [0, (3/4)T ] × [a, b] that corresponds to the boundary data ũν

a
.
= uν(·, a),

ũν
b

.
= uν(·, b) ∈ L∞([0, (3/4)T ],Γν), and verifies the conditions (4.10).

Step 2. Convergence of the approximate solutions. By Step 1, for a given ϕ ∈ Kρ′

(with ρ′ as in (3.19)), we have found a sequence of initial data uν and boundary data
ũν
a, ũ

ν
b ∈ U∞

τ , so that, letting uν(τ, ·) .
= Eν

τ (uν , ũν
a, ũ

ν
b ) be the corresponding front

tracking solution, there holds

uν → u, uν(τ, ·) → ϕ in L1([a, b]).(4.14)
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By the same arguments used in the proof of Proposition 2.13, we may assume that
the initial and boundary data of each approximate solution uν have at most Nν ≤ ν
shocks for every characteristic family. Then, thanks to the Oleinik-type estimates
(2.31) and because uν are uniformly bounded since they take values in the compact
set (2.13), for every fixed ε > 0, there will be some constant Cε > 0 such that

Tot.Var.{uν(t, ·); [a + ε, b− ε]} ≤ Cε ∀t ∈ [ε, τ ],∫ b−ε

a+ε

|uν(t, x) − uν(s, x)| dx ≤ Cε|t− s| ∀t, s ∈ [ε, τ ]
(4.15)

∀ν ∈ N. Hence, applying Helly’s theorem, we deduce that there exists a subsequence
{uνj}j≥0 that converges in L1([a, b],Γ) to some function uε(t, ·), for any t ∈ [ε, τ ].
Therefore, repeating the same construction in connection with a sequence εk → 0+
and using a diagonal procedure, we obtain a subsequence {uν′

(t, ·)}ν′≥0 that converges
in L1([a, b],Γ) to some function u(t, ·) for any t ∈ [0, τ ]. Then, by Theorem 2.11, there
holds (2.41), with ũa

.
= u(·, a), ũb

.
= u(·, b) ∈ U∞

τ , while (4.14) implies u(τ, ·) = ϕ,
which shows ϕ ∈ A(τ). This completes the proof of Theorem 2.4.

We next establish the compactness of the attainable set (2.14) stated in Theo-
rem 2.7. The proof is quite similar to that of [3, Theorem 2.3]. We repeat it for
completeness.

Proof of Theorem 2.7. Fix T > 0, and consider a sequence {uν}ν≥0 of entropy
weak solutions to the mixed problem for (1.1) on ΩT

.
= [0, T ] × [a, b] (according to

Definition 2.2), with fixed initial data u ∈ L∞([a, b],Γ). Since all uν are uniformly
bounded and because of the Oleinik-type estimates (2.7)–(2.8), one can find, for every
ε > 0, some constant Cε > 0 so that (4.15) holds. Thus, with the same arguments used
in Step 2 of the previous proof, we can construct a subsequence {uν′}ν′≥0 so that, for

any t ∈ [0, T ], uν′
(t, ·) converges in L1 to some function u(t, ·), which is continuous as

a map from ]0, T ] into L1([a, b],Γ) and satisfies the entropy conditions (2.7)–(2.10) on
the decay of positive waves. On the other hand, the weak traces Ψν′

a ,Ψν′

b of the fluxes

f(uν′
) at the boundaries x = a, x = b are uniformly bounded, and hence are weak∗

relatively compact in L∞([0, T ]). Thus, by possibly taking a further subsequence, we
have

Ψν′

a
∗
⇀Ψa, Ψν′

b
∗
⇀Ψb in L∞([0, T ])(4.16)

for some maps Ψa,Ψb ∈ L∞([0, T ]). Notice that, by the properties of the Riemann
invariants, the set f(Γ) is closed and convex, and hence also the weak limits Ψa, Ψb

take values in f(Γ). Moreover, since each uν is a distributional solution of (1.1)–(1.2)
on ΩT , the limit function u also is a distributional solution of the Cauchy problem
(1.1)–(1.2) on the region ΩT . Then, setting ũa

.
= f−1 ◦ Ψa, ũb

.
= f−1 ◦ Ψb, it follows

that u is an entropy weak solution of the mixed problem (1.1)–(1.4) (with boundary
data in U∞

T ) according to Definition 2.2, which shows that u(T, ·) ∈ A(T ). This
completes the proof of Theorem 2.7.

5. Conclusion. The results presented in this paper represent a contribution to
the development of a general theory on boundary controllability for systems of non-
linear hyperbolic equations within the context of entropy weak solutions. As is shown
in [11] there is no hope of establishing exact controllability results for general systems
of conservation laws due to the wave-front structure of the weak solutions, which may
present shock waves that can never be canceled by interactions with rarefaction waves
of the same characteristic family and that at the same time give rise to new shock
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fronts by interacting with shock waves of the other characteristic families. Here we
have analyzed the exact boundary controllability for the simplest class of nonlinear hy-
perbolic systems: the class of Temple systems with genuinely nonlinear characteristic
fields, whose study is motivated by applications to multicomponent chromatography.

A natural direction in which to pursue this analysis is to consider Temple systems
with linearly degenerate characteristic fields (or with a general “nonconvex” flux)
which appear in several traffic flow models [6, 16] where one is usually interested in
controlling the inflow of cars at the entry of a given road. Another relevant direction
worthy of investigation is the controllability of systems of balance laws, i.e., of systems
of conservation laws with the presence of source terms. Systems of balance laws
belonging to Temple class arise, for example, in modeling chromatography reactors
where chemical reactions take place allowing the different solutes (dissolved in the
liquid) to transform into each other (see [25, 26]).

All of this type of analysis refers to the case of boundary control problems where
total control on the boundary values is available. Of course one may consider more
general controllability problems where the control acts only on some of the boundary
conditions. For example, we may consider the system of isentropic gas dynamics de-
scribing a gas confined in a cylinder within two pistons. In this case it is reasonable
to expect that, by controlling only the speed of one piston, it is possible to asymp-
totically stabilize the system at any constant state. To this purpose it is natural to
study first the boundary controllability of the linearized system. A generic condition
that guarantees the exact boundary controllability in finite time of a linear hyperbolic
system with constant coefficients is obtained in [2].
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