
Continuous Control-Lyapunov Functions

for Asymptotically Controllable Time-Varying Systems

Francesca Albertini

Dipartimento di Matematica

Università di Padova
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Abstract

This paper shows that, for time varying systems, global asymptotic controllability to a given closed

subset of the state space is equivalent to the existence of a continuous control-Lyapunov function with

respect to the set.

1 Introduction

We will study continuous-time systems with dynamics given by differential equations of the type:

ẋ(t) = f(t, x(t), u(t)), (1)

where x(t) ∈ Rn represents the state variable and u(t) ∈ U is the control variable. (Technical assumptions

on f and U are described below.)

We are interested in questions of stabilization relative to a subset A of the state space Rn. For example,

the set A may be just an equilibrium point, or it may represent a target subset of a different kind. This

target set might be a desired periodic orbit, or, in the context of designing observers, the Equations (1)

might represent a composite state x = (x1, x2), consisting of the state x1 of the original system together

with the state x2 of an observer; in that case, A would be the set of states x for which identification has

been achieved, that is, the set consisting of those x for which x1 = x2. (Note that in this last example, the

set A is not bounded.) There are several motivations for considering time-varying dynamics. For instance,
∗Supported in part by US Air Force Grant F49620-98-1-0242
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in this manner one may encompass problems of tracking, in which the difference between some variables

and a signal to be followed evolves according to a differential equation which depends explicitly in t. The

purpose of this paper is to generalize the results of the paper [9], which dealt only with A = {0} and

time-invariant systems, to the general model (1).

A classical technique for stabilization is to look for Lyapunov-type functions, which play the role of

abstract “energy” or “cost” functions that can be made to decrease in directions corresponding to possible

controls, as long as the state is away from A. For smooth such functions V , and taking for simplicity

the case when V and f are time-invariant, and A = {0}, this amounts to the requirement that, for each

nonzero state x, there must be some control value u = ux so that ∇V (x).f(x, u) < 0. One uses the

generic term “control-Lyapunov function” (clf) for such a function. The clf approach, assuming a V has

been found, allows the search for stabilizing inputs by iteratively solving a static nonlinear programming

problem: when at state x, find u such that this inequality holds. Recent expositions of results about

(smooth) clf’s can be found in the textbooks [5, 6, 7, 10]. An obvious question is whether the existence

of a continuously differentiable clf is equivalent to the possibility of driving every state asymptotically to

the set A (zero in this particular case). The answer is negative; for instance, if controls are in Rm, and

f(x, u) = f0 +
∑m
i=1 uifi(x) is affine in u, the existence of a (smooth) V would imply that there is some

feedback law u=k(x) so that the origin is a globally asymptotically stable state for the closed-loop system

ẋ = f(x, k(x)) and k is continuous on Rn \ {0}. This was proved by Artstein in [2]; see also [10] for an

exposition. But continuous feedback may fail to exist, even for very simple controllable systems (see e.g.

[10], Section 5.9). Thus smooth clf’s do not always exist, even if the system is asymptotically controllable.

However, it was shown in [9] that continuous clf’s do exist. Of course, one must modify the statement

of the clf condition, since the gradient is not well-defined if V is not differentiable. This modification can be

done in various ways. Here, we proceed as in [9], asking basically that that for each state x 6= 0 (or rather,

for each state not in A, in the general case) there exist a trajectory which is defined on a small interval of

time and which decreases the value of V . (An additional technical condition, insuring that controls do not

“blow up” as one approaches the set A, is also imposed.)

The proofs are in general based on the ideas in [9], but when dealing with time varying systems, and

especially with possibly non-compact sets A, many technical complications arise. (Of course, one must

allow now for time-dependent V , and the definition of asymptotic controllability must be in some sense

uniform on time, in order to obtain a necessary and sufficient result.) Although not at all surprising,

the results in this paper are relevant in so far the elucidation of the precise technical assumptions and

constructions needed in the generalization are concerned. We also employ several ideas from the paper

[8], which dealt with set stability but only for systems with no controls (which allows constructing smooth

V ’s).

The existence of continuous clf’s is a basic ingredient in the construction of stabilizing feedbacks with
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respect to the origin for time-invariant systems, as done in [3] and in [11]. We expect to obtain general-

izations of these stabilization results, to time varying systems and general attractor sets, in future work,

using the result from this paper in the same role that [9] is used in [3].

2 Basic Definitions and Main Results

We take U to be a locally compact metric space, with a distinguished “0” element. We denote Ur =

{u | d(u, 0) ≤ r}. The map f is supposed to be measurable in t, and locally Lipschitz in (x, u) uniformly

for t in a bounded interval. The set of control maps u ∈ U are measurable essentially bounded functions

u : [t0,∞) → U , with t0 ∈ R. We denote by ‖u‖ the essential supremum of the map u. Notice that

with these assumptions we guarantee the local existence and uniqueness of solutions of (1). For a given

(t0, x0) ∈ R× Rn, and a control map u : [t0,∞)→ U , we denote by x(t; t0, x0,u) the maximal solution of

(1) with initial condition x(t0, t0, x0,u) = x0. In general this solution will be defined on an interval of the

form [t0, t̄).

A function γ : R≥0 → R≥0 is called a K-function if it is continuous, strictly increasing, and γ(0) = 0;

a K-map γ is called a K∞-function if lims→∞ γ(s) =∞. A function β : R≥0 × R≥0 → R≥0 is said to be a

KL-function if for each fixed t ≥ 0 the map β(·, t) is a K-function, and if for each fixed s the map β(s, ·) is

decreasing to zero as t→∞. Given a non-empty closed set A ⊂ Rn, we denote by |x|A the distance from

x to A.

Definition 2.1 Given a non-empty closed set A ⊂ Rn, we say that A is weakly invariant if there exists a

positive constant µ such that for all x0 ∈ A and all t0 ∈ R, there exists a control map u0 with ‖u0‖ ≤ µ

such that x(t; t0, x0,u0) is defined and lies in A for all t ≥ t0.

Definition 2.2 Let A ⊂ Rn be a closed, weakly invariant, and nonempty set. We say that (1) is globally

asymptotically controllable (gac) to A if there exist a KL-function β(·, ·), and a continuous, positive and

increasing function γ(·) such that: for each (t0, x0) ∈ R×Rn there exists a control function u : [t0,∞)→ U ,

with ‖u‖ ≤ γ(|x0|A), such that the corresponding trajectory x(t) = x(t, t0, x0,u) exists for all t ≥ t0 and

satisfies:

|x(t)|A ≤ β(|x0|A , t− t0) for all t ≥ t0. (2)

In the previous definition, the KL-function β(·, ·) captures both the stability and the attraction properties

of the invariant set A. An equivalent way to define gac is given by the following proposition, whose proof

is postponed to section 4.

Proposition 2.3 Let A ⊂ Rn be a closed, weakly invariant, and nonempty set. The system (1) is gac to

A if and only if there exists a continuous, positive and increasing function γ1 such that:
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1. there exists a K∞-map γ2 such that for all ε > 0, if |x0|A ≤ γ2(ε) and t0 ∈ R, then there exists

u : [t0,+∞)→ U , with ‖u‖ ≤ γ1(|x0|A) such that |x(t, t0, x0,u)|A ≤ ε for all t ≥ t0;

2. for any r, ε there exists a nonnegative T ∈ R such that given (t0, x0) ∈ R×Rn, with |x0|A ≤ r, then

there exists u : [t0,∞)→ U as in 1 such that |x(t, t0, x0,u)|A ≤ ε for all t ≥ T + t0.

We now recall some standard notions regarding relaxed controls. The set of relaxed controls W is the set

of measurable functions w : [t0,∞)→ P (U) where P (U) is the set of probability measures on U equipped

with the weak topology. We let Wr denote the set of those relaxed controls w such that w(t) has support

on Ur for almost all t. An ordinary control u ∈ U can be seen as a relaxed one if u(t) is identified with

the Dirac measure concentrated in u(t). One defines a topology on W characterized by weak convergence:

wk → w if and only if ∫
T

∫
U

g(t, u)dwk(u)dt→
∫
T

∫
U

g(t, u)dw(u)dt

for all functions g : T ×U → R which are continuous in u, measurable in t, and such that max{|g(t, u)|, u ∈

U} is integrable on T , where T is a bounded interval. With this topology Ur is dense in Wr, and Wr is

sequentially compact. We let

‖w‖ = inf{r |w(t) ∈ P (Ur) for a.e. t}

(notice that for ordinary controls this is the essential supremum). Given w ∈ P (Ur), one extends f to

relaxed controls by defining

f(t, x, w) :=
∫
Ur

f(t, x, s)dw(s) .

As for ordinary controls, given (t0, x0) ∈ R × Rn, and a relaxed control w : [t0,∞) → P (U), we denote

by x(t; t0, x0,w) the solution of (1) with initial condition x(t0; t0, x0,w) = x0. For more details on relaxed

controls see [1].

Definition 2.4 A continuous function V : R × Rn → R≥0 is a control-Lyapunov function for the model

(1) with respect to the closed, weakly invariant, and non-empty set A if the following two properties hold:

1. There exist two K∞-maps α1, α2 such that, for all (t, x) ∈ R×Rn:

α1(|x|A) ≤ V (t, x) ≤ α2(|x|A).

2. There exist a continuous, positive and increasing map φ, and a K-function α3, such that for each

(t0, x0) ∈ R× Rn, there exist t1 > t0, and w : [t0, t1)→ P (U) with ‖w‖ ≤ φ(|x0|A) and:

lim inf
t→t+0

V (t, x(t))− V (t0, x0)
t− t0

≤ −α3(|x0|A), (3)

where x(t) = x(t, t0, x0,w).

An alternative manner to define control-Lyapunov functions is via an integral inequality, as follows.
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Definition 2.5 A continuous function V : R × Rn → R≥0 is a control-Lyapunov integral function for the

model (1) with respect to the closed, weakly invariant, and non-empty set A if property 1 of definition

2.4 holds, and there exist a continuous, positive and increasing map φ, and a K-function α3, such that for

each (t0, x0) ∈ R× Rn there exists a relaxed control w : [t0,+∞)→ P (U) with ‖w‖ ≤ φ(|x0|A) such that

x(t) = x(t, t0, x0,w) is defined for all t ≥ t0 and it satisfies, for all t ≥ t0:

V (t, x(t))− V (t0, x0) ≤ −
∫ t

t0

α3(|x(s)|A)ds. (4)

Definition 2.6 Given a closed and non-empty set A, we say that the function f(t, x, u) satisfies the

boundedness assumption with respect to A if it holds that, for each r1, r2 > 0 there exists a positive

constant Mr1,r2 ∈ R such that:

sup

|x|A ≤ r1

d(u, 0) ≤ r2

|f(t, x, u)| ≤Mr1,r2 a.e. t ∈ R. (5)

Notice that, for example, if f is independent of t and A is compact, then (5) holds.

Theorem 1 Let Σ be a given model of type (1), and A ⊂ Rn be a closed, weakly invariant, and non-empty

set. Assume that the model satisfies the boundedness assumption with respect to A (definition 2.6). Then

the following are equivalent:

1. Σ is gac to A.

2. There exists a control-Lyapunov function V for (1) with respect to A (definition 2.4).

3. There exists a control-Lyapunov integral function V for (1) with respect to A (definition 2.5).

Remark 2.7 Assume that we give a new definition of control-Lyapunov function which is equal to defini-

tion 2.4 except from the fact that we use in equation (3) the “limsup” instead of “liminf”. Then it follows

from Theorem 1 that this new definition is indeed equivalent to the one given in 2.4. To see this it is

sufficies to notice that if V is a control-Lyapunov integral function then obviously V is control-Lyapunov

function which satisfies inequality (3) even if the “limsup” is used.

The next section is devoted to the proof that 1 and 3 are equivalent. It is obvious that 3 implies 2, while

the proof that 2 implies 3 is given in section 4.

3 Control-Lyapunov function characterization

3.1 Sufficiency part

In this section, we assume given a system Σ of type (1), a closed, weakly invariant, and non-empty set

A ⊂ Rn, and a control-Lyapunov integral function V (together with the maps α1, α2, φ, and α3). Our aim
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is to prove that Σ is gac to A.

Fix any ε0 > 0, and construct a decreasing sequence {εp}p∈Z such that limp→+∞ εp = 0, limp→−∞ εp =

+∞, and for all p ∈ Z, 2α−1
1 (α2(εp+1)) < εp. For each fixed p ∈ Z, let tp > 0 be defined by:

tp =
α2(εp−1)− α1(εp+1)

α3(εp+1)
.

Lemma 3.1 Fix any p ∈ Z. Assume given any (t0, x0), with x0 6∈ A. If |x0|A < εp−1, then there exists a

relaxed control w : [t0,+∞)→ P (U) with ‖w‖ ≤ φ(|x0|A) such that:

1. |x(t)|A ≤ α
−1
1 (α2(|x0|A)) for all t ∈ [t0,+∞);

2. there exists t̄ ∈ [t0, t0 + tp], such that |x(t̄)|A < εp+1.

Proof. Our assumption implies in particular that for any (t0, x0) there exists a relaxed control w :

[t0,+∞)→ P (U) with ‖w‖ ≤ φ(|x0|A) such that:

|x(t)|A ≤ α
−1
1

(
α2(|x0|A) −

∫ t

t0

α3(|x(τ)|A)dτ
)
. (6)

For this particular control w the first requirement of the lemma clearly holds, since α3 is a positive function.

Assume, by the way of contradiction, that for all t ∈ [t0, t0 + tp], |x(t)|A ≥ εp+1. Then, since α3 is an

increasing function, we have α3(|x(t)|A) ≥ α3(εp+1). This fact, together with equation (6), implies:

|x(t0 + tp)|A ≤ α
−1
1 (α2(|x0|A)− α3(εp+1)tp) < α−1

1 (α2(εp−1)− α3(εp+1)tp) = εp+1,

which gives a contradiction.

For each p ∈ Z, let

T (p) =
∑
k≥p

tk.

Notice that T (p) ∈ R≥0 ∪ {+∞}.

Lemma 3.2 Given any (t0, x0), with x0 6∈ A. If |x0|A < εp−1, then there exists an ordinary control

u : [t0,+∞)→ U with ‖u‖ ≤ φ(|x0|A) + µ such that:

for all k ≥ p, and for all t ∈ [t0 +
∑k−1
j=p tj, t0 +

∑k
j=p tj):

|x(t)|A ≤ 2α−1
1 (α2(εk−1)) . (7)

Moreover if T (p) < +∞, then for all t ≥ t0 + T (p), we have x(t) ∈ A.

Proof. Assume that we have already constructed a control u(t) for t ∈ [t0, t0 +
∑k−1
j=p tj ], with ‖u‖ ≤

φ(|x0|A) + µ and such that for all p ≤ h ≤ k − 1 we have:

(a) |x(t)|A ≤ 2α−1
1 (α2(εh−1)) , for all t ∈ [t0 +

∑h−1
j=p tj, t0 +

∑h
j=p tj],
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(b)
∣∣∣x(t0 +

∑h
j=p tj)

∣∣∣
A
< εh.

We want to extend this control to the interval [t0 +
∑k−1
j=p tj, t0 +

∑k
j=p tj ]. Let t̃ = t0 +

∑k−1
j=p tj, then by

property (b) we have that
∣∣x(t̃)

∣∣
A < εk−1. By applying lemma 3.1 with initial condition (t̃, x(t̃)), we get a

relaxed control w̃ : [t̃,+∞)→ P (U) such that: ‖w̃‖ ≤ φ(
∣∣x(t̃)

∣∣
A) ≤ φ(|x0|A), and, for all t ≥ t̃:

|x(t)|A ≤ 2α−1
1

(
α2(
∣∣x(t̃)

∣∣
A)
)
≤ 2α−1

1 (α2(εk−1)) .

Moreover there exists t̄ ∈ [t̃, t̃+ tk] such that |x(t̄)|A < εk+1. Now, we apply again lemma 3.1 with initial

condition (t̄, x(t̄)). Since |x(t̄)|A < εk+1, there exists another relaxed control ŵ : [t̄,+∞) → P (U) such

that ‖ŵ‖ ≤ φ(|x(t̄)|A) ≤ φ(|x0|A), and, for all t ≥ t̄:

|x(t)|A ≤ 2α−1
1 (α2(|x(t̄)|A)) ≤ 2α−1

1 (α2(εk+1)) < εk,

where the last inequality holds by construction. So, in particular, concatenating the two relaxed controls

w̃ and ŵ, we get a relaxed control w : [t̃,+∞)→ P (U) such that:

∣∣x(t̃)
∣∣
A ≤ 2α−1

1 (α2(εk−1)) , and
∣∣x(t̃+ tk)

∣∣
A < εk.

Now, since ∀ r > 0 Ur is dense in Wr, it is clear that we can extend the control u to the interval

[t0 +
∑k−1
j=p tj, t0 +

∑k
j=p tj] preserving the required properties.

If T (p) = +∞ we have finished our construction. Assume that T (p) < +∞. Then, since ‖u‖ ≤

φ(|x0|A) + µ and |x(s)|A ≤ 2α−1
1 (α2(εp−1)), for all s ∈ [t0, t0 + T (p)), from the boundedness assumption

we have that there exists L > 0 such that:

|f(s, x(s), u(s))| ≤ L, ∀ s ∈ [t0, t0 + T (p));

which implies, for all t ∈ [t0, t0 + T (p)):

|x(t)| ≤ |x0|+ LT (p).

So we can extend our trajectory to the endpoint t̂ = t0 + T (p). Moreover, we have:

lim
t→t0+T (p)

|x(t)|A = 0,

which implies that x(t0 + T (p)) ∈ A. Thus, for t > t0 + T (p) we may extend the control u by using the

control u0 given by the weakly invariant assumption which is in norm ≤ µ.

Lemma 3.3 There exists a KL-function β(·, ·) such that, for each p ∈ Z, if εp ≤ s < εp−1, then:

1. β(s, 0) ≥ 2α−1
1 (α2(εp−1));

2. if t ∈ [
∑k−1
j=p tj,

∑k
j=p tj), then β(s, t) ≥ 2α−1

1 (α2(εk−1)).
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Proof. Let lp = 2α−1
1 (α2(εp), and, for k ≥ i, let si,k =

∑k
j=i tj. First, for i ∈ Z, we let:

β̃(εi, t) =


li−1 t ∈ [0, ti)

lk−1 t ∈ [si,k, si,k+1)

0 t ≥ T (i)

Then clearly limt→+∞ β̃(εi, t) = 0, and β̃(εi, t) is decreasing as a function of t. Moreover it holds that, if

εi < εj then

β̃(εi, t) ≤ β̃(εj , t). (8)

To prove (8) we argue as follows. If t ≥ T (i) then the inequality is obvious. If t ∈ [0, ti) then t < tj+ . . .+ti

thus

β̃(εj , t) ≥ β̃(εj , sj,i) = li−1 = β̃(εi, t).

Otherwise, there exists k ≥ i such that t ∈ [si,k, si,k+1). In particular t < sj,k+1, thus, again we have:

β̃(εj , t) ≥ β̃(εj , sj,k+1) = lk−1 = β̃(εi, t).

So (8) is proved. Now we let:

β̃(s, t) =

 0 if s = 0 ;

β̃(εi, t)
s−εi−1
εi−εi−1

+ β̃(εi−1, t) s−εi
εi−1−εi εi ≤ s < εi−1.

Clearly the function β̃(s, t) satisfies both required properties 1 and 2. Moreover, it satisfies all the require-

ments of being a KL-function, except possibly for the fact that it is only non-decreasing in the s variable

and it can be zero. So, to have the desired KL-function, we define:

β(s, t) = β̃(s, t) + β̂(s, t),

where β̂(s, t) is any KL-function.

Proof of Sufficiency Let Σ be a model of type (1), and V be a control-Lyapunov integral function for

Σ with respect to the closed, weakly invariant, and non-empty set A ⊂ Rn. Let β(s, t) be the KL-function

given by lemma 3.3, and let γ(p) = φ(p) + µ. Then, combining together the results given by lemmas 3.2

and 3.3, we conclude that Σ is gac to A.

3.2 Necessity part

In this section, we assume given a model Σ of type (1) and a closed, weakly invariant, and non-empty set

A ⊂ Rn. Moreover we assume Σ to be gac to A. Our aim is to construct a control-Lyapunov integral

function for Σ with respect to the set A. The idea of the construction is similar to the one given in [9].

The next proposition establishes a technical property of KL-functions.
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Proposition 3.4 Let β(·, ·) be KL-function, and choose a strictly increasing sequence of positive real

numbers, {εi}i≥0, such that limi→+∞ εi = +∞. Then there exists a continuous, strictly decreasing function

g : R≥0 → R≥0, and a strictly increasing sequence {Ti}i≥0, with T0 = 0, such that:

i) limt→+∞ g(t) = 0;

ii) limi→+∞ Ti = +∞;

iii) if p < εi then β(p, t) ≤ g(t) for all t ≥ Ti.

Proof. Let T0 = 0 and, for i ≥ 1, define, inductively on i:

αi = β(εi−1, Ti−1 + 1/i), and Ti be such that β(εi, Ti) ≤ αi/2 = gi.

Note that such a Ti exists since β(s, ·) is decreasing to zero as t→∞. Since β(εi, Ti−1 +1/i) > αi, it holds

that:

Ti > Ti−1 + 1/i ⇒ Ti >
i∑
j=1

1/j, for i ≥ 1.

Thus the sequence {Ti}i≥0 is strictly increasing and satisfies ii). Moreover, since:

αi+1 = β(εi, Ti +
1

i+ 1
) < β(εi, Ti) ≤

αi
2
,

we have:

αi+1 ≤
α1

2i
∀ i ≥ 1, ⇒ lim

i→+∞
αi = 0. (9)

Let g−1 and g0 be two constants such that g−1 > g0 > 2g1, and, for i ≥ 0, let Pi be the point (Ti, gi−1).

Let lPiPi+1(·) be the linear function such that lPiPi+1(Ti) = gi−1, and lPiPi+1(Ti+1) = gi. It is easy to see

that, by choosing g−1 sufficiently large, we may assume:

β(x, t) < lP0P1(t) ∀ t ∈ [T0, T1], ∀x < ε0. (10)

Now let:

g(t) = lPiPi+1(t) for t ∈ [Ti, Ti+1].

Then clearly the map g(·) is continuous and strictly decreasing. Moreover, by equation (9), we have

limt→+∞ g(t) = 0 (thus i) holds). Now we establish iii). Let p ∈ R, and assume p < εi. If i = 0 and

t ∈ [T0, T1], then property iii) holds by construction (equation (10)). So we may assume t ≥ T1. Let t ≥ Ti,

then t ∈ [Tj , Tj+1] with j ≥ i ≥ 1. Then we have:

g(t) ≥ gj = αj/2 ≥ β(εj , Tj).

On the other hand, if x < εi and t ∈ [Tj, Tj+1], we also have:

β(x, t) < β(εi, t) ≤ β(εj , t) ≤ β(εj , Tj) ≤ gj ≤ g(t);
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so iii) holds.

Let γ(·) and β(·, ·) be respectively the continuous, positive and increasing, and KL maps given by

definition 2.2. Choose any ε0 > 0, and let {εi}i≥0 be any strictly increasing sequence such that:

lim
i→+∞

εi = +∞, εi+1 > min{β(εi, 0), γ(εi)}, and εi+2 > 2εi+1 − εi.

Now let {Ti}i≥0, and g(·) be the sequence and the function given by proposition 3.4. Since the map g is

strictly decreasing, and g : R≥0 → (0, g(0)], we may let:

h(p) =

 g−1(p) if p ∈ (0, g(0)],

0 if p > g(0).

Notice that h : R>0 → R≥0 is decreasing, continuous, and limp→0+ h(p) = +∞. Now we define:

N(p) =

 0 if p = 0,

p exp{−h(p)} if p > 0.
(11)

Notice that:

i) N is a continuous and strictly increasing map;

ii) limp→+∞N(p) = +∞;

iii) if p ≤ α then N(p) ≤ α.

For each i ≥ 0, let Mi = M(εi+2, εi+2), where M(εi+2, εi+2) are the constants given by the boundedness

assumption, i.e.:

sup

|x|A ≤ εi+2

d(u, 0) ≤ εi+2

|f(t, x, u)| ≤Mi for a.e. t ∈ R.

Clearly Mi ≤Mi+1.

Now let M : R≥0 → R≥0 and δ : R≥0 → R≥0 be any two continuous and increasing maps such that:

M(p) ≥

 M0 if p < ε0
2 ,

Mi if εi−1
2 ≤ p < εi

2 ,
(12)

δ(p) ≥ γ(p) for all p ≥ 0. (13)

Moreover, for i ≥ 1, we require that, if εi+1 < p ≤ εi+2, then:

δ(p) > δ(γ(εi)) +M(β(εi, 0)) [N(β(εi, 0))Ti + β(εi, 0)] (14)

and, for i ≥ 0,:

M(εi+1) >
(

2Mi

N(εi+1)
1

εi+2 − εi+1

)
{M(β(εi, 0)) [N(β(εi, 0))Ti + β(εi, 0)] + δ(γ(εi))} . (15)
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Notice that, since min{β(εi, 0), γ(εi)} < εi+1, one shows easily that two continuous and increasing functions

satisfying inequalities (12), (13), (14), and (15) exist.

Finally, we let:

F (p) = M(p)N(p) = M(p)p exp{−h(p)}. (16)

Fix (t0, x0) ∈ R× Rn. For each relaxed control w, denote by x(t) = x(t; t0, x0,w) and let:

Q(t0, x0,w) =
∫ +∞

t0

F (|x(t)|A)dt + max{δ(‖w‖) − δ(γ(ε0)), 0}, (17)

if x(t) exists for all t ≥ t0, let Q(t0, x0,w) = +∞ otherwise. Then we let

V (t0, x0) = inf
w∈W

Q(t0, x0,w). (18)

We want to prove that the function V defined above is a control-Lyapunov integral function for the model

(1) with respect to the set A.

Lemma 3.5 Let (t0, x0) ∈ R × Rn, and i ≥ 0 be the first index such that |x0|A < εi. Then there exists

an ordinary control u, with ‖u‖ ≤ γ(|x0|A), such that:

Q(t0, x0,u) ≤ F (β(|x0|A , 0))Ti +M(β(|x0|A , 0))β(|x0|A , 0) + max{δ(γ(|x0|A))− δ(γ(ε0)), 0}, (19)

and |x(t)|A < εi+2 for all t ≥ t0.

Proof. Given (t0, x0) ∈ R × Rn with |x0|A < εi, let u be the control function given by the gac property.

Then ‖u‖ ≤ γ(|x0|A), moreover the corresponding trajectory x(t) is defined for all t ≥ t0 and satisfies

|x(t)|A ≤ β(|x0|A , t− t0) < β(εi, 0) < εi+2.

Moreover, for t ≥ Ti + t0, we have:

|x(t)|A ≤ β(|x0|A , t− t0) < β(εi, t− t0) < g(t − t0).

Thus, for all t ≥ Ti + t0, h(|x(t)|A) ≥ h(g(t − t0)) = t− t0. So we have:

Q(t0, x0,u) =
∫ t0+Ti

t0

F (|x(t)|A)dt +
∫ +∞

t0+Ti

F (|x(t)|A)dt+ max{δ(‖u‖) − δ(γ(ε0)), 0}

≤ F (β(|x0|A , 0))Ti +M(β(|x0|A , 0))β(|x0|A , 0)) + max{δ(γ(|x0|A)) − δ(γ(ε0)), 0}.

Thus the lemma is proved.

Remark 3.6 Notice that, from the previous lemma, we have in particular:

(a) if |x0|A < ε0, then T0 = 0 and the max is also zero, so: V (t0, x0) ≤M(β(|x0|A , 0))β(|x0|A , 0),

(b) if εi−1 ≤ |x0|A < εi, with i ≥ 1, then

V (t0, x0) ≤ δ(γ(εi)) − δ(γ(ε0)) + M(β(εi, 0)) [N(β(εi, 0))Ti + β(εi, 0)] .
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Lemma 3.7 There exists a K∞-map α2(·) such that, for all (t0, x0) ∈ R×Rn, it holds that:

V (t0, x0) ≤ α2(|x0|A). (20)

Proof. For εi−1 ≤ p < εi (ε−1 = 0), let

α̃2(p) = F (β(p, 0))Ti + M(β(p, 0))β(p, 0)) + max{δ(γ(p)) − δ(γ(ε0)), 0}.

Then α̃2(·) is increasing and α̃2(0) = 0. Now let α2(·) be any K∞-function such that α̃2(p) ≤ α2(p). For

each (t0, x0) ∈ R×Rn, let u be the control map given by lemma 3.5. Then, from equation (19), it follows

that:

V (t0, x0) ≤ Q(t0, x0,u) ≤ α̃2(|x0|A) ≤ α2(|x0|A).

Lemma 3.8 For each (t0, x0) ∈ R × Rn, let i ≥ 0 be the first index such that |x0|A < εi, and let u0 be

the control map given by lemma 3.5. If w is any control such that:

Q(t0, x0,w) ≤ Q(t0, x0,u0),

then ‖w‖ ≤ εi+2, and the corresponding trajectory x(t) is such that:

|x(t)|A < εi+2. (21)

Proof. First notice that if Q(t0, x0,w) < +∞, then, in particular x(t) is defined for all t ≥ t0. Assume

that ‖w‖ > εi+2. Then it holds that:

Q(t0, x0,w) ≥ δ(‖w‖) − δ(γ(ε0)) ≥ δ(εi+2) − δ(γ(ε0)) >

F (β(εi, 0))Ti +M(β(εi, 0))β(εi, 0)) + δ(γ(εi))− δ(γ(ε0)),

where, to get the last inequality, we have used (14). This last inequality contradicts the assumption

Q(t0, x0,w) ≤ Q(t0, x0,u0). Now, assume that ‖w‖ ≤ εi+2, but that the inequality (21) is not satisfied.

Then there exist T1 < T2 such that:

|x(T1)|A = εi+1, |x(t)|A ≤ εi+2 ∀ t ∈ [t0, T2],

and

|x(T2)|A = εi+2, |x(t)|A ≥ εi+1 ∀ t ∈ [T1, T2].

It must hold that

T2 − T1 ≥
εi+2 − εi

2Mi
, (22)

otherwise

|x(T2)|A ≤ |x(T1)|A + |x(T1)− x(T2)| < εi+1 +
εi+2 − εi

2
< εi+2.
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So, we have:

Q(t0, x0,w) ≥
∫ T2

T1
F (|x(t)|A)dt ≥M(εi+1)N(εi+1) εi+2−εi+1

2Mi
≥

F (β(εi, 0))Ti +M(β(εi, 0))β(εi, 0) + δ(γ(εi)),

where the last inequality holds by equation (15). Thus, the assumption that

Q(t0, x0,w) ≤ Q(t0, x0,u0)

is again contradicted.

Remark 3.9 Fix any (t0, x0) ∈ R × Rn and let i ≥ 0 be the first index such that |x0|A < εi. From the

result proved in the previous lemma, we get:

V (t0, x0) = inf
w∈W

Q(t0, x0,w) = inf
w ∈Wεi+2 ,

|x(t)|A < εi+2

Q(t0, x0,w). (23)

Lemma 3.10 There exists a K∞-map α1(·) such that, for all (t0, x0) ∈ R×Rn, it holds that:

α1(|x0|A) ≤ V (t0, x0). (24)

Proof. Fix any (t0, x0) ∈ R × Rn, and let i ≥ 0 be the first index such that |x0|A < εi. Let w be any

control function such that ‖w‖ ≤ εi+2 and the corresponding trajectory is defined for all t ≥ t0 and satisfies

|x(t)|A ≤ εi+2. Let:

δx0 =
|x0|A
2Mi

.

Fact. If t ∈ [t0, t0 + δx0), then |x(t)|A > |x0|A /2.

Proof of Fact. If the conclusion does not hold, then, by continuity, there exists a t̄ ∈ [t0, t0 + δx0), such

that |x(t̄)|A = |x0|A /2. However, we have:

|x(t̄)− x0| ≤Mi(t̄− t0) < Miδx0 = |x0|A /2,

which implies:

|x0|A ≤ |x(t̄)|A + |x(t̄) − x0| <
|x0|A

2
+
|x0|A

2
= |x0|A .

So the fact is established.

Now we have:

Q(t0, x0,w) ≥
∫ t0+δx0

t0

M(|x(t)|A)N(|x(t)|A)dt ≥M(|x0|A /2)N(|x0|A /2)
|x0|A
2Mi

.

Next, by combining equation (12) with the previous inequality, one gets:

Q(t0, x0,w) ≥ |x0|A
2

N(|x0|A /2). (25)
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So, by using equation (23), we conclude:

|x0|A
2

N(|x0|A /2) ≤ inf
w ∈Wεi+2 ,

|x(t)|A < εi+2

Q(t0, x0,w) = V (t0, x0).

Thus, by letting α1(p) = p/2N(p/2), the conclusion follows.

Thus the function V (·, ·) satisfies property 1 of Definition 2.4. It remains to show that V is continuous

and that equation (4) holds. First, we prove continuity at the points (t0, x0) ∈ R×A.

Lemma 3.11 The function V (·, ·) is continuous at (t0, x0) ∈ R×A. Moreover it holds that for each ε > 0

there exists a δ > 0 such that if |x|A ≤ δ then

|V (t, x)| ≤ ε ∀ t ∈ R. (26)

Proof. It is clear that it is suffices to prove (26), since V (t0, x0) = 0 for all (t0, x0) ∈ R×A. Given ε > 0,

choose 0 < δ < ε0 such that M(β(p, 0))β(p, 0) ≤ ε for all p ≤ δ. Now if |x|A ≤ δ, then by Remark 3.6,

property (a), we have:

V (t, x) ≤M(β(|x|A , 0))β(|x|A , 0) ≤ ε;

as desired.

Lemma 3.12 Let tn → t0, xn → x0, and wn → w0, be such that ‖wn‖ ≤ r1, and all the solutions

xn(t) = x(t; tn, xn,wn) exist for all t ≥ tn and satisfy |xn(t)|A ≤ r2, where r1, r2 are two positive real

constants. Then the solution x(t) = x(t; t0, x0,w0) exists for all t ≥ t0, it is such that:

xn(t)→ x(t) as n→∞, and |x(t)|A ≤ r2,

again for all t ≥ t0.

Proof. Since xn → x0, we have |x0|A ≤ r2. Given w0, by local existence of solutions, there exists a

maximal interval [t0, t̄), in which x(t) is defined. Moreover, we may assume that xn ∈ closB(x0, 1), and

tn ∈ [t0 − 1, t0 + 1] for all n ≥ 1. For each t > t0, we let:

A(t) = { xn(τ) | τ ∈ [tn, t] } ⊂ Rn.

Then A(t) is bounded, and in fact:

|xn(τ)| ≤ |xn|+
∫ t

tn

|f(s, xn(s), u(s))|ds ≤ |xn|+Mr1r2(τ − t) ≤ |x0|+ 1 +Mr1r2δ(t),

where Mr1r2 = sup |f(t, x, u)| for |x|A ≤ r2, and ‖u‖ ≤ r1, and δ(t) = (t − t0 + 1). First we prove the

following fact.

Fact. If x(t) exists for all t ∈ [t0, t′], then xn(t)→ x(t) as n→∞ for all t ∈ [t0, t′].
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Proof of Fact. Let:

K = closA(t′) ∪ { x(t) | t ∈ [t0, t′] },

then K is a compact set. Let LK,r1 , and M̃ be the Lipschitz constant and a bound for f with x ∈ K,

‖u‖ ≤ r1, and t ∈ [t0 − 1, t′]. Then one gets:

|xn(t)− x(t)| ≤ |xn − x0|+ M̃ |tn − t0|+ Lk,r1

∫ t′

t0∨tn
‖wn(s) −w0(s)‖ + |xn(s) − x(s)|ds,

where t0 ∨ tn indicates max{t0, tn}. Using the Bellman-Gronwall inequality, one gets:

|xn(t)− x(t)| ≤
(
|xn − x0|+ M̃ |tn − t0|+ Lk,r1

∫ t′

t0∨tn
‖wn(s) −w0(s)‖ ds

)
eLk,r1(t′−t0∨tn).

From this last inequality the fact easily follows.

Now we prove that x(t) exists for all t ≥ t0. Assume that x(t) exists only for t ∈ [t0, t̄). Since, for

t ∈ [t0, t̄), we have xn(t)→ x(t) (from the previous fact), it holds that:

x(t) ∈ closA(t̄).

Since closA(t̄) is a compact set, this contradicts the fact that x(t) does not exist for t = t̄.

Lemma 3.13 Let (tn, xn) → (t0, x0), and wn → w0. Let i ≥ 0 be the first index such that |x0|A < εi.

Assume that all Q(tn, xn,wn) are finite, that ‖wn‖ ≤ εi+2, and that |xn(t)|A ≤ εi+2. Then:

Q(t0, x0,w0) ≤ lim inf
n→+∞

Q(tn, xn,wn).

Proof. From lemma 3.12, it holds that x0(t) is defined for all t ≥ t0. Moreover it is also true that:

F (|xn(t)|A) → F (|x0(t)|A).

Given ε > 0 there exists δ > 0 such that:∫ t0+δ

t0

F (|x0(t)|A)dt < ε.

By Fatou’s Lemma, we get (notice that for n large tn ≤ t0 + δ):∫ ∞
t0+δ

F (|x0(t)|A)dt ≤ lim inf
n→∞

∫ ∞
t0+δ

F (|xn(t)|A)dt.

On the other hand, one easily sees that:

max{δ(‖w0‖)− δ(γ(ε0)), 0} ≤ lim inf
n→+∞

max{δ(‖wn‖) − δ(γ(ε0)), 0}.

Summing up, we conclude:

Q(t0, x0,w0) ≤ ε+
∫ ∞
t0+δ

F (|x0(t)|A)dt+ max{δ(‖w0‖)− δ(γ(ε0)), 0},
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which is upper bounded by

ε+ lim inf
n→∞

∫ ∞
t0+δ

F (|xn(t)|A)dt+ lim inf
n→+∞

max{δ(‖wn‖) − δ(γ(ε0)), 0}

and is itself bounded by

ε+ lim inf
n→+∞

Q(tn, xn,wn).

From which the conclusion follows since ε was arbitrary.

The arguments used in the proofs of next lemmas are similar to the one used in [9] to prove the

corresponding results.

Lemma 3.14 For each (t0, x0) ∈ R× Rn there exists w0 such that:

V (t0, x0) = Q(t0, x0,w0).

Proof. Assume that i ≥ 0 is the first index such that |x0|A < εi. Let wn be a minimizing sequence, then,

by lemma 3.8, it must holds that ‖wn‖ ≤ εi+2 and |xn(t)|A < εi+2. Thus, by sequential compactness of

Wεi+2 , we may assume that wn → w0 (possibly extracting a subsequence). From lemma 3.13, we have:

Q(t0, x0,w0) ≤ lim inf
n→∞

Q(t0, x0,wn) = V (t0, x0) ≤ Q(t0, x0,w0).

Lemma 3.15 The function V (·, ·) is lower semicontinuous.

Proof. Let (tn, xn) → (t0, x0). Then if i ≥ 0 is the first index such that |x0|A < εi, we may also assume

that |xn|A < εi. Let wn be such that V (tn, xn) = Q(tn, xn,wn), then, by lemma 3.8, ‖wn‖ ≤ εi+2 and

|xn(t)|A < εi+2. Since Wεi+2 is sequentially compact, we may assume that wn → w0. By applying lemma

3.12, we know that the trajectory x0(t) = x(t; t0, x0,w0) exists for all t ≥ t0 and it is the limiting trajectory.

Moreover by lemma 3.13, we have:

V (t0, x0) ≤ Q(t0, x0,w0) ≤ lim inf
n→∞

Q(tn, xn,wn) = lim inf
n→∞

V (tn, xn).

Lemma 3.16 The function V (·, ·) is continuous.

Proof. We need only to prove upper semicontinuity. Fix ε > 0, and let 0 < δ < ε0 be such that if |x|A ≤ δ

then V (t, x) ≤ ε/3 for all t ∈ R (use lemma 3.11). Fix any (t0, x0) ∈ R × Rn. Let i ≥ 0 be the first index

such that |x0|A < εi, and w0 be such that V (t0, x0) = Q(t0, x0,w0). Then ‖w0‖ ≤ εi+2 (lemma 3.8).

Denote by x(t) = x(t; t0, x0,w0), then there exists T such that |x(T )|A < δ. By continuity, there exist a
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neighborhood J ×H of (t0, x0) such that, for all (t′, z) ∈ J ×H, |z|A < εi, z(t) = x(t; t′, z,w0) exists for

all t ∈ [t′, T ], |z(T )|A < δ, and ∫ T

t′
F (|z(t)|A) <

∫ T

t0

F (|x(t)|A) + ε/3.

Now we have:

V (t′, z) ≤ ε/3 +
∫ T

t′
F (|z(t)|A) + max{δ(‖w0‖) − δ(γ(ε0)), 0}

<

∫ T

t0

F (|x(t)|A) +
2ε
3

+ max{δ(‖w0‖)− δ(γ(ε0)), 0} ≤ V (t0, x0) + ε.

Thus V is upper semicontinuous.

Lemma 3.17 The function V (·, ·) is a control-Lyapunov integral function.

Proof. We have already shown that V is continuous and satisfies property 1. of Definition 2.4. We need

only to prove that equation (4) holds. Fix any (t0, x0) ∈ R × Rn. Let i ≥ 0 be the first index such that

|x0|A < εi, and w0 be such that V (t0, x0) = Q(t0, x0,w0). Let γ1 be any continuous, positive and increasing

map such that γ1(p) ≥ εi+2 for εi−1 ≤ p < εi, for i ≥ 0 (set ε−1 = 0). Then ‖w0‖ ≤ εi+2 ≤ γ1(|x0|A).

Denote by x(t) = x(t; t0, x0,w0), and by w′0 the translation of w0 by (−t). It holds:

V (t, x(t)) ≤
∫ ∞
t

F (|x(s)|A)ds+ max{δ(‖w′0‖) − δ(γ(ε0)), 0},

thus (notice that ‖w′0‖ ≤ ‖w0‖):

V (t, x(t))− V (t0, x0) ≤ −
∫ t

t0

F (|x(s)|A)ds.

So also property 2. holds with α3 = F , and φ = γ1.

4 Remaining Proofs, and Comments

To prove proposition 2.3 the following technical lemma is needed. Although not explicitly stated in this

form, this is what was being proved in Section 3 of [8].

Lemma 4.1 Let Φ(r, t) : (R≥0)2 → R≥0 be a map such that

(a) for all ε > 0 there exists δ > 0 such that if r ≤ δ then Φ(r, t) < ε for all t ≥ 0,

(b) for all ε > 0 and for all R > 0 there exists T such that Φ(r, t) < ε for all 0 ≤ r ≤ R and for all t ≥ T .

Then there exists a KL-function β(·, ·) such that

Φ(r, t) ≤ β(r, t) ∀ r, t.
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Proof of proposition 2.3. We need to establish only the sufficiency part, the necessity part being

obvious. We assume given a model Σ of type (1) satisfying properties 1 and 2.

Fix (t0, x0) ∈ R × (Rn \ A). Let ε0 > 0 be such that |x0|A = γ2(ε0) (such an ε0 exists, γ2 being

a K∞-map). Then, by property 1, we may choose a control ut0,x0 such that ‖ut0,x0‖ ≤ γ1(|x0|A) and

|x(t, t0, x0,ut0,x0)|A ≤ ε0 for all t ≥ t0. Let

Ψt0(r, t) = sup

|x0|A ≤ r

t− t0 ≥ 0

|x(t, t0, x0,ut0,x0)|A , ∀ r ≥ 0, ∀ t ≥ t0,

and

Φ(r, t) = sup
t0

Ψt0(r, t+ t0), ∀ r ≥ 0, ∀ t ≥ 0.

Assume that Φ(r, t) satisfies both requirements (a) and (b) of lemma 4.1, and let β(·, ·) be the KL-function

given by the same lemma. Then we have that for all (t0, x0) ∈ R× (Rn \ A) there exists a control ut0,x0,

with ‖ut0,x0‖ ≤ γ1(|x0|A) such that

|x(t, t0, x0,ut0,x0)|A ≤ Ψt0(|x0|A , t) ≤ Φ(|x0|A , t− t0) ≤ β(|x0|A , t− t0).

Thus Σ is gac to A. So, to conclude, we just need to show that both requirements (a) and (b) are satisfied.

(a) Fix any ε > 0. Let δ = γ2(ε). Then for all |x0|A ≤ δ and for all t0 ∈ R, by property 1, we know

that

|x(t, t0, x0,ut0,x0)|A ≤ ε ∀ t ≥ t0.

which clearly implies

Φ(r, t) ≤ ε, ∀r ≤ δ, ∀ t ≥ 0.

(b) Fix any ε > 0 and any R > 0. By property 2, we know that there exists T > 0 such that, for all

|x0|A ≤ R, for all t0 ∈ R,

|x(t, t0, x0,ut0,x0)|A ≤ ε ∀ t ≥ T + t0.

thus also

Φ(r, t) ≤ ε, ∀r ≤ R, ∀ t ≥ T,

as desired.

Remark 4.2 Observe that, in order to conclude the equivalence between definition 2.2 of gac and prop-

erties 1, 2 of proposition 2.3, it is essential that the control realizing the stability part (property 1) and the

one realizing the attraction part (property 2) can be chosen to be the same. In fact, it is possible to give

examples of systems (even time-invariant and with A = {0}) where both properties 1 and 2 of proposition

2.3 hold but with different control maps, and the system is not gac. We do not provide all the details here,
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but merely sketch the construction of such an example, as follows. It is possible to build an autonomous

two-dimensional model in which the origin is an attractor but not a stable point. In particular, there exist

two C∞-functions f1, f2 : R2 → R such that if we look at the system (without control):

ẋ1 = f1(x1, x2),

ẋ2 = f2(x1, x2),

it has the following properties.

(a) The origin is an attractor point, i.e. for all x0 ∈ R2 the corresponding trajectory x(t) is defined for

all t ≥ 0 and it is such that limt→+∞ x(t) = 0.

(b) The origin is an unstable point, i.e. there exists ∆ > 0 such that, for all n ≥ 1, there exist xn ∈ R2

with |xn| < 1/n and tn > 0 such that, if we denote by xn(t) the trajectory with initial state xn, it

holds

|xn(tn)| > ∆. (27)

For the precise expression of the two functions f1, f2 and for the proof of properties 1, 2 we refer to [4]

(Chapter 5, page 191), where such an example studied in detail. Now we look at the system:

Σ =

 ẋ1 = f1(x1, x2)u,

ẋ2 = f2(x1, x2)u,

with state space R2 and control space U = {0, 1}. Since this is an autonomous model, we may set t0 = 0

in the definitions. Since for this model A = {0}, we will use | · | instead of |·|A.

By choosing u ≡ 0 all the states are equilibria, thus property 1 of proposition 2.3 clearly holds with

γ2 equal to the identity function. Now for any fixed r, ε, if we choose u ≡ 1, by property (a) of the

uncontrolled dynamics, for all x ∈ R2 with |x| ≤ r there exists Tx > 0 such that |x(Tx)| < ε. By continuity

of trajectories with respect to the initial state, there exists a neighborhood Ux of x such that, for all y ∈ Ux,

the corresponding trajectory, again with u ≡ 1, is such that y(Tx)| < ε. As
⋃
|x|≤r Ux is an open covering

of the closed ball of radius r, by compactness there exists a finite subcovering by sets Ux1 , . . . , Uxp . Now

letting Tr,ε = max{Tx1 , . . . , Txp}, for this constant Tr,ε property 2 of proposition 2.3 holds. In fact if

|x0| ≤ r then |x0| ∈ Uxi for some i = 1, . . . , p. Choose

u(t) =

 1 for t ∈ [0, Txi),

0 for t ≥ Txi ,

then, clearly, the corresponding trajectory is such that x0(t) < ε for all t ≥ Tr,ε. However Σ is not gac.

To see this we argue as follows. If the model would be gac, then for each initial state x ∈ R2 there would

exist a control map u(t) such that the corresponding trajectory would satisfy

|x(t)| ≤ β(|x0|, t). (28)
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for a given KL-function.

Fix r > 0 small enough such that β(r, 0) < ∆. Then, by property (b) there exists xn, with |xn| ≤ r,

such that the corresponding trajectory with u ≡ 1 satisfies |xn(tn)| > ∆. Let L = min{|xn(t)|, t ∈ [0, tn]},

then there exists T > 0 such that β(r, T ) < L. Since the trajectories of Σ either follow the trajectories of

the uncontrolled dynamics or stay in equilibrium, it is clear that for xn it is impossible to find a control

maps such that the corresponding trajectory satisfies equation (28) for t ≥ T .

We now conclude the proof of theorem 1 by showing that if V is a control-Lyapunov function, then V

is also an integral control-Lyapunov function (i.e. we prove that 2⇒ 3).

Assume given a control-Lyapunov function V , together with maps α1, α2, α3, and φ satisfying proper-

ties 1 and 2 of definition 2.4. Let φ̂ be any continuous positive and increasing function such that φ̂(0) ≥ µ

and

φ̂(r) ≥

 φ(r)

α−1
1 (α2(r))

Fix any (t0, x0) ∈ R× (Rn \ A). Define

M(t0, x0) =

t > t0

∣∣∣∣∣∣∣∣∣
∃w : [t0, t)→ P (U) such that

‖w‖ ≤ φ̂(|x0|A) and ∀ s ∈ [t0, t)

(?)V (s, x(s)) − V (t0, x0) ≤ −
∫ s
t0

α3(|x(τ)|A)

8 dτ

 , (29)

where x(s) = x(s, t0, x0,w). Notice that M(t0, x0) ⊆ R≥0 ∪ {+∞}. We will prove:

(a) M(t0, x0) 6= ∅,

(b) sup M(t0, x0) ∈M(t0, x0),

(c) sup M(t0, x0) = +∞.

Properties (b) and (c) clearly imply that V is also an integral control-Lyapunov function (using the maps

α1, α2, 1/8α3, and φ̂).

(a) By property 2 of definition 2.4 there exists a relaxed control w : [t0, t̃) → P (U) with ‖w‖ ≤

φ(|x0|A) ≤ φ̂(|x0|A) such that equation (3) holds. In particular, this fact implies the existence of a

sequence tk → t+0 such that

V (tk, x(tk)) − V (t0, x0) ≤ −α3(|x0|A)
2

(tk − t0). (30)

By continuity there exists t̄ > t0 (we may assume t̄ ≤ t̃) such that for all r, s ∈ [t0, t̄) we have:

α3(|x(s)|A)
2

< α3(|x0|A), (31)

|V (r, x(r))− V (s, x(s))| < α3(|x0|A)
4

. (32)
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Choose t0 < t̂ ≤ t̄ such that for some index k̄ it holds tk̄ < t̄ and t̂− t0 < tk̄− t0 < 1. Then for all t ∈ [t0, t̂)

we have:

V (t, x(t))− V (t0, x0) ≤ |V (t, x(t))− V (tk̄, x(tk̄))|+ V (tk̄, x(tk̄))− V (t0, x0)

<
α3(|x0|A)

4
(tk̄ − t0) − α3(|x0|A)

2
(tk̄ − t0) < −α3(|x0|A)

4
(t− t0).

Thus, by equation (31) we have:

V (t, x(t))− V (t0, x0) ≤ −
∫ t

t0

α3(|x0|A)
4

ds ≤ −
∫ t

t0

α3(|x(s)|A)
4

ds.

Therefore t̂ ∈M(t0, x0).

(b) Let T = supM(t0, x0), then either T ∈ R or T = +∞. In any case there exists a sequence

tn ∈M(t0, x0) such that tn → T . Thus for all n > 0 there exists wn : [t0, tn)→ P (U) with ‖wn‖ ≤ φ̂(|x0|A)

and such that xn(t) = x(t, t0, x0,wn) satisfies equation (?) for all t ∈ [t0, tn). By sequential compactness

of Wφ̂(|x0|A) we may assume that wn → w0, where w0 is defined for all t ∈ [t0, T ) and ‖w0‖ ≤ φ̂(|x0|A).

Let x0(t) = x(t, t0, x0,w0), which by local existence is defined on an interval of the type [t0, t̄). We want

to prove:

t̄ = T and xn→ x0. (33)

From equation (33) we may conclude T ∈M(t0, x0) since equation (?), which holds for all n > 0, will still

hold after having taken the limit as n→ +∞.

The proof of (33) is only sketched since the arguments are quite similar to the one used to prove lemma

3.12. Let

A(t) = {xn(τ) | t < tn, τ ∈ [t0, t]},

it is not hard to prove that A(t) is bounded. Then one proves that:

if x0(t) exists ∀ t ∈ [t0, t′] then xn(t)→ x0(t) ∀ t ∈ [t0, t′]. (34)

Let K = closA(t′)∪{x0(t) | t ∈ [t0, t′]}; then K is compact. Let L be a Lipschitz constant for f with x ∈ K

and ||u|| ≤ φ̂(|x0|A). Then one has:

|xn(t)− x0(t)| ≤ L
∫ t

t0

[||wn(s) −w0(s)||+ |xn(s) − x0(s)|] ds,

from which, using the Bellman-Gronwall inequality equation (34) follows. Now to prove t̄ = T one argues

as follows. Assume t̄ < T . Then for all t ∈ [t0, t̄), by (34), xn(t) → x0(t) thus x0(t) ∈ closA(t̄) which is

compact, so the trajectory may be extended also to t = t̄.

(c) Now we want to prove that T = supM(t0, x0) = +∞. Assume that T < +∞. Since T ∈ M(t0, x0)

by (b), there exists a relaxed control w : [t0, T ) → P (U) which satisfies all the requirements of equation

(29) (call x(t) its corresponding trajectory). Let M be a bound for f when |x|A ≤ α−1
1 (V (t0, x0)) and

||u|| ≤ φ̂(|x0|A). Then it holds that |x(t)| ≤ |x0| + M(T − t0). So the trajectory can be extended to
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the endpoint T . Now if x(T ) ∈ A, then we are done, since we may extend the control map w with the

one given by the gac assumption and all the requirements of (29) continue to be satisfied. On the other

hand, if x(T ) 6∈ A, then by what we have seen in part (a), there exists T1 > T with T1 ∈ M(T, x(T ))

and a corresponding control w1 : [T, T1) → P (U) with ‖w1‖ ≤ φ(|x(T )|A) such that the corresponding

trajectory satisfies equation (?). Since |x(T )|A ≤ α
−1
1 (α2(|x0|A)), we have ‖w1‖ ≤ φ(|x(T )|A) ≤ φ̂(|x0|A),

thus by concatenating the two control maps w and w1 we get that T1 ∈ M(t0, x0) contradicting the fact

that T = supM(t0, x0).
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