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Abstract

We give an existence result for the evolution equation (#u) + </u = f in the space # =
{ue?’| (Ru)' €7”'} where ¥ is a Banach space and # is a non-invertible operator (the
equation may be partially elliptic and partially parabolic, both forward and backward) and we
study the “Cauchy-Dirichlet” problem associated to this equation (indeed also for the
inclusion (Zu) + «/usf). We also investigate continuous and compact embeddings of #~ and
regularity in time of the solution. At the end we give some examples of different %.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction
We present an existence result for the solution of the abstract evolution equation
(Ru) + Au=1.

Given V' Banach space and H Hilbert space, V < H, defined v~ = L?(0,T; V), % will
be a linear operator defined in L(0, T; H) and the solution will be taken in the space
W ={ue?" | (%u) ev"}. Notations and definitions for the abstract equation will be
given in the second section, so for the moment we confine ourselves to explain a

“Fax: +39-0832-29759%4.
E-mail address: fabio.paronetto@unile.it.

0022-1236/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jfa.2004.03.014



F. Paronetto | Journal of Functional Analysis 212 (2004) 324-356 325

concrete and simple problem (see also examples in Section 4): suppose to have a
bounded open set Q of R", T>0, a function r: Q x [0, T] >R, re L*(Q x (0,T)),
define Q,(¢) = {xeQ|r(x,1)>0} and Q_(7) = {xeQ|r(x,1)<0}, consider H =
L*(Q) and V = H}(Q), and define Zu(x,t) = r(x, f)u(x, t). Consider

g( (x,Hu(x, 1)) — Au(x,t) = f(x,¢) on Qx (0,7),

u(x,1) =0 (x,1)e 02 x (0,T), (1)
u(x,0) = o(x) xeQ,(0),
u(x, T) = ¢(x) xeQ_(T),

where f: Q x (0,T)->R, ¢:Q,(0)>R, y:Q_(T)—>R are the data of the problem.
Notice that for this kind of Cauchy—Dirichlet problem we prescribe an “initial
datum” in the part of Q in which at time ¢# = 0 the coefficient r is positive, a “final
datum” in the part of Q in which at time ¢ = T the coefficient r is negative and no
datum where r is zero both at time r = 0 and time ¢ = 7. A simple situation in which
we have existence and uniqueness of the solution is stated in the following theorem
(but # can be much less regular, e.g. the case r:Q x (0,7)—{—1,0,1} is also
possible: see examples in Section 4).

Denote by r, and r_, respectively, the positive and the negative part of r and, for a
positive function 4, by L*(w, 1) the space L? with respect to the measure 1 dx on o.
Then the following result holds.

Theorem. For every fel*(0,T;H '(Q)), ¢el*(Q.(0),r.(-,0), yel*(Q_(T),
r_(-,T)) problem (1) admits a unique solution in the space {ueL?(0,
T; HY(Q)) [(ru) e L2(0, T; H'(Q)} if r,%eL*(Qx (0,T)). Moreover a lower
bound on % is assumed, precisely ||”||H(§(Q) 1/2ess 1nf<3‘"|u||L7 >°‘||”||H1 for

some positive o, (see Theorem (3.8)).

Many diffusion problems lead to mixed problems, partially elliptic and partially
parabolic. For example in some composite materials there can be a zone in which the
evolution is so quick to consider the problem stationary, and there the problem can
be considered elliptic, and another zone in which the problem is parabolic. This
situation corresponds to take r>0 in example (1) above. This problem is not new:
perhaps the first papers about it are [3,13] and (see also [14, Section III.3]; [17,
Chapter 5]; [12,11]] for homogenization and G-convergence of elliptic—parabolic
operators). We also refer to [3, Chapter 3], and the references therein for many
applications.

Also the more general problem (r arbitrary) was already considered: for example,
in [2] (for this see also Section 3.2.6 in [7]) the authors considered the following
equation:

O*u

x%(x,t) 82(x 1) =f(x,1), xeR. (2)
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An equation like that arises from kinetic theory (see [4]). Later in [9,8] the following
problem is considered:

sgn(x)%(x, ) — 222, (x,0) + ku(x,t) =f(x,1), xeR.

Probably the first general paper about it, but with # independent of time, is [10] (see
moreover [1] for a recent work on homogenization for changing type evolution
equations).

In the present paper, we study the problem of existence and uniqueness of a
solution to a more general problem (see (19) and (20) in Section 3).

If # =1d the space #" embeds continuously in C([0,7]; H) and compactly in
L7(0,T; H). In Section 2, we investigate these embeddings if Z#1d and study the
density of regular functions in #".

Moreover, we study regularity in time of the solution (see Theorem 3.11, Corollary
3.13, Remark 3.14 and Example 3.15).

In the last section, we give examples of some possible choices of the function r, but
also for the operator 2, like Zu(t) = [, r(x,y, Hu(y, 1) dy.

2. Notations, hypotheses and preliminary results

Consider a triplet
VeH<V,

where V is a reflexive and separable Banach space, V' its dual space, H a Hilbert
space and the embedding V' <= H is continuous and dense. Fix 7>0, pe(1,+o0) and
define

¥ =12(0,T;V), ¥ =I'0,T;V.

In the next section, we want to study the problem of existence, and uniqueness, of a
solution to an abstract evolution equation of the form

(Au) + Su =,

where .«/ may be a pseudomonotone, coercive and bounded operator from ¥~ to #”
and # may be the sum of one non-negative and one non-positive operator (positive
and negative in the sense we are going to explain). Therefore, in this section we
focalize our attention on hypotheses about the operator # and to define and study
the space which the solution to the equation should belong to, leaving considerations
about .o/ to the next section where we discuss the existence results.

We consider a family of linear operators from H to H

R:[0,T]> Z(H) (3)
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and write, for every t€[0, T], H = H, (1) ® H(¢) ® H_(t) where Hy(t) is the kernel of
R(t), H.(t) and H_(t) are defined, respectively, as the subspaces of H such that
(R(t)u,u); >0 for every ue H.(t), u#0, and (R(f)u,u), <0 for every ue H_(1),
u#0, and decompose R(¢) as Ry (t) + Ro(f) — R_(¢) where

R . (t): H (t)> Hy(t) defined by R, (tH)u= R(t)u
R (t):H_(t)>H_(t) defined by R_(f)u=—R(t)u

and Ry(?): Ho(t)—> Hy(t) is the operator Ry(f)u = 0 for every ue Hy(1).
Before giving assumptions on R we need a definition.

Definition 2.1. We say that B:[0,7]— % (X, X’), X Banach space, is differentiable
if, for every u,ve X the function

t— {B(u,v) xryx

is absolutely continuous on [0, 7] and there exists a function be L'(0, T') such that
d
CCB0u, 0 x| <Ol for ae. tefo, 7]

Observe that B'(z): X - X’ is linear for almost every 1€ (0, 7).

Remark 2.2. If B is differentiable in the sense just defined the following formula
holds: if ue W'»(0, T; X) for any p, then

(B(t)u(t)) = B'(Hu(t) + Bty (1) for ae. t€(0,T).

In the special case B(¢) = B for every ¢, taking ve LP(0, T; X') and u(z fo s,
we also derive from the formula above that

B /Ot v(s) ds = /Ot Bu(s) ds. (4)

About R: [0, T]—> ¥ (H) we require that for every u,ve V'

R(z) self-adjoint,

sup |[R(D)|| () < C1,
te(0,T)

t— (R(t)u,v), absolutely continuous on0, 77, (5)

d
E(R(t)u,v)H < Gllullyllv]|, for a.e. €0, T].
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Then we define the operator # by

R:LP0,T; H)»LP(0,T; H) by Ru(t) = R(t)u(?), (6)
which turns out to be linear and bounded by the constant C;. Notice that we require
an assumption which is weaker with respect to that in Definition 2.1, i.e.
[G(R(1)u,0) | < Collully||o]], and not [G(R()u, v) | < Callull 0|7 By (5) we can

define a family of equibounded operators

d
R:[0.T]>2(V, V') by (R(0u,05 iy = Z(R(1)u,v)y

and an operator

T
RV Y by Ru0) 1y ::/0 R (Du(t),v(t)) prypdt

which turns out to be linear and bounded by C;.
Remark 2.3. Notice that with these assumptions on R, ie. (5), Re W"* (0,

T; 2V, V")). Indeed for every ne C'((0, T);R), u,ve V (see, e.g., Proposition 23.9
in [16])

/ CR(Ou, 0> o () di = / CR (1,05 yr (1) di

(][ worwaus)

and

Ji " R0 ol (1t = {f ' R(z)n’(r)dz}u,v>w.

Now we define the space
W =A{ve? | (@) e}y, ully = lull, +11(%u)]],, (7)
where the derivative is to be intended in the sense of distributions. Notice

that if R satisfies (5) we have, for vew’, that (%v)eH'(0,T;V') and
Avel*0,T;V')=v". For this reason it makes sense to evaluate for
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almost every t1€(0,T)
(2d)(1) = (20) (1) = A (1)v(1)

R(t+ h)o(t + h) — R(1)u(1)]

i ] i [RGB = R0(2)

h—0 h h—0
i R RSO g a0

Proposition 2.4. Suppose X regular, i.e. satisfying (5). Then the space C' ([0, T]; V) is
dense in W .

Proof. Consider a family of mollifiers (p,), given by ¢ 'p(t/¢), teR, pe C}(R) an
even function such that p(0) =1 and supp(p)<=[-1,1]. For weL?*(0,T;X), X
Banach, consider

o [w(n), tel0,T],
M”_{m (eR\[0, 7]

and define

wy(f) = /R w(s)p.(t — 5) d. 9)

We consider the family (u;),. , which is contained in C* ([0, T]; V) and approximate
uin {ue? |u' €} (see [16, Example 23.10]) and in particular in 7.
In the same way (%u), = (%u)*p, converges to Hu in

{welP(0,T;H)|weL’(0,T;V")}, and in particular
(Ru),' - (%u) in V"

To see that also (Zu,)" approximate (Zu)’ in 7" first observe that, since % is regular
then Zu,e{wel’(0,T;H)|w eL”(0,T;V')} and in particular that (Zu,) e
Since R : [0, T]—>2(V, V') we have that

Ru,—-»Ru in v’

Then it is sufficient to show that Zu,’ > % = (%u) — Z'u in ¥”'. By (4) we have

R(u/ () = [ R(Oult=5)p.(5)

R
:/ [R(t— ) + R() — R(t — )|u(t — 5)p,'(s) ds
R

= (%u), (1) + [w} u(t — s)sp, (s) ds. (10)

R
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Now observe that for every d>0 there exists ¢>0 such that if |s| <& we have that

Finally observe that

R(t) — R(t—3)

R(1) - - <& since ReWh (0, T; 2(V,V")).

2V, V)

st —sp,/(s) are mollifiers.

Then, for a fixed 6 and for ¢ sufficiently small, we have that

AT [mg—Ru—@

N

2

dt
V/

R'u, (1) + /

} u(t — s)sp,’(s) ds
R

_ /0 o) - /R {R(’)_SR(’_S)} e = s)-sp (|
_ /0 ! /R {R’(r)— W}u(z_s)[_sp;(s)]ds ;d:
< { J[r - BO=EE=I ey V/[—sm/(s)]ds]zdr

</ ' [ | dlato - s>||w[—sp;<s>]ds]2dz

T
=& [l di<e 5

Therefore, we obtain that the last term in the equality in (10) is arbitrarly near to
(%”‘)sl([) — R'u(1)

! p—

and this converge in ¥ to (#u) — #'u as we wanted. [

Denote Hy(t) = Hy(t) = Ker R(¢) and

H(t), H (1), H_(t) = the completion, respectively, of H,H,(1),H_(t), (11)

with respect to the norm [|w|| ) = |||R(t)|1/2w\|H7 where by |R(¢)| we mean R, () +
R_(1).

By density of regular functions we obtain the formula of integration by parts and
the continuity result for the functions in # stated in Proposition 2.6 which extends

the following classical result (see, e.g., [16]).

Proposition 2.5. [f # = 1d the embedding W <= C([0, T|; H) is continuous, i.e. there is
¢>0 such that maxo<,<r||[u(?)||y; <cl|lull, -
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Proposition 2.6. For every u,ve W the following holds:

L), () = AU, 00> vy
+ <@u/(t)av([)>V’><V+ <'%U/(Z)Ju(l)>V’><V7 (12)

so in particular we have

/<J' D> prepde + / (M (2),0(1) >yt + /t<%v’<r),u<r>>wdr
Ou(t), o(t))r — (R(s)u(s), o(s))

Moreover, the function t— (R(t)u(t),v(t)),, is continuous and there exists a constant c,
which depends only on ||| 410 1,17y and T, such that

()| < clll(Zu) [y lloll - + 11(20) [y ul ],

N N gyl lol] - (13)

max [(R(2)u(),

<

In particular if u = v we have
/ < @u )>V/ VdT

= (R()u(t), u(t)) ; — (R(s)u(s / (D), ul(x)> oy,

or equivalently
/ (U (), u(T) ) yrpde + 5 / (R (), u(t) ) yrpdr

= 5 [(R(O)u(t),u(1))yy — (R(s)uls), u(s)) ]
and

max [(R(0u(0), (1)) <l

Proof. One can follow the proof in [16] (see Example 23.10) or the one contained in
[15] (see Lemma 40.2) and use the previous density result to obtain (12) for every
u,ve C'([0, T); V) and from this derive also (13). [

Remark 2.7. From Proposition 2.6 we cannot derive

max (IR u(r), u(t)) | < e [Ifully- + () || ] (14)
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because by (13) we only have that
for every 1[0, T] |(Ry()u(t),u(t))y — (R-(t)u(t),u(t))y| is finite,
but only (see also Lemma 2.13)
for almost every t€[0,T) |(Ry(t)u(t),u(t)),| and |(R_(#)u(t),u(t)),| are finite
as the example below shows, since by (13) the natural estimation should be

max [(IR(O(), u(@) | <e [llully- + (1221, (15)

Consider, for instance, a function e H}(0,1), the function v, (1) = \/&e’“’2 with
>0 and define wu,(x,?) =y, ,(¢)p(x). Consider the function r(x) which is 1
in (0,1/2) and —1 in (1/2,1) and, for ve H}(0,1), define R,v(x) = r(hx)v(x)
with 1eN.

Then u, e {ue L*(—1,1; H}(0,1))|Ru/ e L*(—1,1; H~'(0,1))} for every 7eN. But
a1, 1522 (0,1)) = Valloll 2, ||u0‘||L2(—171;H6(0 1)) <¢ where ¢ is independent of o and

||Rhu,||L2(—1,1;H*1(0,1))_)0'

Since |R;| = Id for every h it is sufficient to choose o big enough to see that the last
estimation above is not true.

In spite of the previous remark, in some cases (14) holds, as in the example
contained in [2] and as we state in the following proposition which generalizes
Theorem 1 in [2].

Proposition 2.8. If #: 7" — V" and moreover X is bounded from V" to V" there is a
constant ¢ depending (only) on T, ||R||g@ro 1.y and |||l g, such that

max (R0 (o), u(®) gl < [lully-

Example 2.9. # satisfies assumptions of the previous proposition if, for

example, V =H}(Q), H=I1*Q) and %:L*(0,T;L*(Q))—>L*0,T;L*(Q)) is
defined by

Pu(t)(x) = r(x, u(x,t) with re L= (0, T; Wh*(Q)).

Proof. Suppose that Zuev” for every ue?”. Consider the space Z =
{ue?" | e¥”}. Notice that <" indeed #'ve?” and moreover it is possible
to define Zv' : v —> v as

<<%Ul7 u > Yl = < UI, 9?1/!> VAR A
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As done to obtain (13) one deduces that

max |(R(2)u(1),v()) g

T
<c /0 (KR u(t),0(t) ) yry + AU (1), 0(2) ) yrcy + SRV (0),u(t) ) iy )dt
<cll[(2u)[ oIl 4 ||| 22ul] ]

Now we choose a particular function v in the space . Fix an arbitrary 7€ [0, 7] and
the function n = 1 on H, (7) and 0 on Hy(7) @ H_(7). Then for f € 7"~ consider v; the
solution to the problem

v+ ALv=f,

v(@) = (R(7) "

on the interval [0, 7] and v, the solution to the problem

{ vV +v=F,
o(D) = (R (7)) "y

on the interval [7, T]. Finally, the function v = v; on [0,7] and v = v on [7, T]. Clearly
veZ < . Applying Proposition 2.6 we in particular obtain

_ =~ 1/2

|(R@u(D), o) | = 1R (0 Pu@ < 1) |l lolly + (111,120,
< [l1@a) Mol + 1161121 g il ]
< cllul,-

This clearly implies, since by Proposition 2.6 |(R()u(7),u(f)),| is controlled by
[|ul|,-, that also HR_(f)l/zu(f)HH is finite and bounded by the norm of u. Since 7 is
arbitrary one conclude. [

Remark 2.10. More in general we have the inclusion if from wue® we
can derive (Z.u), (#-u)'e?” (see, for instance, Example (9) in the last
section).

In [7] it is stated the following lemma, by which one can deduce the theorem that
follows: below we generalize these results to our situation.

Consider two reflexive Banach spaces By, B;, a Hilbert space B such that
By < B< By with continuous embeddings.

Lemma 2.11. Suppose the embedding By< B is compact. For every n>0 there exists
¢y >0 such that for every ve B

loll<nllellg, + eullvll5, -
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Theorem 2.12. Fix two numbers po,p1e(l,0) and T>0. The space
{ve (0, T;By) | V'eL?(0,T; By)} compactly embeds in L/0(0,T; B).

Lemma 2.13. Suppose the embedding By < B is compact. Let R : B— B linear, bounded,
self-adjoint (then |R| is linear, bounded, self-adjoint). Then for every n>0 there exists
¢, >0 such that for every ve V

1/2
I1R]"2ell g <nl|ollg, + cyllRoll 5,

Proof. If R = 0 it is trivial. Otherwise, by contradiction suppose that for a fixed 77 the
thesis is false. Then for every heN we can find w,€Bo, |[us||g, =1, such

that
172 _
IR 2unll =17l [unl | 5, + Bl | Ruan

Then, since Ker|R|l/ 2 = KerR, adapting the proof of Lemma 5.1 in [7] one can
conclude. [

Theorem 2.14. Fix two numbers py,p1€(1l,0) and T>0. Consider a family
R:[0,¢]> Z(B) of linear, equibounded, self-adjoint operators which defines an
operator R :LP(0,T;B)—LP(0,T;B) such that #Z+#0. Suppose the embedding
Byc B is compact and moreover the embedding B< By is compact. Denote B(t) the
analogous to H(t) in (11).

Then the space W = {ve’(0,T;By)|(#v) e ’1(0,T;B)} compactly embeds in
(0, T; B(1)).

Remark 2.15. If 2|15 1.5, : L7°(0, T3 Bo) > L70(0, T; By) it is not necessary to
require that the embedding B< B; is compact.

Proof. We give a sketch of the proof, since even in this case one can follow the proof
of Theorem 5.1 in [7]. Consider a sequence (uy),, such that ||u;]|,- <c. In particular,
up to a subsequence, u, —u weakly in L20(0, T'; By) and suppose u = 0. Then by the
previous lemma

12
122" unl| 1o 0,7:8) <Hlunll oo, 7:8y) + Enll2unll 11 0.7:8))

and defining vy = wn/|[unll 1o (o, 7,5,) We have

1/2
|| 2] 4 Uh”U'O(O.T;B)<77+Cﬂ||g?vh”lﬂl(0,T;Bl)'

Since Zv;, € L7°(0, T; B) and (Zv;)" € L1 (0, T'; B;) we have that Zv, € C([0, T]; By ), so
it is sufficient to prove that Zv,(¢) — 0 strongly in B; for every 7€ [0, T]. To prove this
fact it is sufficient to follow the proof in [7]. The only thing to stress is that since we
consider Zvj,(t) which belong to B (while if # = Id one has v, () € By) in the proof we
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will need B< B compact (while in the classical case one needs the embedding By < B}
compact which is free from hypothesis of Lemma 2.13). [

The constant ¢, in Lemma 2.13 is in fact depending also on the operator R. Indeed
if we consider a sequence of equibounded operators we need more assumptions and
one can generalize Lemma 2.13 as follows.

Lemma 2.16. Suppose By< B is compact. Let Ry, : B— B a sequence of linear, bounded,
self-adjoint operators such that one of the two following hypotheses is satisfied:

(1) Ryu— Ru in B for every ue B,
(i) Ryu— Ru in By for every ue B and R injective.

Then for every n>0 there exists c,>0 such that for every ve V

1/2
[[1Ra"0llg<nlloll 5, + eyl Rivll,

Example 2.17. The following example can clarify the assumptions of the
lemma above: suppose V = H}(0,1) and H =L*0,1). Define r(x)=1
on (0,a) and —1 on (a, 1) for ae(0,1) and Ruu(x) = ry(x)u(x) = r(hx)u(x). Notice
that in this case |Ry|u = u for every h. If a = 1/2 Ry,u—0 in B, and we cannot hope
that the lemma above is true (while for a#1/2 condition (ii) of Lemma 2.16 is
satisfied).

Proof. As in the proof of Lemma 2.13 we find, by contradiction, a sequence v;, such
that [|va||5, = 1, such that

1/2 _
IIR"203] |5 =17 + h|Rui [,

1/2

and then [|Ruyl|p —0 since [[|R]“vy|| < Cllvnl| g < C'||opl[p, = C'. From these we

have, up to a subsequence,
vp—vin B, Ryv,— Rv weakly in B, R,v;,—0 in Bj.

From this we obtain that Ry =0 and then |R|'*»=0. We want to conclude
that |||R|'"?vs||;—~0. If R,—»R strongly (Ru—Ru in B for every ucB)
then |Rh|l/2—>|R|l/2 strongly from which \||R|1/21)/1||B—>O. Otherwise if R is

1/2

injective we can conclude that v =0, ie. ||v;]|z—0 and from |[||R]/“v||z<

Cllvs||p we can conclude that ||\R|l/2v;l\|5,—>0. In both cases we obtain a
contradiction

0>1 + clarity = limhinf || Rup|| g, =0. O

In the same way the compactness result reads as follows.
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Theorem 2.18. Fix two numbers py,p1€(1, 00) and T >0. Consider a sequence Ry, :
[0,T]|>%(B) of Ilinear, equibounded, self-adjoint which define operators
Ry LP0(0,T; B)—> LP0(0,T; B). Suppose By< B is compact and moreover B< By is
compact. Suppose Ry, — R (see below) and denote B(t) the analogous to H(t) in (11)
corresponding to the limit operator R. Consider a sequence (uy), <" such that
(Rnup) € and ||upl|, + ||(Znup)'||,+ <c for any positive constant c¢. Then (uy),, is
relatively compact

(i) in L0(0, T; B(t)) if #y— R pointwise in L*(0, T; B);

(ii) in LP(0, T; B) if R, — R pointwise in LPo(0,T; By) and R is injective.

Example 2.19. Boundedness ||u;||, + |[(Znun)'|],»<c it is not sufficient to have
compactness. For example consider H = L*(0,1) and V = H}(0,1), wuy(x,t) =
n(x)sinht with neC'(0,1) and %, the operators which multiply by sin/x.
This sequence is bounded in the sense above, but does not converge in
L*((0,1) x (0,7)).

3. The existence result

Consider a family of operators

A(t): V-V with t+— {A()u,v) 1y, measurable on [0, T]

such that if we define the abstract operator
AV >V u(t) = A(u(t), 0<i<T. (16)

This turns out to be

o/ pseudomonotone, coercive, bounded (see Definition 3.4).
We denote

PW -y (Pu)(t) = (%u) (1) + Au(t), 0<i<T.

Remark 3.1 (The initial conditions). By Proposition 2.6 we can evaluate the
quantity (R(¢)u(t),u(t)), for every te[0, T| (and every ue#"), but we are not sure
(R (t)u(t),u(t))y and (R_(t)u(t),u(t)), are finite for every ¢, at least not in every
case (see also Remark 2.7). Since, for every wue#’, Zuel?(0,T;H) and
(%u) e L7 (0, T; V') we have that the function 71— R(¢)u(z) is continuous valued in
V'. Define V,(0) = V'~ H(0), which is a subspace of V. Then

wi— (R(0)u(0),w) ; = (R+(0)u(0),w),, weV,(0)

is a linear and continuous form. Then one can give a pointwise meaning to
R, (0)u(0) in the dual space of V,(0) (and more generally to R, (f)u(z) in
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Vi(t) = VnH.(t)). In particular, it makes sense to consider (see (11))
@eH_(0) and ask that R, (0)u(0) = R, (0)¢.

In this way if we denote the orthogonal projections
P.(0): HO0)—»H,(0) and P_(T):H(T)-H_(T) (17)

(;}nd indeed one can define P (¢) : H(t) > H (1), P_(t): H(t)—> H_(t), Po(t) : H(t) >
Hy(t) for every t€|0, T]) and since R, (0)u(0) = R (0)P,(0)u(0) = R (0)¢ it makes
sense to consider

P(O)u(0) = ¢ in H.(0).
In a similar way, for every Y e H_(T), one can give a meaning to

P (Tu(T) =y in H (T).
Obviously since (R(#)u(t),u(t)),, is finite for every ¢z, if P, (0)u(0) = ¢ we obtain that

(R(0)u(0),u(0)) ; = (R(0), ¢) iy — (R-(0)u(0),u(0)) y

and since @ e H, (0), (R, (0)¢, @), is finite and necessarily also (R_(0)u(0),u(0)),, is
finite. The same holds for (R (T)u(T),u(T)) it P_(T)u(T) = .

Thanks to the previous remark we can define
WO = {uew | PL(0)u(0) =0, P_(T)u(T) = 0},
WP ={ueW | (Py+ P_)u(0) = (P+ + P_)u(T)}

(in the periodic case we consider # independent of ¢).
Consider the operators

1
L= R + zﬂ’u, i=1,2, D(Z)=w° D(L) =W ",

L= (Ru), i=3,4, D(L3)=Ww" D(Ly)= WP

Proposition 3.2. The operators ¥£;:D(L)<? -»Y", i=1,...4, are maximal
monotone if

(Ruuy iy =0 for every uey’. (18)

Assumption (18) can be dropped if i = 1,2.
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Proof. Denote for simplicity ¥ = &; for some i till it is not ambiguous. The first
step

(Luyuy =0

follows from Proposition 2.6 since for i = 1,2
Ly = S{RIT), (T, ~ (RO)(0),1(0)),,]>0
and indeed < Zu,ud> =0 if D(L) = WP, while for i = 3,4
(L = SREDUCT), () — (ROWO0),u(0)) ] + 5 <A

To see that it is maximal monotone we confine ourselves to i = 1,2, being the proof
for i = 3,4 similar. Fix we¥” and ve 7" and suppose

<w—ZLu,v—uy =0

for every ue D(¥). We want to show that ve D(¥) and w = Pv. If we define
z = v — u we obtain that

dwyzy =L L (v—1z),z) =0.
Fix z and consider Az with AeR. Since ¢ is linear for every positive 1 we obtain
MEzzy=2{Lvr—w,z)
and for every negative A
MLz,zy <L Lv—w,z)
for every zev 4+ D(%). Letting A go to zero we obtain that <w — Lv,z) =0, i.e.
<w—ZLv,vy ={w—Lo,u)

for every ueD(¥) which implies <w— ZLv,u) =0 for every ueD(Z). If we
consider u(t) = ¢(t)y with ye V and ¢e C'(]0, T]) we obtain

T
/0 Cwlt) — 2o(t),y (1) di = 0

for every @eC'([0,T]) and yeV. Then w(t) = ZLv(¢) in V' for almost every
1[0, T) and then w = Zv. Then Lve W since Lv= R + 1 Rv= (%) — S Rv
and #'vey” we have that (Zv)ev?” and then ve¥#". We have to sece
now that ve D(.%).
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Consider first #y: for every ue D(%) we have that

2L (0 =)0~ iy = (R (T)(0(T)

Choose a sequence (u,) bounded in #  such that u,—v in ¥  and such
that P, (T)u,(T) = PL(t)v(T) and P_(0)u,(0) = P_(0)v(0). Taking the limit
we obtain

—(R(T)o(T),v(T))  — (Ry-(0)0(0),0(0)) ;; >0

which implies that (R_(T)v(T),v(T))y = (R+(0)v(0),v(0)), = 0.
Consider now %5: for every ue D(%,) (Z is independent of time in this case) we
have that

0<2(R(v—u)),v—u) iy
= (R((T) = u(T), (o(T) = u(T)) g = (R(v(0) = u(0),v(0) — u(0))
= (Ru(T),v(T))y — (Rv(0),0(0)) 7 + 2(R(v(0) — v(T)),u(0)) 5,
since # is independent of ¢ and (Ru(0),u(0)),; = (Ru(T),u(T)),. This equality is

true for every choice of u(0)eV and then R(v(0)—v(T))=0 in H, ie.
UED(ffz). O

Definition 3.3. We say solution of the problem (see (6) for the definition of # and
(17) for P, (0) and P_(T))

(%u)'(t) + Lu(t) = f(t) for ae. te]0,T],
and P, (0)u(0) = @ in H.(0), P_(T)u(T) = in H_(T) (see Remark 3.1).
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Under the assumption of the previous section we consider the following elliptic—
parabolic problems:

(Ru) + Adu=f (Ru) + Au=f
(D] P+(0)u(0) =0 (I){ Pru(0) = Pru(T) (19)
P_(T)u(T) =0 P_u(0) = P_u(T)

In the periodic problem, the second one, we consider # independent of time.
Notice that the periodic conditions mean u(0)=u(7T) but in the kernel
of R:H—H.

Before the main theorem we recall some definitions.

Definition 3.4. We say that an operator B: X — X’ is coercive if

(Bx, X7

AN + OO,
IIxll—+o  |]x]]

is bounded if it maps a bounded set in a bounded set, is pseudomonotone if
x,—xin X —weak and Ilimsup {Bx,,x, —x)<0
n
implies that

{Bx,x —y)<liminf {Bx,,x, —y) for every yeX.
n

We recall now a classical result (see, for instance, Section 32.4 in [16]).

Theorem 3.5. Let B: X —X' (X' the dual space of X, X Banach space) be

pseudomonotone, bounded and coercive. Suppose L: X —2% " t0 be maximal monotone.
Then for every f e X' the following equation has a solution

Lu+ Busf

and in particular if L, B are single-valued the equation Lu + Bu = f has a solution.

The idea now is to use the previous theorem for the equation (%u)’ + </u=f.
Notice that

1 1
(%u)' + Su= R + zﬂ’u—i— Ju+ E%’u.

Theorem 3.6. Suppose X satisfies assumptions (5). Suppose true one of the following:

) =+ %%’ pseudomonotone, coercive, bounded.
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(il) B = of pseudomonotone, coercive, bounded and {R'u,u ., ., =0 for every
uey .

Then problems (19) admit a solution for every f eV = Lp/(O, T; V"). If moreover A is
strictly monotone the solution is unique.

Remark 3.7. In fact we obtain an existence result also for the Cauchy problem
(Ru) + Ausf, uew® (or uew™).

Moreover the solution is unique if the operator # of Theorem 3.6 is strictly
monotone (see [14, Chapter 4; 6] for a more recent result with #>0)

Proof. By Theorem 3.5 (but see for more details Theorem 32.A, Corollaries 32.25,
32.26 and also Proposition 27.6 in [16]) and Proposition 3.2 we obtain existence in
#° and WP i.e. for problems (18)-(I) and (18)-(I).

As regards uniqueness it is sufficient to observe that if u, v are two solutions we
have

0=<(2(u—v) + Au— Av,u—v)><{Bu— Bo,u—v)=0.
Since 4 is strictly monotone we conclude that u =v. [

Now consider the Cauchy—Dirichlet problem with non-zero “initial”” data

(Ru) + Au=f,
(IIN{ P (0)u(0) = ¢, (20)
P_(T)u(T) =,

and add some assumptions on .oZ. Before we assume also the following: define
Vo (0) = {weV |[P(0) + Py(0)lweV} =V (H (0)@®Hy0)) and V. (T)=
{weV |[P_(T)+ Py(T)lweV}=Vn(H_(T)®Hy(T)) (see (11) for the definition
of H_, Hy, H,). Then we suppose

H+(O)ﬂH,(T) = {0}, V,(0) dense in H,(0), V_(T) dense in H_(T). (21)
Then the following theorem holds.
Theorem 3.8. Suppose (21) holds. Define an operator P : W — " by Pu= (Ru) +
oL u where R satisfies (5) and of : V" — " is continuous. Suppose that there exist two
constants o, >0 such that

Cdu— Ao+ L ( Ru— R0)u—0) oy =l |u— vl

ltu+ L Rl < Bllull, (22)
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or for some pe(l,+ ), p#2,

Ctu— tv,u—v)yreyZallu—vll., [2ull <pllull)!

CRUUY iy =0 (23)
for every u,ve?". Then the following estimates hold.

(i) there is a constant ¢ = ¢(a, B, p) (depending only on «, § and p) such that for every
ue W and ue WP

1/(p—1)
el < lll2ul, o + N2l 770
(i) there is a constant ¢ = c(a, B, p) (depending only on o, B and p) such that for every
uewW”

1 2 1/2 2
o <cll|2ull o+ |2ul[[270 + | RATW(TE 7) + 1R O0)u(0) [ o)

[lu|

Moreover for every f €V, oe H(0), ye H_(T) problem (20) has a unique solution.

Corollary 3.9. If # does not depend on time the same holds requiring only that for
some pe(l,+o0), a, f>0 we have for every u,ve”

(ot = Av,u =0 oy Zallu—olly,  |lLullyr <Bllull".

Proof of Theorem 3.8. We prove the theorem assuming (23), being the proof
assuming (22) similar, and indeed easier.
Since u— (#u)’ is linear and monotone on #° and # " and by (23) we have that

allull)- < Ctuyuy <L Puyuy

by which we estimate ||u|| < (1/oc||.@u||4,/-/)l/(p_l>. Since (Zu) = Pu — </u we obtain
that |[(2u) |, <||2ul,.» + Bl < |12l + B/12l], s0 we have

||/ u

i
w\*||f”||w and ||(5‘Z’u)'|w<(1+OC || 2ull (24)

1 1/(p—1) B
lully < [y 1al,| (14 51l
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To see point (ii) we estimate (¢ = p/(p — 1)), for every ¢>0,
Il Al <l + (3 Yl 23)
willully < ne
and, by Proposition 2.6,
2(2u) ,uy = (R(T)u(T),u(T)),; — (R(0)u(0),u(0))y + < R'u,u)
= — (R(T)u(T),u(T))y — (R (0)u(0),u(0)) .

Then, since {.Au,uy = {Pu,uy — {(Ru),uy, we have
1
o ul " < |2l lllul| + S[(R-(T)u(T), u(T)) g + (R (0)uu(0), u(0)) 5]
and using (25) we infer

], <l p )12 47+ SR (T(T), u(T)) 5+ (R (0(0), (0)) )

We conclude estimating ||(%u)'|| as in (24).
For problem (20) consider first @, WeV with P.(0)® = ¢, P_(T)¥ =y and
define 1 = ¢ + . The problem
(% )”r&f( n) =/ —An,
P, (0)0(0) =
P_ (T)U(T) 0

has a unique solution v. Indeed the operator .o (v) == .o/(v+n) is bounded and
pseudomonotone. Moreover, if we suppose (22) we see that .7 is also coercive:

(o0 = (A (0+n) = o+ n—n) + o).
Dividing by ||v|| we obtain for the second term that

<&in,v>‘

ol <|[/n]|
and for the first

CA(w+n) —onv+n—n)
||v]|

>afolf "

Then the function u(r) = v(r) + y satisfies (20).

In general we can consider, thanks to assumption (21), a sequence 1, = @, + ¥
with @, ¥, eV and P, (0)®;, = ¢, — ¢ in H,(0), P_(T)¥), =, -~y in H (T) and
denote by u), the solution corresponding to the data 1, ¢,,,. As done for point (ii)
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we can obtain

1
ofu = ol <||Zu = 2ol lJu = ol + 5= (RAT)(T) = o(T),u(T) = o(T)) g
+ (R-(0)u(0) — v(0), u(0) — v(0)) ]
for every u,ve# . In particular for the solutions u;, and u; we have

of lup — uel|” < e[~ (R-(T) (b, — i) s by — lpk)H_(T) + (R (0) (0} — @), 01 — <Pk)H+<o)]-

Since (Zuy,) — (Ruy) = ouy, — o/ w;, we can estimate this difference in an analogous
way to obtain that u;—»ue¥” and we define u to be the solution of the limit
problem. [J

Remark 3.10. If 2>0(#<0) and ./ is linear we also have the corresponding
existence results for the problem

{ (Ru) + Au+ ' Ru=f
P (0)u(0) = ¢ (P(T)u(T) =)

for every JeR. It is sufficient indeed to consider the change of variable
o(t) = u(t)  (v(r) = " Nu(r))

to obtain

{ (#0) + Av == fe'* (fX=T))
P (0)u(0) = @ (P(T)u(T) =)

which has a unique solution v. Then u(¢) = v(t)e=* (u(t) = v(t)e *~1)) solves the
original problem.

Regularity: We conclude with a discussion about time regularity of the solution,
already considered in [12]. We will see the result for

{(,%u)’vhsz/u =1,

P (O)u(0) = ¢ (26)

with .7 linear (here p = 2) and #>=0 (obviously the analogous holds if Z<0).
About the operator .o/ we will make the following assumptions: that the family

A0, T|>2(V, V") with u(t) = A(t)u(z)
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is such that A is regular in the sense of Definition 2.1 for a.e. 1 (0, T") and
t— {A(Hu,v) iy absolutely continuous on [0, T
allullf < <Ay yrcy < Bllully

| <A(t)u,v) V/Xy|<M<A(l)u,u}ly/,sz<A(t)v7 vy i,/,sz (27)

d ! A
E<A(t)“’U>V'xV = [<A'(Ou,v) proy| < M|[u]| y[|v]])

with M’ >0, for almost every te(0,7T) and for every u,ve V. In this way we can
define an operator ./’ as follows

A0, T|->2(V, V') with o7u(t) = A'(t)u(z)
bounded by M’. About the operator # we will assume (5) and the same for #, i.e.
we define Z'u(t) = R'(¢)u(t) where R’ is such that

R :[0,T)> %(H),R(t) self-adjoint

sup;e 0,0) 1R (| oy < K1,

t— (R'(t)u,v), absolutely continuous on [0, T, (28)

d
SR (Ou,0) g <Kl full ol for ae. 1e[0,7)

As done for # we can define

d
<R”([)”a U> VIxV = E (Rl(t)ua U)H

and an operator #” by
T
R A > by <%/IH7U>V’XV = / <R//(t)u([)>v(t)>V’><Vd[
0
which turns out to be linear and bounded by K.

Theorem 3.11. Consider problem (26). Assume the operator A satisfies (27). We
suppose R=0 and that it satisfies (5) and (28). Moreover we will suppose
feHY 0, T; V') and the existence of upeV such that P,(0)uy = ¢ in such a way
that £(0) — A(0)up — R'(0)upeIm R(0). Then the solution u satisfies

ueH'(0,T;V).

Remark 3.12. Condition about ¢ is not so restrictive, on the contrary it is quite
natural. Indeed one can choose, ¢.g., uy to be the solution of the problem

{ [4(0) + R'(0)]w = 1(0),

welV

and consider ¢ = P (0)up.
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Proof. Let u be the solution to (26) and consider
{ (Rv) + v =f" — of'u— (Ru),

P, (0)6(0) = R (0)[P4 (0)(£(0) — A0y — R(O)uo)]. (29)

This problem has a unique solution by Theorem 3.8 since <7 + 1 %' is bounded and
strictly coercive. Denote by v the solution to (29) and define

w(t) = up + /0[ v(s) ds.

Integrating the equation in (29) one obtains
t t
Rv(t) = — A(0)up — R'(0)ug — / Av(s) ds — / R'v(s) ds + £ (1)
0 0

- /0 " o us) ds — / " #uls) s (30)

0

In this expression we can write
t t t
/ Av(s) ds = / AW (s) ds = /w(t) — A(0)w(0) — / o 'w(s) ds,
0 0 0
t t t
/ R'o(s) ds = / AW (s)ds = A w(t) — R(0)w(0) — / A" w(s) ds
0 0 0
and finally, since
(Aw)' (1) = B'w(t) + B (1) = RB'w(t) + Ro(1),
using (30) we compute
(2w)' (1) — (Ru) (1) + A w(t) — Au(r).

We obtain
t
(2w)' (1) — (Ru) (1) + Aw(t) — Au(t) = / (' w(s) — = u(s)) ds
0
therefore the function w — u solves the problem
{ (#y) + Ay =h,
P+y(0) = 07

where A(f) = fot ('w(s) — /'u(s)) ds. By hypotheses on .o/’ we have that

A< /0[ " (w = u)(s)[] rdls < /Ot M (s)|w(s) = u(s)]l, ds.
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Let 7" be the greatest value less or equal to 7" such that w(t) = u(¢) for a.e. te[0, T"].

Then A(¢) =0 for €0, T']. Then by Theorem 3.8(i), there is constant ¢ = ¢(«, 3, p)
such that

T T
/ () — u(t) [ = / w(e) — ()|
0 T

< [ imoiase ([ e —u<s>||Vds)2dz

e /TT [/Ot M (5) s /Ot lw(s) — u(s)||%/ds} dt

2 2
<c(T- T/)”M,HLz(O,T)HW - u||L2(T’,T;V)’

thatis 1<c (T — T’)||M’||iz(0’7). Since every estimate is independent of T, letting T
go to T’ we obtain a contradiction and consequently 77 =T7. [

Corollary 3.13. Under the same hypotheses as in Theorem 3.11, suppose for simplicity
that £(0) — A(0)p — R'(0)p eIm R(0), the solution u of (26) satisfies

() e L*(0,T; V")

and moreover there exists a positive constant ¢ depending (only) on ||</'|
1R 0 gy 1 sy 0 suich that

L)

Nl =+ e[|+ 112 ) 1y + el o, 7100
/ 2 —1/2
<cflly+ W1+ IR0l o) + 1R (0) P4 (0)(£(0)
—A(0)o — RI(O)<P)||H+(0)]~

Proof. The thesis follows from the fact that the function v by which the function w in
the proof of the preceeding theorem is defined is the solution to (29), from the
estimates of Theorem 3.8 and since the embedding H'(0,T;X)<=C([0,T]; X) is
continuous. [

Remark 3.14. In the general case, i.e. for a problem

() + Au =],

P (0)u(0) = o,
P(T)u(T) =y,

with # both negative and positive, we are not able to prove a regularity result as
Theorem 3.11. May be the solution is regular, but surely obtaining an estimation as
in Corollary 3.13 is impossible, as the following example shows.
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Example 3.15. Consider the sequence of functions (r;), of Example 2.17, with
a#1/2, where their mean value is

i
u :/ rp(x)dx =a—1/2+#0,
0

consider 7>0, two functions ¢,y defined in (0,1), f in (0,1) x (0,7) and the
problems

Ou u
m(x) 5, (5 0) = 5 (n ) =1(x, 0 (0,1) % (0, 7),
u(0,¢) = u(l,t) =0, te(0,7),
P u(x,0) = o(x), xe(0,1),
P_ju(x,T) =y(x), xe(0,1),

i.e. we restrict ¢ as initial datum at time O where r; is positive and ¥ as
final datum at time 7 where r, is negative. Notice that |R,| =1Id and R =
|Ry| = 0.

Even if the solutions, with regular data, were in H'(0,7;H}(0,1)) they
surely would be unbounded in the same space. In fact, since u#0, by
Theorem 2.18 we have that the sequence of solutions (u) is compact in
L*(0,T;L%(0,1)), so we have a limit ueL*(0,T;L*(0,1)). Moreover we have
||uh||L2(0,T;Hé(0,l)) and [[Ruun'l 120, 7.1-1(0,1)) bounded, so it easy to see that, up to

subsequences,
up—ueL*(0,T; HY0,1)) —w, Ry —rd e L*(0,T; H'(0,1)) —w
and u satisfies the limit equation

0 o
1 (0) = () = £ (x.0).

If (up), were bounded in H'(0,T;H}(0,1)) we would also have (u), compact in
C([0,T); L?(0,1)) and in particular

up(x,0) > u(x,0) w,(x,T)—>u(x,T) in L*(0,1).

If we denote y,(x) the function which is 1 where r, =1 and 0 where r, = —1
we have

(X, 0) = 75 (%) (x, 0) + (1 = 15, (x))un(x, 0) = 75, (x)p(x) + (1 = y5(x) s (, 0)
and taking the limit

u(x,0) = ap(x) + (1 — a)u(x,0)
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and then we deduce u(x, 0) = ¢(x). In the same way we would obtain u(x, T') = (x)
and so we would have a function u satisfying

u 2y
r%(x, 1) — g 5 (x,)=f(x,t) (0,1)x (0,7),
u(0,¢) =u(l,t) =0, te(0,7),
u(x, ) @(x), xe(0,1),
u(x, ¥(x), xe(0,1),

which in general is impossible.

4. Examples

In this section, we present some example of possible choices of #. In what follows
we consider 7' >0, 2 open bounded subset of R” with Lipschitz boundary. In the first
examples we consider

r:Qx[0,T]->R (denoting by r(z): Q—R the function r(z)(x) = r(x, 1)).
For every 1[0, T] we denote by Q. (1), Qo(), Q_(z), respectively, the subsets of Q in
which r(z) is positive, null, negative and r(¢) = r(t)|o, (, r-(¢) = —r(?)lg_(,- The
examples we are going to show will be different situations of the following problem

(we mean that our interest will be mainly directed on different choices of the
function r)

g(ru) + . u=f(x,t) on Qx(0,7T),

ot

u(x,1)=0 (x,t)e 0Q x (0,T), (31)
u(x,0) = @(x), xe Q.(0),

u(x, T) = y(x), xe Q_(T).

In the former examples we confine ourselves to the following simple situation: H =
L*(Q), V = HI(Q) and then ¥~ = L*(0, T; H\(Q)), 7" = L*(0, T; H~(Q)) and #
will be the space L*(0,T;L*(Q)). Therefore, fel*0,T;H '(Q)) and
pel*(Q.(0),r,(-,0)),yeL>(Q_(T),r_(-,T)) where

ry 1s the positive part of r
L*(2,(0),7.(-,0)) is the completion of C.(Q,(0))
with respect to the norm ||w||* = Jo. ) W(X)r(-,0) dx.

Analogously we define L?(Q_(T),r_(-, T)). In this examples we will suppose ./ to be
a linear operator from 7~ to 7" defined by a family 4:[0, 7] > Z(H}(Q), H (Q))
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verifying

2 2
AOH”HH&(Q)< <A(t)u7u>V’><V<AO||H||H3(Q)7

for every u,ve L*(0, T; H}(Q)), where Ag>/9>0. We define # by the family

R:[0,T]|->%(H), (R(t)w)(x)=r(x,t)w(x).

If r = r(x) then Corollary 3.9 holds with o = 4y and f§ = A,.

(M

(@)

(©)

Ifr=1,i.e. R(¢) = Id for every ¢, then Q. () = Q for every t€[0, T| and Qy(¢) =
Q_(t) =0 for every t€[0,T]. Then problem (31) is the classical Cauchy—
Dirichlet problem

%—kﬂu:f(x,t) on Qx (0,7),
u(x, 1) =0 (x,1)e0Q x (0, T),
u(x,0) = (x), xeQ.

If R(t) = —Id we have the inverse problem with the datum  at time 7.
If r=0, i.e. R(t)=0 for every ¢, then Q (1) =Q,(t) =0 for every ¢t and
therefore we have the following problem

{&/u:f on Qx (0,7),
u=0 on 9Q x (0,T),

or equivalently a family (the parameter is ¢) of elliptic problems

Lu(t) = A(t)u(t) =f(t) on Q for ae. te0, 7],
{u(t) =0 on 0Q for ae. te[0,T)].

Suppose r = r(x). Suppose first r>0. Then, in order to have (5) satisfied, we
only need re L™ (Q) (being constant with respect to ¢ the operator £ turns out to
be regular). Notice that no regularity on r is required, i.e. r could be also a
characteristic function
1 on Q.
r(x) = { i

0 on Qo.

Then every non-negative re L™ (Q) is admitted and in particular Q. can be also a
Cantor set.

Indeed H{(Q) is dense in L?(Q,r) and assumption (21) is verified. Obviously if
the measure of Q. is zero, problem (31) is to be intended as explained in
Definition 3.3, i.e. pointwise, for almost every t€[0, 7], in H~'(Q), and then if
r(x) =0 for a.e. xeQ the problem is to be considered as a family of elliptic
problems in the parameter ¢ and the initial datum has no meaning. Butif Q. isa
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Cantor set of positive measure one can consider a problem which is “parabolic”
on a Cantor set and “elliptic”” on the complementary.

Now consider re L*(Q2) not necessarily non-negative. Every function for
which Q, and Q_ are open and Q,, Q_ and Qy have Lipchitz boundary is
admitted. It is also admitted a situation in which, for instance,

1 on Q,,
r(x)=4¢0 on Q,
—1 on Q|

with Q. and Q_ closed sets such that there are two open sets 4, 4, with
AnAy =0, Q. cA, Q cA

in order to have (21) satisfied (possibly 2, and Q_ Cantor sets).

Suppose r = r(t). In this case we need some regularity. Assumptions in (5) are
satisfied if re W (0, T). If r=c¢>0 the problem (31) is a standard forward
parabolic problem with initial datum ¢ while if r<c<0 we have a standard
backward parabolic problem with final datum . But suppose r(0)<0 and
r(T)=0 or r(0)=0 and r(T)<0. We can admit re W (0, T) such that

1
po = essinf ¥/(1)<0 with 2o+ =

>0
(0.7) 2 HoC ’

where c is such that ||u]|,> <CH”||H(§» so that (22) is satisfied. Then if #/(7) > 0 and
r(0)<0 and r(7) >0 problem (31) is

r(t)% +7r(Du+ oAu=f(x,1) on Qx(0,T),

u(x, 1) =0 (x,t)e 02 % (0,T),

without any initial and final data. A situation as that in Fig. 1 is not admitted
because ' is not bounded. If () <0 and r(0) >0 and r(7T) <0 problem (31) is

r(t)—Jrr()qu;z/uff(x,t) on Qx (0,7),

u(x, ) (x,t)e 0Q x (0,T),
u(x, ) ( ), xXe Q,
u(x, W (x), xe Q,

with initial and final data in the whole Q.

Suppose now r = r(x, t) and r,% eL*(Q x (0,7)). We have that

(R(t)u,v) :/ u(x)v(x)r(x, t) dx

Q
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Fig. 1. Example of a not admitted situation.

[(R(t)u,v) | = ’/Q u(x)v(x) % (x,1) dx
or
ot

or
gz loll o< [

<| ol ey

o0 [ee)

We can admit function r such that (C,, C, >0 arbitrary)
9]
—C<r<C, < <G
ot
with
1
U<0 and Ao+ EMOC>O

where ¢ is the constant of example (4).
(6) Suppose now r=r(x,t), reL*(2x(0,T)), but L¢L*(Qx (0,T)). For
simplicity consider the case we are given 4 and B subsets of Q x (0, T) and

r(xvl):XA(xv[)_XB(xat) i‘e'7 V:.QX(O,T)—’{—l,O,l}7
where yz(y) =1 if yeE and 0 if y¢ E. We have that
R(t) = IdH+(z) - IdH,(z)a (32)

that is

(R(0)u,v)12(g) = /

Q4 (1)

u(x)v(x)dx — / u(x)v(x) dx.

Q_(1)



F. Paronetto | Journal of Functional Analysis 212 (2004) 324-356 353
In this case to have conditions (5) satisfied we need for every u,ve H}(Q)

t— u(x)v(x)dx — / u(x)v(x)dx differentiable
2+(1) Q-(1)

d
dt(/m(r) u(x)v(x)dx — /Q(t) u(x)v(x)dx)

Just to consider a simple but meaningful situation fix n = 1, suppose A UB =
Q x (Oa T)a le. r:Qx (07 T)_){_L 1}7 Q= (07L)7 Q-‘r(l) = (an(t))a ‘Q—(l) =
(r(2), L)(7:[0, T] > [0, L]). Then

< GCllullgollvllgie)y  (33)

(1) L
(R()u, 0)12(0.1) :/ u(x)v(x)dx — / u(x)v(x)dx
: o
and its derivative is defined by
CRO0 10, eaiion) = 2/ (OuG()0((0).
Then conditions (5) and (22) are satisfied if y is differentiable, y’e L* and
CAW 1) for,epgy 7 (O (1)) >l

for some positive constant o, that is if, denoted by ¢ the constant such that
[[ull oo, ) <c||u||Hé(0,L) we can admit y such that

. 20
whe(0, L fy()>— =,
Ve (0,L), ess in Y () 2

If .o/ were non-linear and p#2, to satisfy (23) we can ask
ye W 2 (0,L), (1)>0.

If, on the contrary, Q_(¢) = (0,y(¢)), @Q4+(t) = (y(¢),L) we would have
(R (u,vy = =2y (t)u(y(¢))v(y(¢)) and then we would admit y such that
1,0 / /10
yeW 7 (0,L), esssup (1)< —
[0.7] ¢
and y'(¢) <0 if ./ non-linear with p#2.
If the dimension n>2 and r: Q x (0, 7)—>{—1,0, 1}, we need to differentiate
with respect to ¢ the function

F(l):/Q " u(x)v(x) dx — /Q . u(x)v(x) dx.

This is differentiable if Q. (¢) and Q_(#) are open and the interfaces separating
Q. (1), Q(r), Q_(r) are Lipschitz continuous (see, e.g., Proposition 3,
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Section 3.4.4, in [5]). Moreover, since u, ve H} (Q), it makes sense to consider the
trace on the interfaces (see, e.g., Theorem 1, Section 4.3, in [5]).

Now we show some other examples: first we show that r may be also an
unbounded function in L!, then an example where % is an integral operator.
Finally an example in which the estimation max(o 7y [(|R(?)[u(t), u(t)) | <c ||u|
holds.

(7) It is also possible to consider unbounded coefficients (see [12]). Consider a
function ue L'(Q x (0, T)). In this case we consider, for a.e. te(0,T), H(t) =
L*(Q,|u(-,1)]) and the equibounded operators R(¢) will be

W

R(t) = 1dy, ) — 1dy
and observe that is

(R()u, 0) g1y = (R(O)14,0) 120 (.00

| uoeletelds = [ uou)utx ol
Q4 (1) Q_(2)
:/ u(x)v(x)pu(x, t)dx.

Q

(8) Let H=L*(Q) and V = H}(Q). Consider a function reL*(Q x Q x (0,T))
and define R(¢): H— H as

R (x) = / (%, Ou(y)dy.

If this operator satisfies (5) under assumptions required on Theorem 3.8 we
obtain an existence result for the problem

%UQ r(x,y, Ou(y, 0)dy| + Zu(x,t) = f(x,1) on x (0,T),
u=20 on 0Q x (0,T).
P (0)u(0) = ¢

(9) We conclude with some examples in which maxg 77 [(|R(2)|u(1), u(t)) y| < c ||ull,
holds. Consider as before H = L*(Q) and V = H}(Q).
A first situation is that stated in Proposition 2.8 and Example 2.9, i.e. if
reL* (0, T; Wh*(Q)) so that

Di(ru) = rDu+uDire [*(Q), ie. r(-,0u(-,t)eH)(Q) for ae. t.
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Fig. 2.

Another situation in which this inclusion is true is that (Z..u)’, (Z_u)' €7 (see
Remark 2.10). This is true, for example, if (see Fig. 2)

dist (Q4,Q_)>0. (34)
In this situation for every ue ¥/ we can consider ¢, ¢, € C!(Q) such that
¢1 == 1 ln Q+, ¢1 = 0 ln Q_, ¢2 == O 11’1 Q+, ¢2 = 1 ln Q_.

Then also ¢ u, p,uc#" and applying Proposition 2.6 by (13) we in particular
infer that

(ROy(0), y1(0)) 5 = (Rea0),0)) = [ . O)r (< +

|(R$u(T), $ou(T)) | = (R_u(T), u(T)) = / o (x, 0)r_ (x)dx < + .
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