Information and Computation 153, 173-237 (1999) ®
Article ID inco.1999.2802, available online at http://www.idealibrary.com on "lE%l.

Basic Theory of F-Bounded Quantification

Paolo Baldan, Giorgio Ghelli, and Alessandra Raffaeta

Dipartimento di Informatica, Corso Italia, 40, 56125 Pisa, Italy
E-mail: baldan@di.unipi.it, ghelli@di.unipi.it, raffacta@di.unipi.it

System F-bounded is a second-order typed lambda calculus, where the
basic features of object-oriented languages can be naturally modelled.
F-bounded extends the better known system F_, in a way that provides
an immediate solution for the treatment of the so-called “binary methods.”
Although more powerful than F_ and also quite natural, system F-bounded
has only been superficially studied from a foundational perspective and
many of its essential properties have been conjectured but never proved
in the literature. The aim of this paper is to give a solid foundation to
F-bounded, by addressing and proving the key properties of the system.
In particular, transitivity elimination, completeness of the type checking
semi-algorithm, the subject reduction property for Bn reduction, conser-
vativity with respect to system F_, and antisymmetry of a “full” sub-
system are considered, and various possible formulations for system
F-bounded are compared. Finally, a semantic interpretation of system
F-bounded is presented, based on partial equivalence relations. © 1999

Academic Press

1. INTRODUCTION

System F-bounded is a type system which was defined by Canning, Cook, Hill,
Olthoff, and Mitchell [CCH*89] to model the basic features of object-oriented
languages. F-bounded properly generalizes system F_ [CW85, CG92, CMMS9%4],
an extension of the polymorphic lambda calculus (systeme F [Rey74, Gir72]) with
subtyping.

The key ingredient of F_ is the bounded type abstraction (or bounded poly-
morphism). It allows one to define a function which works for every type 4’ that
is a subtype of a bound A4 and whose result type depends on A'. In this way F_
integrates the expressive power of parametric polymorphism with that of subtyping,
and it allows one to model many features of object-oriented languages, including
subtyping and inheritance. However, an important class of object types, discussed
later in Section 2, can be modelled naturally if the bound A of a quantified type
variable a is allowed to depend on « itself, a situation forbidden in F_. System
F-bounded generalizes system F_, by permitting this more liberal kind of quan-
tification.

173 0890-5401/99 $30.00
Copyright © 1999 by Academic Press
All rights of reproduction in any form reserved.

174 BALDAN, GHELLI, AND RAFFAETA

The essential properties of system F_ have been extensively studied. One of the
most important is transitivity elimination, i.e., the existence of an equivalent type
system which is syntax driven and hence which does not contain an explicit tran-
sitivity rule [CG92]. A correct and complete type checking semi-algorithm is
defined in the same paper. Another basic result is the undecidability of the subtype
checking problem [Pie94], which immediately implies the undecidability of type
checking. Termination of 7 reduction, namely the fact that every reduction
sequence is finite, has been proved in [Ghe90]. Although Sy reduction in itself
is not confluent, the confluence of reduction can be regained by adding a Top
rule, which equates all terms with type Top. The fnTop system is normalizing
(every term has a normal form), but it is still unknown whether it is terminating
as well [CG94]. Finally, it has been proved that the extension of system F_ with
recursive types is not conservative; namely, once recursive types are added, the
traditional subtype checking algorithm is no longer complete, even with respect
to nonrecursive types [Ghe93].

On the other hand, there have been few formal studies for system F-bounded. It
was explicitly formalized for the first time in [Ghe97], where fx reduction is
proved to be terminating. The same property has been shown to hold for a Curry
version (i.e., with implicitly typed variables) of the system [MKO95]. To the best
of our knowledge, nothing else has been explicitly proved about system F-bounded.
The lack of formal studies about system F-bounded is probably due to the fact that
its similarity to system F_ suggests that the two systems should enjoy the same
properties. However, this assumption must be carefully verified, since in many cases
common beliefs on systems of the F_ family have been discovered to be false.
Moreover, system F-bounded differs from system F_, at least in terms of the former
having a subtyping relation which is not antisymmetric and, also, in the behaviour
of the standard subtype checking algorithm which is quite different in the two
systems.!

For these reasons, we decided to try and prove some of the unproved key proper-
ties of system F-bounded, namely transitivity elimination, completeness of the type
checking semi-algorithm, subject reduction for fz reduction, undecidability of
subtype checking, conservativity with respect to system F_, nonconservativity
of strong recursive types, definition of an antisymmetric subsystem, and the
equivalence (under suitable conditions) of the two different versions which have
been proposed in the literature for the key subtyping rule for bounded quanti-
fication. Although the results are not surprising, we believe that it was time to
prove them in order to give a solid foundation for further studies about system
F-bounded.

Another contribution of this paper is the presentation of an explicit semantic
interpretation of system F-bounded. Our interpretation is a classical realizability
interpretation based on partial equivalence relations, in the tradition of [BL90,
CL91, CMMS94, Ghe90] and others. However, most of these papers focus on
“semantic frameworks,” i.e., on the definition of a general notion of a semantic

! Informally, the class of judgements which make the standard subtype checker diverge is significantly
larger in the system F-bounded.

F-BOUNDED QUANTIFICATION 175

interpretation for system F_, in the style of [BMM90], rather than on the defini-
tion of a specific interpretation. As a consequence, most proofs become quite
complex, and are not actually reported, but the reader is referred to a chain of
classical papers. Here we address just one specific interpretation and, although the
techniques we use are standard, we give explicit proofs of the key properties, and
we leave it to the reader to generalize the interpretation. We think that this is an
interesting complement to what is obtained in the more general framework-based
approach.

The rest of the paper is structured as follows. Section 2 discusses how system
F-bounded may be used to model some basic features of object-oriented languages.
Section 3 presents a formal definition of system F-bounded. Section 4 studies the
subtype relation in system F-bounded and, in particular, proves the transitivity
elimination property. Section 5 introduces a type checking semi-algorithm for
system F-bounded and proves its correctness and completeness. Section 6, relying on
transitivity elimination, proves the subject reduction property for F-bounded with f§
and # reduction rules. Section 7 studies type equivalence for system F-bounded and
shows that, although subtyping is not antisymmetric in this system, two different
types are equivalent if, and only if, one can be transformed into the other by chang-
ing a <a into a < Top bounds. This result naturally suggests how an antisymmetric
equivalent subsystem can be defined. Section 8 characterizes the relationship
between our version of system F-bounded and some other less expressive variants.
Section 9 proves that system F-bounded is conservative with respect to system F_;
as a corollary, this immediately implies that subtyping for system F-bounded is
undecidable and that the addition of recursive types gives a non-conservative extension
of F-bounded. Section 10 defines a semantic interpretation for system F-bounded,
along the now classical lines of [BL90]. Finally, Section 11 draws some conclusions.

2. SYSTEM F-BOUNDED AND OBJECT-ORIENTED PROGRAMMING

System F-bounded has been proposed as a foundation for the type system of
object-oriented programming, since it offers all the basic mechanisms which are
needed to define a rich object-oriented language. The fundamental features which
should be offered by this kind of languages may be listed as follows?:

o Type abstraction: the ability to define abstract data types (ADTs), consisting
of a name, an interface, which lists the possible operations on values of that type
(the messages), and an implementation, which defines a representation for the
objects of that type and an implementation for the operations in the interface (the
methods of the messages). Values of an ADT can only be manipulated through the
operations offered by the interface. Type abstraction is not unique to object-oriented
languages, but it is their most important feature; in this context, an ADT is called
a class, and any value of the class is represented as a record.

2 Here we consider the class-based view of object-oriented languages. However, also the alternative
object-based view, which is slightly different, can be described in the context of system F-bounded
(see [AC96b]).

176 BALDAN, GHELLI, AND RAFFAETA

o Inheritance: the ability to define the interface and the implementation of a
class by saying how it differs from a “superclass.” A definition by inheritance of an
interface can either add new messages to the superclass interface or change their
type. A definition by inheritance of an implementation can either add new fields to
the record type used to represent the class values, or add methods to the superclass,
or change the method of a message (method overriding).

o Subtyping: a (pre)order relation among types such that, if a type 7T is a
subtype of U, every function which is defined on U can also operate on values of
type 7. Usually inheritance is linked to subtyping; i.c., the type defined by a sub-
class is a subtype of the type defined by the superclass.

e Overloading with late binding: suppose that both a type U and a subtype T
of U have a message m in their interface, but they define two different methods M,
and M ; for that message. Then the application o.m of the message m to an object
o may either invoke M, or M, depending on the type of o; we say that the
message m is overloaded. Due to subtyping, the type inferred for o by the compiler
is only a supertype of the type of the values which can be denoted by o. For example,
if 0 is the formal parameter of type U of a function, the compiler gives o the type U,
but in different invocations of the function it may be bound to values of type U or to
values of the subtype T. In this case, a language with an early binding (or static binding)
resolution mechanism translates (at compile time) the application o.m to a call to the
method M. Instead, a language with a late binding (or dynamic binding) resolution
mechanism will translate (at run time) the application o.m with the method which
is the most appropriate for the actual parameter of the function.

o Late binding of self: every method can send messages to a special variable,
often called self. This variable denotes the object which has received the message
whose method is executing; messages sent to self are resolved using late binding.

The fact that ADTs could be encoded in system F is well known and was first
studied in [MP88].> Subtyping can be added to system F in many different ways,
the most widely accepted being the one proposed by Cardelli and Wegner in
[CWS85] and formalized as system F_ in [CG92, CMMS94]. As mentioned in the
Introduction, the key feature of system F_ is the bounded type abstraction, which
allows one to define a function that works for every type 4’ which is a subtype of
a type bound A4, producing a result whose type depends on A’. System F _, enriched
with recursive values and types, is expressive enough to allow one to encode most
key constructs of object-oriented languages, such as the inheritance of implementa-
tions, late binding, and self variables. However, this approach does not deal
smoothly with binary methods. A binary method is a method that takes a parameter
of the same type as the receiving object, as in the canonical example of an object
type Point with a binary method which tests for equality. In this example we
assume that an object type only specifies the interface of methods and not their
implementation; the operator Rec X.T defines a recursive type:

3 Object-oriented ADT’s are actually best understood as a form of procedural abstraction, according
to the distinction introduced by Reynolds [Rey74, Coo91]; this kind of abstraction can be still represented
in system F.

F-BOUNDED QUANTIFICATION 177

Point=Rec X.
[x: Int;
eq : X— Bool
]

Consider now a new object type ColouredPoint, which adds a method colour to
the type Point, defined as

ColouredPoint=Rec X.
[x: Int;
eq : X— Bool;
colour : Colour

]

A type B which is defined by adding some fields to an object type A is said to
match A. The basic observation is that when 4 has some binary methods, B may
match 4 without being a subtype of A. For example, the type ColouredPoint is not
a subtype of Point since the type ColouredPoint — Bool of the eq field of Coloured-
Point is not a subtype of the type Point — Bool of the eq field of Point. The absence
of subtyping is also witnessed by the fact that a ColouredPoint cannot appear in
any context where a Point can appear. For example, an expression x.eq(y) is
type correct when both x and y are of type Point, but it may raise an exception
if x is substituted with an object of type ColouredPoint. In fact, its equality function
expects a ColouredPoint parameter; hence, it may try and access the colour field
of y.

On the other hand, although ColouredPoint is not a subtype of Point, most func-
tions that operate on points may correctly operate on coloured points and on any
other type which matches the Point type, but no type for these functions can be
expressed in system F_. By permitting the presence of a type variable in its own
bound, F-bounded quantification allows the programmer to express the fact that a
function works with any type that matches the Point type, by assigning to such
function a type:

Vo< [x: Int;eq:a— Bool]l.a —> B

The condition a<[x:Int;eq:o— Bool] is satisfied by any type which is
obtained by adding some fields to the recursive definition of type Point or by
specializing some of the nonrecursive fields, and even by some other types.* This
form of quantification allows one to write many useful functions which operate on
all types which match the Point type.

F-bounded quantification is not the only way to give this kind of functions a type.
It is also possible to define a “matching” relation which is different from the subtype

4 For example, a version of the ColouredPoint type whose eq field has type Point — Bool would satisfy
the type inequality considered.

178 BALDAN, GHELLI, AND RAFFAETA

relation and to quantify functions on every type that matches an object type A4
[Bru94, BSvG95]; however, this approach is slightly more complex and ad hoc
than the F-bounded one (see [BCC*96]). Another possibility arises when one
considers higher-order type systems, such as F', where it is possible to define type
operators, ie., functions from types to types [Car90, PS97]. In this context a
quantification

Aa< Al o] .b[o]
can be expressed as
Aa< (A, f.ALS]).D[Fix(a)],

where A represents abstraction of terms over types, A, represents abstraction of
types over types, and Fix is a fixpoint operator (see [AC96a] for details). This
approach is very interesting, but the recursive version of system F has not been
completely understood yet. In particular, strong recursive types (the notion of
strong recursion 1s discussed in Sections 9 and 11) have not been studied in this
context, and it is not yet known how to combine type operators with the full F_
subtype system.’ Hence, we have no hope of deriving properties of system F-bounded
from such an encoding.

Another way to deal with binary methods is to switch from seeing objects as
records which contain their methods to seeing a method as an overloaded function.
This complementary approach has some advantages, above all that methods
become first-class values and that it is possible to deal smoothly both with con-
travariant and covariant overriding of methods and, in particular, with binary
methods. This approach was first proposed in [Ghe91], in the context of strongly
typed languages, and then studied in [CGL95, CGL93, Cas96, Cas97]. Though
very promising, this approach has not been studied sufficiently, and there are some
problems in the definition of a clean semantic model and in the design of a suitable
type abstraction mechanism to bind the definition of methods with the definition of
the corresponding class.

For more information and references about the problem of binary methods we
refer the reader to the excellent paper [BCC*96].

To conclude this section it is worth remarking that for practical purposes F-bounded
quantification alone is not very useful, because system F-bounded, as studied in this
paper, should be enriched with a notion of recursive types in order to model an
object-oriented language with binary methods. We concentrate, however, on the
core system, with no recursion at the value or at the type level, in order to under-
stand the basic properties of F-bounded quantification. Only some suggestions are
given on how the system properties would be affected by the addition of recursive
types (see Sections 9 and 11). While the core system is rich enough to merit study-
ing, this work is also intended to provide a foundation for future studies of exten-
sions of F-bounded with recursion.

% So far, only the kernel-fun version (Section 11) of system F' 2 has been studied in detail.

F-BOUNDED QUANTIFICATION 179

3. SYSTEM F-BOUNDED

This section defines system F-bounded by formalizing the intuitive ideas presented
above. The starting point is the second-order typed lambda calculus, where, besides
value abstraction (1), a second-order feature of type abstraction (A) is present.
Subtyping and the possibility to specify a bound for a quantified type variable are
added by system F_. F-bounded is obtained from F_ by relaxing the constraint

which disallows the presence of a type variable in its bound.

3.1. Syntax for Types, Terms, Environments, and Judgements

Many different formulations for system F-bounded are possible. First of all, one
can adopt either an explicit approach (a la Church), where every variable is
annotated with its type and where type abstractions and applications are explicit,
or an implicit approach (a la Curry), where types are inferred rather than appear-
ing inside terms. In line with tradition, we will adopt the explicit approach, which
gives programmers a finer control over the typing of the terms they write. There are
two minor syntactic variants to be considered:

1. in a type good formation judgement I" |- A, the environment /" may contain
just a list of variable names (like in [Ghe97], or in presentations of system F) or
it may contain a list of variables with their bounds (like in [CG92]);

2. in a typing judgement I" |- a : A, typing and subtyping assumptions may be
mixed in I" (like in [CG92, CMMS94]) or separated (like in [Ghe97]).

Both choices are mainly stylistic and have minor advantages; we opted for the
second possibility in both cases. Finally, we may allow or forbid a type variable to
be a bound for itself (as in Ya <a.A4). We will allow this kind of bound, while the
variant where this is forbidden will be studied in Section 8.

Let TypeVar and ValVar be two fixed countable (disjoint) sets of variables
referred to as type variables and value variables, respectively. The set TypeVar will
be ranged over by Greek letters a, f, ..., while ValVar will be ranged over by Latin
letters x, y, ... The syntax of our system is then described by the grammar:

Au=a|Top|A—>A|Va<A.A (Types)
av=x|ix:A.ala(a)| Aa<A.a|a{A} (Terms)
Ii=¢|TlNa<A (TypeEnv)
Az=¢ld,x: A (ValueEnv)
J=IT'O | THA|ILARO | THA<SA|TNARa: A (Judgements)

The arrow type A — B is the type of functions taking arguments of type 4 and
giving back results of type B. The bounded universal type Ya < A.B is the type of
terms which, when applied to a type 4’, yield a term of type B[a < A’]; the application
is allowed only when A’ is a subtype of A[a < A']. The Top type is a supertype of
every type. In system F_, the Top type gives the system the expressive power

180 BALDAN, GHELLI, AND RAFFAETA

needed to encode records and objects; system F_ without the type Top would be
decidable, but it would be impossible to encode record types (see [CMMS94],
[KS927). The role of this type in system F-bounded will be discussed in Section 8.

Among terms, we find the three forms of the classical-typed lambda calculus, plus
type abstraction Aa< A.a and type application a{ A}, whose use has been informally
exemplified in the previous section.

Two different kinds of environments are present. A type environment I consists
of a list of type variables, each bounded by a type bound. A value environment A
consists of a list of value variables, each one bound to a type.

Finally, judgements represent the assertions we can express about our calculus.
The judgement I" |- < means that 1" is a well-formed type environment, i.e., that no
type variable occurs free in I". More precisely, 1" is well-formed if every free variable
in the bound A of a variable « is either « or it is defined in the part of I" on the
left of « < 4. The judgement I" - A means that the type A4 is well-formed in the
environment I, i.e., that I" is well-formed and every free variable in 4 is defined in
I'. The judgement I', 4 - < means that 1" is a well-formed type environment and
that the value environment 4 is well formed in 7, i.e., that the type of each variable
in 4 is well-formed in I'. The judgement I" A < A" means that A is a subtype of
A', and they are both well-formed types in I. Lastly, I', 4 -a : A means that the
term « has type 4 when the assumptions in I, 4 hold. The environment /" must be
a well-formed type environment, and 4 and 4 must be well-formed in I

3.2. The Rules

We are now ready to introduce the good formation, subtyping, and typing rules
for system F-bounded. Before getting into technical definitions we will clarify our
conventions in the treatment of (type and value) variables. We adopt the De Bruijn
approach [dB72], where variables are not considered as names but as pointers to
the surrounding context (free variables are then simply pointers that “go outside
the context”). However, working explicitly with De Bruijn indexes, notation
becomes cumbersome and the readability of terms decreases considerably. There-
fore, we will continue working with variable names, but simply as a more convenient
way of denoting De Bruijn pointers. The advantage of this approach is that no a-con-
version is needed, since each a-congruent class of ordinary terms corresponds exactly
to one nameless De Bruijn term. To have some more details on the actual De Bruijn
definition please refer to the Appendix.

First of all we define the set of free variables for types, value environments, and
terms, and we give the corresponding formation rules, formalizing the intuition
given in the previous subsection.

Free type variables for

o Types

FV(a) = {a} FV(A— B)=FV(A) UFV(B)
FV(Top) =& FV(Va<A.B)=(FV(4) U FV(B)\{a}

F-BOUNDED QUANTIFICATION 181

o Value environments
FV(e)=, FV(d,x: A)=FV(4) O FV(A).

The same symbol FV will also be used to denote the set of free (type and value)
variables in a term, defined as
FV(x)={x}
FV(ix:A.b)=FV(A)u (FV(b)\{x}) FV(f(a))= FV(f)u FV(a)
FV(Aa< A.b)=(FV(A) U FV(b))\{a} FV(b{A})=FV(b)UFV(A).

Given a type environment I'=a, < 44, ..., a, < 4, we denote with vars(/") the set
of type variables bounded in I, ie., {a, .., a,}. Moreover, we denote with I'(a;)
the type 4, for ie {1, .., n}; in the De Bruijn notation, every free variable in A, has

to be adjusted so that it points to the same binder as before (technically, in the
judgement I' - o < I'(a), the offset n —i has to be added to the index of every free
variable in 4;). In the same way, given a value environment A =x,: 44, .., x,: 4,
we denote with vars(4) the set of value variables typed in 4, ie., {x, .., x,} and
with 4(x;) the type A4;.

Type environment formation rules:

r=< FV(A)<=vars(I') L {a}

e < (¢TEnv), Fa<AL O (TEnv).
Type formation rules:
r—< FV(A) cvars(I) (TypeForm)
A ypeForm).
Value environment formation rules:
Lo AR T'H4
—_— VE VEnv).
IeR< (sVEnV), A, x: A< (VEnv)
Subtype rules:
I'HA4 I'-A<B TI'B<C
_IE4 (d<) i = (Trans <)
I'HA<A4 Ir—4<c
r r I'HA4
<O aevars(I) (Var<) = (Top <)
I'Fa<I(a) I'A<Top
I'HA'<A T'+B<B

I'A->B<A - B

Noa<A Fa<A Ia<A B<B’
' (Va<A.B)<(Ya<A'.B')

(V<)

182 BALDAN, GHELLI, AND RAFFAETA

Term formation rules:

A< xevars(4) I''dAla:A I'A<B

A Fx:A(x) (Var), I AFa: B (Subs)

A, x:A+b:B (>1) A-f:A->B [AdFa:A
IA-)x:A.b:A— B ’ I Af(a): B

Fo<A,AF-b:B a¢FV(A)
AR (Aa<A.b): (Va< A.B)

(—E)

(V1)

IALf:Va<A.B T'HA<A[a—A']
I AFf{A"} :Bla—A']

(VE).

Notation 3.1. When necessary to avoid ambiguity, a judgement derivable in
F-bounded will be denoted as

Pre |-, Concl.

Notice that the fact that F-bounded is a proper extension of F_ is essentially
expressed by the type environment formation rule (TEnv), which allows the type
variable o to occur free in its bound A4. Indeed, although some other F-bounded
rules are slightly different from the corresponding F_ rules, it can be seen that (a
system equivalent to) F_ can be simply regained by strengthening the second
premise of rule (TEnv) into FV(A4) = vars(I"). The relation between F_ and F-bounded
will be studied in Section 9.

We finally present the reduction rules of the system. Notice that there are two
kinds of f and x rules; besides the usual rules of the (typed) lambda calculus
(fTerm) and (n#Term), the corresponding rules regarding type abstraction are
present. The four rules define a binary relation that, closed by context, gives the
one-step reduction relation and, then, closed by reflexivity and transitivity, gives
the many-steps reduction relation.

Reduction rules:

(Ax:A4.b)(a)—=> b[x < a] (fTerm)
(Aa<A.b){A'} => bla—A'] (B Type)
AX:A.b(x)—=> b if x¢ FV(b) (nTerm)
Aa< A.b{a} => b if a¢ FV(b) (nType).
6 Using the De Bruijn notation, in rule (;Term), the b at the right-hand side is obtained by

decrementing every free variable in the b of the left-hand side by one, so that every variable still points
to the same binder. The same consideration applies to rule (3 Type).

F-BOUNDED QUANTIFICATION 183

This relation is terminating [Ghe97], but not confluent, due to subtyping. Consider
the two normalizing reductions:

ix:A.(Ay:B.y)x—=>,.y:B.y

IX:A.(Ay:B.y)x =>5Ax: A.x.

Since the term Ax: A.(Ly: B.y)x is well typed for any A < B, the above critical
pair is not confluent in any calculus with a nontrivial subtype relation. This
problem has been addressed in system F_ by proving that fy reduction can be
made confluent by adding a 7Top rule, which equates every term with a Top type,
plus some rules which may be obtained by a Knuth-Bendix-like process [CG9%4].
The same approach may also apply to system F-bounded, but we leave this as an
open issue.

4. TRANSITIVITY ELIMINATION

Transitivity plays a central role in every subtype system. In fact, requiring the
transitivity of the subtype relation is fundamental both from a conceptual and from
a technical point of view. First of all, the informal understanding of subtyping is
based on the notion of set inclusion; “integer” is a subtype of “real” since every
integer number is also a real number. Moreover, subtyping formalizes the idea of
“specialization of properties” in the sense that 7 is a subtype of U if every relevant
property of all values of type U is also enjoyed by all values of type T. Clearly both
the set inclusion and the “specialization” relations are transitive. More technically,
we will see that transitivity is very important to prove the subject reduction
property.

However, the presence of an explicit rule for transitivity makes it difficult to
decide the subtyping relation. The standard subtype checking algorithm takes a
couple of types and an environment, and searches for a rule whose conclusion
matches the judgement to be proved. If no matching rule is found, then the judge-
ment cannot be proved. If only one matching rule is found, then the problem can
be reduced to the problem of proving all the premises of the rule. If many matching
rules exist, then each one of them must be tried in a nondeterministic fashion.

This algorithm cannot be applied in the presence of a transitivity rule. First of all,
every subtyping judgement matches its conclusion; hence, the algorithm will never
give a negative answer. Moreover, both premises contain a metavariable (the type
B, in our formulation in Section 3) which is not instantiated by the conclusion and
whose value must hence be guessed by the algorithm.

To solve this problem, it is customary to define two different presentations for a
subtype system: an abstract presentation and an algorithmic one. The abstract
presentation contains one subtyping rule for every form of type and a transitivity
rule which ensures the transitivity of the whole system. This presentation is aimed
at describing the system in the most understandable way. On the other hand, the
algorithmic presentation is defined in order to allow for a direct application of the

184 BALDAN, GHELLI, AND RAFFAETA

standard algorithm. To this aim, the rules are modified in such a way that no judge-
ment may match the conclusion of two different rulAA. Moreover, every variable in
the premises of a rule also appears in its conclusion, and thus no guessing is
needed; in particular, the full transitivity rule isAAot inserted in the algorithmic
presentation (but it may be embedded in some other rules, as happens with rule
(TVar <) below). Finally, one proves that the two sets of rules define the same
relation. This proof is called proof of transitivity elimination, since it shows that the
abstract presentation can be transformed into an equivalent presentation with no
transitivity rule.

4.1. The Algorithmic Presentation

In our case, the algorithmic presentation is obtained from the original system by
removing the transitivity rule (Trans <). Moreover the rule for variables (Var <) is
replaced by a new rule containing a “restricted form” of transitivity and the identity
rule (1d <) is specialized to work only on type variables.

DErINITION 4.1 (Deterministic F-bounded). The system dF-bounded (deterministic
F-bounded) is obtained from F-bounded by removing the rule (Trans <) and by sub-
stituting the rules (Var <) and (Id <) with

I'FI'lo)<A aevars(I') I'(a)#a, Top A#a, Top
I'a<A

FE$ aevars(D)
IN-oa<a

(TVar<)

(IdVar <).

Hereafter, the premise o € vars(/”) of rule (TVar <) will be omitted often, since we
consider it to be implied by the use of the notation /'(«) in the other premises.
Notice that the set of subtyping rules of dF-bounded is deterministic (or syntax-
directed), in the sense that, given any subtyping judgement I" - 4 < B, there is at
most one rule that can be applied to obtain that conclusion. Therefore, as
anticipated, the standard algorithm which, given a judgement, tries to construct a
proof of that judgement in dF-bounded is deterministic (no backtracking is needed).

4.2. The Proof of Transitivity Elimination

The proof of transitivity elimination is based on the introduction of an inter-
mediate system, called F-bounded™, equivalent to F-bounded. F-bounded * is then
proved to be equivalent also to the algorithmic system dF-bounded, by showing
that a suitable set of rewrite rules allows us to reduce each F-bounded* derivation
into a normal form derivation with the same conclusion, which turns out to be a
dF-bounded derivation. Then transitivity elimination immediately follows.

4.2.1. System F-Bounded *

System F-bounded * is obtained from F-bounded by replacing the (Var <) subtyp-
ing rule with the rule (TVar <) of system dF-bounded.

F-BOUNDED QUANTIFICATION 185

System F-bounded ™t is clearly equivalent to F-bounded: given any F-bounded
proof, we can obtain an F-bounded * proof with the same premises and conclusion
by replacing every instance of the rule (Var <) with a subproof combining the rules
(TVar <) and (Id <); in the other direction, every instance of rule (TVar <) can be
substituted by an instance of (Var <) plus transitivity. It is worth noticing that
dF-bounded can be obtained from F-bounded ™ by removing rule (Trans <) and
restricting the use of (ld <) to type variables.

Notation 4.2. When it is necessary to avoid ambiguity, judgements derivable in
F-bounded * and in dF-bounded will be denoted respectively as

Pre |- Concl, Pre |-, Concl.

In F-bounded™, it is convenient to have a linear notation for subtyping deriva-
tions, so that operations performed on derivations to reduce them to normal form
can be expressed as textual rules (see [CG92, Pie97]). By ¢ :: J we mean that c is
a derivation whose conclusion is the judgement J. The same notation will be used
to indicate that c¢ is the linear abbreviation of a derivation having J as its conclu-
sion; i.e., when the meaning is clear from the context, we identify a derivation with
its linear representation.

DerFINITION 4.3 (Linear abbreviations for derivations). The translation function
()T, which maps derivation trees (in F-bounded *) to their abbreviated forms, is
defined by induction on the structure of the derivation:

< r'4

:
1 (d<)) =1
I'k,A<A4 (Id)> dr.4

cul'_T()<A I'(a)#a, Top AFa, Top
I'k,a<4

(TVar <)>T =V, 4(ch)

I'—4 f
<T (Top <)> =Topr, 4
op

! ’ T
', A<A d:TI'-,B<B <)> ()

_)\
I'-, A->B<A" - B’

ch<A Fia<Ad dul,a<A |, B<B
+ (Va<A4.B)<(Ya<A".B")

(
(it
S
S

(V<)>T= (Va<cf.dh)

<c:: I'-,A<B d:T'l,B<C (Transg))Tz(cT;dT),
I'-,A4<cC
Notice that only the abbreviations for the basic derivations using (ld <) and
(Top <) are explicitly adorned with the environment since in the other cases the
environment is already encoded in the premises. Furthermore, sometimes we will
not indicate explicitly the environment involved in a derivation unless it is strictly
necessary. Therefore, we will write Top 4 for Top 4 and Id, for Id, .

186 BALDAN, GHELLI, AND RAFFAETA

4.2.2. Replacement, Top-Lemmata, and Weakening

We collect here some definitions and technical lemmata which will be useful
below. Although most of the lemmata are formulated for F-bounded *, it is easy to
verify that their obvious reformulations for the other systems considered so far hold
as well. For this reason, we will sometimes refer to and apply them to systems
F-bounded or dF-bounded as well.

The first lemma specifies that (sub)typing implies good formation for the types
and environment involved.

LemMA 4.4 (Subproof). If I'A<B then ', 'A and T'—B. If
I'ba:Athen I'=< and I |- A.

Proof. Routine induction on the structure of the derivations. |

Replacement is an operation on derivations which allows us to replace a
hypothesis a < 4’ in the environment I, a < A’, I’ of a derivation, with another
hypothesis a < A, whenever I, a < A4, I'' proves a < A4'.

DEFINITION 4.5 (Derivations replacement). Let c:: [, a<A4,I" |, a<A’ and
di:T,a<A, I'"+~, B<B' be F-bounded™ derivations. The replacement of o < A’
in d with ¢, denoted by d[a < A" < c], is defined by induction on the structure of
d as

—_—

Idirwcarypla<Ad —cl=1dr cqrp

N s S

(Observe that when f=a one has B=aand d, :: I,a< A, I" |-, A <B'.)
TOP(F, a<A,I"),B’ [a<A «c]= TOP(F,asA, '), B’

(di > dy)[asA —c]l=((d[a<A" —c]) > (dy[a< A < c]))
(Vp<d,.dy))[a<A —c]=(Vf<(d[a<A < c]).(dr[a<A < c]))
(disdy)[asA —c]l=((d[a<A —c]); (dr[a<A < c])).

S AW

(Notice that some parentheses in the definition are not genuine syntactical objects.
They are inserted only for the sake of clarity.)

The replacement operation has two main effects. First, it substitutes every
instance of « < A’ in the environment " of basic derivations with « < 4 (rules 1 and
3). Second, whenever I, a<A’, I" a< B’ is proved by applying rule (TVar <)
tol,a<A', I" - A'"<B' in the original derivation, the same judgement is proved
by transitivity from c:: I, a<A, I"Fa<A and I,a<A4, I"+ A" <B' in the
modified derivation (rule 2, first case). Rules 2 (second case) and 3, 4, and 5 only
propagate the replacement inside the derivation.

Lemma 4.6. Let c:Tl,a<A, "+, ,a<A andd: T, a<A', I}, BB’ be
F-bounded ™ derivations. Then

dla<A' «c]ul,a<A,I"+, BB

F-BOUNDED QUANTIFICATION 187

Proof. Routine induction on the structure of d. Cases 1 and 3 entail invoking
the Subproof Lemma 4.4. |

The next two lemmata give some properties of the derivations in F-bounded *
whose final judgements involve the type Top. In particular, we show that Top is
indeed the maximum type with respect to the subtype relation. Furthermore, we
prove that to derive that a type is less than Top one must eventually use the rules
(Id<) or (Top<).

LEmMMA 4.7. Let c¢:T'+, Top<A be an F-bounded™ subtyping derivation.
Then A = Top and ¢ must be in the set generated by the grammar

ex=Topr o | ldr 1,, | € €.

Proof. We proceed by induction on the length |c| of ¢. Suppose that the thesis
holds for |c| <k; then, if |¢| =k, we distinguish various cases according to the last
rule in the derivation:

e (¢c=1ldy 3, c=Topr) In both cases 4=B=Top and, thus, c is of the
desired form.
e (c=V, p(c), c=c" =", c=Va<c'.c") Not possible.

e (c=c";c") Since ¢ :I', Top<A' and |c'| <|cl|, by inductive hypothesis,
we have that ¢’ must be in the set generated by the grammar and A’ = Top.
Moreover, ¢" ', A’ <A4; e, " =T+, Top<A. Since |c"|<|c|, again by
inductive hypothesis, we conclude that A = Top and ¢” is generated by the grammar.
Therefore, ¢ =¢’; ¢” is generated by the grammar. ||

LemMMA 48. Let ¢ T'+—, A<Top be an F-bounded™ subtyping derivation.
Then ¢ must be in the set generated by the grammar

ex=1Idr 1 | Topr, 4| dse,

where the variable d ranges over arbitrary derivations.

Proof. We proceed by induction on the length |¢| of ¢. Suppose that the thesis
holds for |c| <k; then, if |c| =k,

e (c=1d;) In this case, by necessity B=A= Top and, thus, ¢ is of the
desired form.

e (c=Topr) In this case, B=A4 and thus c is of the desired form.

e (c=V, 5(c")) Not possible, since B should be Top.

o (c=c" - (", c=VYa<c'.c") Not possible.

o (c=c";c¢") Inthiscase ¢" i ', A" <Top and |c"| <|c|; hence by induc-

tive hypothesis, ¢” is of the desired form and, thus, also c=c¢";c¢" is. |

The weakening operation, as suggested by its name, allows us to weaken a
derivation by adding a new hypothesis to the type or value environments.

188 BALDAN, GHELLI, AND RAFFAETA

DEFINITION 4.9 (Subtyping weakening). Let I" be I';,a< A4, I, with I'|- <.
The weakening of an F-bounded * derivation c:: I'y, I', |-, B< C with the binding
a < A, denoted by ¢, I' (i.e., ¢, I}, a < A, I',) is defined by induction on the structure
of ¢, as’

1 Id(rl,rz),BaF:Idr,B

2. Vaeld), I'=Vg (', T)

3. TOP(FI,FZ),Ba I'=Topr

4, (¢'->c"), I'=(,I')—> (", T)

50 (V<) I'=VE<(c, (I f<C).(c", (I, f<C)),
where c:: I}, I, |, (YB<B'.B")< (V< C'.C")

6. (5¢"), I'=(, 1) (", T).
Lemma 4.10. If e T, I, B<Cand ', where '=T,, a < A, I'y, then

ol =T, B<C

Proof. Routine induction on the structure of ¢. In the V< c¢'.¢" case we also
have to prove that I, f < C’ | <, but this immediately follows from the fact that,
by hypothesis, I' - < and, by Subproof Lemma 4.4, I'), I,, f<C' <. |

LemMmA 4.11 (Typing weakening). Let I, A}, a: A be an F-bounded™ typing
judgement. Assuming o <A <, then Ia<A', AR a: A Similarly, if
A, y:B A= then oA, y:B A | a: A

Proof. Routine induction. ||

4.2.3. Normalization of F-bounded™ Derivations

In this section, following the ideas proposed for F_ in [CG92, Pie97], we prove
that every F-bounded ™ subtyping derivation can be transformed into a normal form
derivation, where the transitivity rule is not used and the identity rule is used only
on variable types. Since every normal form derivation in F-bounded™ is also a
dF-bounded derivation, this result implies that dF-bounded is equivalent to F-bounded *
and, hence, to F-bounded.

The normalization procedure is presented as a collection of rewrite rules on
(linear representations of) subtyping derivations. These rules are separated into
three groups. Informally, the rules in the first group push instances of (Id <) rule
towards the leaves until they are applied to variables or disappear into instances of
the (Top <) rule. The rules in the second group remove instances of (Trans <) that
involve identity derivations and push instances of (Trans <) rule towards the leaves
until they disappear into instances of the (TVar <) rule. The unique rule in the last
group removes instances of (Trans <) rule that involve Top , derivations.

7 As usual, in the De Bruijn notation, when I"y, I, becomes I';, x < A, I',, all variable indexes in I,
have to be updated so that they point to the same binder as before. Namely, the index of every free
variable in I, has to be incremented by one.

F-BOUNDED QUANTIFICATION 189

DEFINITION 4.12 (Derivation simplification rules). The one step, outermost
simplification relation on subtyping derivations, denoted by — ,, is defined by the
rewrite rules:

I. Reflexivity simplification:

(1) Idp op —0 ldr4—1dr g

(2) ldrvacas —0 YU Vo ad(r a<a), 4)) - 1d(r,a<a), 8
(3) Idﬂ Top — TOPT, Top*

II. Cut simplification:

(1) Idp,;c —, c

(2) ¢ldp, —, c

(3) Vyale)yd —, V,ple;d)ifd:T'A<B, B#Top,«
(4) (cr—=dy); (2> dy) —, 350> dy5 dy

(5) (Va<ey.dy); (Va<e,.dy) —,

Vo< (e [a<A ¢,]).(di[a<A —c,];dy) if

Va<c,.dy i (Va<A.B)<(Ya<A'.B') and
Va<cy,.dy: (Va< A" .B')<(Ya<A".B")

III. Top Cut simplification:
(1) ¢Topr g —, Topr 4ifc:I'-ALB

Hereafter — denotes the “context closure” of the relation — ,, which can be
defined as the least relation containing —, and such that, for all derivations
¢, c,d if c— ¢ then

(c;d) — ('3 d), (d;c) — (d; ')

Va, alc) — Vo 4(C)

(c=>d) — (' —d), (d—>c¢) — (d— ()
Va<c.d) — (Ya<c'.d), (Va<d.c) — (Ya<d.c').

The symbol — * denotes the reflexive and transitive closure of —.
Now, to reach the desired result we have to prove three things:

1. every reduction step transforms a derivation of a judgement into another
derivation of the same judgement (subject reduction);

2. for every F-bounded * derivation, there exists a finite sequence of reduction
steps which transforms it into a normal form derivation (normalization);

3. every normal form derivation is a dF-bounded derivation.

Subject reduction plus normalization imply that for every F-bounded * derivation
there exists a normal form derivation which proves the same judgement. The

190 BALDAN, GHELLI, AND RAFFAETA

TABLE 1

A Pictorial Representation of Rule IL.5: The Two Subtyping Derivations
(Ve <e;.dy); (Vo< yody) and Va < (e, [0 €A — ;1) (d [<A — ¢y 15 dy)

cy d; [d,
INo<A'la<A Ia<A |-B<B’ INo<A"lFa<A TI,a<A"|B' <B"
Va<ce,.di o T'(Va<A.B)<(Ya<A'".B") VNa<c,.dy::T'H(NVa<A .B')<(VYa<A".B")
(VYa<eg.dy); (Va<e,.dy) i T (Va<A.B)< (Ya< A".B")

ala<d <c] (di[a<A —cy];dy)
Ia<A"Fa<A4 Iao<A”"-B<B
Va<(c[a<A —cy])(di[a<A —c,];dy) i T (Va<A4.B)<(Va<A".B")

third fact completes the proof of the equivalence between F-bounded® and
dF-bounded.

LeEmmA 4.13 (Subject reduction for simplification rules). If ¢ is a subtyping
derivation such that ¢ : I' A< Band ¢ —* dthend:: I' - A<B.

Proof. First observe that all the simplification rules transform each derivation
into a derivation with the same conclusion. The only nontrivial case is rule ILS5,
depicted in Table 1, where Replacement Lemma 4.6 is needed. This gives subject
reduction for — .

Noticing that none of the subtyping rules places any requirement on the shape
of the derivations of their hypotheses we can extend the result to — and, hence,
to—* |

Termination of the normalization procedure. 'We now prove that every F-bounded *
subtyping derivation can be reduced to a normal form in a finite number of steps.
As in [CG92, Pie97] the proof relies on the basic observation that when an
instance of transitivity is reduced, all new instances of transitivity introduced by the
reduction step have a smaller intermediate type.

A derivation of the form c¢; d is called a compound derivation. If ¢ :: I' - A < B and
d:: I'B<C, then B is called the cut-type of the derivation, and its (syntactic)
length, the cut-size of the derivation, namely,

cut-type(c; d) = B, cut-size(c; d) = | B|.

For Xe {L IL III}, an X-redex in a derivation c is a subderivation of ¢ that can
be reduced by using a rule in group X. The result of the reduction is called the con-
tractum of the redex. A derivation c is in X-normal form if it contains no X-redexes.
A derivation in I, II, III-normal form is said to be in normal form. By “innermost
Il-redex with cut-size k of a derivation ¢” we refer to any Il-redex d in ¢ such that
no proper subderivation of 4 is a II-redex with cut-size k.

DErFINITION 4.14 (Rewriting strategy). The rewriting strategy for the normaliza-
tion of subtyping derivations comprises the steps:

F-BOUNDED QUANTIFICATION 191

1. Perform I-reductions in any order until a I-normal form is reached.

2. If the derivation is not in II-normal form, let & be the largest cut-size of
II-redexes, select an innermost redex with cut-size k, and reduce it. Then return to
step 2.

3. Perform IIl-reductions in any order until a III-normal form is reached.

First of all, observe that no step in the rewriting strategy generates redexes of the
previous steps. Therefore, if we show that each step (separately) terminates then we
can conclude that the whole normalization process always terminates, thus produc-
ing a derivation in normal form.

Step 1. Notice that rules I.1 and 1.2 decrease the size of the type associated with
any new I-redex they create, and rule 1.3 does not create new I-redexes. Therefore,
I-rules are strongly normalizing and step 1 always terminates.

Step 3. The only rule in step 3 strictly decreases the size of the derivation;
therefore step 3 always terminates as well.

Step 2 (Outline). The proof of termination for step 2 is based on the observa-
tion that rules II.1 and I1.2 do not generate new redexes, while the cut-size of the
new redexes generated by rules 11.4 and ILS is strictly smaller than the cut-size of
the reduced redex. Finally, rule I1.3 applied to some redex can generate a new redex
with the same cut-size, but it is not difficult to see that any sequence of consecutive
I1.3 reductions can only have a finite length. This is formalized by inserting into the
complexity measure of a derivation ¢ a component, called v-complexity, which
intuitively represents a bound for the number of possible consecutive I1.3 reductions
starting from c.

We continue by giving a detailed proof of the termination of step 2. We first
define the v-complexity of a derivation c¢. The v-complexity counts, for every «;”
operator, the number of occurrences of the operator V. (-) in its left argument, so
that any application of the II.3 rule is guaranteed to decrease this complexity by
one. The number of occurrences of V inside ¢ is denoted by # ,(¢).

DEFINITION 4.15 (v-complexity). The v-complexity of a derivation ¢, denoted by
,(c), 1s defined as
I #,(Idp, 4) = #(Topr, 4) =0;
2. #(Va alc)) = #,(c);
3. #((cr =) =#(c1) + #u(c2);
4. #((V<cy.cr))=#(c1)+ #.(cr);
5. #(ers6)) = #pler) + # (1) + #,(c2)
DEFINITION 4.16 (Total complexity). The (total) complexity of a derivation c,
denoted by comp(c), is defined as

comp(c) =<k, n, #,c),

192 BALDAN, GHELLI, AND RAFFAETA

where k is the maximum cut-size of II-redexes in ¢, and » is the number of II-redexes
with cut-size k in ¢. Total complexities are ordered lexicographically.

The next two lemmata are useful in proving that each II-reduction decreases the
total complexity of a derivation. The first one will be applied to give a characteriza-
tion of the cut-size of new Il-redexes generated by reductions using rule IL.5. The
second one proves that an application of rule I1.3 decreases the v-complexity of a
derivation.

LEMMA 4.17. Let ¢ I, a<Ala<A and d:: I, a <A B<B' be two sub-
typing derivations. Then the cut-type of any new Il-redex in d[a <A —c] is A'.

Proof. We proceed by structural induction on d:

e (d=1dr <y p Ot d=T0p 1 4< .4) In this case d[a < A"« c] does not
contain new redexes.

e (d=Vp p(dy)) We distinguish two subcases. If a = f then
dla< A —c]=cldi[a< A <]).

By inductive hypothesis, any new Il-redex in d;[a< A"« ¢] has cut-type A4’
Moreover, the whole derivation c¢;(d;[a <A’ < c]) can be a new redex and its
cut-type is indeed A'.

If a# f then

dla<A < c]=Vgp(di[a< A" < c]).

Thus, we conclude by inductive hypothesis.

e (d=d, > d,) By definition of replacement
(di=>dy))[a<A —c]=(d[a<sA —c])—>(d[a<Ad <c]).

Thus, we conclude by inductive hypothesis.

e (d=Vp<d,.d,) As above.
e (d=d,;d,) By definition of replacement:

(disdy)[as A —c]=(d[a<d <c]) (d[as A —c]).

First of all, notice that if (d,[a < A"« c]); (dy[a < A" < c]) is a II-redex, then also
d,; d, has to be a II-redex, as can be verified by analyzing Definition 4.5. The length
of (di[a< A"« c]); (dy[a< A"« c]) can be greater than the length of the original
redex d,; d,, but the cut-type remains the same.

Hence true new redexes can only appear in d;[a< A" «c] and d,[a< A"« c],
but in these cases we conclude by inductive hypothesis. |

F-BOUNDED QUANTIFICATION 193

LemMa 4.18. Let I be a subtyping derivation, let V, 4(c); d be a Il-redex in [and
let I' be the result of replacing V, ,(c); d in | with its contractum V, g(c; d). Then,

Proof. First observe that, since /' is obtained from / by substituting a subderiva-
tion e with a subderivation ¢’ such that # ,(e)= # ,(¢'), then # ,(/)— # (/') is
equal to # ,(e)— #,(e'). We can now compute this difference as

#v(Voc,A(C); d) —# v(Voc,B(C; d))
= # (Vo a(€)) + # (Vo a(€)) + #,(d) — # ,(c; d)
=#p(c)+ 1+ #,(c)+ #,(d) = (#p(c) + #,(c) + #,(d))
—1. 1

We are now ready to prove that rules in group II strictly decrease the total
complexity of a derivation and, thus, that step 2 always terminates as well.

THEOREM 4.19. Let [be a subtyping derivation whose maximum cut-size is k. Let
¢; d be an innermost Il-redex in [with cut-size k. Then,

comp(l') < comp(l),

where I' is the result of replacing the redex c; d in I with its contractum e.
Proof. By cases on the II-rule applied to reduce c; d to e:
e (Rule II.1) ¢=1d, and e=d. This reduction removes a Il-redex of maxi-
mum cut-size from L
e (Rule I1.2) d=1Id, and e=c. Same as (Rule II.1).

e (Rule I1.3) c¢=V,(c;) and e= V (c;; d). This reduction removes a II-redex of
maximum cut-size V,(c,); d and introduces a new Il-redex c,; d with the same cut-size.
However, by Lemma 4.18, # (/') < #,(/); hence, the total complexity decreases.

e (Rule I14) c¢=c¢y,—>c¢,, d=d,— d,, and e=(d,; ¢;) = (c,; d,). This reduc-
tion removes a II-redex of maximum cut-size and may introduce two new redexes
d;; c; and c,; d, with a smaller cut-size.

e (Rule IL5) c=Va<c,.c,, d=Va<d,.d, and e=Va<c' .d', where ¢' =
(c;[a<A"«d;]) and d' =(c,[a < A" «d,;];d,). To fix notation, let us suppose
that

cuT'-(Va<A4.B)<(Va< A'.B')
d:TFMNa<A.B')<(Va<A".B").
The reduction removes a Il-redex with maximum cut-size and may add the
following new redexes:

o (c,[a< A"~ d,];d,) with cut-type B’;

194 BALDAN, GHELLI, AND RAFFAETA

e new redexes in ¢;[a <A’ d;] and ¢,[a < A"« d,], with cut-type A4,
by Lemma 4.17.

Hence, new redexes have a cut-size smaller than cut-size(c; d) =Va< A'.B'. The
old redexes in d, are generally copied many times by the substitution operation
c¢;[a< A"« d,], but this replication does not modify the total complexity, since all
the redexes in d; have a cut-size which is smaller than & (due to the fact that the
innermost redex of cut-size k has been chosen); the same considerations apply for
la<d <d] 1

Normal forms are in dF-bounded. By the previous results each F-bounded™
subtyping derivation can be rewritten, in a finite number of steps, to a normal form
derivation that proves the same judgement. We now show that every normal form
F-bounded ™ derivation is a dF-bounded derivation, i.e. that it applies reflexivity only
to type variables and that it does not use the transitivity rule.

LemMa 4.20. If ldp 4 T'-A<A is a normal form subtyping derivation then
A =a for some type variable a.

Proof. Obvious by the form of I-rules. |

LemmA 4.21. If e is a normal form subtyping derivation then it is not of the
shape c;d.

Proof. Let e =c;d be a subtyping derivation and let us show that it is not a nor-
mal form.

If ¢ or d are not in I-normal form then obviously e is not in normal form.

Otherwise, if ¢ and d are in I-normal form, we prove the thesis by induction on
the length of e. The following table reports a case analysis for ¢ and d and indicates
in each case the reason why e = c¢;d is not in normal form:

¢ d reason
Id, any rule II.1
any Id, rule I1.2
€15 € any inductive hypothesis
any d;d, inductive hypothesis
Top 4 Vg p(dy) not possible
Top 4 d,—d, not possible
Top 4 Ya<d, .d, not possible
any Top 4 rule IT1.1
Vo alcy) Vg pld)/dy—dy |Va<d,.d, rule I1.3
1y V. aldy) not possible
Va<c;.c, Vs p(dy) not possible
1= Cy d,—d, rule 11.4
1=y Ya<d, .d, not possible
Ya<cy.cp d,—d, not possible

Ya<ce,.c, Ya<d, .d, rule IL.5

F-BOUNDED QUANTIFICATION 195

Notice that the only case which is lacking is V, 4(c;);d with d:: 'A< Top
and d = Top 4 (if d= Top 4 the case appears in the table as any; Top 4). Now, since
d is a I-normal form, Id,, cannot occur in d and, thus by Lemma 4.8, we conclude
that d=¢'; ¢”, which is not a II-normal form by inductive hypothesis. ||

As an immediate corollary we have now the main result of this section.

THEOREM 4.22 (Transitivity elimination for subtyping). For every subtyping
Jjudgement I' - A < B,

Tk, A<B iff TH,A<B.

Proof. We already observed that systems F-bounded * and F-bounded are equiv-
alent. Moreover, we proved that the normalization procedure always transforms an
F-bounded * derivation into a normal form derivation of the same judgement,
which is, by Lemmata 4.20 and 4.21, a dF-bounded derivation. Since dF-bounded is
a subsystem of F-bounded ™, this allows us to conclude that, also, dF-bounded and
F-bounded * are equivalent, thus proving the thesis. ||

Since the subtyping relations in F-bounded, F-bounded™, and dF-bounded coin-
cide, in the following we do not distinguish derivability of subtyping judgement in
the three systems unless we need it to refer to the concrete derivation.

5. TYPE CHECKING

In this section we complete the definition of dF-bounded, the algorithmic version
of F-bounded, by specifying a deterministic set of term formation rules. Then we
show that the typing algorithm naturally associated with dF-bounded is correct with
respect to F-bounded and allows us to determine a minimal type for every term
which is typable in a given environment.

First of all we introduce the function 7", induced by a type environment I
which applied to a type 4 gives back the minimum supertype of 4 which is an
arrow type, when such a supertype exists.

DerFINITION 5.1. Let I” be a well-formed type environment. Then

I'’(A-B)=A- B, if 'A-B
I'~(a)=TI"(I(a)), if aevars(I); I'(a) #a.
Notice that I"~(A4) is undefined whenever 4 is Top, or a V type, or a variable a

bounded by itself or by a type B such that I"~(B) is undefined. The definition of
the minimum V supertype of a given type in a type environment is analogous.

DerFINITION 5.2. Let I” be a well-formed type environment. Then

Y(Va<A.B)=Va<A.B, if I'Va<A.B
I'¥(a)=T"(I(a)), if aevars(I'); I'(a) #a.

196 BALDAN, GHELLI, AND RAFFAETA

The reader can easily verify that, if I"7(A4) is defined, then I'—A < I (A).
Similarly, if I"'Y(A4) is defined, then I' =A< TV (A4).

DEFINITION 5.3. The term formation rules of dF-bounded are the rules (Var),
(=1), (Y1) of F-bounded, plus the rules:

IA-f:B I'*(B)=A'»B' [Ala:Ad I'A<A
I, Al f(a): B’
IAl- f:B TY(B)=Va<A.B' TI'A<A[a—A']
T ARf{A} :Ba—A]

(d—E)

(dVE).

5.1. Correctness

The system dF-bounded is correct with respect to F-bounded, i.e., all derivable
dF-bounded judgements are also derivable F-bounded judgements.

THEOREM 5.4 (Correctness). If I, A\, a: A then I, A}, a: A.

Proof. As proved in the previous section, the subtyping relations in F-bounded
and dF-bounded coincide. Therefore it suffices to observe that for each dF-bounded
typing rule there exists a typing derivation in F-bounded with the same premises and
conclusion. Then an inductive reasoning on the structure of the derivation allows
us to conclude the proof.

The rules (Var), (—1), (Vl) are also F-bounded rules; thus, no consideration is
needed. An instance of rule (d » E) can be replaced with the F-bounded typing
derivation,

LAl f:B I'-B<I™(B)=A>B LAla:A T-A<A
LA f: 4 —>B (Subs) IAla:A c
I AF f(a): B’ (=E)

(Subs)

Finally, the rule (dVE) can be replaced with the F-bounded typing derivation,

LARf:B I'EBSIY(B)=Yas<AB (g0
T AFf:Va<A.B' TEA<A[oa—A']
[ARf{A} BlaeA]

(VE). 1

5.2. Completeness and Minimal Typing

We now prove that the system dF-bounded is complete with respect to F-bounded,
in the sense that if there exists a derivation for I, 4 |-, a : A in F-bounded, then we
can find a derivation I', 4 ,a : A" in dF-bounded such that I"— A’ < A. Moreover,
since dF-bounded is deterministic, the type A’ is uniquely determined and it is a
minimum type for the term a in F-bounded.

We first need a lemma stating some substitution properties of subtyping deriva-
tions which, besides being useful here to prove the completeness result, will
be fundamental in the proof of subject reduction for fx reduction. The lemma

F-BOUNDED QUANTIFICATION 197

informally states that a type variable can be safely replaced with any type satisfying
the constraints imposed by the environment.

Let us fix some notation. If I'=a, <44, ..,a,< A4, Is a type environment, we
denote with I'Ta < 4] the type environment obtained from I” by substituting each
free occurrence of o in the bounds with 4, ie., o; < A [a—A], ..., o, <A, [A].
Similarly, if 4 is a value environment we denote by A[a <« A] the value environ-
ment obtained by substituting each free occurrence of a in 4 with type A.

LEmMMA 5.5 (Type substitution). Let Ia< A, I" < and let I, I"[a—A"] |-
A <A[la— A']:

. If INa<A,I'"B<C, then
LTMa—ATFBla—A]1<Cla<—A"].
2. If Ia<A,I',A},b:B, then
IIM'foa—A],Ala— A"l Fpbla—A"]:Bla—A"].

Proof. 1. The proof is carried out by induction on the structure of the deriva-
tion of I, a < A, I'" -, B< C in F-bounded and by cases on the last rule used in the
derivation. We analyze just the cases of the rules for type variable and bounded
quantification.

e (Var<) Let the last rule be

Ioa<A,I' fevars(l,a<A,I")
Foa<A,I' < (I,a< A, T")p)

(Var<).

We distinguish two subcases:

e If (f=a) then fla—A']=A"and (I, a < A, I")(f)[a— A]=A[a< A"].
Therefore the judgement we want to prove can be writtenas I, I''[a«— A"] |
A' < A[o« A'], which is already present in the hypotheses.

e If (f#£a) then (I,a< A, I'")(p)= (I, I")(p) and thus the judgement we
want to prove becomes

LMo A=< (I I7)(f)[a—A'].

Since I'a < A, I'" - <, the variable a cannot occur free in I", and thus,
(L, T P) oA=L, "o A"])(P). Therefore, we can construct the
derivation for the desired judgement,

INIa—A1-< pevars(I, I'[a— A'])
FIMac A< I [a— A'])(f)

(Var <).

Notice that I, I''[a < A'] | < follows by Subproof Lemma 4.4, applied
to the hypothesis I, I'"[a — A" A’ < A[a < A"].

198 BALDAN, GHELLI, AND RAFFAETA

e (V<) Let the last rule be

La<A I, B<SC' =PSB Loa<A T, B<C |B"'<C"
Ia<AI'(VB<B'.B") < (Vf<C'.C")

(V<)

By Lemma 4.4, we have I', a < A, I'', f < C <, and thus, it is easy to see that also
IIMa—A], p<Cla—A"]TF <. Hence, Lemma4.10 and the hypothesis
INTIMa—ATFA <A[a<— A'] allow us to deduce that I, I"[a<—A'], f<
Cla—A"THA <A[a« A']. Therefore, by inductive hypothesis, we have that
Mo A]L p<Cla—ATF<B[a—A]and I, "o A'], f<C'[a— A"]
FB'[a— A']<C"[a« A']. Therefore, by using the rule (V <), we obtain that in
the environment I, I"'[a « A'],

(VB<B'[a—A].B[a—A]) < (VBSC[aeA'].C'Ta—A]):;

thatis, I, I"[a— A'] = (VB<B'.B")a—A'] < (VB<C.C")[a— A'].

2. By induction on the structure of the derivation of I, a <A, I'', A |, b: B
in F-bounded, and using point (1). ||

We are now ready to prove the main theorem of this section.

THEOREM 5.6 (Completeness and minimal typing). If I, A},a: A, then
A, a:A and I'=A'< A.

Proof. By induction on the structure of the derivation of I, 4 },a: A. We
distinguish various cases according to the last rule used in the derivation:

e (Var) Let the last rule be

A, x:A,4F,<
A, x:A, A F,x: A4

(Var).
Then this is also a derivation in dF-bounded.

e (— 1) Let the last rule be

A, x:AV,b:B
A, 2x:A.b: A—- B

(=10.

By inductive hypothesis there exists a derivation d:: I, 4, x: A |, b: B’, with
I' B’ < B. Then, since (— |) is also a dF-bounded rule, we obtain the derivation
in dF-bounded,

del A, x:A,b: B’
Al ,2x:A.b:A— B’

(=0,

and I'A4 - B'<A— B holds by rule (- <).

F-BOUNDED QUANTIFICATION 199

e (V1) Let the last rule be

Ia<A,Ab,b:B og¢FV(4)
I A, Ae<A.b:Va<A.B

(V).

By inductive hypothesis there exists a derivation d:: I, a<A4, 4}, B’, with
I',a< A} B'<B. Then, since (Vl) is also a dF-bounded rule, we obtain the deriva-
tion in dF-bounded,

di:T,a<A Al,b: B a¢FV(A)
IAE, (Aa<A.b): (Va<A.B')

(V).

Furthermore, by using rule (V<), from [I,a<A}|B'<B we can derive
I'-(MNa<A4.B')<(VYa< A4.B).

e (Subs) Let the last rule be

I Al,a:A THA<B
IAb,a:B

(Subs).

By inductive hypothesis there exists a derivation d: I, 4},a:A', with
I'— A’ < A. Thus, by transitivity, I' |- A’ < B.
e (> E) Let the last rule be

Aby, f:A->B INA}bpa:A
A\, f(a):B

(- E).

By inductive hypothesis there exist the derivations

di A, f:C with I'C<A4- B,
dy A, a: A with I'A'<A.

We want to show that I'— C< A4 — B implies that I"~(C) is defined and that
I'-I'"(C)<A—- B. We prove it by induction on the size of the dF-bounded
derivation of I'C< A4 — B and by cases on the last rule used. There are two
possibilities. If the last rule is (— <), then C is an arrow type, and the thesis follows
immediately from "7 (C) = C. If the rule is (TVar <), then C is a type variable o
with I'1T'(a)<A— B and I'(x)#a. Hence, by induction, I"~(/(a)), which is
equal to I"'”(a), is defined and less than 4 — B.

Now, let I"'~(C) be A" - B". By the shape of dF-bounded subtyping rules,
I'A<A"” and I'B"<B, and thus, by transitivity, ' A'<A". Hence,
I'|-f(a): B" can be proved as

dsTAby, f:C I>(C)=A">B" dy:T,AFy4a:A4 T'-A<A"
I'Af-4f(a): B

(d—>E)

and, as remarked above, I B" <B.

200 BALDAN, GHELLI, AND RAFFAETA

e (VE) Let the last rule be

TAb,f:Va<A.B T, A <A[a A']
T A, f{A} : BlaA']

(VE).

By inductive hypothesis there exists a derivation
d:IA, f: C with I'C<(Va<A4.B).

By reasoning as above, we can prove that I'(C) is equal to a type Ya < A4".B"
such that I (Va < A4".B") < (Va < A4.B). By the shape of dF-bounded subtyping
rules, ILa<Apla<A” and Ia<AFB"<B. By using INa<A}la<A4",
I'HA"<A[a« A'] (premise of the (VE) rule) and Lemma 5.5(1), we have
Ioafa—A]<A [a—A"]; ie,

TEA<ATa—A].

Therefore, by using the rule (dVE), we can construct the dF-bounded derivation,

: dVE
d:T A f:C TY(C)=Va<A".B" T'A<A[a—A] (dVE)

LA, f{A} B a—d]

and, since I,a<A4 | B"<B, recalling that ' A'<A[a« A'], and by using
Lemma 5.5(1) again, we conclude:

TEB'Ta—A]<Bla—AT 1

6. SUBJECT REDUCTION FOR SYSTEM F-BOUNDED

Subject reduction is one of the primary properties of a typed language. It states
that the type is preserved (or sometimes specialized) by the reduction rules of the
language and therefore it ensures that a program which has been assigned a type
statically, will never go wrong at run-time because of typing errors.

We first need a strengthening lemma stating that unused bindings can be safely
discarded from the environment. More precisely, given a judgement I°(, 4) | P,
if a (type or value) variable appearing in the environment does not occur free in
P then the corresponding binding in the environment can be removed without
affecting the derivability of the judgement.

Lemma 6.1 (Strengthening). 1. If the judgement I', a < A, I'' - B< C is deriv-
able, ¢ FV(B) U FV(C) and I', I'" |- <, then also I', I'' - B< C is derivable.

2. Similarly, if the judgement I, o < A, I'', A |~ b : B is derivable, I, I'', A |- &
and ¢ FV(b) L FV(B), then also I', I, A -, b: B is derivable.

3. Finally, if Iy A, x: A, A" b : B and x¢ FV(b), then I, 4, 4" b : B.

F-BOUNDED QUANTIFICATION 201

Proof. 1. Tt is convenient to consider a derivation d for I, a< A, ' -B<C
in the deterministic version dF-bounded of the system. Then the proof proceeds by
straightforward induction on the structure of d and by cases on the last rule used.
Only observe that, when treating rule (TVar <), the well-formedness hypothesis
I, I'" | < ensures that variable o does not occur free in any bound of variables in
vars(I, I'").

2. We first prove a slightly stronger property which only holds for the deter-
ministic variant dF-bounded of the system, namely that

a<A T Al b:BALT, A< Aag¢FV(b)
—o¢FV(B)AT,I", A b:B.

The proof is done by induction on the structure of the dF-bounded derivation of
the judgement I, a < A, I'', 4 |-, b : B and by cases on the last rule used.
e (Var) Let the last rule be

Loa<AI', A, xevars(4)
Na<A, I, A}, x:A(x)

(Var).

Since by hypothesis I, I'', 4 <, and xevars(4), the judgement I, I, 4 |,
x:A(x) is derivable by using rule (Var). The fact that ¢ FV(4(x)) is also an
obvious corollary of the well-formedness hypothesis.

e (—1) Let the last rule be

Na<A,I',A,x:A}\,;b:B
INa<A,I'',Ab,4ix:A.b:A—> B

(-1

Since a ¢ FV(Ax : A.b), clearly

() agFV(4);, () agFV(b).

By I, I'", 4 < and (f), we have that I, I'", 4, x : A |- < and thus, by (}) and
inductive hypothesis, we deduce that the variable a¢ FV(B) and I, 1", 4, x: A
-4, b : B is derivable. Summing up, a¢ FV'(4 — B) and, by using rule (— 1), the
judgement I, I'', A |-, Ax : A.b: A - B is derivable.

e (d—>E) Let the last rule be

F”,A l_d fB]'W—»(B)zAr_)B/ I_W,A l_da:Ar/ I’ l_A/rSA/
I, A, fla): B’

(d—E),

where I'" =1, a< A, I"". Since a¢ FV(f(a)), we have a¢ FV(f) and ¢ FV(a), and
therefore, by inductive hypothesis:

202 BALDAN, GHELLI, AND RAFFAETA

(a) a¢ FV(B), (b) I,I", 4}, f:B,
(c) agFV(A"), (d) LI AdF4a:A4".

By the fact that (I a<A,I")” (B)=A"->B' and I, I'', 4 | <, it is not difficult
to see that (a) implies

(e) a¢FV(A — B

Hence a¢ FV(A') and, thus, by I', a <A, " A"< A, (¢), I, I'" < and point
(1) of this lemma, we have that

IT'A"<A.

Summing up, the binding « < A can be removed from the environment in all the
premises of the rule, and thus, by using rule (d—>E) we conclude that
I, ", A, f(a): B' is derivable. Moreover, by (e), a ¢ FV(B').

Rules (V1) and (dVE) are treated analogously to (— I) and (d — E), respectively.
This concludes the proof of the intermediate result.

Now, suppose I, « <A, I'', A, b : B derivable in F-bounded, I', I'', A - < and
oa¢ FV(b)u FV(B). By Theorem 5.6 there exists a derivation in dF-bounded for
I,o<A, I'',A},b:B’, such that I, a <A, I'" - B’ < B. Hence, by the property
of dF-bounded just proved,

(t) «¢FV(B'), () I.I',4},b:B"

Since by hypothesis a¢ FV(B), by () and point (1) of this lemma, we have
I, I'" - B’ < B. Therefore, by (f) and using subsumption, we conclude that

[T, 4,b:B.

3. Trivial induction on the structure of the derivation. |

It is worth remarking that the absence of a transitivity rule in dF-bounded plays
a fundamental role, making the proof of point (1) extremely simple. Similarly, the
proof of point (2) relies on the possibility of deriving a minimal type for a term in
dF-bounded, without resorting to subsumption. In fact, notice that the property
proved for dF-bounded in the proof of point (2) does not hold for the full system.
For instance, a < Top, f<a, x:a—a |-, x:f—a, and, although the variable f
does not occur free in X, it appears in its type f — a.

A basic role in the proof of subject reduction is played by the substitution lemma
for types (Lemma 5.5). Furthermore, an analogous substitution result for values is
needed, stating that a value variable can be safely replaced by any term with the
appropriate type.

LEMMA 6.2 (Value substitution). Let I, A4,x:A, A },b:B and let
A, A ya: A. Then

LA, A4 ,b[x<a]:B.

F-BOUNDED QUANTIFICATION 203

Proof. The proof proceeds by induction on the structure of the derivation of
I,A,x:A, A" |-, b: B and by cases on the last rule applied.

e (Var) Let the last rule be

A,x:A, 4, yevars(d,x:A4,4")
A, x: A, 4, y:B

(Var).

If y=x then, by necessity, 4 =B and, therefore, since y[x < a]=a, the desired
conclusion I, A4, A" |-, a: A is already in the hypotheses. If, on the other hand,
y#x then (4,4')(y)=B. Observing that I,4,4' <, we conclude
I,4, A" |-, y: B which is exactly the desired conclusion, since y[x < a] = y.

e (=) Let the last rule be

A, x:A,4,y: A F,b B’
A, x:A,4 F,iy:A".b': A > B’

(—=1).

Since we work with De Bruijn terms we can assume without loss of generality
that x # y and, thus, that

(Ay:A"b)x—a]l=1y:A".b[x«a]. (1)

By the Subproof Lemma and Lemmad4.11, I, 4, 4', y: A" |-, a: A. Hence, by
inductive hypothesis I, 4, 4", y: A" |-, b'[x < a] : B' and, therefore, by rule (— 1),
we conclude that I, 4, A" |-, Ay : A".b'[x<—a]: A" — B'. But, recalling (), this is
exactly what we wanted to prove.

e (—E) Let the last rule be

DA X AN yf A >B [Ax:AAl,d:A
F9A9-X:A3A, l_bf(a,):B

(—E).

By inductive hypothesis the judgements I,4, 4"}, f[x<a]:A — B and
A, 4 |,a[x<a]: A are derivable. Therefore, the desired conclusion
A, A, flx<—al(d[x<a]): B follows by rule (E).

e (Subs), (Y1), and (VE) are treated as the previous case, by a direct use of the

inductive hypothesis. In the case (VI), the first statement of Lemma 4.11 must be
used. ||

Subject reduction is an immediate consequence of the following lemmata, which,
in turn, exploits the substitution lemmata for types and values (Lemma 5.5 and
Lemma 6.2) and the completeness of the deterministic version of F-bounded
(Theorem 5.6).

LEmMMmA 6.3. Let I be a type environment and let A be a value environment. Then

I. IAb,(Ax:A.b)(a):B = A, ,b[x<a]:B;
2. INAly(Aa<A.b){A'}:B = [,A},bla—A]:B;

204 BALDAN, GHELLI, AND RAFFAETA

3. AL, x:A.b(x):Band x¢ FV(b) = I, A},b: B;
4. I A, Aa<A.b{a}:Band a¢ FV(b) = I, A}, b:B.

Proof. 1. By Theorem 5.6 there exists a derivationd :: I, 4 | ,(Ax : A.b)(a) : B’
in dF-bounded such that I' - B’ < B. This derivation must have the shape:

A x:A+,b:B' (=)
rAb-,;2x:A.b:A—> B’ Ab,a:A4 T'EA<A
A, ,(Ax: A.b)(a): B’

(d—>E).

By using subsumption, from I, 4,x:A},b:B'" and I'-B'<B we have
I A, x:A,b: B, and, similarly, from I, 4 },a: A" and I' - A’ <A we deduce
I',A4,a: A. Therefore, by Lemma 6.2, we conclude I, 4 |-, b[x < a] : B.

2. By Theorem 5.6 there exists a derivation d:: I, 4 |- ,(Aa<A.b){A'} : B’
in dF-bounded such that I' - B’ < B. This derivation must have the shape:

Noa<A, AV,;b:B" o¢ FV(A) V1)
AR (A< A.b): (Ya< A.B") I'FA <A[a< A']
I A (Aa<A.b){A'} : B'[a— A']

(dVE)

with B'=B"[a < A'].
Byl,a<A, A}, ,b:B"and I' A" < A[a <« A'] which appear in the derivation,
and using Lemma 5.5(2), we have that

A, ,bla—A"]:B'[a—A"]=B'.

Hence, by using subsumption we conclude I, 4 |-, b[a < A'] : B.

3. By Theorem 5.6 there exists a derivation d:: I, 4} ,Ax: A.b(x): B’ in
dF-bounded such that I' - B' < B. The derivation d must have the shape:

A x:Av,b:D I'”(D)=A"-C A, x:AF,x:A T'HA<A
A, x:AR,;b(x): C (>1)
A, 2x:A.b(x): 4> C

(d—E)

where B'=4 - C.

By the Subproof Lemma 4.4 and the reflexivity rule we have I'—C<C, and
using I' A< A" we deduce I'+— A" > C< A — C. Recalling that I'D<I'(D)
and I'~(D)= A" — C we conclude, by transitivity and subsumption, I, 4, x: 4 |-,
b:A—- C=B’', and, again by subsumption, I,4,x:A4},b:B. Now, since
x¢ FV(b), by strengthening (Lemma 6.1(3)), we reach the desired conclusion,
I,A,b:B.

F-BOUNDED QUANTIFICATION 205

4. By Theorem 5.6 there exists a derivation d:: I', 4 |-, Aa < A.b{a} : B' in
dF-bounded such that I' - B’ < B. The derivation d must have the shape:

[a<A, A, b:D (Ia<A) (D)=VYa<dA'.C
Ia<A <A
asA o (dVE)
Ia<A,4},b{a}:C ad FV(A)
Al A0 <A.b{o} :Va<A.C

(v1),

where B'=Va < A4.C.

By the Subproof Lemma 4.4 and the reflexivity rule we have I'C<C, and
using Ia<Ab,a<A we deduce I'(Va<A'.C)<(Va<A4.C). By Lemma
410, Ia <A (Va<A'.C)< (Va < A.C). Therefore, as above, by subsumption we
conclude I, a <A, A}, b: (Va<A.C) and thus, by strengthening (Lemma 6.1(2)),
since a¢ FV(b)U FV(Ya<A.C) and I, A<, we have I, A, b: (Ya<A.C).
Recalling that B'=Va < A.C and I' - B' < B, by using subsumption, we reach the
desired conclusion. ||

Now, the theorem of subject reduction for F-bounded is an immediate corollary
of the previous lemma.

THEOREM 6.4 (Subject reduction). Let a be a term in F-bounded. If |-, a: A and
a—=>*d then |-,a : A.

7. TYPE EQUIVALENCE IN SYSTEM F-BOUNDED

Two types mutually related by subtyping are equivalent in the sense that each
can be substituted by the other one in any good formation, typing, or subtyping
judgement. Having just one type in each equivalence class generally makes a type
system slightly easier to use and to understand, both for the programmer and for
the theoretician. For this reason, antisymmetry of subtyping is regarded as a
desirable property.

The subtype relation in F-bounded is not antisymmetric, namely, in general,
I'A<Band I' - B< A4 does not imply that 4 and B are (syntactically) the same
type. In other words subtype equivalence and (syntactical) equality of types do not
coincide in F-bounded. For instance, we have

< T < T T
w (IdVar <) x op 1~ Top (Top<)
a<Top Fa<a a< Top | Top < Top v
F(Va<a.Top) < (Vo< Top.Top) <)
and, also, the converse inequality holds:
< < T
_asxba (Top<) x<at Top (Top<)
a<Lala<<Top a<a b Top< Top

(Yo < Top.Top) < (Va<«.Top) <)

206 BALDAN, GHELLI, AND RAFFAETA

The aim of this section is to characterize type equivalence in F-bounded and to
suggest how an antisymmetric subtype relation can be recovered. We will see that
the above example is paradigmatic, in the sense that, as one would expect, two
equivalent types are syntactically the same type up to the replacement of bounds of
the kind a <a with o< Top and vice versa. These considerations will lead to the
notion of standard type.

Let us start by giving the formal definition of type equivalence. As pointed out
above, two types are equivalent if each one is a subtype of the other.

DeriNITION 7.1 (Type equivalence). Two types 4 and B are equivalent in I,
written I'A~B, if 'A<B and I'B<A. The types 4 and B are called
equivalent, written A ~ B, if there exists a type environment /" such that I' A4 ~ B.

The existential quantification over I in the above definition may sound strange.
Indeed we will prove later that equivalence does not actually depend on the
environment considered but only on the structure of the two types. Namely,
whenever A ~ B then I' - A ~ B for any environment /" such that ' A4 and I" - B
(Corollary 7.7).

A few simple remarks are in order.

PROPOSITION 7.2. Let I' be a type environment, A, B types and let a, § be type
variables. Then:

1. if I'-A<a then A is a type variable;
2. a~pfiffa=p;
3. ifla<Aloa<Band B#a, Top then I'a <A | A<B.

Proof. 1. Just consider the structure of a possible derivation of the judgement
in dF-bounded.

2. Suppose that a~ f (in the environment I") and a# . Since ', ,a<f
there exists n > 0 such that /™(«) = f and thus f occurs before « in the environment
I'. Therefore, it cannot be the case that I'}, f <« thus contradicting the
hypothesis.

Conversely, if a = f we immediately conclude by using the rule (IdVar <).

3. Straightforward, by looking at the shape of the rule (TVar<). ||

Let us introduce the notion of the standard form for a type. The basic idea is that
a bound a <a is equivalent to a bound a < Top, since both essentially correspond
to an unbounded quantification.

DerFINITION 7.3. The standard form for a type A, denoted by std(A), is defined
by induction on the structure of 4 as
std(Top) = Top;
std(o) = o
std(A - B) =std(A) - std(B);

VYo < std(A).std(B), if A#a,

Va<A.B)= .
std(Vox) {Voc<Top.std(B), if A=o

F-BOUNDED QUANTIFICATION 207

We first prove that every type is equivalent to its standard form and that two
types with the same standard form are equivalent.

LemmA 7.4. Let I' be a type environment and let A be a type. If I'\— A then
I'—A~std(A).

Proof. We prove by induction on the structure of A that I" - A <std(A) and
I'std(A) < A:

o (A=a, Top). Immediate, by rule (Id <).
e (A=A4"— A"). Trivial induction.
o (A=VYau< A'.A"). The hypothesis I' -Va < A". A" implies that

Ia<A A, Ta<A|A",
and thus, since FV(std(A))=FV(A), we easily conclude that
T oa<std(A") A4, I o<std(A") | A".
By inductive hypothesis we have

(1) Ia<A A ~std(A), (3) Ia<stdA')}A ~stdA),
(2) Foa<A A" ~std(A"), (4) Ta<std(A') A" ~std(A").

Now, if A'#a, Top, then, by definition, std(A)=Voa<std(A").std(A") and
std(A') # o, Top. Thus, we can construct a derivation for I" - std(A) < A as

Ioa<A A <std(A')(1)
A" #a, Top std(A')Za, Top

’ ’ (Tvarg) ! 4 4
INa<A Fa<std(A") Ia<A Fstd(A") < A"(2) (V<)
I (VYa<std(A').std(A")) < (Va<A'.A") =P
and similarly for I" - A4 <std(A),
I a<std(A") |-std(A") < A'(3)
A', std(A") # o, Top (TVar<)
La<stdA)Fa<A Foa<std(A') |- A" <std(A")(4) V<)

I'E(Va<A'.A")<(Voa<std(A').std(A"))

If A"=Top or A'=a we cannot use rule (TVar<), and in both cases std(A4)=
Vo< Top.std(A"). The case A’ = Top can be treated by substituting the instances of
rule (TVar <) in both derivations by instances of rule (Top <). The case 4’ =« is
managed by replacing the instances of rule (TVar <) in the two derivations, by an
instance of rule (Top <) in the first one and by an instance of (Id <) in the second
one. |

CorROLLARY 7.5. If '+ A, I' |+ B, and std(A) = std(B) then I' - A ~ B and thus
A~ B.

208 BALDAN, GHELLI, AND RAFFAETA

Proof. By the previous lemma, I' A ~ std(A) and I }-std(B) ~ B. By std(A)
= std(B) and by transitivity, I' A4 ~ B; hence A~ B. |

We can now prove the inverse implication, namely the fact that equivalent
F-bounded types have the same normal form. Here we make a crucial use of the
result of transitivity elimination. This explains why such a property, which is by
now easy, was claimed but not proved in previous works [Kat92, Ghe97].

ProprosITION 7.6. Let A and B be types. If A ~ B then std(A) = std(B).
Proof. Let I' be an environment such that " A4 ~ B, that is,

r'~,A<B, Tl ,B<A, ()
where the subtyping derivations are assumed to be in dF-bounded. We proceed by

induction on the structure of 4:

e (A=a) In this case, by Proposition 7.2, we conclude B =a.
e (A=Top) In this case, by Lemma 4.7, we conclude that B= Top.

e (A=A">A") In this case B=B'— B", since the last rules used in the
derivations for () are necessarily instances of (— <). Moreover, from the shape of
rule (— <), we immediately get that ' A"~ B’ and I' - A" ~ B". Therefore, we
conclude by inductive hypothesis.

e (A=Va<A'.A") Reasoning as above, the only rule that allows one to
prove (f) is (V<) and thus we have B=Va < B'.B" and

(a) Ia<B Fa<d, (c) INa<A'}a<B’,
(b) Ia<B'}|-A"<B", (d) Ia<A'|-B"<A"
By Lemma 4.6 and (c¢), (b), we conclude that
() INa<A' -A"<B.
From (d) and (e) we have that 4" ~ B” and, therefore, by inductive hypothesis,
std(A")=std(B").

Now, if A" and B’ are both different from a« and Top then, by Proposition 7.2 (3),
and (a), (c), we have

(f) Ia<B'FB'<A, (g) Loa<A |A'<B.

By (g), Lemma 4.6 and (a), we deduce

(h) Ia<B' |-A'<B,

and thus A’ ~ B’. Therefore, by inductive hypothesis, std(A’)=std(B'), and we
conclude std(A) = std(B).

F-BOUNDED QUANTIFICATION 209

If, on the other hand, A’ =a, Top then the only rules that allow us to obtain the
conclusion (c¢) are (IdVar <) or (Top <) and thus B’ =« or B’ = Top. Summing up,
and, reasoning by symmetry, we have that A’ =a or 4’ = Top if and only if B’ =«
or B’ = Top. Therefore, in this case too we conclude std(A) = (Yo < Top.std(A")) =
(Ya < Top.std(B")) =std(B). 1

As an immediate corollary of the previous lemma and of Corollary 7.5, we obtain
the independence of type equivalence from the environment.

COROLLARY 7.7. If A~B, I'-A and I' =B, then ' - A~ B.

The result of this section suggests a very simple way to obtain a formulation of
F-bounded in which the subtyping relation is antisymmetric, which consists of
forbidding types with shape Vo < «.A, where a type variable has the variable itself
as bound. Such a system contains exactly one representative for each class of equiv-
alent F-bounded types.

ProrosiTION 7.8. Let F-bounded strict be the system having the same rules as
those of F-bounded, but with the constraint that the bound of a variable must be dif-
ferent from the variable itself. Then the following facts hold:

1. Conservativity. F-bounded is a conservative extension of F-bounded strict.

2. Fullness. For any type A in F-bounded there exists A’ in F-bounded strict
such that A ~ A’ (in system F-bounded).

3. Antisymmetry. For any A, A’ in F-bounded strict, if A~ A’ then A=A'.

Proof. As for (1), just observe that any algorithmic derivation in F-bounded
which does not contain any « <a bound in the conclusion, does not contain any
a <o bound anywhere else. To prove (2) let A" be std(A). Finally (3) follows by
observing that A =std(A), A" =std(A') and that, by Proposition 7.6, std(A)=
std(A"). 1

8. OTHER FORMULATIONS OF SYSTEM F-BOUNDED

The (sub)typing rules of F-bounded closely correspond to F _ rules, with the only
exception being (V <). In fact, the most immediate generalization of the rule (V <)
of F_ would be

Io<A' A'<A Toa<A B<B
' (Va<A.B)<(Va<A'.B')

(V' <).

In this section we study the variant of F-bounded including rule (V' <) instead of
(V<) and we prove some properties first conjectured in [Kat92] and later in
[Ghe97]. More precisely, we first show that rule (V' <) is strictly less powerful
than the (V<) rule adopted in this paper. Then we prove that the two rules are

210 BALDAN, GHELLI, AND RAFFAETA

equivalent if we either forbid a <a bounds, or we add also the following rule to the
system:

Ia<al-A4
I'-MVa<a.A)<(Va<Top.A)

(YTop<).

The next proposition shows that rule (V' <) above is strictly less expressive than
rule (V<). In fact it does not allow one to prove, for example, the judgement
F(Va<oa.Top) < (Ya< Top.Top), which is derivable in F-bounded.

ProrosiTiON 8.1. In a system obtained from F-bounded by substituting rule
(V<) with (V' <), one cannot prove the judgement I' - (Yo < A.B) < (Va< Top.B')
for any choice of I', B, B' and A # Top.

Proof. We prove it by reduction ad absurdum. Suppose that derivations of such
judgements exist in the system we let &k be the minimum height of such deriva-
tions. A derivation of height k cannot end with an instance of (Trans<) rule;
otherwise (at least) one of the two premises would have the desired shape and a
derivation with a height smaller than k. In fact, it is easy to verify that the inter-
mediate type would have to be a V type with shape Va<A4".B", and thus, if
A" = Top, then the left subderivation (or otherwise the right one) would have a
judgement of the desired shape as its conclusion. Hence, the judgement must have
been proved by rule (V' <). This implies that I, « < Top | Top < A. Now, it is easy
to see that Lemma 4.7 still holds for this variant of F-bounded (the proof remains
the same since it does not depend on the formulation of rule (V <)), and therefore,
we conclude that 4 = Top, thus contradicting the hypothesis. ||

We now show that equivalence can be regained by either restricting the types or
by adding the rule (VTop <) above. We first give a name to the systems corre-
sponding to these different choices.

DEFINITION 8.2 (F-bounded . and F-bounded™). The system F-bounded_ 1is
obtained from F-bounded by replacing the rule (V<) with (V' <) and adding the
rule (VTop <). The system F-bounded ~ is obtained from F-bounded by replacing
the rule (V<) with (V' <) and forbidding a <a bounds, where a variable is a
bound for itself.

Notation 8.3. When necessary to avoid ambiguity, a judgement derivable in
F-bounded . and F-bounded ~ will be respectively denoted as

Pre |-, . Concl, Pre - _ Concl.

PROPOSITION 8.4. The systems F-bounded and F-bounded L are equivalent, i.e.,

Abpa: A iff INAl,<ca:A.

F-BOUNDED QUANTIFICATION 211

Proof. Since the two systems have the same term formation rules, it is sufficient
to show that for all subtyping judgements:

I'+,A<B iff I'l,. A<B.

(=) Let us consider a derivation d:: I' |-, A < B in the deterministic system
dF-bounded.® We show by induction on d that it can be transformed into a deriva-
tion dg = I', A<B. We distinguish various cases according to the last rule
applied in the derivation d:

o (lIdVar<), (= <), (Top<) Just notice that such rules are (instances of)
F-bounded rules and apply the inductive hypothesis to the premises.
e (TVar<) The derivation is of the kind

d’
I',I'(0)<B B#a Top ['(a)#a, Top
I',a<B

(TVar<).

By inductive hypothesis we can obtain the F-bounded . derivation d’c and, thus,

< d_
; (Varg) s
Iy asI(a) 'y () <B
= = (Trans <).
I',.a<B
e (V<) The derivation is of the kind
d, d,
Na<A b ,0<A4 TINa<A' |,B<B’ V<),

I, (Va<A.B)<(Va<A'.B')

We distinguish three cases, according to the shape of type 4 and in each case we
give the F-bounded _ derivation for I' |-, (Va<A.B)<(Va<A'.B'):

s (4=Top),
Ia<A A d
§ P (Top<) 2 (ind.hyp.)
Fa<A' |y A'<Top [La<A |, B<B' (V' <)
I'lype (Va<Top.B)<(Va<A'.B') S
* (A=w),
I a< B
I (Voc’<0(oc Z)Eb(\va<To B) (VTop <)
= — = (Trans <),

I',o (Va<a.B)<(Ya<A'.B')

where d is the derivation of the previous case.

8 Basically the same proof can be carried out within the nondeterministic version.

212 BALDAN, GHELLI, AND RAFFAETA

e (A#a, Top) In this case the derivation d,; is necessarily of the kind

d
Ta<A |,A<A
Fa<A |, a<A

(TVar<).

Therefore, we can construct the F-bounded . derivation

’
1< d2<

hyp.ind
La<d b, A<d WP i, B<B

I'Fye (Va<A.B)<(Va<A.B')

(ind.hyp)
(V' <).

(=) Just notice that all F-bounded . rules are also F-bounded rules, with the
exception of (V' <) and (VTop <) rules which can be transformed into F-bounded
derivations with the same premises and conclusion. For the (V' <) rule the corre-
sponding derivation is

loa<A <
Ta<d Lacd \VoS) Lo, a<a
, A |*1,0(\ , LS F}, < (Trans<)
INa<A bpa<A Ia<A'|,B<B’
', (Va<A.B)<(Va<dA B

(V<)

while for the (VTop <) rule the corresponding derivation is

< <
Ioa<Top},a (ld<) Ia<Top}, A (Id<)
Ioa<Top|,a<a Ioa<Top|l-,A<A <)

Ik, (Va<o.A)<(Ya<Top.A)

It would be easy to show, by exploiting the Subproof Lemma 4.4, that all the good
formation premises in the two derivations hold. |

Since not all F-bounded judgements are acceptable in F-bounded —, we cannot
prove the equivalence of the two systems, but only that the first one is a conser-
vative extension of the second one.

ProprosITION 8.5. The system F-bounded is a conservative extension of the
system F-bounded ™, i.e.,

IAby,a: A iff IAdF_a:A

for any judgement I', A \—a : A not containing o < o bounds.

Proof. Since the two systems have the same term formation rules, it suffices to
show that

', A<B iff I'—_A<B

for any F-bounded ~ judgement I' A < B.

F-BOUNDED QUANTIFICATION 213

The proof is very similar to that of Proposition 8.4. In the (=) part the only dif-
ference is that, for the (V<) rule, the case 4 =a cannot arise, since F-bounded ~
judgements do not contain a <a bounds. Thus, the (VTop <) rule is not needed. As
for the (<) part, it suffices to remove the treatment of the rule (VTop<). ||

To conclude we remark that the alternative formulations analyzed in this section
differ essentially in the treatment of the a <a bound. If one believes that the a <«
bound should be considered different from the a < Top bound, then the system of
choice should contain the (V' <) rule and no (V7op <) rule. This system is strictly
less expressive than F-bounded, but its subtype relation is antisymmetric (the proof
of this fact is simple, but it does not appear in this paper). If one believes that the
o <o bound is just an equivalent way of expressing the a < Top constraint, the most
reasonable choice is to disallow this kind of bound altogether, namely F-bounded ~
is the right system. In this way, the system obtained is antisymmetric and no type
is lost, i.e., for every F-bounded type there is (exactly) one equivalent type with no
o < o bounds. Moreover, with this limitation, the two different formulations of the
V subtyping rule turn out to be equivalent. Finally, if one is interested in studying
the variant where the greatest amount of terms can be written down and typed, the
one we called F-bounded is the system of choice.

9. CONSERVATIVITY WITH RESPECT TO F

In this section we show that F-bounded is a conservative extension of F_. As an
outcome, two results proved in the literature for F_, namely undecidability of (sub)
typing [Pie94] and nonconservativity of strong recursive types [Ghe93], can be
easily extended to F-bounded.

We consider here the algorithmic version A/gF_ of F_, as defined in [CGY92].
As discussed in the introduction, system F_ differs from F-bounded essentially
because the first one does not allow a type variable to occur in its own bound.
Formally, the operation FV _ that gives back the free variables of a type is defined
as in Subsection 3.2, with the exception of the clause for the V types, which becomes
FV_(Va<A.B)=FV _(A) U (FV(B)\{a}).

Referring to Section 3, the definitions of types, terms, environments, and
judgements are the same. The rule (TEnv) changes as

I'$0 FV(A) Svars(T)
Fa<ARE<©

(TENvgyp).

Finally, the subtyping and typing rules are the same as those of dF-bounded, the
algorithmic version of F-bounded (Definitions 4.1 and 5.3), with the exception of the
subtyping rule for V types and the rule of V elimination which change as follows.

I'A'<A T a<A }B<B V<)
I'(Va<A.B)<(Ya<A'.B') eub

IAFf:B TI'Y(B)=Va<A.B' TI'A'<A
LAFf{AY :B[a—A]

(VEsub)'

214 BALDAN, GHELLI, AND RAFFAETA

Notation 9.1. When necessary to avoid ambiguity, a judgement derivable in
(Alg) F . will be denoted as

Pre |- _ Concl.

The first basic property to observe about system F_ is the fact that, if 4'<A4”
can be derived in an environment I, « < 4, and « does not occur free either in A’
or in A”, then the result can be strengthened by removing the hypothesis a < A4
from the environment. A similar result has already been proved for system F-bounded
in Lemma 6.1.

LEmMA 92. Let I'Na< A} A'<A" and suppose a¢ FV(A')L FV(A"). Then
I_A4'<4".

Proof. Trivial induction. |

The main difference between the algorithmic versions of F-bounded and F_
resides in the first premise of the (V<) rule; hence, the next lemma is the key of the

conservativity proof. It states essentially that the two premises are equivalent if we
restrict ourselves to F_ types.

LemMmA 93. If INa<Alca<A and a ¢ FV(A') then I' - A< A’

Proof. Let us consider the last rule applied in the derivation. It can be neither
(IdVar <), otherwise A4’ = «, nor (— <), nor (V <g,,). Therefore only two cases can
arise:

e (TVar<) In this case the derivation has the shape
d/

Foa<Al_A<A

Noa<Apca<Ad

(TVar<).

By F_ notion of well-formedness for type environments, a¢ FV(A) and by
hypothesis a¢ FV'(A"). Hence, by Lemma 9.2, d' I, a<A|-.A<A can be
strengthened to d" = I'-_ A< A"

e (Top<) In this case A" = Top and the derivation has the shape

Ioa<Ap_ o
INoa<Ab a<Top

(Top<).

By Ia<A |-, <,wehave I' - . & and FV(A) Svars(I'). Therefore I' |- . A and
the desired derivation can simply be

I'_4
-7 (Top<). 1
I'_A<Top

Observing that the rules defining well-formedness in F_ are weaker than the ones
in F-bounded, one can prove the following simple results.

F-BOUNDED QUANTIFICATION 215

LeEMMA 94. Let I’ be a type environment and let A be a type,

. ifI'k< < then ', <,
2. if ' Athen I''|-, A.
We now have all the necessary ingredients to prove the conservativity result for

subtyping and typing.
LemmA 9.5 (Conservativity of subtyping). Let I'\-_ A and I' - . B. Then

I'_A<B iff Th,A<B.

Proof. (=) We proceed by induction on the size of the derivation and by
cases on the last rule applied. For cases (ldVar<) and (Top <), recall that these are
(instances of) F-bounded rules and use Lemma 9.4. Similarly, for cases (TVar<) and
(— <) use the fact that such rules are in F-bounded and apply the inductive
hypothesis. Finally, if the last rule is (V <,,,), the shape of the derivation is

't A<A TNoa<A|_.B<B
I'_(Va<A.B)<(Ya<A'.B')

(V <sub)'

By induction, I'—, A'<A implies I'|-, A’ <A, and thus, by the Weakening
Lemma 4.10, I a<A' |-, A'<A. Moreover, by induction I, a<A' |- B<B’
implies I, a < A" |-, B<B'. The thesis follows by rule (V' <), which is provable in
system F-bounded by Proposition 8.4:

Ia<A'l,A<A TIa<A |,B<B'
', (Va<A.B)y<(Va<A'.B')

(V'<).

(<) It is convenient to consider the deterministic version dF-bounded of system
F-bounded. Cases (IdVar<) and (Top<) are dealt with by the well-formedness
hypothesis of I" -4 < Bin F_. Cases (TVar<) and (— <) are dealt with by induc-
tion. Finally, let the last rule be (V<):

Na<A' b,o<A TINa<A'},B<B’
I',Va<A.B<Va<A'.B'

(V).

By induction, I, a < A" |-, a < A4 implies I, x < A" |- . a < A4, and thus, by Lemma 9.3,
I' - _ A" < A. Notice that Lemma 9.3 can be applied since A4 is a bound for «; therefore,
by definition of F_ types, a¢ FV(A). By induction, I, a <A’ |-, B<B' implies
Ia< A" |- B<B'. Hence, we can prove the thesis as

IF'b_A'<A TIa<A _B<B
I'_(Va<A.B)<(Va<A'.B')

(V<suws) 1

The conservativity of typing is now an easy corollary.

216 BALDAN, GHELLI, AND RAFFAETA

THEOREM 9.6. (Conservativity of typing). Let I A} a: A be any well-formed
F_ typing judgement. Then

IAf-_a:4 iff IAF,a:A.

Proof. Again it is convenient to consider the deterministic version dF-bounded
of the system F-bounded. The basic remark is that, if Va < A4.B and Ya < A’. B’ are
(Alg) F< types, ie., « does not occur (free) in the bounds 4 and A4’, thus the rule
(dVE) of dF-bounded coincides with (VE), in AlgF _. This shows that a derivation
in AlgF L is also a derivation in dF-bounded and thus proves (=).

As for (<), it suffices to notice that in each F-bounded rule, if the conclusion is
a well-formed F_ judgement (type variables do not appear in their bounds) then
the judgements in the premises are well-formed as well. Then, an inductive reason-
ing that uses the above remark allows us to conclude. ||

The undecidability of (sub)typing, proved in [Pie94] for system F_, can now be
extended to system F-bounded.

COROLLARY 9.7. Subtyping is not decidable for system F-bounded.

Proof. Subtyping is undecidable for system F_, and, by Theorem 9.5, any
algorithm for system F-bounded subtyping would also decide F_ subtyping. ||

We can also easily prove the nonconservativity of strong recursion for F-bounded
subtyping, by extending a similar result given in [Ghe93] for system F_. For the
sake of brevity we only sketch the essential constructions. The interested reader can
find more details in [Ghe93].

A common abstract notation for recursive types is uX. A, where X is a (recursion)
type variable typically occurring in type A (recursive types are defined in most real
languages via a construct of the form let rec X=A). We can distinguish two
(families of) approaches to type level recursion, usually referred to as weak recur-
sion and strong recursion. In the strong approach the type uX.A is seen as the only
solution of the equation X = A. Therefore, the type equality uX. A =A[X —uX. 4]
holds in a “strong” sense (see [AC93, CG99]). The weak approach, on the other
hand, only provides a couple of functions fold,y 4: A[X <~ uX.A] - puX.A and
unfold,y 4:uX.A— A[X < uX.A] which allow the programmer to pass explicitly
from a recursive type to its unfolding and vice versa [GMW79, AC96b]. The weak
approach makes type and subtype checking very simple. The strong approach,
instead, is easier for programmers to use, but makes subtype checking much
more challenging; intermediate approaches are investigated in [Ghe93]. The non-
conservativity result applies to strong recursion as well as to some intermediate
approaches.

Let uF-bounded be any extension of system F-bounded with recursion variables
named X, Y, .. and with a constructor uX.B for type recursion, such that the
following rules are admissible (i.e., they express a deduction which can actually be
proved in uF-bounded). Observe that such rules are admissible in any transitive

F-BOUNDED QUANTIFICATION 217

system with strong recursion, but they are actually weaker than strong recursion
(see [AC93, Ghe93])

I'HA[X<uX.A1<B I'MB<A[X+<—uX.A4]
(unfold — 1<)
I'uX.A<B I'-B<uX.4

(unfold —r<).

Consider now the following types, where —A stands for 4 — Top, and Va.A
abbreviates Vo < Top. A:

B=VYo. —Va' <a. —a
A=VB<B.p
A'=VESBYS' <p.—p
R=VE<B.uX.Vf <X.—X.

The paper [Ghe93] shows that, in system F_, the type 4 is not a subtype of A’;
by Theorem 9.5 the same holds in system F-bounded. Now, in [Ghe93] it is also
proved that both A4 <R and |- R< A4’ can be derived in any extension of system
F_ where the two unfold rules above are admissible; hence they are also derivable
in any extension of system F-bounded, where the same unfold rules are admissible.
Therefore we obtain the following corollary.

CorOLLARY 9.8 (Nonconservativity of recursion). There exist two types A and
A" such that - A < A’ does not hold in system F-bounded, while it holds in any exten-
sion of the system with a constructor uX.B for type recursion and where the subtype
relation is transitive and the two rules (unfold — 1<) and (unfold —r <) are admissible.

The paper [Ghe93] also contains a limitation of nonconservativity result. Let us
say that I" |- A < A’ is a nonconservative F_ judgement if it does not contain recur-
sive types, it does not hold in pure F_, but it is derivable in the extended system
obtained by adding recursion and the two unfold rules to F_. The “limitation”
result shows that every nonconservative F_ judgement makes the standard subtype
checking algorithm diverge; this is very interesting since we know from [Ghe95]
that only “very special” judgements diverge. We conjecture that the same limitation
result can be proved for system F-bounded too, but we leave this as an open
problem.

10. P.E.R SEMANTICS

The semantic interpretation that we propose for system F-bounded is obtained by
adapting the semantics of system F_, based on partial equivalence relations, first
defined in [BL90] (see also [CL91, CMMS94, Ghe90]). Let <w,.) be Kleene’s
applicative structure, i.e., for i, n € @, i.n denotes the application of the ith function
in a Godel numbering, to the argument n.° A partial equivalence relation (p.e.r.) p

 Any other combinatory algebra would be appropriate.

218 BALDAN, GHELLI, AND RAFFAETA

on o is a transitive and symmetric relation on w. A p.e.r. p can then be seen as an
equivalence on the set {new:npn} which is called its domain dom(p). The
quotient dom(p)/, is denoted by Q(p), namely Q(p)={[n],: nedom(p)}. We will
often manipulate p.er’s as sets of pairs, in particular by writing p<gq for
ipj=iqj,and prg for {{i,j>|ipjnriqj}.

In this approach a type A is interpreted as a p.e.r. [4]. The idea is that the
possible values of type A are the elements in dom([A]) and if i [A] j then i, j repre-
sent values in [A] which cannot be discriminated by using the operations allowed
on type 4. Terms are then interpreted as equivalence classes. The interpretation is
required to be sound with respect to the (sub)typing system; namely, if a: 4 is
provable, then [a: A] must be a value in [A] (an equivalence class in Q([A4])),
and if 4<B, then [A] =[B], ie., i [A] j=-i[B] j. Notice that the inclusion
between [A4] and [B] expresses at the same time two basic intuitions about subtyp-
ing: the fact that every eclement of the subtype also belongs to the supertype
(domain inclusion) and the fact that every function which can be used to dis-
criminate elements of the supertype U can also be used to discriminate elements of
the subtype T (namely, —(i [B] j)=> —1(i [4] j)).

To deal with free variables, we first interpret a judgement I', 4 - < as the set of
all well-typed assignments to the variables in I', 4, and then we interpret a well-
typed term I', 4 |-a: A by a function from [I, 4 - <] to [T 4], ie., a function
which associates a value with any possible assignment of values to free variables. In
the same way, a type I' |- 4 is interpreted by a function [I" |- 4] which associates
a per. [I'A] y with each assignment y of p.e.r.’s to the type variables. Specifi-
cally, [I" |- Top] y is always the total p.e.r. w x @, which contains all values, but all
of them are equivalent. To interpret arrow types, we first define the operator (—)
on p.e.r.’s; if p, g are p.e.r.’s, then

i(p—>q)j < VYmnmpn=imgqj.n

Le., two integers are related by (p — ¢) if they are the indexes of two functions
which map p-related values to g-related values. Then, the interpretation
[I'+A4— B] y is simply defined as ([I' 4] y— [I"F B] y). Finally, a universal
type Vo < A. B is interpreted as the intersection of all [B[«]]’s, when « ranges over
all the p.e.r’s such that a = [A[a]] (the formal definition is given later). The use
of an intersection, rather than a function type, expresses the fact that the type
parameter does not have any role in the computation but is only used for type-
checking purposes. Hence, a term of type Vo < A.B is not really interpreted as a
function which takes a p.er. « and gives back a value in [B[«]], but it is just a
constant value which is in every [B[«]], regardless of what o really is. This essen-
tial property, which is at the base of most compilation techniques of polymorphic
languages, is usually called “parametricity.”

Notation 10.1. 1In the following, p.e.r’s will be denoted by p and equivalence
classes in Q(p) by v, possibly with subscripts. Finally, given a function f: X — Y,
Xo € X and y, € Y, we denote by f[x,+ y,] the function from X to Y defined as
flxo— yol(x)= f(x) if x # x, and y, otherwise.

F-BOUNDED QUANTIFICATION 219

The following proposition introduces some properties of the (—) operator and of
p.e.r.’s intersections which will be used hereafter.

ProrosiTioN 10.2. 1. Let py, p, be two p.er’s; then the relation (p,— p,)
defined for all i, j€ w:

i(pr—=p2)j Hff Yn,m. npym=inp,j.m,

is a p.e.r.; moreover, if py S p, and p, S p, then (p; = p,) < (pi — ph).

2. Let {p;}ic; be a collection of p.er’s; the relation (\;c; p; is a p.e.r., with

(a) dom((N;erpi)=ierdom(p;);
(b) Q(Nierp:i)= {ﬂie] v;: {Ui}ielenieIQ(pi) A (Nier U; 75@}'10

Since in case (2) the notation is a little complex, the reader could find clearer to
consider the binary case, namely the intersection of two p.e.r.’s p; and p,, which
is a p.e.r. with domain dom(p, N p,) =dom(p,) ndom(p,) and classes Q(p; N p,) =

{Ul Ny 2 vy, 120 €Q(py) X Q(p,) and vy N, 75@}

Semantics of types and environments. We are now ready to give the actual
semantics. As discussed before, to give a semantics to a type or term containing free
variables, we must specify a suitable semantic assignment to its variables. This is
formalized by the notions of semantic type environment and semantic value
environment. A semantic type environment is a function y which associates a p.e.r.
on o with each type variable:

y: TypeVar - PER,
where PER denotes the set of all p.er’s on w. A semantic value environment 0

associates with each value variable a subset of w to be interpreted as an equivalence
class with respect to the p.e.r. denoted by the type of the variable:

o: ValVar - 2(w).

Type judgements are interpreted as functions which, given a semantic environ-
ment j, return the p.e.r. denoted by the type, where free variables are interpreted
according to y:

[T} Top] y = OX®
[oa<AT" o]y = p(a)
['+A4—B]y = ([Ir'+=4ly->[r+B]y)

[I'Ya<A.B]y

N [Ia<AB]y[arp].

pellla<A-A]yla—p]

' The notation {v;};c € IT;;Q(p;) means that Vi€ I, v, Q(p,).

220 BALDAN, GHELLI, AND RAFFAETA

Since the semantics of I - A does not depend on I', we will often write [A] y for
[A]y.

We say that a semantic environment j satisfies a (syntactic) environment /" if the
assignment to the variables in " is consistent with the constraints imposed by type
bounds on type variables and by typing on value variables. First, the notion of
semantic type environment y satisfying a (syntactic) environment I, written y = I,
is defined inductively as

YEe
yELoas<d if yEIT pa)=[A]y.

Given y = I, the notion of a semantic value environment satisfying I, 4, written
y,0 = I, 4 is defined inductively as

»oET,e it yEI
pobEdx:4 if y,0ET,4; 6(x)eQ([A]y).

Syntactic environments are interpreted by the sets of semantic environments
which represent well-typed assignments to all the type and value variables in the
environment (to simplify the notation we write [I, 4], instead of [T, 4 |).
Therefore

[I={y:yET}
[F, A1 ={<3 6> : 9.0 = T, 4}

Notice that the semantics of I, « < 4 depends on the semantics of the type A, where
« may occur free, namely, expanding the notation, on the semantics of a judgement
I,a <A} A. However, the fact that the environment I, a <A appears in this
judgement does not create any circularity in the definition, since as already noticed,
the interpretation of types does not depend on (the interpretation of) environments.

Semantics of terms. The interpretation of well-typed terms is given by induction
on the typing derivation, and by cases on the last rule applied. For this reason, we
should use a notation like [d]]<y, 0, where d is a notation for a typing derivation.
However, to keep things simple, we do not write the full derivation as the argument
of the semantic function but just the proved judgement, and in the next definition
we assume that the predecessors of the final judgement are the same as in the
presentation of Section 3. We will later prove a coherence theorem which states that
indeed our interpretation only depends on the proved judgement, hence justifying
the notation.

Notice that, in cases (Subs), (—E), and (VE), the interpretation is built as
U [i1sy,>» where B is the type of the term and i ranges over a suitable set of
integers. The idea is that all the i’s should belong to the same equivalence class and
thus it would be sufficient to take the equivalence class of only one of them; but this
fact will be proved only later, in Theorem 10.11. This result will also imply that in
cases (Subs), (VI), and (VE) the interpretation can be obtained by choosing any

F-BOUNDED QUANTIFICATION 221

element 7 in the equivalence class interpreting the main premise, and changing only
the p.e.r., where its equivalence class is considered. This fact has an interesting prac-
tical interpretation: if every term is compiled to an index in its equivalence class,
then no code needs to be generated for subsumption, second-order abstraction and
second-order application. This is what usually happens in actual implementations.

DerFINITION 10.3. A typing derivation is interpreted by a subset of w defined as

(Var) [, x;: A, 0 X,: A, Fx;0A4,]<p, 0>
=d(x;)
(Subs) [I,4}a:B]{y,0)
=U [ilg,.forie [, 4-a: A[<{y,6)
(=) [LAdFix:A4A.b:A—- B]<{y,d)
={icew|VveQ([A4]y).Vjevije[l,4,x: Ab:B]|{y,d[x+>v])}
(—E) [I 4+ fla): B[y, 5>
=U [ij]lgsy,.forie[I, 4\ f: A—B]|{yp,0),je[l,da: A]<{y, o)
) [I,AF A< A.b:VYa<A.B]|{7,0)
= Mpetar stamep [T 0S4, A b2 BJGLarpl. 6
(VE) [A f{d}): Blae AT]<7.)
=U []pracaqyforie[I, 4 f:Va<A4.B]{y,d).

It is not difficult to prove that the above semantics is well defined.

THEOREM 10.4 (Definition). If I'A then [A]y is a uniquely defined p.e.r.
If T, then [I'] is a uniquely defined set of semantic type environments. If
I, A1, then [T, A] is a uniquely defined set of semantic value environments. If d
proves I A fa: A, and {y, o) € [T, 4], then [d]<y,) is a uniquely defined subset
of w.

Proof. For types, the fact that [A]y is well defined for any semantic type
environment y can easily be proved by using Proposition 10.2. In particular notice
that the intersection of a set of p.e.r.’s is a p.e.r. and that at least the empty p.e.r.
satisfies the condition p<[I,a <A A] y[a+> p]. For environments, no doubts
should arise. For derivations, the semantics has been defined in such a way that it
is always a well-defined set of integers by construction. The price to pay for this is
that, in principle, it is not obvious that this set is not empty and that it is an equiv-
alence class of the corresponding type (Theorem 10.11). |

The first basic property enjoyed by the proposed semantics is the soundness
of subtyping, namely the fact the subtyping relation on types has set-theoretical
inclusion as a semantical counterpart.

THEOREM 10.5 (Soundness of subtyping). If I' A < B, then, Yy e [I'], we have
[4]y<[B]y.

Proof. By induction on the structure of the derivation of I'- A< B and by
cases on the last rule applied. In the cases (ld<) and (Trans<) we simply use

222 BALDAN, GHELLI, AND RAFFAETA

reflexivity and transitivity of subset inclusion. For (Top<) just notice that
[Top]ly=wxw is the greatest p.e.r. The case (Var<) follows directly from the
definition of the semantics of environments and for (— <) we use the property of
the function space operator stated in Proposition 10.2(1).

The interesting case is rule (V<). Suppose that the last rule applied in the deriva-
tion 1s

INa<A' Fa<A4d INa<A -B<B’
I'(Va<A.B)<(VYa<A'.B")

(V<).
Let ye [I']; we have to prove that
N [Blylample (O [B]yla—p]
p< 4] yla—p] ps4] y[a—p]
By inductive hypothesis we know that
L psld]yla—pl=p<[A] ylarp]
2. pslA]yla—pl=[B] ylarpl=[B'] ylarp].

From 1 and 2 we deduce 1’ and 2’ below, and thus, we conclude by transitivity
of subset inclusion:

. Npepaga—py [Bl vIa—=p1<S N pepagsramp 1Bl y[ap]
2" Npepasfa—pl [B] yla—pls,e [4'] y[o+—p] [B'] ylar—p]. 1
We next introduce untyped lambda terms and we interpret in the obvious way
each untyped term (in a given variable environment) with a computable function.
Then we show that the meaning of a typed term can be nicely characterized by
using the function associated with its erasure. Such a result will allow us to easily
conclude the soundness of typing and coherence results.

DerFINITION 10.6. (Untyped A-terms). The set A of untyped lambda terms is
defined by the grammar, where x denotes a generic value variable,

U:=x|UU)|ix.U.

Untyped terms will be denoted by u, possibly with subscripts.

DerFiNITION 10.7. (Erasure). Let a be an F-bounded term. The erasure of a is the
(untyped) term erase(a) € A defined as

erase(x) =X

erase(Ax : A.b) = Ax.erase(b)
erase(f(a)) = erase(f)(erase(a))
erase(Aau< A.b) = erase(b)
erase(b{A}) = erase(b).

DerFiNITION 10.8. For any untyped term u € A and variables x4, ..., x,,, such that
FV(u) = {xy, .., x,}, we define a function FX>~*:N"— N as: for all i, ..., 7, €N

F-BOUNDED QUANTIFICATION 223

FXI’“.’xn(ila ey ln) = ik

For— (i, ..., i,)=a Godel index for the function

. X1y eees X5 X, . . .
Iy > F0 50 s (G 0y)

Fbm (i, oy 1) = F20 00y) F 200).

One can easily see that each F71 " is well defined!" and computable. This can be
proved inductively, by observing that in the first clause we just define the projection
on the kth component, by using the s —m —n theorem from computability for the
second clause and the existence of a universal computable function for the third
one.'?

A simple technical lemma, regarding the effect of substitution at a semantic level
for types and terms will be needed in the following.

LemMMA 10.9 (Semantic substitution). 1. Let INa<A, "+ Band I, I"[a—A"]-A4".
Then, for any semantic type environment y we have

[B] Lo [A']y]=[Bla A"]]y.

2. Let I'NA,x: A, A4 +b:B and I',A, A" \~a:A. Then, for any {y,0)¢€
[T, 4, 4'] we have

[I,4, 4 Fb[x«a]:B]{y,0)=[I,4,x:A4, A4 }b:B]J<{y,o[x—>v]),

where v= I, 4, 4" Fa: A]<{y,).

Proof. Both points are proved by straightforward induction (on the structure of
the type B and of the term b, respectively). ||

The next result essentially asserts that the interpretation of typed terms can be
obtained from the above interpretation of untyped terms, by taking the quotient
with respect to the corresponding type. It immediately implies the soundness of
typing and the coherence result for the semantics.

Lemma 10.10. Let d be a derivation of I''Ala: A in F-bounded, where
A=x,:A4,, .. x,:A,, and let {y,0)€[I, A]. Then choosing i, €d(x;) for
ke{l,.. n}, we have

[d1<p, 0% = [F L n(iys o i) 1 gy

Proof. Let {p,6)€[I,4] and let i,€d(x;) for ke{l,..,n}. The proof
proceeds by induction on the structure of the derivation d and by cases according
to the last rule used in the derivation d. As usual, we do not indicate the entire

1 Not uniquely, due to the existence of (infinitely) many indexes for the same computable function.

12 Kleene application is intended to be undefined when one of the two arguments is undefined,
and thus, if ¥, :N?-N is the universal function, then F2v iy, oy i) F20 50 (iy,) 1S
Wy (F 50)y 350 e). ' ’

224 BALDAN, GHELLI, AND RAFFAETA

derivation as the argument of the semantic function [-] but only the proved
judgement.

e (Var) Let the last rule be

LAEO

——F (Var),
oA X, Ay (Var)

where 4 is A, x; : Ay, A”. Then, by definition of the semantics of environments,
o(x;) € Q([A4,] y) and, since i\ € d(x,), we have d(x;) = [ix] 4,7, Hence,
I A xp : A<y, 6> =0(xy)
=Lix) a1y

= [F);lk’ ” xn(ils ey ln)] [4, 1y

F ;‘cllc % being the projection on the k th argument. Recalling that erase(x;) = x, we
can conclude.

e (Subs) Let the last rule be

I'Adba:A I'A<B
IAa:B

(Subs).

By the soundness of subtyping (Lemma 10.5), since I |- 4 < B,

[4]ly<=[B]>. (1)

Moreover, by the induction hypothesis,

[IAba:A]<y, 0 =[F (v, i) Ipagy (2)

Therefore,

[I,4+a:B]<y,o)

ie[l 4 -a: A1y 5>
=[] s1, forany ie[I,4Fa:A]<{y,é) (by(1)and (2))
= [F:rl:mgz;;(lla ey ln):l [Bly-

The last step uses the fact that F* (i, ...i,) e[, 4 Fa: AJ<y, o), by (2).

erase(a)

e (—1) Let the last rule be

A, x:A+b:B
IAAx:A4A.b:A—> B

(—1).

F-BOUNDED QUANTIFICATION 225

For any ve Q([A] y), by definition of the semantics of environments, <y, [x+>v]) €
[T, 4, x : A]. Therefore, by inductive hypothesis, choosing any i € v,

[I:F’ A; x:A4 lib : B]<% §[X|—> U:|> = [F)ecrl;_;:(;)n’x(ila ey in’ l)][[B]]y
Now, by definition of Fv—* for any ve Q([A]y) and iev, if we define i, =
Fﬁi’.;;’afé(b)(ih . I,), we have that i,.i= F:;;S';E;)n’x(il, v Iy, 1). Therefore, recalling

the definition of the semantics of A-abstraction
i,e[lLAix:A.b:A— By, o).

By definition of [A4 — B]y, any other index je [i;] 4 gy, is in the semantics of the
abstraction, and vice versa. Thus, we conclude

[l AFix:A.b:A— B]|{y,0>=[i;114- 5],

s X,

S . . S .
which is the desired result, since i,=F7}! Aemg(b)(zl,...

,1,) and erase(Ax: A.b)=
Ax.erase(b).

e (—E) Let the last rule be

I'AL-f:A->B IAla:A
A\ f(a): B

(—E).

By inductive hypothesis, if we define i =F (i, .. 0,) and i,=
FXe > (i, .., 1,), we have that

erase(a)

[LAEf:A- B[y, 6> =i lp-m, [AFa: A, 00 =lidpa,

Now, since i, € dom([A — B]y), and i, e dom([A]y), by the definition of [4 — B]y
we have that

ir.i,€dom([B]y).

Moreover, exploiting the inductive hypothesis and the fact that [4 — B]y=
([4]y— [B]y), we have that, for any other iy e[I, 4} f:4— B]<{y,0) and
ine[lA\a:A]<y,0), i;.i,([B]y)i,.i,. Therefore,

[, 4 f(a): B]<y,d)
=U [ifit] a1, for iye[I A} f:4- B]|{y,0)
and i, e[l AdFa:A]{y, >

=[ir-i, a1,

226 BALDAN, GHELLI, AND RAFFAETA

=[F iy ey By) FoL (i s 1)] 17,

_ X oo Xy : .
- [Fe;ase(f)(erase(a))(ll > l")] [Bly>

that is what we want, since erase(f(a))=erase(f)(erase(a)).
e (V1) Let the last rule be

Iao<A, A-b:B a¢FVA
NA-Aa<A.b:Ya<A.B

(V1.

Let p be any p.er. such that p=[A] y[a+>p] and, thus, y[a—>p] =T, a< A.
Then, by inductive hypothesis, if we denote with i, = FJl:~(iy, .., i), we have
that

[F’ <X'<A9 4 l_b : B]}<y[a|_)p]9 5> = [lb][B]] ylar—p]-
Therefore, by definition of the semantics of terms we have

[[LA4F A< A.b:Va<A.B]|{y, 0>

= [ha<d4,4Fb:Bllarpl,é)

psA] ylarp]

- ﬂ [ib][[B]] ylar—p]*
psA] yloa—p]

Recalling the definition of [Va < A4.B]y and exploiting the fact that equivalence
classes of a p.e.r. obtained as the intersection of a family of p.e.r.’s are the (non-
empty) intersections of classes of the original p.e.r.’s (see Proposition 10.2(2)), we
conclude from the above that

[F, 4+ Ax< A.b:¥a < ABICp 6> = Lip) pe s,

which is exactly the desired result, since i,=F ::;;;Zg)"(il""’ i,) and erase(b)=
erase(Aou< A.b).

e (VE) Let the last rule be

LA f:Va<A.B TI'A <A[a—A']
LA f{A} :Bla—A]

(VE).

Then, by inductive hypothesis, if we denote with i,= F il ;;(i 1> voos In)s

[F> 4 lff V“<AB]<7, 5> = [if]l[vzx<A.B]]y-

13 Notice that i, is independent of p.

F-BOUNDED QUANTIFICATION 227

Moreover, by the soundness of subtyping (Lemma 10.5) and semantic substitution
(Lemma 10.9(1)) we have that

[A']yc[AlaeA]]y=[A] yLar[4"]7].

Since [A'] y satisfies the condition p = [A] y[a+> p], by definition of the semantics
of V-types,

[Va<4.Bly= () [B] y[a—p]

psA] yla—p]
c[B] ylar[4']y]
=[B[a—A']]y (by Lemma 10.9(1)).

Therefore, noticing that [Va < A.B]y is a subset of [B[a« < A4']]y and reasoning as
in the case (Subs), we can conclude

[A f{A'} : Bla— A'1<7, 6> =[ir l parae a1y

which is what we want, since i,=F (i}, .., i,) and erase(f{A})=erase(f). |

It is worth noticing that we could have defined directly the meaning of an
F-bounded term by using the interpretation of its erasure and the semantics of types.
This approach has been widely explored in the literature. The interested reader can
consult the book [Gun92], where it is shown how a p.e.r. model of the second-
order polymorphic lambda calculus can be defined starting from a generic (untyped)
lambda model. An explicit construction of a semantics for a variant of system F
is also carried out in [HP96].

The previous lemma immediately implies that a term a of type A is interpreted
as an equivalence class (value) in the semantics of 4. Such a result expresses the
soundness of typing with respect to the semantics.

CoRrROLLARY 10.11 (Soundness of typing). If I, A }a: A, then ¥ {y,d) e [T, 4],
[I 4 ta: A<y, 05 eQ([A]y).

Another immediate corollary states the nonemptiness of the interpretation of
terms, namely the fact that the semantics of each well-typed term is nonempty for
each possible choice of the semantic environment. However, it is worth noticing
that the semantics of environments can be empty, as one can verify considering, for
instance, the environment I, 4 with I'=¢ and 4=x:Va<a.a.

CorOLLARY 10.12 (Nonemptiness). If I Ad|a:A and {y,0) e[I, A] then
(I Ata: A<y, 0) #D.

A last corollary expresses the fact that the semantics does not depend on the
structure of the derivation of a judgement, but only on the judgement itself, a
property known as the coherence of the semantics.

228 BALDAN, GHELLI, AND RAFFAETA

THeOREM 10.13 (Coherence). If d and d' both prove the judgement Iy A |- a: A
and <y, 6 € [I, A], then [d][<y, o) =[d"'[<7, 0.

Proof. Just notice that F ity does not depend on the typing derivation and
use Lemma 10.10. ||

Remark 10.14. By Corollary 10.11, the interpretation of terms may be equiv-
alently restated in the simplified way:

(Var) [x,: Ay, Xt Ay X0 A<, 05 = [pagys
for any jed(x;)
(Subs) [I 4}\-a:B][<p,0) =[ils,
foranyie [I, 4 Fa: A]<{y, o)
(o) L Afix: Ab: A= B 8> =il e
foranyiewst.Voe Q([A]y), Vjev, ije[l,4,x: Ab:B]{y, é[x+—v]>
(=E) [1,4Ff(a): BI<7, 0> =i/,
foranyie[I, A f:A— BJ<y,0),je[l,4dFa:A]J<{y, o>
(V) (LA Aa<Ab:Ya<ABIy, 6> =il e s,
forany ps [A] y[ar—opl ie[[,a<A, Ab: Bl y[ar>p], o)
(YE) [L.4} f{A): Blae A< 8> = [apac a1y
foranyie[I, 4 | f:Ya<A.B]J<{y, 5>.

Equational system. Finally, we introduce an equational system for judgements
of the shape I', 4 -a=b: A, meaning that terms ¢ and b represent indistinguishable
elements of type 4, when free type and value variables are instantiated consistently with
the constraints specified by the environments I” and 4, respectively. The equational
system is then formally proved to be sound with respect to the semantics. The rules
of the system, listed in Table 2, are essentially the same as those for system F_,
namely:

o type and term versions of f and # rules;

o reflexivity, symmetry, and transitivity to obtain an equivalence;

o structural rules to force the equivalence to be a congruence;

e a “top” rule which states that all terms are indistinguishable in the Top type

(as in [Ghe90, CG94, CMMS947).

Notice that (VE=) allows one to equate two terms f'{A4’} and f"{A"}, even
when A" and A" are not the same type, and it expresses a sort of “irrelevance” of
the argument type in second-order application. This form of the rule was first
defined in [CMMS94], where the interested reader can find a discussion on its
motivations.

F-BOUNDED QUANTIFICATION

TABLE 2

The Equational System

229

I''Ar-ix:Ab:A->B I,A}a:A
I A (Ax:A.b)a)=b[x<a]:B

(fTerm=)

I,A-b:A—>B
I'ApRFix:A.b(x)=b:A—- B

(yTerm=)

N AFA<Ab:Ya<A.B TI'A<A[a—A']
T A (Au<A.b)A =b[a—A']: Bla— A']

(BType=)

I'AFb:Ya<A.B
A Aa<A.b{a} =b:Va<A.B

(nType=)

I, 4 1A I,4 =b:4
L (Refl=) L
I'dla=a: A4 IAlr-b=a:A4

IAla=b:A4 I Ab-b=c:4
IAla=c: 4

(Trans=)

A, x:AlFa=5b:B
IAb-Ax:A.a=ix:A.b:A— B

(—1=)

FAFf =f":A>B I Add=ad":4
I A\ f"(a")=f"(a"): B

(~E=)

Ia<A,Av-a=b:B
IAFAdo<A.a=Aa<A.b:Ya<A.B

(V1=)

FARf =f":Ya<A.B T'A <Ao< A']
F'—A”<A[{X<*A”] Fl—B[m%A’],B[a%A”]éC
AR f{a}=f{4".c

(VE=)

I'dfa:Top I,A4b:Top
I,Aa=b:Top

(Top=)

By exploiting the alternative definition of the semantics (see Remark 10.14) it is
easy to see that it validates the proposed equational system. First we need a simple
technical lemma which is the semantical counterpart of weakening.

Lemma 10.15.

[, 4,4 Fb:B)|{y,0)=[I,4,x:A4, 4 Fb:B]|{y,d[x—>v]).

Let IA, A b:B and let I'A,x: A, A <. Then for any
(p,oyell, 4,4 and ve [A]y

(Notice that I'y A, x: A, A" b : B is derivable by Lemma 4.11.)

Proof. Trivial induction on the structure of 5. ||

230 BALDAN, GHELLI, AND RAFFAETA

THEOREM 10.16 (Soundness of deduction). If the judgement I''A}-a=b: A is
derivable in the equational system of F-bounded then, for any {y, o) e[I, 4] we
have [I', A V\-a: Ay, 0> =T, 4 b:A]{y,).

Proof. The proof can be done by straightforward induction on the structure of
the derivation d of I, A a=b: A and by cases on the last rule applied in d. The
cases of (Refl=), (Symm=), and (Trans=) and of structural rules are trivial. The
case of rule (Top=) is an immediate consequence of Corollary 10.11, since [Top]y
has only one equivalence class. The only interesting cases are rule (VE=) and rules
p and # for terms and types.

e (VE=) We must prove that
[FAFf/{A'}y: CI<p 8y =[IL A | f7{A") : CT<.).
By the induction hypothesis,
[I,AFf Va<A.B|{y,0)=v=[I,4Ff":Ya<A.B]|<{y, .

By Remark 10.14, we have [I, 4| f'{A"} :Bla—A'1]<{7, 0> =[iliarac 417,
where i is any index in v. Since I' |- B[a < A'] < C, again by the same corollary,
we have

[FAf{A"} : CI<y, 0> =[ilfep,-

By an analogous reasoning [I, 4 |- f"{A4"} : C[<{y,) = [i][cy, and, thus, we can
conclude.

e (fTerm=) For any pair of indexes ie [I, 4 /x: A.b: A— B]<{y, o) and
jev=[I,4Fa: A]{y, 0> we have that
[I, 44 (ix:A.b)(a): B]J<{y, o)
=[ijlisy, (by term interpretation, case (—~E))
=[I,4,x:A+b:B]{y,0[x—v]) (byie[lAdFix:A4.b:A— B]{y,0)
and term interpretation, case (—1))

=[I,4Fb[x<a]:B]{y,d> (by Lemma 10.9(2)).

We conclude by observing that the quantification over i, is not trivial thanks to
Corollary 10.12.

e (yTerm=) We must prove that
[, A x:A.b(x):A—> B]|{y,0>=[I,4Fb:A4— B]{y,d).

First of all notice that, by definition, [I, 4} Ax:A.b(x): A— B]{y,d) =
[i]p4- sy, for any i€ w such that

Voe Q([A4]ly), Vjev, ije[l,4,x:AFb(x):B]|{y,d[xrv]). (1)

F-BOUNDED QUANTIFICATION 231

Now, taking any ie[I, 4 b:A4— B]{y,), to conclude we just have to prove
that it satisfies condition (1). Since x is not free in b, its semantics does not change
if we update the value of x in 0. Formally, by Lemma 10.15, Yve Q([4]y),
ie[l,4,x:AFb:A—- BJ<y,6[xv]) for any jev, by the semantics of
variables, we have that je[l,4,x: A} x:A]J<y,0[x—v]) and, hence,
ije[l, 4, x:AFb(x):B]<{y,d[x—v])>, by (—E).

o (fType=), (yType=). In this case the correctness immediately follows
from the observation that, by Lemma 10.10, the semantics of terms just depends on
the erasure and on the type of the term. Then simply observe that such rules equate
terms with the same erasure. ||

The previous theorem has soundness of reduction as an immediate corollary,
namely, if a is a closed F-bounded term, such that -a: A and ¢ = b, then a and
b have the same semantics (as elements of type A). In fact, it is sufficient to observe
that in this case a=5b: A and then apply Theorem 10.16.

Finally, we observe that the semantics defined is consistent. To this aim we use
the type Bool=Va<Top.o— a—a, which is the usual encoding of Church’s
booleans in system F, and we consider the two closed normal form terms of type
Bool:

true= A< Top.Ax 1 ot. Ay 1 a. X, false= Ao < Top.Ax :a. Ly ..

It is easy to see that [} true: Bool] # [} false : Bool]. In fact by definition,
i [Bool] j<YVYpe PER. Yk,l,m,new. kplampn=ik.mpj.ln Recall that
[} true : Bool] and [} false: Bool] are the equivalence classes in Bool of the
indexes of the binary projections on the first and on the second components, respec-
tively. To conclude it suffices to consider the p.er. p={<0,0), (1,1>} and let
k=I1=0, m=n=1 (in the same way we may also prove that Q([Bool]) only
contains [} true] and [|- false]).

11. CONCLUSIONS

In this paper we have studied some aspects of the theory of system F-bounded,
concerning type and subtype checking, its relationship with system F_, and its
semantics. We have proved the following results:

o transitivity elimination, hence correctness and completeness of the standard
subtype checking semi-algorithm;

o correctness and completeness of the standard type checking semi-algorithm;

e subject reduction for S reduction;

e characterization of type equivalence as the equivalence obtained by identify-
ing a <o with a < Top bounds;

o characterization of the relationship between system F-bounded and its
variants F-bounded — and F-bounded ;

o conservativity of F-bounded subtyping with respect to F_, which implies that
subtype checking, hence type checking, for system F-bounded is undecidable, and that
an extension of system F-bounded with strong recursive types is nonconservative;

232 BALDAN, GHELLI, AND RAFFAETA

e coherence and consistency of a p.er. interpretation of system F-bounded,
soundness of the term formation, subtyping, typing, reduction, and equivalence
rules with respect to this interpretation.

Termination of f# reduction has not been investigated, since the result is already
known from [Ghe97].

Although system F-bounded is more powerful than system F_, essentially the
same techniques can be used to prove analogous properties in the two systems.
Some minor differences are due to the different shape of the (V<) rule, but the
conservativity result of Section 9 shows that an F-bounded-like version of that rule
could have been adopted for system F_ as well. This fact suggests the idea of
viewing both systems as special cases of a wider family, based on a conditional
quantification Va/P(a). T with corresponding introduction, elimination, and subtyp-
ing rules, such as

[A - f:Va/P(a).B T} P(A')
[AFf{A} Bla—]

(VoE)

p

I,P(«)~P(a) I,P(a)-B<B
I (Yo/P(a). B) < (Vo /P'(o). B')

(Y, <).

Therefore, it may be interesting to investigate the possibility of defining some
general language for predicates P(o) ensuring that the crucial properties of system
F are preserved.

In our opinion an interesting open issue is the study of the subtype checking of
a kernel-fun variant of system F-bounded, i.e., a system where universal types are
compared through the weak rule

oa<A' A~A T,a<A -B<B
I (Va<A.B)<(Va<A'.B')

(kfV<).

The kernel-fun variant of system F_ is known to be decidable. We conjecture that
the analogous variant of system F-bounded would be decidable too.

The kernel-fun variant of system F-bounded is interesting because its subtype
theory should be simpler to deal with, and its expressive power not far from the
power of the full system. In practice, the two systems differ above all in the treat-
ment of existential bounded quantifiers. Existential quantifiers can be encoded in
terms of universal ones, and the resulting subtyping rule turns out to be invariant
in the bounds for the kernel-fun version, and covariant for the full version [GP98].
While the kernel-fun version of the universal quantification is powerful enough for
practical aims, the kernel-fun version of existential quantification turns out to be
weak in some specific situations. A typical example is given by the four different
interpretations of object-oriented languages discussed in [BCP99], where the
kernel-fun subtyping rule for existential types is shown to be expressive enough for
the first three encodings, but too weak for the most expressive “ORBE” interpretation.

F-BOUNDED QUANTIFICATION 233

Another decidable variant of system F_ is the one without a Top type [Kat92].
Hence, a natural question regards the decidability of a variant of system F-bounded
without the Top type and with no « <« bound. However, this is a much less inter-
esting question, since the system without 7Top is not as natural and expressive as the
kernel-fun variation. The essential problem is that records with width subtyping
cannot be encoded in this variant of the system, and, if they are added as primitive
constructions, then decidability is lost.

To conclude we remark that, while here we have studied the pure system F-bounded,
with no notion of value or type level recursion, a practical object-oriented language
should contain both of them. Especially interesting is the study of type level recursion.

Strong and weak type level recursion, as defined in Section 9, have different
peculiarities and raise different problems. In any case, both of them destroy the
normalization property of f reduction, since they allow untyped lambda calculus
terms to be easily encoded as terms of type uX. X — X.

Strong recursion interferes with transitivity elimination [Ghe93] and, thus, with
the completeness of the standard type checking algorithm, even for terms where no
recursive type is used. The definition of complete type and subtype checking algo-
rithms for second-order systems with subtyping and strong recursion is still an open
problem. The only known result is the algorithm for system kernel-fun defined in
[CG99]. On the other hand, weak recursion does not modify the subtype relation
and has no effect on type checking since the type of a fold,y 4 or unfold, y , func-
tion can be read from its index, thus allowing these functions to be type-checked
like any user-defined function. However, weak recursion is not a good match for
F-bounded quantification. For instance, the type Point discussed in Section 2, if
defined via weak recursion, does not satisfy the condition

a<[x:Int;eq:a— Bool],

since a weak recursive type is a subtype only of other recursive types. This observa-
tion suggests that it may be interesting to explore some intermediate kind of recur-
sion. For example, a notion of recursive types could be investigated, which is based
on implicit unfolding (uX.4 < A[X < uX.A]) and explicit folding through a func-
tion fold,y 4: A[X < uX.A] - uX.A.

From a semantic point of view, adding any kind of recursion would require the
definition of a different interpretation. The realizability interpretation we presented
would still be the basis of the semantics, but the domain of p.e.r.’s would have to
be enriched with enough structure in order to deal with partiality and fix point
definitions [Ama88, Car89, Ama91, AP90].

APPENDIX: THE DE BRUIJN NOTATION

In the paper we essentially adopt the De Bruijn approach for the treatment of
variables. The idea consists in representing each variable occurrence as a pointer to
the 4 (or A) which binds the variable, hereafter referred to as the binder of the
variable.

234 BALDAN, GHELLI, AND RAFFAETA

Concretely, in a term an occurrence of a variable is represented as an integer
index expressing the number of lambdas between the occurrence and the binder for
the variable. More precisely, the index counts the number of lambdas whose scope
includes the variable occurrence and which are in the scope of the binder. This leads
to the so-called nameless terms. Here is an untyped term and the corresponding
nameless term,

Ax.Ay.x(Az.xz) y, AA1(4.20)0.

The same technique can be extended to deal with our typed terms, possibly inside an
environment. Bindings of the environment are treated exactly like 4 or A bindings.
Without going into further detail we show some examples. For the reader’s con-
venience we consider different indexes for value and type variables (denoted by n, and
n,, respectively). The index represents, for value variables, the number of A’s and,
for type variables, the number of A’s (or V’s), between the variable occurrence
and the binder of the variable. For instance Ao < Top.Ax :a— a. Ly : ot. Xy becomes
A< Top.A:0,-50,.4:0,.1,0, and a<Top, f<a—f, x:a, y:f}yx becomes
<Top, <1,-0,,:1,,:0,-0,1,.

As highlighted in Section 3, working directly on De Bruijn indexes may be nota-
tionally too inconvenient. Therefore, we continue using variable names, implicitly
assuming that they are just a more convenient way of denoting De Bruijn indexes.
In this way there is obviously a gap between what is written and what should
be written by explicitly using the De Bruijn notation. To convince the reader that
this gap can be easily filled in, let us present some of the basic definitions in the
De Bruijn notation.

First of all a free variable in a nameless term is a pointer to a nonexisting binder.
More precisely, an index n, if greater than the number & of nested binders having
the index in their scope, represents the (n — k)th free variable. We can represent free
variables in a term by using such numbers and write

FV(n)={n}, FV(A— B)=FV(A) U FV(B)
FV(Top) = &, FV(Na<A.B)={n—1|neFV(A) U FV(B) A n>0}.

Given an environment I'= < A4,, .., <A,, instead of collecting the set of the
variables defined in I”, we simply count the number of such variables; i.e., we define

vars(I')=|I'| =n.
The rules for well-formedness of type environments become

I'-< max(FV(A)) <vars(I) + 1

e < (¢TEnv), T <Al O

(TEnv).

The other rules have to be changed in a similar way.

F-BOUNDED QUANTIFICATION 235

ACKNOWLEDGMENTS

We are grateful to the anonymous referees for insightful and constructive remarks. This work has been
partially supported by Esprit Working Groups 26142—Applied Semantics and 22552—PASTEL, and by
Italian MURST, project InterData.

Received September 29, 1998; final manuscript received June 7, 1999

[ACY3]

[AC96a]

[ACY6b]

[Ama88]

[Ama9l]

[AP90]

[BCC*96]

[BCP99]

[BL90]

[BMM90]

[Bru94]

[BSv95]

[Car89]

[Car90]
[Cas96]

REFERENCES

Amadio, R. M., and Cardelli, L. (1993), Subtyping recursive types, ACM Trans. Program-
ming Lang. Systems 15(4), 575-631. [A preliminary version appeared in “POPL °91,”
pp. 104-118, and as DEC Systems Research Center Research Report 62, August 1990]
Abadi, M., and Cardelli, L. (1996), On subtyping and matching, ACM Trans. Programming
Lang. Systems 18(4), 401-423.

Abadi, M., and Cardelli, L. (1986), “A Theory of Objects,” Springer-Verlag, New York/
Berlin.

Amadio, R. (1988), A fixed point extension of the second order lambda calculus: observa-
tional equivalences and models, in “Proc. IEEE Logic in Comput. Sci.,” pp. 51-60.
Amadio, R. (1991), Recursion over realizability structures, Inform. and Comput. 91(1),
55-85.

Abadi, M., and Plotkin, G. D. (1990), A per model of polymorphism and recursive types,
in “Proceedings, Fifth Annual IEEE Symposium on Logic in Computer Science,
Philadelphia,” pp. 355-365, IEEE Comput. Soc., Los Alamitos, CA.

Bruce, K. B., Cardelli L., Castagna, G. the Hopkins Objects Group (Eifrig, J.,
Smith, S., Trifonov, V.), Leavens, G. T., and Pierce, B. (1996), On binary methods, Theory
Practice Object Systems 1(3), 221-242.

Bruce, K. B., Cardelli, L., and Pierce, B. C. (1999), Comparing object encodings, Inform.
and Comput. [To appear in a special issue with papers from “Theoretical Aspects of
Computer Software (TACS), September, 1997.”]

Bruce, K. B., and Longo, G. (1990), A modest model of records, inheritance, and bounded
quantification, Inform. and Comput. 87, 169-239.

Bruce, K. B., Meyer, A. R., and Mitchell, J. C. (1990), The semantics of second-order
lambda calculus, in “Logical Foundations of Functional Programming” (G. Huet, Ed.),
University of Texas at Austin Year of Programming Series, pp. 213-272, Addison-Wesley,
Reading, MA. [Also appeared in Inform. and Comput. 84, 1 (January 1990)]

Bruce, K. B. (1994), A paradigmatic object-oriented programming language: Design, static
typing, and semantics, J. Funct. Programming 4(2). [A preliminary version appeared in
“POPL 1993” under the title Safe type checking in a statically typed object-oriented
programming language]

Bruce, K. B., Schuett, A., and van Gent, R. (1995), PolyTOIL: A type-safe polymorphic
object-oriented language, in “Proceedings of ECOOP 95, Aarhus, Denmark” (W. Olthoff,
Ed.), Lecture Notes in Comput. Sci., Vol. 952, pp. 27-51, Springer-Verlag, New York/
Berlin.

Cardone, F. (1989), Relational semantics for recursive types and bounded quantification,
in “Proceedings of the Sixteenth International Colloquium on Automata, Languages, and
Programming, Stresa, Italy,” Lecture Notes in Comput. Sci, Vol. 372, pp. 164-178,
Springer-Verlag, New York/Berlin.

Cardelli, L. (1990), Notes about F., unpublished manuscript.

Castagna, G. (1996), Integration of parametric and “ad hoc” second order polymorphism
in a calculus with subtyping, Formal Aspects Comput. 8(3), 247-293.

236

[Cas97]

[CCH*89]

[CG92]

[CG94]

[CG99]

[CGL93]

[CGLYS]

[CL91]

[CMMS94]

[Co091]

[CWS85]

[dB72]

[Ghe90]

[Ghe91]

[Ghe93]

[Ghe95]

[Ghe97]

BALDAN, GHELLI, AND RAFFAETA

Castagna, G. (1997), Unifying overloading and l-abstraction: i1}, Theoret. Comput. Sci.
167(1-2), 337-345.

Canning, P., Cook, W., Hill, W., Olthoff, W., and Mitchell, J. (1989), F-bounded quan-
tification for object-oriented programming, in “Fourth International Conference on
Functional Programming Languages and Computer Architecture, September 1989,”
pp. 273-280.

Curien, P.-L., and Ghelli, G. (1992), Coherence of subsumption: Minimum typing and
type-checking in F, Math. Struct. Comput. Sci. 2, 55-91. [Also in “Theoretical Aspects
of Object-Oriented Programming: Types, Semantics, and Language Design” (C. A. Gunter
and J. C. Mitchell, Eds.), Mit Press, Cambridge, MA, 1994]

Curien, P.-L., and Ghelli, G. (1994), Decidability and confluence of fytop < reduction in
F, Inform. and Comput. 109(1, 2), 57-114.

Colazzo, D., and Ghelli, G. (1999), Subtyping recursive types in kernel Fun, extended
abstract, in “Proc. of the 14th Annual IEEE Symposium on Logic in Computer Science
(LICS), Trento, Italy.”

Castagna, G., Ghelli, G., and Longo, G. (1993), A semantics for i&-early: a calculus with
overloading and early binding, in “Proc. of the International Conference on Typed
Lambda Calculi and Applications (TLCA), Utrecht, The Netherlands” (M. Benzen and
J. F. Groote, Eds.), Lecture Notes in Comput. Sci., Vol. 664, pp. 107-123, Springer-Verlag,
New York/Berlin.

Castagna, G., Ghelli, G., and Longo, G. (1995), A calculus for overloaded functions with
subtyping, Inform. and Comput. 117(1), 115-135.

Cardelli, L., and Longo, G. (1991), A semantic basis for Quest, J. Funct. Programming
1(4), 417-458. [Preliminary version in ACM Conference on Lisp and Functional Program-
ming, June 1990. Also available as DEC SRC Research Report 55, Feb. 1990]

Cardelli, L., Martini, S., Mitchell, J. C., and Scredov, A. (1994), An extension of system
F with subtyping, Inform. and Comput. 109(1-2), 4-56. [A preliminary version appeared in
TACS 91 (Sendai, Japan, pp. 750-770)]

Cook, W. (1991), Object-oriented programming versus abstract data types, in “Founda-
tions of Object-Oriented Languages” (J. W. de Bakker ef al., Eds.), Lecture Notes in Com-
put. Sci., Vol. 489, pp. 151-178, Springer-Verlag, New York/Berlin.

Cardelli, L., and Wegner, P. (1985), On understanding types, data abstraction, and
polymorphism, ACM Comput. Surveys 17(4), 471-522.

de Bruijn, N. G. (1972), Lambda-calculus notation with nameless dummies: A tool for
automatic formula manipulation to the Church—Rosser theorem, Indag. Math. 34(5),
381-392.

Ghelli, G. (1990), “Proof Theoretic Studies about a Minimal Type System Integrating
Inclusion and Parametric Polymorphism,” Ph.D. thesis, Universita di Pisa. [Technical
report TD-6/90, Dipartimento di Informatica, Universita di Pisa]

Ghelli, G. (1991), A static type system for late binding overloading, in “Proc. of the Sixth
Intl. ACM Conference on Object Oriented Programming: Systems, Languages, and
Applications (OOPSLA), Phoenix, Arizona” (A. Paepcke, Ed.), ACM SIGPLAN Notices
26(11), 129-145.

Ghelli, G. (1993), Recursive types are not conservative over F, in “Proc. of the Interna-
tional Conference on Typed Lambda Calculi and Applications (TLCA), Utrecht, The
Netherlands” (M. Bezen and J. F. Groote, Eds.), Lecture Notes in Comput. Sci.,
Vol. 664, pp. 146-162, Springer-Verlag, New York/Berlin.

Ghelli, G. (1995), Divergence of F_ type checking, Theoret. Comput. Sci. 139(1-2),
131-162.

Ghelli, G. (1997), Termination of system F-bounded: A complete proof, Inform. and
Comput. 139(1), 39-56.

[Gir72]

[GMW79]

[GP98]

[Gun92]

[HPY%]

[Kat92]

[KS92]

[MKO95]

[MP88]

[Pie94]

[Pie97]

[PS97]

[Rey74]

F-BOUNDED QUANTIFICATION 237

Girard, J.-Y. (1972), “Interprétation fonctionelle et ¢limination des coupures dans
l'arithmétique d’ordre supérieur,” Ph.D. thesis, University of Paris VIL

Gordon, M. H., Milner, R. M., and Wadsworth, C. (1979), “Edinburgh LCF,” Lecture
Notes in Comput. Sci., Vol. 78, Springer-Verlag, New York/Berlin.

Ghelli, G., and Pierce, B. (1998), Bounded existentials and minimal typing, Theoret.
Comput. Sci. 193(1-2), 75-96.

Gunter, C. A. (1992), “Semantics of Programming Languages: Structures and Techniques,”
Foundations of Computing, MIT Press, Cambridge, MA.

Hofmann, M., and Pierce, B. C. (1996), Positive subtyping, Inform. and Comput. 126(1),
11-33.

Katiyar, D. (1992), Subtyping F-bounded types, in “ANSA Workshop on F-Bounded
Quantification, Cambridge.”

Katiyar, D. (1992), Completely bounded quantification is decidable, in “Proceedings of the
ACM SIGPLAN Workshop on ML and its Applications.”

McAllester, D., Kucan, J., and Otth, D. F. (1995), A proof of strong normalization of
F,, F,, and beyond, Inform. and Comput. 121(2), 193-200.

Mitchell, J., and Plotkin, G. (1988), Abstract types have existential type, ACM Trans.
Programming Lang. Systems 10(3), 470-502.

Pierce, B. C. (1994), Bounded quantification is undecidable, Inform. and Comput. 112(1),
131-165. [Also in “Theoretical Aspects of Object-Oriented Programming: Types,
Semantics, and Language Design” (C. A. Gunter and J. C. Mitchell, Eds.), MIT Press,
Cambridge, MA. A preliminary version appeared in POPL *92]

Pierce, B. C. (1997), Intersection types and bounded polymorphism, Math. Struct. Comput.
Seci. 7(2), 129-193.

Pierce, B., and Steffen, M. (1997), Higher-order subtyping, Theoret. Comput. Sci. 176(1-2),
235-282.

Reynolds, J. (1974), Towards a theory of type structure, in “Proc. Colloque sur la
Programmation,” Lecture Notes in Comput. Sci., Vol. 19, pp. 408-425, Springer-Verlag,
New York/Berlin.

	1. INTRODUCTION
	2. SYSTEM F-BOUNDED AND OBJECT-ORIENTED PROGRAMMING
	3. SYSTEM F-BOUNDED
	4. TRANSITIVITY ELIMINATION
	TABLE 1

	5. TYPE CHECKING
	6. SUBJECT REDUCTION FOR SYSTEM F-BOUNDED
	7. TYPE EQUIVALENCE IN SYSTEM F-BOUNDED
	8. OTHER FORMULATIONS OF SYSTEM F-BOUNDED
	9. CONSERVATIVITY WITH RESPECT TO ...
	10. P.E.R. SEMANTICS
	TABLE 2

	11. CONCLUSIONS
	APPENDIX: THE DE BRUIJN NOTATION
	ACKNOWLEDGMENTS
	REFERENCES

