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Abstract 

The category of l-bounded compact ultrametric spaces (KUMs) and non-distance increasing 
functions has been extensively used in the semantics of concurrent programming languages. In 
this paper a universal space U for KUMs is introduced, such that each KUM can be isometrically 
embedded in it. The space U consists of a suitable subset of the space of functions from [0, 1) 
to N, endowed with a “prefix-based” ultrametric. U allows to characterize the distance between 
KUMs introduced in Alessi et al. (1995) in terms of the Hausdorff distance between its compact 
subsets. As applications, it is proved how to derive the existence of limits for Cauchy towers of 
spaces without using the classical categorical construction and how to find solutions of recursive 
domain equations inside P&U). 

1. Introduction 

In the recent past metric spaces have often been used successfully in the seman- 

tics of concurrent programming languages. Since [3], where the technique of [12] for 

solving domain equations is adapted to the metric context, several categories of met- 

ric spaces have been introduced in the literature. Apart from technical differences, all 

the approaches follow a common pattern which guarantees the existence of categor- 

ical limits that provide solutions of recursive equations. We give an outline of this 

pattern. 

1. Given a category %?, a new category g’ is introduced, which has the same ob- 

jects as %’ and whose morphisms from X to Y are pairs (f,g) of morphisms in 

%7, f :X -+ Y, g : Y +X which satisfy suitable conditions. The pairs play the same 

role as embedding-projection pairs in the order-theoretic approach. 
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2. Differently from the order-theoretic approach, a number, 6( ( f, g)), is associated with 

each morphism (f, g) :X + Y in VI, which roughly speaking expresses the similarity 

between X and Y when comparing them via f and g. 

3. These numbers allow to introduce the notion of Cuuchy towers of spaces (a sequence 

(Xl> (h~gn))nEN is Cauchy if for each E > 0 the 6’s of compositions of morphisms 

are eventually less than E) and it is proved that each Cauchy tower has a categorical 

limit. 

4. Classes of functors (contracting [l-3,13,7], cut-contracting [8], horn-contracting 
[3], 1ocaZIy contracting [l 1, 131) are singled out that generate Cauchy towers when 

iteratively applied to an initial space. This allows to solve those domain equations 

which involve such functors. 

An important remark is that all the categories considered in the cited papers have 

complete or compact metric spaces as objects. Since they differ essentially in mor- 

phisms, the common pattern suggests the possibility of finding solutions to domain 

equations independently from the particular choice of morphisms in the category. This 

idea is developed in [2], where it is shown that in the compact case it is possible 

to get rid of the categorical setting, work in the class of compact metric spaces and 

there solve domain equations. The key idea consists in the introduction of a mapping 

A : X x X -+ [0, 11, where X is the class of compact metric spaces, which turns out 

to satisfy the metric axioms (provided that one works up to isometry). Since X is 

complete in the usual sense of Cauchy sequences convergence, it is possible to obtain 

a generalized version of the Banach-Caccioppoli theorem on fixed points of contrac- 

tions, stating that each (functorial or non-functorial) operator F : X--+X which is 

contracting with respect to A has a unique (up to isometry) fixed point, i.e. there 

exists an essentially unique compact metric space X such that X z F(X). Since the 

domain constructors involved in metric domain equations in the various categories of 

compact metric spaces are used in such a way to define contractions on X, the “non- 

functorial” fixed point result can be thought of as a generalization of the categorical 

ones. 

In this paper we give a characterization of the metric A in the case of l-bounded 

compact ultrametric spaces (KUMs), relating it to the Hausdorff distance dH between 

compact subsets of a suitable universal space U. KUMs are considered because they 

are the most common framework for metric semantics. 

The results of this paper can be summarized as follows. We introduce the space U 

and show that it is universal in the sense that each KUM can be isometrically embedded 

in it. A characterization of compact subsets of U is given, and it is proved that U is 

isometric to the space of its nonempty compact subsets endowed with the Hausdorff 

distance. Then we prove that A(X, Y) is the infimum of dH(i(X), i’(Y)) computed over 

all possible isometric embeddings i :X --+ U, i’ : Y --+ U. 
One may wonder whether our construction generalizes to more general categories. 

Unfortunately this seems not to be the case. We will clarify this point at the end of 

Section 4. 
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Finally, two applications of our results are presented. In the first one we show how 

to derive the existence of limits for Cauchy towers of KUMs without using the classical 

categorical construction. In the second one, following [6], we find solutions of recursive 

domain equations inside 9”,,(U) by defining a suitable pseudo-ultrametric on it. This 

last application brings as a consequence the possibility of carrying out semantics in a 

set-theoretic framework, alternative to that of hyperuniuerses of [4]. 

2. Mathematical preliminaries 

We start with recalling some standard notions and definitions (see e.g. [IO]). A 

metric space is a pair (X, d) (X for short) where X is a set and d :X x X -+ [0, 00) is 

a mapping, called metric, which satisfies, for all x, y and z in X: 

1. d(x,x)=O, 

2. d(& Y) = 4Y,X), 

3. d(x,y)dd(x,z)+d(y,z), 

4. d(x,y)=O+x=y. 

B(x,r), where x EX and r > 0, denotes the open ball with centre x and radius 

r, i.e. the set {y EX 1 d(x,y) < r}. If the range of d is in [0, 11, X is called a 

l-bounded metric space. If d satisfies, instead of the third condition above, the stronger 

one d(x, y) d max{d(x,z), d(z, y)}, then X is called an ultrametric space. A sequence 

(&I )tlEN is Cauchy if VE > 0.3m .Vn, p B m . d(x,,xp) Q E. X is complete if each Cauchy 

sequence (x,)~~N converges to a point lim,x, in X. X is compact if for each sequence 

in X there exists a subsequence converging to a point of X. 

In the paper we deal with compact ultrametric spaces with l-bounded distance 

(KUMs). In the following X, Y will always denote KUMs. 

A mapping f :X + Y is non-distance increasing (NDI) if for all x,x’ in X, d&f(x), 

f(x’)) < dx(x, x’). The space [X + Y] of all non-distance increasing functions is en- 

dowed with the metric d(f, g) = sup{dr(f(x), g(x)) 1 x EX}. ([X + Y], d) is a KUM 

if X and Y are (see e.g. [13]). 

Pairs of non-distance increasing functions (ND1 pairs) provide a tool for defining 

a distance between KUMs. More precisely, given a pair of ND1 functions f :X --+ Y, 
g : Y --+X, the number 

&(f, 9)) =def max{W&, g 0 f), dU&, f 0 g)}, 

is a measure of the quality with which X approximates Y, and vice versa, via ( f, g). 

Hence, 

d(X, Y) =def min{ 6( (f, g) ) 1 ( f, g) NDI-pair between X and Y} 

(min 0 is set equal to 1) expresses the degree to which the spaces mutually approximate 

each other. Notice that in the definition of A the existence of the minimum is guaranteed 

by the compactness of [X --+ Y] and [Y +X1. The mapping A : C x C + [0, 11, where 

C is a suitable class of metric spaces, is studied in detail in [2]. In particular, (working 
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up to isometry) if C is the class of compact [complete] l-bounded (ultra)metric spaces, 

then A satisfies the axioms for a metric [pseudo-metric, i.e. the fourth condition in the 

definition of metric is dropped] and (C, A) is complete w.r.t. A, in the usual sense 

that each Cauchy sequence of metric spaces has a limit. Moreover, in the l-bounded 

compact case, if F : C -+ C is a contraction then there exists a unique (up to isometry) 

X in C such that X rv F(X). 

In order to characterize A we recall the notion of Hausdorff distance. Let 9,&X) 

denote the family of nonempty compact subsets of X. For all A, B in Y&Y) we define 

~H(A,B)= max ~~~{d(x,B)},~~~{d(l?,A)> , 

where d(x,B) = min{d(x, y) 1 y E B} and d(y,A) is defined similarly. * 

&(A,B) can be characterized as the smallest value Y such that 

VxjcAA.3yEB.d(x,y)<r A V’yEB.Ek~A.d(x,y)<r. 

We recall (see e.g. [13]) that (gnco(X),du) is compact if (X,d) is so. The next lemma 

gives a characterization of the Hausdorff metric for KUMs. 

Lemma 2.1. Let (X, d) be a KUM. For all A,B E (9&X), &) and r > 0, 

&(A, B) < r H A[r] = B[r], 

where A[r]=U{B(x,r) IxEA}. 

Proof. We prove (+) by showing A[r] &B[r]. Let x cA[r]. Then there exists a EA 

such that d(a,x) < r. Since &(A,B) < r there exists b E B such that d(a, b) < r. 

Because d(x, b) d max{d(a, b), d(a,x)}, we can conclude x E B[r]. 

(+) Let A[r] = B[r] and a E A. Clearly, a E B[r]. Hence, there exists b E B such that 

d(u, b) < r. Similarly, for each b E B there exists a E A such that d(b, a) < r. Therefore 

&(A,B) < r. 0 

Corollary 2.2. For all A, B E CJ”nco(X), &(A, B) = inf { r 1 A[r] = B[r]}. 

We now give some properties of KUMs. They will be useful for proving the exis- 

tence of isometric embeddings from KUMs into the universal space U which we will 

introduce later on. 

For any r > 0, let W,(X) denote the set {B(x, s) 1 r <s,x EX}. For each KUM X 

and r > 0, fix a subset C,(X) GX such that 

1. Vc,c’EC,(X).d(c,c’)br (c # c’); 

2. Vx’xX.3: E C,(X).d(x,ci) < r. 

2 We can define Hausdorff distance by using the max and min instead of the standard sup and inf since 

we are dealing with compact spaces. 
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Lemma 2.3. For all 0 < r d 1, C,(X) and S?‘,(X) are jinite sets. 

Proof. Finiteness of C,.(X) follows immediately from the fact that a metric space 

is compact if and only if it is complete and totally bounded (see e.g. [5]), hence 

C,(X) can be obtained by choosing one point in each open ball of a finite minimal 

covering of X with balls of radius r. As regards B’,(X), consider that for each s 2 r, 

B(x,s) = U {B(c, r) I 4 c,x < s & c E C&Y)} and C,.(X) is finite, as we have just ) 
proved. Therefore B’,(X) is finite. 0 

The following corollary is an immediate consequence of the last lemma. 

Corollary 2.4. (i) For each 0 < r < 1, let D,(X) = {s 1 r 6s & 

Then D,(X) is jinite. 

(ii) I_x is injinite then the elements of D&Y) =def Ur,OD~(X) form a sequence 

in (0, l] decreasing to 0. 

3. The universal space 

In this section we introduce a universal space U for KUMs. We characterize compact 

subsets of U and show that U is isometric to 9”,,(U). Finally, we prove the embedding 

result, namely that each KUM can be isometrically embedded in U. 

We fix some notations. Given r and s such that 0 < s < r 6 1 and f : [0, 1 - s) + N, 

fir1 denotes the restriction of f to the interval [0, 1 - r], and N(f) = {x 1 f(x) # O}. 

Here is the definition of the universal space. 

Definition 3.1. Let U =&f {f : [0, 1) -+ N 1 Vr > O.N(f[,]) is finite},3 equipped with 

the distance i(f ,g) = 1 - min{x E [0, 1) 1 f(x) # g(x)}. 

We introduce some further notations. For each r > 0, X C U, X[,l Z&f { frrl I f E X}. 

The following equivalences, which hold for any f, g E U, X C U, show how the oper- 

ators (.)trl are related to the topology of U. 

f&l = Sk.1 @ f E B(g, r), 

.&I E %I * f E Q-1. 

Let O<sdrdl. If f EUC,], gEU[,], we write f C g when f = gIr]. If moreover 

g(t)=Oforeachtsuchthat 1-r<t < 1-s,wewrite f~*g.IfA~meU~,l,B~meU~,l 

(i.e. they are finite nonempty subsets), we write A &* B if the following two conditions 

3 N can be replaced by any pointed countable set, i.e. a countable set with a distinguished element. In 

the present case the distinguished element is 0. 
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are satisfied: 

- VfEA.3gEB.f rr* g; 

- YgEB.3f EA.f L* g.4 

0 L* B abbreviates “Vf E B.Vt E [0, 1 - s). f(t) = 0”. 
Let K be either N or a initial segment of N, and (rk)kEK be a decreasing sequence 

of elements in (0, 11, converging to 0 if K = N. Suppose, for each k E K, fk E U[,l 

and fk cfk+l. 
- If K = N, UkEK fk denotes the unique element g of U such that Vs. g(s) = fk’(s), 

where k’ is any index such that 1 - rkf 2s. 
_ IfK = (0~1,. . . , i}, ,_,&K fk denotes the unique element g of U such that g(s)=h(s), 

if s < 1 - ri, otherwise g(s) = 0. 
_ If K = 8, then UkEK fk = At. 0. 

In the following, K will always denote either N or some initial segment of N. In 

order to keep notation uniform, if K = (0, 1,. . . , i}, lim&KXk stands for xi. If we write 

(rk)k it is intended that k ranges over N. 

Lemma 3.2. (U,d^) is a complete ultrametric space. 

Proof. The proof that d^ is an ultrametric easily follows from the equivalence a( f, g) < 

Y w fcrl = gp]. As for completeness, let ( fn)n a Cauchy sequence in U. Fix a decreasing 

sequence to 0, say (rk)k. Then ‘dk.3nk .tln,m >nk .(fn)rr,j = (fm)rr,j. It is not restric- 

tive to suppose vk.nk bnk+l. Hence, ( fnk)LTkl L ( fn,k+,,)[r,k+,jl and thus we can define 

f = Uk (fn, )[Q]. 7 is an element of U and is the limit of (fn)n, since i((f, fn) <rk if 

n>nk. 0 

Before showing that each KUM can be isometrically embedded in U, we focus on 

the characterization of compact subsets of U, and show that U is isometric to LYnCO(U). 
This digression seems useful for several reasons. 

First, compact subsets of U are the ranges of isometric embeddings i :X -+ U, X 
being any KUM. 

Second, the result of isometry between U and P,,,,(U) is interesting since, as shown 

in the second application, it is possible to develop in PnCo(U) a set-theoretic approach 

to domain equations alternative to that provided by hyperuniuerses in [4]. 

Third, characterization of P&U) casts light on the structure of U and provides the 

proof of Theorem 4.3 with some intuition. 

Let us fix some notation. Let X C U be any subset of U. Then, for any r > 0, define 

-X(1 -Y)={f(l -r)] f EX}; 
-D;(X)={sIs2r&X(l -s)>(O)}; 

- D:(x) = ur>O WV). 
Notice that for each Y E D:(X), the set X( 1 - r) is nonempty. 

4 The definition of “E*” corresponds to that of the Egli-Milner preorder over nonempty finite subsets 

of compact elements in w-algebraic cpo’s. 
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Proposition 3.3. X G U is compact if and only if the following three conditions are 

satisfied: 

1. Qr > O.DF(X) isjinite; 

2. Qr E Dt(X).X( 1 - r) is finite; 

3. for each sequence (rk)k decreasing to 0 and gk E U[,j satisfying gk 5 gk+l it 

holds: 

(*) (Qk.Ifk Ex.gk c fk) + Ukgk EX. 

The proof of the proposition above follows immediately from the following two 

lemmata. 

Lemma 3.4. X & U is totally bounded if and only zf conditions 1 and 2 of Proposi- 

tion 3.3 hold. 

Proof. (+) Consider the covering % = {B(f) r) 1 f EX} of X. Since X is totally 

bounded, we can extract a finite subcovering ‘3’ = {B(J;:, r) 1 i E I}. We have Qi E 

Z.N((fi)[,.]) is finite. This fact immediately implies 1 and 2. 

(*) Let ~={Ng,r)IgEy} Y an covering of X. Let r’ < r. Define H = nSEDL,CxI 

X( 1 -s). From the hypotheses H is finite. Consider H’ = {h E H 13 f E X Qs > r’ . f i l- 

s)=h,}. We have f EX + (IhEH’.Qs’sr.f(l-s)=h,). We get a finite subcovering 

%?I C %? of X by choosing, for each h E H’, any g E Y such that g( 1 - s) = h,, for each 

scD,U(X). q 

Lemma 3.5. X C U is closed if and only if condition 3 of Proposition 3.3 holds. 

PrOOf. (+) If the premise of (*) holds, then (fk)k is a sequence in X converging to 

uk gk. Since X is a closed subset, Uk gk EX. 

(+) x is closed if whichever converging sequence in x, say (fk)k, has its limit f 

in X. Let rk =J(fk, 7). It is not restrictive to suppose that (rk)k is a decreasing se- 

quence. For each k define gk = (fk)[Tk]. The hypotheses of (*) are satisfied and therefore 

Uk gk = J‘ belongs to X. 0 

We give now a second characterization of compact subsets of U, which is inspired 

by that of the Plotkin powerdomain in [9]. Consider the set d consisting of all the 

sequences of pairs (rk,&)&K (K may be empty) such that: 

- (rk),&K is a decreasing sequence in (0, 11, converging to 0 whenever K = N; 

- for each k, Ak Cme U[,l, 0 L* A0 and Ak C* Ak+l hold (therefore for each s in 

[0, 1 - rk], if f E Ak and f(s) # 0 then s = 1 - rk’ for some k’Q k). 

We have the following result, which says that d is in one-to-one correspondence 

with compact subsets of U. 

Proposition 3.6. There is a bijection C$ from .9’,,,,(U) to 8. 
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Proof. For each X E gn,,( U) define 4(X) = ( rk, k &k, where (rk)&k is the sequence A ) 

consisting of the elements of D:(X) (if X is finite so is K, otherwise K = N) and 

for each k E K, Ak =X[,]. From conditions 1 and 2 of Proposition 3.3 it follows that 

(rk)&k converges to 0 whenever D:(x) is infinite and that each Ak is nonempty 

and finite. Trivially, 0 &* A0 and Ak c* ,&+I. Hence, 4 : P,& U) -+ & is well-defined 

(notice that $( {At .O}) is the empty sequence). 

For each e = (rk, Ak)kEK E & define $(e) as the set of all f E U such that 

g(gk)km.(vk.gk EAk) & gk L gk+l & u gk =f. 
AEK 

Notice that Ic/ maps the empty sequence to Ilt.0. We prove that $(e) is compact. 

Definition of $(e) and finiteness of Ak immediately imply 1 and 2 of Proposition 3.3; 

thus, IC/(e) is totally bounded. When K is finite $(e) is trivially closed since it is finite. 

Consider the case K = N. Let (f,), b e a sequence of elements in $(e), converging 

to f. We have to prove f E $(e). From a Koenig’s Lemma argument the following 

conditions are equivalent: 
_ vkEN.%k EAk.gk Cgk+l &Ukgk=f; 

- VkE N.jgk EAk.gk 5 f. (t) 

Fix any k E N. Let p be such that i(T, f,) <rk and say fP = Uk, g:,. Then gi E f. 

Therefore, (1) is satisfied and we conclude that $(e) is closed. 

Finally, a routine check shows that 4 o $(e) = e and $ o &X)=X. 0 

We now prove that U is isometric to !Y&U). For each 0 < s < r < 1, A Cfne U,,], 

fix bijections 

CQ,~ : {B Cfne UIsl 1 A &* B} + N, 

cQs : {B cme U[,] 10 5* B} + N. 

Let now e = (rk,Ak)&K E 8. We define v(e) E U as UkEK fk, where fk are inductively 

defined as follows: 

fo(t) = 
0 if t< 1 -ro, 

ao,ro(Ao) if t=l -ro. 

1 fk(t) if t<l -rk, 

fk+l(t) = 0 if 1 -rk <t < 1 -rk+l, 

Qk,rk+,(Ak+l) if t = 1 - rk+l. 

Now define 0 = v o 4 : Pn,,(U) + U. CJ is the required isometry. Before proving this, 

we need a lemma. 

Lemma 3.7. Let x, Y E g&u), 4(x) = (r/&&)&k, 4(y) = (Sk,&)&H. For I- > 0 

let p= max{k E K 1 rk at-}, q = max{k E H 1 Sk ar}. Then the following conditions 

are equivalent: 

1. X[,] = $1; 
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2. &(X, Y) < r; 

3. p=q&Qk<p.rk=sk&Ak=Bk. 

Proof. The equivalence between 1 and 2 follows from Xl,1 = Yl,, @ X[r] = Y[r] and 

Corollary 2.1. In order to prove 1 + 3, consider that Xl,, = Yl,l implies both D:(X) = 

DF( Y) and Qt 2 Y_X,~I = Y . These two conditions clearly imply the three of 3. Hence ltl 

1 + 3. In order to show 3 + 1, we prove that Qf E X.3 g E Y.f [II = g[,.]. Since 

A, = BP, there exists g E Y such that f frPl = gLrPl. Since, in the case p + 1 E K, we have 

r,+i > r,+,+t > r and f(t) = g(t) = 0 for each tE(l - rP, 1 -Y], we get f,,.l = gLr]. 

Similarly one proves that Qg E Y.3 f EX. f [,.I = g[,.]. 0 

Theorem 3.8. C-J is an isometry between (9&U),d^~) and (U,d^). 

Proof. It is easy to show that 0 is a surjection. In fact, arrange N(f) into a decreasing 

sequence (~k)k~~. Then define the sequence (Ak)kEK by induction on k: 

Ao = c&(f (ro)), 

Ak+l = @j&+, (f (Ykfl )). 

We have /tk E* Ak+,, hence e = (?-k,Ak)&k E 8. By definition it follows v(e) = f. 

Therefore, the compact subset X C: U defined as X = $(e) satisfies o(X) = f. We 

now prove that cr preserves distances. Let X, Y E Pnc,,( U), Y > &(X, Y) and 4(X) = 

(T,+‘tk)&k, 4(Y) = (Sk,&)&K’. By Lemma 2.1 it follows X[r] = Y[u], hence XI,., = 

Yl,,. Define p = max{k E K 1 rk >r}. Then the thesis of Lemma 3.7 ensures rk = Sk 

and Ak = Bk for any k d p. By definition of 0 it follows a(X)t,l = a( Y)l,, and therefore 

d(a(X),c(Y)) <r, hence d^(a(X),o(Y))<&(X,Y). 

Let now d^(o(X), cr( Y)) < r, for some r. This is equivalent to a(X),,.1 = o(Y),,,, 

which implies (Since (Y&&)&k = V-‘(O(x)), (Sk,Bk)kE,y’ = V-‘(fJ(Y)) ) rk = Sk,Ak = 

Bk for any k such that rk ar. This implies &(X, Y) < r by Lemma 3.7. Thus, d^n(X, Y) 

dd(a(X), a( Y)) and we conclude. 0 

This section ends with the proof of the embedding result. 

Theorem 3.9. Let X be a KUM. Then there exist isometric embeddings i :X 4 U. 

PrOOf. Arrange elements of Do(X) into a decreasing sequence (r&k. We define 

injections Pk : c,,(x) + u[,] inductively on k, as follows: 

(a) po is any injection such that QCE C,,(X).0 C* pa(c); 

(b) P,++i is any injection such that Qc E Crr(X),c’ E Crk+,(X).dx(c,c’) <rk =+ 

Pk(C) c* Pk+I(C’). 

Given x EX, we have x = lim&k cp. We define i(x) = UkEK ,_?k(c: ). i is well-defined 

(if K = N, (rk)&K converges to 0 by Corollary 2.4). The range of i is &-‘( (Tk,Ak)&k), 

where ftk = Pk(Cr,(X)). Notice that each Ak is finite by Lemma 2.3, hence (rk,Ak)k,K E 

b. We state that i is an isometry. In fact, let dx(x, y) = rk. Then, if k > 0, c? = c> for 
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each j E K, j < k, while c: # c;. By definition of i and pk it follows i(x),,] = i(y),,] 

for each s > Yk, and i(x)( 1 - rk ) # i(y)( 1 - rk ). Therefore Li(i(x), i(y)) = rk. 0 

4. The result 

If we consider two isometries i :X + U, i’ : Y + U, we can compute the Hausdorff 

distance between i(X) and i’(Y) as compact subsets of U. The aim of this section is 

to study the relation between d(X, Y) and such Hausdorff distances. This will lead to 

the characterization of A. 

We start with a technical result. 

Proposition 4.1. For each r 30, A(X, Y) < r H 

(i) MW = WY), 
(ii) V,s E D,.(X).3 gs : C,(X) + C,(Y) bijection such that t’s’ E D,(X), c E C,(X), c’ E 

C,,(X).d(c, c’) < s’ =+ d(g,(c), gy(c’)) < s’. 

Proof. (+) We prove first that (i) holds. Let i:X + Y, j: Y +X such that 6((i,j)) < 

r. Suppose D,(X) # D,(Y). Then there exist x1,x2 E X (or yi,yz E Y etc.) such 

that d(xi,xl) = s >r, while for all y, y’ E Y d(y, y’) # s. We get the contradic- 

tion s = d(xi,xz) <max{d(xi, ji(xi )), d( ji(x, ), ji(x,)), d(x2, ji(x,))} < s (notice that 

d( ji(xi ), ji(x2)) < s since s is not a value of distance in Y and i, j are NDI-functions). 

We prove now that (ii) holds. Define gs : C,(X) + cl,(Y) as gJc) = c;~~, (it is the 

unique point e in C,(Y) such that d(i(c),e) < s). We prove that gs is a bijection by 

giving the inverse mapping. For C’E C,(Y) let h,(c’) = cjcc,,. Then, for each c E C(X), 

d(c, &g,(c)) < max{d(c,ji(c)), d(ji(c),jg,(c)), d(jg,(c), Q,(c))} < s. 

By definition of C,(X) it follows that c = h,g,(c). Analogously, for each c’ E C,(Y), 

c’ = gsh,(c’). Thus h, = g;‘. Let now s’>s,ci E C,(X),cz E C,/(X). Then d(g,(ci), 

ss4C2))<max{4g,(Cl ),~(cI )),d(ss~(c2),i(C2)),d(i(C1 ),i(C2))} <s’. 

(e) We will prove that (ii) is enough to conclude A(X, Y) < r (hence (ii) implies 

(i)). First we extend the domain of gs and h, to the whole X and Y respectively, by 

defining g,(x) = g$(c;), h,(y) = h,(c;). S, :X + C,(Y) and ?z, : Y + C,(X) are ND1 

functions. In fact, consider S,. If d( x,x’) < s, then 9,(x) = ~Jx’). If d(x,x’) = s’ >,s, 

let t > s’. Then G&), J&‘)) < max{d(g,(<), g,(c:)), d(g,(c$ ), g,(c.$ ))} < t (in the 
first inequality we use the fact that c: = c:,), hence d(gs(x), ss(x’)) ds’. The proof 

that h, is ND1 is similar. Now consider g and h. d(x, &Jr(x)) = d(x, cc) < r. Similarly 

d(y, g&-(y)) = d(y,cJ;) < r. Since we have just proved 6( (g,,h,)) < r, it follows 

A(X, Y) < r. 0 

Remark 4.2. Notice that for each isometric embedding i : X + U there exists pk : 

C,,(X) + u[,l such that i(X) = ,_,k&k( c>). It iS SUffiCient to define pk(c) = i(c)[,l 

for each c E C,,(X). 
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We now give the main result by characterizing the distance d between KUMs in 

terms of Hausdorff distance in U. 

Theorem 4.3. Let X, Y be KUMs and i :X -+ U any isometric embedding. Then 

d(X, Y) = min{d^u(i(X),j(Y)) Ij : Y 4 U isometric embedding}. 

Proof. Let (Q)~~K be the decreasing sequence built on the elements in De(X), and 

let pk : C,,(X) + U[,l defined as in the previous remark. If d(X, Y) < Y, then we 

have, for each ?-k > r, bijections gk : C,,(Y) + C,.,(X) as in Proposition 4.1. We build 

an isometric embedding j, : Y 4 U as in the proof of Theorem 3.9. We define, for 

each k such that rk >, r, pi : C,, ( Y) --f U[,l, by p: = pk o gk. Condition (a) in the 

proof of Theorem 3.9 holds trivially for ph. Moreover, for each k such that Yk+i 3 Y, 

condition (b) is guaranteed by (ii) of Proposition 4.1. For each k such that rk < r 

we simply define p; according to (b) of Theorem 3.9. Now define j, according to 

j,(x) = UkEK pL(c:). By definition of j, it follows i(X)Lrkl = j,(Y),,, for each k 

such that rk 3r. Therefore, by Lemma 3.7 we get &(i(X),j,(Y)) < r. This proves 

d(X,Y)>inf{&(i(X),j(Y)) 1 j: Y -+ U isometric embedding}. 

In order to prove the converse, let &i(X), j(Y)) < r. By Remark 4.2 we have, for 

suitable pk : C,,(X) 4 U[,l, p: : C,:(Y) + u[$, (rk EDO(X), r; EDO(Y)): 

i = u Pk, &i(x)) = (Yk,pk(Crk(X)))kEKT 

kEK 

Let p = max{k E K 1 ?-k >Y}, q = max{k E K’ 1 r;ar}. By Lemma 3.7, p = q and 

i(X),,,] = j( Y)[,], that is pJC,,(X)) = pL(C,,(Y)). This enables us to define two 

mappings, 

u : cr,,cu + Gp(Yh u = (P;>-’ 0 Pp; 

u : qn + cr,,w, v=p;‘op;. 

The extensions U : X -+ Cr,,( Y), V : Y -+ C,,(X), defined as in the proof of Pro- 

position 4.1, are easily shown to satisfy 6((U, fi)) < r. Therefore, it holds d(X, Y) d 

inf{&(i(X), j(Y)) I j : Y --+ U isometric embedding}. Finally, we prove that the infi- 

mum is actually a minimum. Let d(X, Y) = Y. If Y = 0 the thesis is trivial since X and 

Y are isomorphic. If r # 0, define Y’ = min(@(i(X))\{r}). Such a minimum exists by 

Proposition 3.3. Then take j,.l as defined in the first part of the proof. By construction 

we have (i(X)),,!, = (jr/( Y))[,J]. Moreover, for each r < s < r’ we have (i(X))( 1 -s) = 

0 = (j, (Y))( 1 - s). Thus, for each s > Y we get (i(X)),,, = (j,.l( Y)),,,. By apply- 

ing Lemma 3.7 we obtain ‘V’S > r.&(i(X),j,.,(Y)) < s, hence it must be &i(X), 

j,,(Y)) = Y. 0 

As mentioned in the Introduction, we conclude the section by explaining why our 

construction hardly generalizes to other categories (such as complete ultrametric spaces 
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or compact metric spaces). Actually, both ultrametricity and compactness hypotheses 

play an essential role in the construction of U as a universal space. In fact, when 

proving a key result, namely Theorem 3.9, we rely on Lemmas 2.1, 3.7, which both 

use ultrametricity hypothesis, and Lemma 2.3, which uses compactness hypothesis. On 

the contrary, the hypothesis of I-boundness could be dropped. With slight modifications 

one can extend the construction of the universal space in the case of compact ultrametric 

spaces with distances which take values in [0, +co). However, the wide use of one- 

boundness hypothesis throughout the literature on metric semantics suggested us to 

maintain it. 

5. Two applications 

In this section we give two applications of the previous results. They are both related 

to the problem of solving recursive domain equations. 

Consider the category V of [2] whose objects are KUMs and morphisms are E- 

adjoint pairs, i.e. pairs (i,j) :X + Y such that i :X t Y, j: Y +X are ND1 functions. 

This notion of morphism is more general than that of embedding-projection pairs in 

[ 1,3, 11, 131, where the further condition j o i = Idx is imposed (there is a similar 

generalization in the order-theoretic framework when considering Galois-connections 

instead of embedding-projection pairs). Thus what we prove below holds also for the 

category of KUMs and embedding-projection pairs. 

A crucial role for finding fixed points solutions of domain equations is played by 

Cauchy towers. A Cauchy tower of spaces is a sequence (X,, (u,,, u,)), such that 

YE > 0.3ii.m > n3ii =5 @(Urn 0 l&,-l .” 0 U,,V, 0 U,+l “’ 0 I&)) <E. 

By using the universal space U one can derive the existence of limits for Cauchy 

towers of KUMs just from the completeness of ?&U). This approach seems more 

simple than that devised in [2], where the existence of limits is proved by building, as 

standard, the categorical limit lim,(X,, (u,, 0,) ), as a suitable subset Y C n, X,. 

Theorem 5.1. Let (X,,, (u,,v,)), be a Cauchy tower. Then there exists a unique 

(up to isometry) X such that lim, A(X,,X) = 0. Moreover, X is isomorphic to 

lim-(X,, (u,, v,) )n. 

Proof. Let io : X0 -+ U any isometric embedding. Define, inductively on N, in+1 : 

&+I --+ U as any isometric embedding such that A(X,,X,+I) = &(in(Xn),in+l(Xn+l)). 

in+, exists by Theorem 4.3. We have that (in(Xn))n is a Cauchy sequence in P&U). 

Since this space is complete we get the existence of X E 9,&U) such that 

lim, &(X, in(&)) = 0. This implies lim, A(X,X,,) = 0, by Theorem 4.3 again. 

As to the last statement, let Y = lim,(X,, (u,,u,)),. Then A(X, Y),<max 

{lim, A(&&),lim, A(Y,X)} -+ 0. By Proposition 4.7 of [2] it follows X E Y. 17 
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The discussion of the second application will not be given in full details. We will 

prove that the usual constructors over 9 can be represented (in a sense explained 

below) over P”,,(U), hence over U. We need some definitions. Given an element 

A E P”,,(U), let 8(A) be the KUM obtained by endowing A with the subspace metric 

induced by U. Now we endow 9&U) with the mapping Au : P&U) x P&U) + 

[0, l] defined by 

A&A,B) = inf{&(A, i(B(B))) 1 i : B + U isometric embedding}. 

The mapping Au satisfies the following properties: for each A, B, C E 9& U), 

A&AA) = 0, 

Au(A,B) = Au(&A), 

A&4B)bmax{Au(A, C), A@, C)), 

hence Au is a pseudo-ultrametric over y”,,(U) (see e.g. [2] or [lo]). The following 

facts are easy to prove: 

l for each X, Y KUMs and i :X + U, j : Y + U isometric embeddings, 

4x, Y) = A,i(V),j(Y)). 

In particular, 

X pv Y H A”(i(X),j(Y)) = 0, ($) 

Au(A,B) = A(&A), 0(B)), for each A, B E P,,,,( U). 

l (P&U), Au) is a complete pseudo-ultrametric space (see [lo]), in the sense that 

each Cauchy sequence (A,), converges to (infinitely many) limits k such that 

Au(A,,A) -+ 0. All such limits, considered as KUM’s, are isometric, since their 

mutual distance is zero. 

We now give the notion of representable operator (see [6]). Given a operator F : 

V’ A %?, we say that F is representable over 9’,,,,(U) if there exists a non-distance 

increasing function 4~ : P”,,(U)n ---f P&U) such that, up to isometry, 

F o (Q,..., 8) = 0 0 q?$. 

The next result states that all the standard constructors are representable. In the fol- 

lowing + and x denote the disjoint union and Cartesian product respectively; + is 

the non-distance increasing function constructor and Id” (for 0 < E < 1) the shrinking 

constructor, which transforms a KUM (X, d) into the KUM (X, d”), where d ‘(x, y) = 

F .4x, v>. 

Theorem 5.2. +, x, +, Si’& U) and Id” are representable constructors over .9,,,,(U). 

Moreover composition of representable operators is representable. 

Proof. We give the proof for --+. Given two KUM X, Y, [X + Y] denotes the space 

of non-distance increasing functions from X to Y. We have to prove that there exists a 
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non-distance increasing function 4+ : P,,& U) x Pn’,,,( U) + Ynco( U) which represents 

+. For any A, B E Pnc,(U), fix an isometric embedding U,Q : [O(A) + e(B)] ---f 

U. Consider now A,A’,B,B’ E P,,,,(U) and let du(A,A’) = r, du(B,B’) = s. Then 

JO(A), @A’)) = r and d(B(B), QB’)) = s. Let (i,j) : 8(A) -+ O(A’) and (h,k) : O(B) + 

B(B’) be NDI-pairs such that 6((i,j)) = r, h((h,k)) = s. As remarked in Section 2, 

these pairs exist by the compactness hypothesis. We consider (j + h, i + k) : [O(A) + 

B(B)] + [&A’) --+ O(B’)] defined by 

vfE[W) + ‘4B)l.(j- h)(f) = hofoj, 

Vg E [@(A’) + B(B’)].(i + k)(g) = k o g o i. 

We have (f ranges over [B(A) + 8(B)], x,x’ range over B(A)) 

mF{4f‘, (i + k) 0 (j + h)(f )I> 

= ny{d(f,k o h of oj o i)} 

<m~{max{d(f,koho f),d(koho f,koho f ojoi)}} 

< mF{max{d(ld, k o h),d(Zd,j o i)}} 

G mfax 
i { 

max yC4f (x), khf (x))>, ,,~x?:<l{4khf (x), khf (x’))> 
> . 

< ny{max{s, Y}} 

= max{r,s}. 

Similarly max,E[0(.4’)4(5’)] 47, (j + h) o (i + k)(g))<max{r,s}, hence we have 

d([tl(A) + Q(B)], [@A’) + B(B’)])<max{r,s}. Therefore, 

~u(Q,B(VXA) + &B)I),u,B~Q(A’) --$ O(B’)l>)bmax{d&4, A’), ~u(B, B’)}. 

Thus, we have shown that the function 

is non-distance increasing. It is immediate to prove that 4_ represents + over P&U). 

Following similar arguments one can prove that all the above-mentioned constructors 

are representable. Finally, it is easy to show that the composition of representable 

operators is represented by the function obtained as composition of the representations 

of the original operators. 0 

Consider a domain equation X E F(X) over %?, where F is a representable con- 

tractive operator. Similar to Theorem 7.3 of [6], we can now prove that the equation 

has solution, by taking the fixed point of the function which represents F. We use, 

without giving the easy proof, the fact that a representable contractive operator over 

V is represented by a contractive function over P”,,(U). 
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Theorem 5.3. If F : %T + % is a contractive representable operator, then the equation 

X E F(X) has a (unique up to isometry) solution. 

Proof. Let 4~ be the contractive function which represents F. Since Y”‘,,,(U) is com- 

plete, there exists A EP”‘,,,(U) such that A(I(c$F(A),A) = 0, hence we have, by ($), 

@A) = &4,(A)) = F(W)). 

Uniqueness follows from contractiveness of F. 0 
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