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We present an event structure semantics forcontextual nets, an extension of P/T Petri nets where
transitions can check for the presence of tokens without consuming them (read-only operations). A
basic role is played byasymmetric event structures, a generalization of Winskel’s prime event structures
where symmetric conflict is replaced by a relation modellingasymmetric conflictorweak causality, used
to represent a new kind of dependency between events arising in contextual nets. Extending Winskel’s
seminal work on safe nets, the truly concurrent event-based semantics of contextual nets is given at
categorical level via a chain of coreflections leading from the categorySW-CN of semi-weighted con-
textual nets to the categoryDom of finitary prime algebraic domains. First an unfolding construction
generates from a contextual net a correspondingoccurrence contextual net, from where an asymmetric
event structure is extracted. Then the configurations of the asymmetric event structure, endowed with a
suitable order, are shown to form a finitary prime algebraic domain. We also investigate the relation be-
tween the proposed unfolding semantics and several deterministic process semantics for contextual nets
in the literature. In particular, the domain obtained via the unfolding is characterized as the collection
of the deterministic processes of the net endowed with a kind of prefix ordering.C© 2001 Elsevier Science
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1. INTRODUCTION

Petri nets are widely accepted as an adequate formalism for the specification of the behaviour of
concurrent and distributed systems [25, 41]. In fact the state of a net has an intrinsic distributed nature,
being a set oftokensdistributed among a set ofplaces. A transition is enabled in a state if enough
tokens are present in its preconditions, and, in this case, the firing of the transitionremovessuch tokens
andproducesnew tokens in its postconditions. More transitions can fire together when they consume
mutually disjoint sets of tokens. This informal description should already suggest how Petri nets can
specify in a natural way phenomena such as mutual exclusion, concurrency, sequential composition,
and nondeterminism.

A limit in the expressiveness of Petri nets is represented by the fact that transitions can onlyconsume
andproducetokens, and thus a net cannot express in a natural way nondestructive reading operations. The
naı̈ve technique of representing the reading of a token via a consume–produce cycle causes a loss in con-
currency. Consider the netN0 in Fig. 1, where places is intended to represent a resource which is accessed
by two transitionst0 andt1 in a read-only modality. Different from what one could expect the two transi-
tions cannot read the instance of the shared resourcesconcurrently, but their accesses must be serialized.

Contextual nets. Contextual nets[20, 23], also called nets with test arcs [18], with activator arcs [11],
or with read arcs [27], extend classical nets with the possibility of checking for the presence of tokens
which are not consumed. Concretely, besides the usual preconditions and postconditions, a transition of
a contextual net has also somecontextconditions that, informally speaking, specify that the transition
to be enabled requires the presence of some tokens, which, however, are not affected by the firing of
the transition. In other words, a context can be thought of as an item which isread but not consumed
by the transition, in the same way as preconditions can be considered being read and consumed and

1 Research partly supported by the EC TMR NetworkGeneral Theory of Graph Transformation(GETGRATS), by the Esprit
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FIG. 1. Ordinary nets do not allow for concurrent read-only operations.

postconditions being simply written. Coherently with this view, the same token can be used as context
by many transitions at the same time. For instance, the situation of two agents reading a shared resource
discussed above can be modelled directly by the contextual netN1 of Fig. 1, where the transitionst0
andt1 use the places as context. According to the informal description of the behaviour of contextual
nets, inN1 the transitionst0 andt1 can fire concurrently. Notice that in the pictorial representation of
a contextual net directed arcs represent, as usual, preconditions and postconditions, while, following
[20], nondirected (usually horizontal) arcs are used to represent context conditions.

The ability of faithfully representing the “reading of resources” allows contextual nets to model many
concrete situations more naturally than classical nets. In recent years they have been used to model
concurrent accesses to shared data (e.g., reading in a database) [26], to provide concurrent semantics to
concurrent constraint (CC) programs [16], to model priorities [24], and to specify a net semantics for the
π -calculus [36]. Moreover, they have been studied for their connections with another powerful formalism
for the specification of concurrent computations, namely graph transformation systems [17, 20]. If we
think of the states of a net as sets (of tokens) labelled by place names, then a P/T net can be seen as a
rewriting system on labelled sets (or equivalently on discrete graphs), the rewriting rules being specified
by the transitions. Therefore contextual nets can be seen as an intermediate step between classical nets
and graph grammars, and as such they can be used for transferring to graph grammars the great number
of notions and results developed for nets (see, e.g., [12, 32, 42]).

In his seminal work [10], Winskel, starting from some results in [1], shows that an event structure
semantics forsafenets can be given via a chain of coreflections leading from the categorySafeof safe
nets to the categoryPESof prime event structures, through categoryOccof occurrence nets. In particular,
the event structure associated with a net is obtained by first constructing a “nondeterministic unfolding”
of the net and then by extracting from it the events (which correspond to transition occurrences) and
the causality and conflict relations among them. In [14, 31] it has been shown that essentially the same
construction applies to the wider category ofsemi-weightednets, i.e., P/T nets in which the initial
marking is a set and transitions can generate at most one token in each postcondition. It is worth
noting that, besides being more general than safe nets, semi-weighted nets present the advantage of
being characterized by a “static condition” not involving the behaviour but just the structure of the net.
Figure 2 shows two examples of semi-weighted P/T nets which are not safe. Interestingly, from the point
of view of expressiveness, semi-weighted nets allow one to model an unbounded degree of concurrency,
which instead is not expressible in safe nets. For instance, in the semi-weighted netN ′

2 of Fig. 2, after
n firings of transitiont0, the places containsn tokens and thusn copies oft1 can fire in parallel.

This paper generalizes such results to the setting ofcontextual netsby showing that an event structure
for a semi-weighted contextual net,2 describing its concurrent behaviour, can be obtained via a similar
chain of coreflections. The resulting semantics is then shown to be “consistent” with the deterministic
process semantics proposed in the literature for contextual nets.

We try next to outline the main problems which arise in such a development and the way we have
decided to solve them.

Asymmetric conflicts and asymmetric event structures. Prime event structures(PES’s) are a simple
event-based model of (concurrent) computations in which events are considered as atomic, indivisible,
and instantaneous steps, which can appear only once in a computation. An event can occur only after
some other events (its causes) have taken place and the execution of an event can inhibit the execution
of other events. This is formalized via two binary relations:causality, modelled by a partial order

2 Semi-weighted nets were called “weakly-safe nets” in the conference version of this paper [19].



UNFOLDING SEMANTICS OF CONTEXTUAL NETS 3

FIG. 2. Two semi-weighted P/T nets, which are not safe.

relation, andconflict, modelled by a symmetric and irreflexive relation, hereditary with respect to
causality.

When working with contextual nets the main critical point is the fact that the presence of context
conditions leads toasymmetric conflictsor weak dependenciesbetween events. To understand this basic
concept, consider the netN3 of Fig. 3a, with two transitionst0 and t1 which use the same places as
context and precondition, respectively.

The possible firing sequences are given by the firing oft0, the firing oft1, and the firing oft0 followed
by t1, denotedt0; t1, while t1; t0 is not allowed. Also the concurrent firing oft0 andt1 is not possible,
different from what happens in [11] and [27], the idea being that two concurrent events should be
allowed to occur also in any order. This situation cannot be modelled in a direct way within a prime
event structure:t0 andt1 are neither in conflict nor concurrent nor causally dependent. Simply, as for
an ordinary conflict, the firing oft1 preventst0 being executed, so thatt0 can never followt1 in a
computation, but the converse is not true, sincet1 can fire after t0. This situation can be interpreted
naturally as anasymmetric conflictbetween the two transitions. Equivalently, sincet0 precedest1 in
any computation where both transitions fire, in such computationst0 acts as a cause oft1. However,
different from a true cause,t0 is not necessary fort1 to be fired. Therefore we can also think of the
relation between the two transitions as aweakform of causality.

A reasonable way to encode this situation in a PES is to represent the firing oft0 with an evente0

and the firing oft1 with two distinct mutually exclusive events:e′
1, representing the execution oft1 that

preventst0, thus mutually exclusive withe0; ande′′
1, representing the execution oft1 aftert0 (thus caused

by e0). Such PES is depicted in Fig. 3b, where causality is represented by a plain arrow and conflict
is represented by a dotted line, labelled by #. However, this solution is not completely satisfactory
with respect to the interpretation of contexts as “read-only resources”: sincet0 just reads the token in
s without changing it, one would expect the firing oft1, preceded or not byt0, to be represented by a
single event. The proposed encoding may lead to an explosion of the size of the PES, since whenever
an event is “duplicated” also all its consequences are duplicated. In addition it should be noted that
the information on the new kind of dependency determined by read-only operations is completely lost,
because it is “confused” with causality or symmetric conflict.

It is worth noting that the inability of representing the asymmetric conflict between events without
resorting to duplications is not specific to prime event structures, but it is basically related to the axiom
of general Winskel’s event structures (see [10, Definition 1.1.1]) stating that the enabling relation` is

FIG. 3. A simple contextual net and a prime event structure representing its behaviour.
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“monotone” with respect to set inclusion:

A` e∧ A ⊆ B ∧ B consistent⇒ B ` e.

As a consequence, the computational order between configurations is set inclusion, the idea being that if
A andB are finite configurations such thatA ⊆ B, then starting fromA we can reachB by performing
the events inB− A, whenever they become enabled. Obviously, this axiom does not hold in the presence
of asymmetric conflict.

In order to provide a more direct, event-based representation of contextual net computations we
introduce a new kind of event structure, calledasymmetric event structure(AES). An AES, besides the
usual causality relation≤ of a prime event structure, has a relation↗ that allows us to specify the new
kind of dependency described above. E.g., for the transitionst0 andt1 of the net in Fig. 3 we simply
havet0 ↗ t1. As already noted, the same relation has two natural interpretations: it can be thought of as
an asymmetric version of conflict or as a weak form of causality. We have decided to call itasymmetric
conflict, but the reader should keep in mind both views, since in some situations it will be preferable to
refer to theweak causalityinterpretation. Informally, in an AES each event has a set of “strong” causes
(given by the causality relation) and a set of weak causes (due to the presence of the asymmetric conflict
relation). To be fired, each event must be preceded by all strong causes and by a (suitable) subset of
the weak causes. Therefore, different from PES’s, an event of an AES can have more than one history.
Moreover, the usual symmetric binary conflict can be represented easily by using cycles of asymmetric
conflict: for instance, ife↗ e′ ande′ ↗ e then clearlyeande′ can never occur in the same computation,
since each one should precede the other.

Configurationsof an AES are defined as sets of events representing possible computations of the AES.
Then the set of configurations of an AES, ordered in a suitable way using the asymmetric conflict relation,
turns out to be a finitary prime algebraic domain. The main difference with respect to the definition
for classical event structures is that the order on configurations is not simply set inclusion, essentially
because a configurationC cannot be extended with an event inhibited by other events already present in
C. Such a construction extends to a functor from the categoryAESof asymmetric event structures to the
categoryDom of prime algebraic domains that establishes a coreflection betweenAES andDom. By
using the equivalence between the categoryDomand the categoryPESof prime event structures [10] we
can then translate any AES into an ordinary PES. Essentially the PES obtained in this way encodes the
asymmetric conflict by means of causality and symmetric conflict, as depicted in Fig. 3. Observe that the
AES provides a finer semantics than the PES, since different AES’s may be mapped to the same PES. It
is remarkable that the “translation” from AES’s to PES’s is done at a categorical level, via a coreflection.

Several authors pointed out the inadequacy of Winskel’s event structures for faithfully modeling
general concurrent computations and they proposed alternative definitions. To model nondeterministic
choice or, equivalently, the possibility of having multiple disjunctive and mutually exclusive causes for
an event, Boudol and Castellani [15] introduce the notion offlow event structure, where the causality
relation is replaced by an irreflexive (in general nontransitive)flow relation, representing essentially im-
mediate causal dependency, and conflict is no longer hereditary. To face a similar problem, Langerak [7]
definesbundle event structures, where a set of multiple disjunctive and mutually exclusive causes for
an event is called abundle setfor the event and comes into play as a primitive notion. Asymmetric
conflicts have been specifically treated by Pinna and Poign´e in [2, 43], where the “operational” notion
of event automaton suggests an enrichment of prime event structures and flow event structures with
possible causes. The basic idea is that ife is a possible cause ofe′ thene can precedee′ or it can be
ignored, but the execution ofe never followse′. This is formalized by introducing an explicit subset of
possible events in prime event structures or adding a “possible flow relation” in flow event structures.
Similar ideas are developed, under a different perspective, by Deganoet al. in [21], where prioritized
event structures are introduced as PES’s enriched with a partial order relation modeling priorities be-
tween events. Also bundle event structures have been extended by Langerak in [33] to take into account
asymmetric conflicts.

Despite some differences in the definition and in the related notions, our AES’s can be seen as a
generalization of event structures with possible events. On the other hand, flow event structures with
possible flow and bundle event structures with asymmetric conflict would have been expressive enough
for our aims, but less manageable than asymmetric event structures. For example, due to the presence of
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disjunctive causes, given an event there does not exist, in general, a least configuration which the event
belongs to, and the problem of establishing if an event is executable in some computation becomes
undecidable. Understanding which part of the results presented in this paper for AES’s extends to
flow event structures with possible flow and to bundle event structures with asymmetric conflict is an
interesting matter of further investigation.

Unfolding for contextual nets.As for ordinary nets, the event structure semantics for a contextual net
is obtained by first unfolding the net into an acyclic branching structure that is itself a contextual net. More
precisely, anunfoldingconstruction is presented which allows us to associate to each semi-weighted
contextual netN anoccurrencecontextual netUa(N) that describes in a static way the behaviour ofN, by
expressing the events and the dependency relations between them. Each transition inUa(N) represents
a specific firing of a transition inN and places inUa(N) represent occurrences of tokens in the places
of N. The unfolding operation can be extended to a functorUa from SW-CN to the categoryO-CN of
occurrence contextual nets, that is right adjoint to the inclusion functorIoc : O-CN → SW-CN.

Transitions of an occurrence contextual net are related by causality and asymmetric conflict, which
are defined according to the previous discussion. Mutual exclusion is a derived relation, defined in
terms of cycles of the asymmetric conflict relation. Thus, the semantics of semi-weighted contextual
nets given in terms of occurrence contextual nets can be naturally abstracted to an AES semantics:
given an occurrence contextual net we obtain an AES by simply forgetting the places, but remembering
the dependency relations that they induce between transitions. Again, this construction extends, at a
categorical level, to a coreflection betweenAES andO-CN. Therefore occurrence contextual nets can
be seen as a convenient concrete representation of AES’s, in the same way as occurrence nets represent
PES’s [10] and flow nets represent flow event structures [40]. Finally, the coreflection betweenAESand
Dom, discussed above, can be exploited to complete the chain of coreflections fromSW-CN to Dom.

Independent from the conference version of this paper, which appeared as [19], an unfolding con-
struction for (safe finite) contextual nets has been proposed by Vogleret al. in [5]. Apart from some
matters of presentation, the construction in [5] is based on ideas analogous to ours and it leads, for the
considered class of nets, to the same unfolding. An interesting result in the mentioned paper, witness-
ing the practical relevance of the study of the semantics of contextual nets, is the generalization to a
subclass of safe contextual nets, called read-persistent contextual nets, of McMillan’s algorithm [35]
for the construction of a (complete) finite prefix of the unfolding. The algorithm is then applied to the
analysis of asynchronous logic circuits, showing that the use of contexts allows one to model a circuit
via a simpler net with a smaller unfolding, thus making the verification activity more efficient.

The study of the applications of the concurrent semantics of contextual nets goes beyond the goals
of the present paper. Concerning the unfolding construction, the main differences between [5] and our
approach are that we deal with a slightly larger class of nets (including possibly infinite semi-weighted
nets) and that we provide a categorical characterization of the unfolding as a coreflection. We think that
the advantages of having a categorical semantics defined via an adjunction are numerous. First, one is led
to consider a notion of morphism between systems (typically formalizing the idea of “simulation”) and
to define the semantical transformation consistently with such notion: a morphism between two systems
must correspond to a morphism between their models. Moreover, there is often an obvious functor that
maps models back into the category of systems (this is the case for nets, where occurrence contextual
nets are particular contextual nets and thus such a functor is simply the inclusion). Consequently the
semantics can be defined naturally as the functor in the opposite direction, forming an adjunction, which
(if it exists) is unique up to natural isomorphism. In other words, once one has decided the notion of
simulation, there is a unique way to define the semantics consistently with such notion. Finally, several
operations on nets (systems) may be expressed at a categorical level as limit–colimit constructions. For
instance, a pushout construction can be used to compose two nets, merging some part of them, obtaining
a kind of generalized nondeterministic composition, while synchronization of nets can be modeled as a
product (see [10, 14]). Since left–right adjoint functors preserve colimits–limits, a semantics defined via
an adjunction turns out to be compositional with respect to such operations. An interesting discussion
on the usefulness of category theory in computer science can be found in Goguen’s paper [13].

Relation with deterministic processes.The problem of providing a truly concurrent semantics for
contextual nets based on (deterministic) processes has been faced by various authors (see, e.g., [6, 8,
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20, 24, 29, 39]). Each deterministic process of a contextual net records the events occurring in asingle
computation of the net and the relationships existing between such events. Clearly, since the unfolding
of a net is essentially a nondeterministic process that completely describes the behaviour of the net, one
would expect that a relation could be established between the unfolding and the deterministic process
semantics. Indeed, we show that, as already known for ordinary nets [9], the domain associated to a semi-
weighted contextual netN through the unfolding construction is isomorphic to the set of deterministic
processes of the net starting from the initial marking, endowed with a kind of prefix ordering. This result
is stated in an elegant categorical way. First a categoryCP[N] of concatenable processes for the netN is
introduced, where objects are markings (states of the net), arrows aredecoratedprocesses (computations
of the net), and arrow composition is an operation of concatenation of processes consistent with causal
dependencies, modelling sequential composition of computations [29, 39]. Then the comma category
(m ↓ CP[N]), wherem is the initial marking of the net, is shown to be a preorder, inducing a partial
order whose ideal completion is isomorphic to the domain associated to the unfolding. Interestingly,
the proof relies on the categorical characterization of the unfolding, and in particular on the fact that,
since the unfolding functor fromSW-CN to O-CN is right adjoint to the inclusion, the counit of the
adjunction provides a one-to-one correspondence between the deterministic processes of a netN and
those of its unfoldingUa(N).

Structure of the paper. The rest of the paper is organized as follows. Section 2 introduces the
categoryAES of asymmetric event structures and describes some properties of such structures. Section
3 defines the coreflection betweenAES and the categoryDom of finitary prime algebraic domains.
Section 4 presents contextual nets and focuses on the categorySW-CN of semi-weighted contextual
nets. Section 5 is devoted to the definition and analysis of the categoryO-CN of occurrence contextual
nets. Section 6 describes the unfolding construction for semi-weighted contextual nets and shows how
such a construction gives rise, at categorical level, to a coreflection betweenSW-CNandO-CN. Section
7 completes the chain of coreflections fromSW-CN toDom, by presenting a coreflection betweenO-CN
andAES. Section 8 shows how the proposed semantics for semi-weighted contextual nets is related to
Winskel’s semantics for safe ordinary nets and comments on the expressive power of semi-weighted
and safe contextual nets. Section 9 investigates the relation between the unfolding and the deterministic
process semantics of contextual nets. Section 10 discusses how the results presented in this paper can
be extended to deal with a wider class of contextual nets, where contexts might have multiplicities.
Finally, Section 11 draws some conclusions and suggests possible directions for further research. An
extended abstract of Sections 2–7 appeared in [19].

2. ASYMMETRIC EVENT STRUCTURES

We stressed in the Introduction that PES’s (and in general Winskel’s event structures) are not
expressive enough to model in a direct way the behaviour of models of computation, such as string,
term, graph rewriting, and contextual nets, where a rule may preserve a part of the state in the sense that
part of the state is necessary for the application of the rule, but it is not affected by such application.

To allow for a faithful description of the dependencies existing between events in such models, and in
particular in contextual nets, this section introduces the categoryAESof asymmetric event structures, an
extension of Winskel’s prime event structures where the usual symmetric conflict relation is replaced by
the new binary relation↗ , calledasymmetric conflict. The intuition underlying the asymmetric conflict
relation has been discussed in the Introduction: ife0 ↗ e1 then the firing ofe1 inhibits e0, namely the
execution ofe0 may precede the execution ofe1 or e0 can be ignored, bute0 cannot followe1. We will
see that in this setting the symmetric binary conflict is no more a primitive relation, but it is represented
via “cycles” of asymmetric conflict. As a consequence, PES’s can be identified with a special subclass
of asymmetric event structures, namely those where all conflicts are actually symmetric.

Let us start by introducing some basic notations on sets, relations, and functions. Letr ⊆ X × X be
a binary relation and letY ⊆ X; then

• rY denotes the restriction ofr to Y, i.e.,r ∩ (Y × Y);

• r + denotes the transitive closure ofr , and r ∗ denotes the reflexive and transitive closure
of r ;
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• r is well foundedif it has no infinite descending chains, i.e.,〈ei 〉i ∈N ∈ X such thatei +1 r ei ,
ei 6= ei +1, for all i ∈ N. The relationr is acyclicif it has no “cycles”e0 r e1 r . . . r en r e0, with ei ∈ X.
In particular, ifr is well founded it has no (nontrivial) cycles;

• r is called apreorderif it is reflexive and transitive; it is apartial orderif it is also antisymmetric.

If f : X → X′ is a partial function andx ∈ X, we write f (x) = ⊥ to mean thatf is not defined onx.
Finally, the powerset of a setX is denoted by2X, while 2X

fin denotes the set of finite subsets ofX. When
Y ∈ 2X

fin we will write Y ⊆fin X.

It is worth recalling the formal definition of the categoryPESof prime event structures with binary
conflicts, informally described in the Introduction.

DEFINITION 2.1 (Prime Event Structure). A prime event structure (PES) is a tupleP = 〈E,≤, #〉,
whereE is a set ofeventsand≤, # are binary relations onE, calledcausality relationandconflict
relation, respectively, such that:

1. the relation≤ is a partial order andbec = {e′ ∈ E | e′ ≤ e} is finite for alle ∈ E;

2. the relation # is irreflexive, symmetric, and hereditary with respect to≤, i.e., for alle, e′, e′′ ∈ E,
if e#e′ ≤ e′′ thene#e′′;

Let P0 = 〈E0,≤0, #0〉 andP1 = 〈E1,≤1, #1〉 be PES’s. A PES-morphismf : P0 → P1 is a partial
function f : E0 → E1 such that, for alle0, e′

0 ∈ E0:

1. if f (e0) 6= ⊥ thenb f (e0)c ⊆ f (be0c);

2. if f (e0) 6= ⊥ 6= f (e′
0) then

(i) f (e0)#1 f (e′
0) ⇒ e0 #0 e′

0;

(ii) ( f (e0) = f (e′
0)) ∧ (e0 6= e′

0) ⇒ e0#0e′
0.

The category of prime event structures and PES-morphisms is denoted byPES.

We can now define the notion of asymmetric event structure. The basic ideas for the treatment of
asymmetric conflict in our approach are similar to those suggested by Pinna and Poign´e in [2, 43]. In
these papers they concentrate on event automata and on the distinction between specifications (given
in the form of event structures) and automata implementing such specifications. Moreover, looking for
event structures that allow one to specify adequately features such as priority and asymmetric conflict,
they introduce the idea of possible events, namely events that, according to the considered computation,
may or may not be causes of other events. Consequently the notions of PES with possible events and of
flow event structure with possible flow are considered. Apart from a different presentation, asymmetric
event structures can be seen as a generalization of PES’s with possible events. Using their terminology,
whene0 ↗ e1 we can say thate0 is a possible cause ofe1. However, different from what happens for
event structures with possible events, where a distinct set of possible events is singled out, our notion
of possible cause is local, being induced by the asymmetric conflict relation. The extended bundle
event structures of Langerak [33] share with our approach, besides the above mentioned basic ideas,
the intuition that when asymmetric conflict is available, the symmetric conflict becomes useless, since
it can be represented as an asymmetric conflict in both directions.

For technical reasons we first introduce pre-asymmetric event structures. Then asymmetric event
structures will be defined as special pre-asymmetric event structures satisfying a suitable condition of
“saturation.”

DEFINITION 2.2 (Pre-asymmetric Event Structure). Apre-asymmetric event structure (pre-AES)is a
tupleG = 〈E,≤, ↗ 〉, whereE is a set ofeventsand≤, ↗ are binary relations onE calledcausality
relationandasymmetric conflict, respectively, such that

1. the relation≤ is a partial order andbec = {e′ ∈ E | e′ ≤ e} is finite for alle ∈ E;

2. the relation↗ satisfies, for alle, e′ ∈ E,

(i) e< e′ ⇒ e↗ e′,
(ii) ↗bec is acyclic,3

3 Equivalently, we can require (↗bec)+ to be irreflexive. This implies that, in particular,↗ is irreflexive.
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where, as usual, withe< e′ we meane ≤ e′ ande 6= e′. If e↗ e′, according to the double interpretation
of ↗ we say thate is preventedbye′ ore weakly causes e′. Moreover, we say thate is strictly prevented
by e′, writteneÃGe′, if e↗ e′ and¬(e< e′).

The definition can be explained by giving a more precise account of the ideas presented in the
introduction. Letoccur(e,C) denote the fact that the eventeoccurs in a computationC, later formalized
by the notion of configuration, and letprecC(e, e′) indicate that the evente precedese′ in C. Then,
informally,

e< e′ means that ∀C. occur(e′,C) ⇒ occur(e,C) ∧ precC(e, e′)
e↗ e′ means that ∀C. occur(e′,C) ∧ occur(e,C) ⇒ precC(e, e′).

Therefore< represents a global order of execution, while↗ determines an order of execution only
locally to each computation. Thus it is natural to impose↗ to be an extension of<. Moreover, notice
that if some events form a cycle of asymmetric conflict then such events cannot appear in the same
computation; otherwise the execution of each event should precede the execution of the event itself.
This explains why we require the transitive closure of↗ , restricted to the causesbec of an evente, to
be acyclic (and thus well founded, beingbec finite). Otherwise not all causes ofe could be executed in
the same computation and thuse itself could not be executed. The informal interpretation also makes
clear that↗ is not in general transitive. Ife↗ e′ ↗ e′′ it is not true thate must precedee′′ when both
fire. This holds only in a computation wheree′ also fires.

The fact that a set of events in a cycle of asymmetric conflict can never occur in the same computation
can be naturally interpreted as a kind of conflict. More formally, it is useful to associate to each pre-AES
an explicit conflict relation (on sets of events) defined in the following way:

DEFINITION 2.3 (Induced Conflict Relation). LetG = 〈E,≤, ↗ 〉 be a pre-AES. Theconflict relation
#a ⊆ 2E

fin associated toG is defined as

e0 ↗ e1 ↗ . . . ↗ en ↗ e0

#a{e0, e1, . . . ,en}
#a(A ∪ {e′}) e ≤ e′

#a(A ∪ {e}) ,

whereA is a finite subset ofE. The superscript “a” in # a reminds us that this relation is induced by
asymmetric conflict. Sometimes we will use the infix notation for the “binary version” of the conflict,
i.e., we writee#ae′ for #a{e, e′}.

Notice that if #a A thenbAc contains a cycle of asymmetric conflict, and, vice versa, ifbAc contains
a cyclee0 ↗ e1 . . .en ↗ e0 then there exists a subsetA′ ⊆ A such that #a A′ (for instance, choosing an
eventai ∈ A such thatei ≤ ai for i ∈ {0, . . . ,n}, the setA′ can be{ai | i ∈ {0, . . . ,n}}).

Clearly, by the rules above, ife↗ e′ ande′ ↗ e then #a{e, e′}. The converse, instead, does not hold,
namely in general we can havee#a e′ and¬(e↗ e′), as in the AES of Fig. 4, because #a is inherited
along≤, while ↗ is not. An asymmetric event structure is a pre-AES where each binary conflict is
induced directly by an asymmetric conflict in both directions.

DEFINITION 2.4 (Asymmetric Event Structures). An asymmetric event structure (AES) is a pre-AES
G = 〈E,≤, ↗ 〉 such that for anye, e′ ∈ E, if e#a e′ thene↗ e′.

Observe that any pre-AES can be saturated to produce an AES. More precisely, given a pre-AES
G = 〈E,≤, ↗ 〉, its saturation, denoted bȳG, is the AES〈E,≤, ↗ ′〉, where↗ ′ is defined ase↗ ′e′

if and only if (e↗ e′) ∨ (e#a e′). In this situation it is easy to verify that the conflict relations ofG and
of Ḡ coincide.

FIG. 4. A pre-AES with two eventse ande′ in conflict, but not related by asymmetric conflict.
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The notion of AES-morphism is a quite natural extension of the notion of PES-morphism. Intuitively,
it is a (possibly partial) mapping of events that “preserves computations,” a property which will be made
precise later, in Lemma 3.6, after introducing the notion of configuration.

DEFINITION 2.5 (AES-morphism). LetG0 = 〈E0,≤0, ↗0〉 andG1 = 〈E1,≤1, ↗1〉 be two AES’s.
An AES-morphism f: G0 → G1 is a partial functionf : E0 → E1 such that, for alle0, e′

0 ∈ E0:

1. if f (e0) 6= ⊥ thenb f (e0)c ⊆ f (be0c);

2. if f (e0) 6= ⊥ 6= f (e′
0) then

(i) f (e0) ↗1 f (e′
0) ⇒ e0 ↗0e′

0;
(ii) ( f (e0) = f (e′

0)) ∧ (e0 6= e′
0) ⇒ e0 #a

0 e′
0.

It is easy to show that AES-morphisms are closed under composition. In fact, letf0 : G0 → G1 and
f1 : G1 → G2 be AES-morphisms. The fact thatf1◦ f0 satisfies conditions (1) and (2.ii) of Definition 2.5
is proved as for ordinary PES’s. The validity of condition (2.i) is straightforward.

DEFINITION 2.6 (CategoryAES). We denote byAES the category having asymmetric event structures
as objects and AES-morphisms as arrows.

In the following when considering a PESP and an AESG, we implicitly assume thatP = 〈E,≤, #〉
andG = 〈E,≤, ↗ 〉. Moreover superscripts and subscripts on the structure name carry over the names
of the involved sets and relations (e.g.,Gi = 〈Ei ,≤i , ↗i 〉).

The binary conflict in an AES is represented by asymmetric conflict in both directions, and thus,
analogously to what happens for PES’s, it is reflected by AES-morphisms (by condition (2.i) in
Definition 2.5). The next lemma shows that AES-morphisms reflect also the general conflict relation
over sets of events.

LEMMA 2.1 (AES-morphisms Reflect Conflicts).LetG0 andG1 be twoAES’s and let f: G0 → G1

be anAES-morphism. Given a set of events A⊆fin E0, if #a
1 f (A) then#a

0 A′ for some A′ ⊆ A.

Proof. Let A ⊆fin E0 and let #a1 f (A). By definition of conflict there is a↗1-cyclee′
0 ↗1e′

1 ↗1 . . .

↗1e′
n ↗1e′

0 in b f (A)c. By the definition of AES-morphisms we have thatb f (A)c ⊆ f (bAc) and thus we
can finde0, . . . ,en ∈ bAc such thate′

i = f (ei ) for all i ∈ {0, . . . ,n}. ConsiderA′ = {a0, . . . ,an} ⊆ A
such thatei ≤0 ai for i ∈ {0, . . . ,n}. By definition of AES-morphism,e0 ↗0 e1 ↗0 . . . ↗0 e0, and thus
#a

0 A′.

We conclude this section by formalizing the relation between AES’s and PES’s. We show that
AES’s are a proper extension of PES’s in the sense that, as one would expect, PES’s can be identified
with the subclass of AES’s where the strict asymmetric conflict relation is actually symmetric. This
correspondence defines a full embedding ofPES into AES.

LEMMA 2.2. Let P = 〈E,≤, #〉 be aPES. ThenJ (P) = 〈E,≤, < ∪ #〉 is anAES,where the asym-
metric conflict relation is defined as the union of the“strict” causality and conflict relations.

Moreover, if f : P0 → P1 is a PES-morphism then f is anAES-morphism between the corresponding
AES’sJ (P0) andJ (P1),and if g:J (P0) →J (P1) is anAES-morphism then it is also aPES-morphism
between the originalPES’s.

Proof. Let P = 〈E,≤, #〉 be a PES. The fact thatJ (P) = 〈E,≤, < ∪ #〉 is an AES is a trivial
consequence of the definitions. In particular, the asymmetric conflict relation ofJ (P) is acyclic on the
causes of each event since # is hereditary with respect to≤ and irreflexive, and< is a strict partial order
(i.e., an irreflexive and transitive relation) inP.

Now, let f : P0 → P1 be a PES-morphism. To prove thatf is also an AES-morphism between the
corresponding AES’sJ (P0) andJ (P1), first observe that, according to the definition of≤J (Pi) and
↗J (Pi ), the validity of the conditions (1) and (2.ii) of Definition 2.5 follow immediately from the
corresponding conditions in the definition of PES-morphism (Definition 2.1). As for Condition (2.i), if
f (e0) ↗J (P1) f (e1), then, by construction,f (e0) <P1 f (e1) or f (e0) #P1 f (e1) and thus, by properties of
PES’s (easily derivable from Definition 2.1), in the first casee0 <P0 e1 or e0 #P0 e1 whilst, in the second
case,e0 #P0 e1. Hence, in both cases,e0 ↗J (P0) e1.
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Similar considerations allow us to conclude that ifg : J (P0) → J (P1) is an AES-morphism, then
it is also a PES-morphism betweenP0 andP1.

By the previous lemma, the constructionJ , extended as the identity on arrows, defines a full embed-
ding functor fromPES into AES.

PROPOSITION2.1 (From PES’s to AES’s). The functorJ : PES→ AES defined by

• J (〈E,≤, #〉) = 〈E,≤, < ∪ #〉;
• J ( f : P0 → P1 ) = f

is a full embedding ofPES into AES.

3. FROM ASYMMETRIC EVENT STRUCTURES TO DOMAINS

Prime event structures are intimately connected to prime algebraic domains, another mathematical
structure widely used in semantics. More precisely the categoryPES of prime event structures is
equivalent to the categoryDom of (finitary coherent) prime algebraic domains. For asymmetric event
structures this result generalizes to the existence of a coreflection betweenAES and Dom. Such a
coreflection allows for an elegant translation of an AES semantics into a domain and thus into a
classical PES semantics. The PES semantics obtained in this way represents asymmetric conflicts
via symmetric conflict and causality with a duplication of events, as described in the Introduction
(see Fig. 3).

3.1. Prime Event Structures and Domains

This section reviews the definition of the categoryDom and the equivalence betweenDom and the
categoryPES[10], which will be needed in the remainder of the paper.

First we need some basic notions and notations for partial orders. A preordered or partially ordered
set〈D,v〉 will be often denoted simply asD, by omitting the (pre)order relation. Given an element
x ∈ D, we write↓x to denote the set{y ∈ D | y v x}. A subsetX ⊆ D is compatible, written↑ X,
if there exists an upper boundd ∈ D for X (i.e., x v d for all x ∈ X). It is pairwise compatibleif
↑ {x, y} (often writtenx ↑ y) for all x, y ∈ X. A subsetX ⊆ D is calleddirectedif for any x, y ∈ X
there existsz ∈ X such thatx v z andy v z.

DEFINITION 3.7 ((Finitary) (Algebraic) Complete Partial Order). A partial orderD is (directed)
complete(CPO) if for any directed subsetX ⊆ D there exists the least upper bound

⊔
X in D. An

elemente ∈ D is compactif for any directed setX ⊆ D, e v ⊔
X impliese v x for somex ∈ X. The

set of compact elements ofD is denoted byK(D).
A CPO D is calledalgebraicif for any x ∈ D, x = ⊔

(↓x ∩ K(D)). We say thatD is finitary if for
each compact elemente ∈ D the set↓e is finite.

Given a finitary algebraic CPOD we can think of its elements as “pieces of information” expressing
the states of evolution of a process. Finite elements represent states which are reached after a finite
number of steps. Thus algebraicity essentially says that each infinite computation can be approximated
with arbitrary precision by the finite ones.

Winskel’s domains satisfy stronger completeness properties, which are formalized by the following
definition.

DEFINITION 3.8 ((Prime Algebraic) Coherent Poset). A partial orderD is calledcoherent(orpairwise
complete) if for all pairwise compatibleX ⊆ D, there exists the least upper bound

⊔
X of X in D.

A complete primeof D is an elementp ∈ D such that, for any compatibleX ⊆ D, if p v ⊔
X then

p v x for somex ∈ X. The set of complete primes ofD is denoted byPr(D). The partial orderD is
calledprime algebraicif for any elementd ∈ D we haved = ⊔↓d ∩ Pr(D). The set↓d ∩ Pr(D) of
complete primes ofD belowd will be denotedPr(d).
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Not being expressible as the least upper bound of other elements, complete primes ofD can be seen
as elementary indivisible pieces of information (events). Thus prime algebraicity expresses the fact that
all the possible computations of the system at hand can be obtained by composing these elementary
blocks of information.

Notice that directed sets are pairwise compatible, and thus each coherent partial order is a CPO. For
the same reason, each complete prime is a compact element, namelyPr(D) ⊆ K(D) and thus prime
algebraicity implies algebraicity. Moreover, ifD is coherent then for each nonemptyX ⊆ D there exists
the greatest lower bound X, which can be expressed as

⊔{y ∈ D | ∀x ∈ X. y v x}.
DEFINITION 3.9 (Domains). The partial orders we shall work with are coherent, prime algebraic,

finitary partial orders, hereinafter simply referred to as (Winskel’s) domains.4

The definition of morphism between domains is based on the notion of immediate precedence. Given
a domainD and two distinct elementsd 6= d′ in D we say thatd is an immediate predecessorof d′,
writtend ≺ d′, if

d v d′ ∧ ∀d′′ ∈ D. (d v d′′ v d′ ⇒ d′′ = d ∨ d′′ = d′).

Moreover, we writed ¹ d′ if d ≺ d′ or d = d′. According to the informal interpretation of domain
elements sketched above,d ¹ d′ intuitively means thatd′ is obtained fromd by adding a quantum of
information. Domain morphisms are required to preserve such a relation.

DEFINITION 3.10 (CategoryDom). Let D0 andD1 be domains. A domain morphismf : D0 → D1 is
a function, such that:

• ∀x, y ∈ D0, if x ¹ y then f (x) ¹ f (y); (¹ - preserving)

• ∀X ⊆ D0, X pairwise compatible,f (
⊔

X) = ⊔
f (X); (Additive)

• ∀X ⊆ D0, X 6= ∅ and compatible,f ( X) = f (X). (Stable)

We denote byDom the category having domains as objects and domain morphisms as arrows.

In the paper [10] the categoryDom is shown to be equivalent to the categoryPES, the equivalence
being established by the two functorsL : PES→ Dom andP : Dom → PES

The functorL associates to each PES the partial order of its configurations (subsets of events, left-
closed with respect to causality and conflict free), ordered by subset inclusion. The image viaL of a
PES-morphismf : P0 → P1 is the obvious extension off to sets of events.

A more accurate description of the functorP is needed, since such functor will be used in the next
section to map domains back into asymmetric event structures. A fundamental role is played by the
notion of prime interval.

DEFINITION 3.11 (Prime Interval). Let〈D,v〉 be a domain. Aprime interval is a pair [d, d′] of
elements ofD such thatd ≺ d′. Let us define

[c, c′] ≤ [d, d′] if ( c = c′ u d) ∧ (c′ t d = d′),

and let∼ be the equivalence obtained as the transitive and symmetric closure of (the preorder)≤.

The intuition that a prime interval represents a pair of elements differing only for a “quantum” of
information is confirmed by the fact that there exists a bijective correspondence between∼-classes of
prime intervals and complete primes of a domainD (see [1]). More precisely, the map

[d, d′]∼ 7→ p,

4 The use of this kind of structure in semantics was first investigated by Berry [28], where they are calleddI-domains. The relation
between Winskel domains and dI-domains, which are finitary distributive consistent-complete algebraic CPO’s, is established by
the fact that for a finitary algebraic consistent-complete (or coherent) CPO, prime algebraicity is equivalent to distributivity.
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wherep is the unique element inPr(d′) − Pr(d), is an isomorphism between the∼-classes of prime
intervals ofD and the complete primesPr(D) of D, whose inverse is the function:

p 7→ [
⊔{c ∈ D | c@ p}, p]∼.

The above machinery allows us to give the definition of the functorP “extracting” an event structure
from a domain.

DEFINITION 3.12 (From Domains to PES’s). The functorP : Dom → PES is defined as follows:

• given a domainD, P(D) = 〈Pr(D),≤, #〉 where

p ≤ p′ iff p v p′ and p # p′ iff ¬(p ↑ p′);

• given a domain morphismf : D0 → D1, the morphismP( f ) :P(D0) →P(D1) is the function:

P( f )(p0) =
{

p1 if p0 7→ [d0, d′
0]∼, f (d0) ≺ f (d′

0) and [f (d0), f (d′
0)]∼ 7→ p1;

⊥ otherwise, i.e., when f (d0) = f (d′
0).

3.2. Asymmetric Event Structures and Domains

This section defines a coreflection between the categoryAES and the categoryDom. The domain
associated to an AESG is obtained by considering the configurations ofG, suitably ordered using
the asymmetric conflict relation. Vice versa, given a domainD we obtain the corresponding AES
by applying first the functorP : Dom→ PES and then the embeddingJ : PES→ AES, defined in
Proposition 2.1.

Generally speaking, a configuration of an event structure is a set of events representing a computation
of the system modelled by the event structure. The presence of the asymmetric conflict relation makes
such a definition slightly more involved than the traditional one.

DEFINITION 3.13 (Configuration). LetG = 〈E,≤, ↗ 〉 be an AES. Aconfigurationof G is a set of
eventsC ⊆ E such that

1. ↗C is well founded;

2. {e′ ∈ C | e′ ↗ e} is finite for alle ∈ C;

3. C is left-closed with respect to≤; i.e., for alle ∈ C, e′ ∈ E, e′ ≤ e impliese′ ∈ C.

The set of all configurations ofG is denoted byConf(G).

Condition (3) requires that all the causes of each event are present. Condition (1) first ensures that
in C there are no↗ -cycles, and thus, together with (3), it excludes the possibility of having inC
a subset of events in conflict (formally, for anyA ⊆fin C, we have¬(#a A)). Moreover it guarantees
that ↗ has no infinite descending chains inC, that, together with condition (2), imply that the set
{e′ ∈ C | e′( ↗C)+e} is finite for each evente in C; thus each event has to be preceded only by finitely
many other events of the configuration.

If a set of eventsA satisfies only the first two properties of Definition 3.13 it is calledconsistentand
we writeco(A). Notice that, unlike for Winskel’s event structures, consistency is not a finitary property.5

For instance, letA = {ei | i ∈ N} ⊆ E be a set of events such that allei ’s are distinct andei +1 ↗ ei for
all i ∈ N. ThenA is not consistent, but each finite subset ofA is.

Let us now define an orderv on the configurations of an AES, aimed at formalizing the idea of
“computational extension,” namely such thatC1 v C2 if the configurationC1 can evolve intoC2. A
remarkable difference with respect to Winskel’s event structures is that the order on configurations is
not simply set-inclusion, since a configurationC cannot be extended with an event inhibited by some
of the events already present inC.

DEFINITION 3.14 (Extension). LetG = 〈E,≤, ↗ 〉 be an AES and letA, A′ ⊆ E be sets of events.
We say thatA′ extends Aand we writeA v A′, if

5 A property Q on the subsets of a setX is finitary if given anyY ⊆ X, from the fact thatQ(Z) holds for all finite subsets
Z ⊆ Y it follows that Q(Y) holds.
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1. A ⊆ A′;
2. ¬(e′ ↗ e) for all e ∈ A, e′ ∈ A′ − A.

Often in the following it will be preferable to use the following condition, equivalent to (2):

∀e ∈ A. ∀e′ ∈ A′. e′ ↗ e ⇒ e′ ∈ A.

The extension relation is a partial order on the setConf(G) of configurations of an AES. Our aim
is now to prove that〈Conf(G),v〉 is a finitary prime algebraic domain. This means that like prime
event structures [10], flow event structure [40], and prioritized event structures [21], asymmetric event
structures also provide a concrete presentation of prime algebraic domains.

Given an AESG , in the following we will denote byConf(G) both the set of configurations ofG
and the corresponding partial order. The following proposition presents a simple but useful property of
the partial order of configurations of an AES, strictly connected with coherence.

LEMMA 3.1. LetG be anAESand let A⊆ Conf(E) be a pairwise compatible set of configurations.
Then for all C∈ A and e∈ C

e′ ∈ ⋃ A ∧ e′ ↗ e⇒ e′ ∈ C.

Proof. Let e′ ∈ ⋃
A be an event such thate′ ↗ e. Then there is a configurationC′ ∈ A such that

e′ ∈ C′. SinceC andC′ are compatible, there isC′′ ∈ Conf(G) such thatC,C′ v C′′. Thuse′ ∈ C′′

and, sinceC v C′′, by definition ofv we conclude thate′ ∈ C.

The next lemma proves that for pairwise compatible sets of configurations the least upper bound and
the greatest lower bound are simply given by union and intersection.

LEMMA 3.2 (
⊔

and for sets of configurations).Let G be anAES. Then

1. if A ⊆ Conf(E) is pairwise compatible then
⊔

A = ⋃
A;

2. if C0 ↑ C1 then C0 u C1 = C0 ∩ C1.

Proof. 1. Let A ⊆ Conf(E) be a pairwise compatible set of configurations. First notice that
⋃

A
is a configuration. In fact:

• ↗⋃
A is well founded.

Let us suppose that there is in
⋃

A an infinite descending chain:

. . .ei +1 ↗ ei ↗ ei −1 ↗ . . . ↗ e0.

Let C ∈ A such thate0 ∈ C. Lemma 3.1, together with an inductive reasoning, ensures that this infinite
chain is entirely contained inC. But this contradictsC ∈ Conf(G).

• {e′ ∈ ⋃ A | e′ ↗ e} is finite for all e∈ ⋃ A.
Let e ∈ ⋃ A. Then there existsC ∈ A such thate ∈ C. By Lemma 3.1, the set{e′ ∈ ⋃ A | e′ ↗ e} =
{e′ ∈ C | e′ ↗ e}, and thus it is finite.

• ⋃
A is left-closed.

It immediately follows from the fact that eachC ∈ A is left-closed.

The configuration
⋃

A is an upper bound forA. In fact, for anyC ∈ A, clearly C ⊆ ⋃
A and

for all e ∈ C, e′ ∈ ⋃
A, if e′ ↗ e then, by Lemma 3.1,e′ ∈ C. ThusC v ⋃

A. Moreover, ifC0 is
another upper bound forA, namely a configuration such thatC v C0 for all C ∈ A, then

⋃
A ⊆ C0.

Furthermore for anye ∈ ⋃
A, e′ ∈ C0 with e′ ↗ e, sincee ∈ C for someC ∈ A we conclude that

e′ ∈ C ⊆ ⋃
A. Thus

⋃
A v C0 and this shows that

⋃
A is the least upper bound ofA.

2. Let C0 ↑ C1 be two compatible configurations and letC = C0 ∩ C1. Then it is easily seen
thatC is a configuration. MoreoverC v C0. In factC ⊆ C0 and for alle ∈ C, e′ ∈ C0, if e′ ↗ e, since
e ∈ C1 andC0 ↑ C1, by Lemma 3.1,e′ ∈ C1 and thuse′ ∈ C. In the same wayC v C1, and thusC is
a lower bound forC0 andC1. To show thatC is the greatest lower bound observe that ifC′ is another
lower bound forC0 andC1 then clearlyC′ ⊆ C. Furthermore, ife ∈ C′, e′ ∈ C with e′ ↗ e, since, in
particular,e′ ∈ C0, we concludee′ ∈ C′. HenceC′ v C.
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In a prime event structure an evente uniquely determines its history, that is the setbec of its causes,
independent of the configuration at hand. In the case of asymmetric event structures, instead, an event
e may have different histories, in the sense that the set of events that must precedee in a configuration
C depends onC. Essentially, the possible histories ofe are obtained inserting or not in a configuration
the weak causes ofe, that thus can be seen as “possible causes.”

DEFINITION 3.15 (Possible History). LetG be an AES and lete ∈ E. Given a configurationC ∈
Conf(G) such thate ∈ C, thehistoryof e in C is defined asC[[e]] = {e′ ∈ C | e′( ↗C)∗e}. The set of
(possible) histories ofe, denoted byHist(e), is then defined as

Hist(e) = {C[[e]] | C ∈ Conf(E) ∧ e ∈ C}.
We denote byHist(G) the set of possible histories of all events inG , namely

Hist(G) = ⋃{Hist(e) | e ∈ E}.
Notice that, by conditions (1) and (2) in the definition of configuration (Definition 3.13), each history

C[[e]] is a finite set of events. Moreover, each historyC[[e]] is characterized by the fact thate is the
greatest element with respect to (↗C[[e]] )

∗, and, therefore, for any two eventse ande′, we have that
Hist(e) ∩ Hist(e′) 6= ∅ if and only if e = e′. It is also easy to see that (C[[e]])[[ e]] = C[[e]].

Let us now give some other properties of the set of histories. Point (1) below shows that each history
of an evente in a configurationC is itself a configuration which is extended byC. Point (2) essentially
states that although an evente has in general more than one history, as one would expect, the history
cannot change after the event has occurred. Point (3) asserts that different histories of the same event
are incompatible.

LEMMA 3.3 (History Properties). Let G be anAES. Then in〈Conf(G),v〉 we have that:

1. if C ∈ Conf(G) and e∈ C, then C[[e]] ∈ Conf(G). Moreover C[[e]] v C;

2. if C,C′ ∈ Conf(G),C ↑ C′ and e∈ C ∩ C′ then C[[e]] = C′[[e]]; in particular this holds for
C v C′;

3. if e ∈ E, C0,C1 ∈ Hist(e) and C0 ↑ C1 then C0 = C1.

Proof. 1. Obviously,C[[e]] ∈ Conf(G). In fact, the requirements (1) and (2) in Definition 3.13 are
trivially satisfied, while (3) follows by recalling that↗ ⊇<. MoreoverC[[e]] ⊆ C and if e′ ∈ C[[e]],
e′′ ∈ C ande′′ ↗ e′, thene′′ ↗ e′( ↗C)∗e; thuse′′ ∈ C[[e]]. ThereforeC[[e]] v C.

2. By Lemma 3.1, sinceC ↑ C′ ande ∈ C, an inductive reasoning ensures that ife0 ↗ e1 ↗ . . .

↗ en ↗ e, with ei ∈ C ∪ C′, then eachei is in C. ThereforeC[[e]] = (C ∪ C′)[[e]] = C′[[e]].

3. SinceC0 ↑ C1 ande ∈ C0 ∩ C1, by (2), we have

C0 = C0[[e]] = C1[[e]] = C1.

We are now able to show that the complete primes ofConf(G) are exactly the possible histories of
events inG.

LEMMA 3.4 (Primes). Let G be anAES. Then

1. for all configurations C∈ Conf(G)

C = ⊔{C′ ∈ Hist(G) | C′ v C} = ⊔{C[[e]] | e ∈ C}.
2. Pr(Conf(G)) = Hist(G) and Pr(C) = {C[[e]] | e ∈ C}.

Proof. 1. LetC ∈ Conf(G) and letC0 = ⊔{C′ ∈ Hist(G) | C′ v C}, which exists by
Lemma 3.2.(1). Then clearlyC0 v C. Moreover for alle ∈ C, by Lemma 3.3.(1), the historyC[[e]] v C
and thuse ∈ C[[e]] ⊆ C0. This gives the converse inclusion and allows us to concludeC = C0.

2. Let C[[e]] ∈ Hist(e), for somee ∈ E, be a history and letA ⊆ Conf(G) be a pairwise
compatible set of configurations. IfC[[e]] v ⊔

A, thene ∈ ⋃
A. Thus there existsCe ∈ A such that
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e ∈ Ce. Therefore:

C[[e]] = (
⊔

A)[[e]] [by Lemma 3.2.(2), sinceC[[e]] v ⊔
A]

= Ce[[e]] [by Lemma 3.2.(2), sinceCe v ⊔
A]

v Ce [by Lemma 3.2.(1)].

ThereforeC[[e]] is a complete prime inConf(G).
For the converse, letC ∈ Pr(Conf(G)). Then, by point (1),

C = ⊔{C′ ∈ Hist(G) | C′ v C}.
SinceC is a complete prime, there must existC′ ∈ Hist(G), C′ v C such thatC v C′ and thus
C = C′ ∈ Hist(G). j

It is now immediate to prove that the configurations of an AES ordered by the extension relation form
a finitary prime algebraic domain.

THEOREM 3.1 (Configurations Form a Domain).For anyAES G the partial order〈Conf(G),v〉 is
a (coherent finitary prime algebraic) domain.

Proof. By Lemma 3.2.(1),Conf(G) is a coherent partial order. By Lemma 3.4, for any configuration
C ∈ Conf(G)

Pr(C) = {C[[e]] | e ∈ C}
andC = ⊔

C[[e]]. ThereforeConf(G) is prime algebraic.

Finally,Conf(G) is finitary, as it immediately follows from the fact that compact elements inConf(G)
are exactly the finite configurations. To see this, letC ∈ Conf(G) be finite and let us consider a directed
A ⊆ Conf(G) such thatC v ⊔

A. Then we can choose, for alle ∈ C, a configurationCe ∈ A such
that e ∈ Ce. SinceA is directed andC is finite, the set{Ce | e ∈ C} has an upper boundC′ ∈ A.
ThenC = ⊔

e∈C C[[e]] = ⊔
e∈C Ce[[e]] v C′ follows immediately from Lemma 3.3.(2). ThusC is

compact. For the converse, letC ∈ Conf(G) be a compact element. Since each possible history is finite,
{⋃e∈Z C[[e]] | Z ⊆fin C} is a directed set offinite configurations havingC as least upper bound. Since
C is compact, we conclude that there existsZ ⊆fin C such thatC v ⋃

e∈Z C[[e]]. ThusC = ⋃
e∈Z C[[e]]

is finite.

An example of AES with the corresponding domain can be found in Figs. 8a and 8b, at the end of
Section 7. In particular notice how asymmetric conflict influences the order on configurations, which
is different from set-inclusion. For instance,{t0, t4} ⊆ {t0, t ′

1, t4}, but{t0, t4} 6v {t0, t ′
1, t4} sincet ′

1 ↗ t4.
The next lemma gives a characterization of the immediate predecessors of a configuration. Informally,

it states that, as one could expect, we pass from an immediate predecessor of a configuration to the
configuration itself by executing a single event.

LEMMA 3.5 (Immediate Precedence).LetG be anAESand let Cv C′ be configurations in Conf(G).
Then

C ≺ C′ iff | C′ − C | = 1.

Proof. (⇒) Let C ≺ C′ and lete′, e′′ ∈ C′ − C. We haveC@C t (C′[[e′]]) v C′ and thus, by
definition of immediate precedence,C′ = C ∪ (C′[[e′]]). In the same wayC′ = C ∪ C′[[e′′]]. Hence,
by definition of history, we havee′( ↗C′ )∗e′′( ↗C′ )∗e′ and thuse′ = e′′ (otherwise↗C′ would not be
acyclic, contradicting the definition of configuration).

(⇐) Obvious.

The following lemma leads to the definition of a functor fromAES to Dom. First we prove that
AES-morphisms preserve configurations and then we show that the function between the domains of
configurations naturally induced by an AES-morphism is a domain morphism.

LEMMA 3.6 (AES-morphisms Preserve Configurations).Let G0,G1 be two AES’s and let
f : G0 → G1 be anAES-morphism. Then for each C0 ∈ Conf(G0) the morphism f is injective
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on C0 and the f -image of C0 is a configuration of G1, i.e.,

f ∗(C0) = { f (e) | e ∈ C0} ∈ Conf(G1).

Moreover f∗ : Conf(G0) → Conf(G1) is a domain morphism.

Proof. Let C0 ∈ Conf(G0) be a configuration. Since↗C0
is well founded and thus¬(e#a e′) for

all e, e′ ∈ C0, the conditions in the definition of AES-morphism (Definition 2.5) imply that for alle, e′

in C0 such thatf (e) 6= ⊥ 6= f (e′):

b f (e)c ⊆ f (bec);

f (e) = f (e′) ⇒ e = e′;

f (e) ↗1 f (e′) ⇒ e↗0 e′.

Therefore f is injective onC0 (as expressed by the second condition) and we immediately conclude
that f ∗(C0) is a configuration inG1.

Let us now prove thatf ∗ : Conf(G0) → Conf(G1) is a domain morphism. Additivity and stability
follow from Lemma 3.2. In particular for stability one should also observe that ifC0 and C1 are
compatible thenf is injective onC1 ∪ C2 and thusf (C1 ∩ C2) = f (C1) ∩ f (C2). Finally, the fact that
f ∗ preserves immediate precedence can be straightforwardly derived from Lemma 3.5.

Theorem 3.1 and Lemma 3.3 suggest how to define a functor from the categoryAES to the category
Dom. Instead, the functor going back fromDom to AES first transforms a domain into a PES via
P : Dom → PES, introduced in Definition 3.2, and then embeds such a PES intoAES viaJ : PES→
AES, defined in Proposition 2.1.

DEFINITION 3.16 (From AES’s to Domains and Backwards).The functorLa : AES → Dom is
defined as:

• for anyAES-objectG ,

La(G) = 〈Conf(G),v〉;
• for anyAES-morphism f : G0 → G1,

La( f ) = f ∗ : La(G0) → La(G1).

The functorPa : Dom → AES is defined asJ ◦ P.

It is worth recalling that, concretely, given a domain〈D,v〉, the PESP(D) is defined as
〈Pr(D), v, #〉, where # is the incompatibility relation (i.e.,p # p′ iff p and p′ do not have a com-
mon upper bound). ThenPa(D) = J (P(D)) is the corresponding AES, namely〈Pr(D),v,< ∪ #〉.

The functorPa is left adjoint toLa and they establish a coreflection betweenAES andDom. The
counit of the adjunction maps each history of an evente into the evente itself. The next technical lemma
shows that the function defined in this way is indeed an AES-morphism.

LEMMA 3.7. Let G be anAES. ThenεG : Pa(La(G)) → G defined as

εG (C) = e if C ∈ Hist(e),

is anAES-morphism.

Proof. Observe first thatεG is well-defined since, as noticed before,Hist(e) ∩ Hist(e′) = ∅
for e 6= e′. Let us verify thatεG satisfies the three conditions imposed on AES-morphisms: for all
C,C′ ∈ Hist(G), with C ∈ Hist(e), C′ ∈ Hist(e′):
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• bεG (C)c ⊆ εG (bCc).
We have:

εG (bCc) =
= εG (Pr(C))

= εG ({C[[e′]] | e′ ∈ C}) [by Lemma 3.4]

= C

⊇ bec [sinceC is left-closed]

= bεG (C)c

• (εG (C) = εG (C′)) ∧ C 6= C′ ⇒ C #a C′.
Let εG (C) = e = e′ = εG (C′) andC 6= C′. SinceC,C′ ∈ Hist(e), by Lemma 3.3.(3), we have
¬(C ↑ C′) and thusC #C′ in P(La(G)) and therefore, by definition ofJ , C #a C′ in Pa(La(G)).

• εG (C) ↗ εG (C′) ⇒ C ↗ C′.
Let εG (C) = e↗ e′ = εG (C′). Since the relation↗ is irreflexive, surelye 6= e′ and thusC 6= C′.
Now, if e 6∈ C′ then, by Lemma 3.1, surely¬(C ↑ C′), thusC #C′ in P(La(G)) and therefore, by
definition ofJ , C ↗ C′ in Pa(La(G)). Otherwise, ife ∈ C′ we distinguish two cases:

—C = C[[e]] = C′[[e]].
In this case, by Lemma 3.2.(1), we have thatC v C′, and the relation is strict, sinceC 6= C′. Thus, by
definition ofPa, C ↗ C′ in Pa(La(G)).

—C = C[[e]] 6= C′[[e]].
In this case, by Lemma 3.3.(2), we conclude thatC andC′[[e]] are not compatible, and thus¬(C ↑ C′).
HenceC #C′ in P(La(G)) and thereforeC ↗ C′ in Pa(La(G)).

The next technical lemma characterizes the behaviour of the functorPa on morphisms having a domain
of configurations as codomain.

LEMMA 3.8. Let G be anAES, D a domain and let g: D → La(G) be a domain morphism. Then
for all p ∈ Pr(D), | g(p) −⋃

g(Pr(p) − {p}) | ≤ 1 and

Pa(g)(p) =
{⊥ if g(p) −⋃

g(Pr(p) − {p}) = ∅
g(p)[[e]] if g(p) −⋃

g(Pr(p) − {p}) = {e}
Proof. Let p ∈ Pr(D) and let us consider the corresponding prime interval

[
⊔

(Pr(p) − {p}), p];

then

[g(
⊔

(Pr(p) − {p})), g(p)], (1)

is also a prime interval inLa(G), and, by definition of the functorEa (Definition 3.16)

Pa(g)(p) =
{⊥ if g(p) = g(

⊔
(Pr(p) − {p}))

C if Pr(g(p)) − Pr(g(
⊔

(Pr(p) − {p}))) = {C}.
Now, by additivity ofgand Lemma 2.5.(1),g(

⊔
(Pr(p)−{p})) = ⊔

g(Pr(p)−{p}) = ⋃
g(Pr(p)−{p}),

and, since (1) is a prime interval, by Lemma 3.5,g(p) −⋃
g(Pr(p) − {p}) has at most one element.

If g(p) = ⋃
g(Pr(p) − {p}) thenPa(g)(p) = ⊥. Otherwise, ifg(p) −⋃

g(Pr(p) − {p}) = {e}, then,
by Lemma 3.4.(2), we have thatPr(g(p)) − Pr(

⋃
g(Pr(p) − {p})) = {g(p)[[e]]} and thus we

conclude.

Finally we can prove the main result of this section, namely thatPa is left adjoint toLa and they
establish a coreflection betweenAES andDom. Given an AESG, the component atG of the counit of
the adjunction isεG : Pa ◦ La(G) → G.
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THEOREM 3.2 (Coreflection betweenAES andDom). Pa a La.

Proof. Let G be an AES and letεG :Pa(La(G)) → G be the morphism defined as in Lemma 3.7.
We have to show that given any domainD and AES-morphismh :Pa(D) → G , there is a unique
domain morphismg : D → La(G) such that the following diagram commutes:

Existence. Let g : D → La(G) be defined as:

g(d) = h∗(Pr(d)).

A straightforward checking shows thatPr(d) is a configuration inPa(D) and thus, by Lemma 3.6,h
is injective onPr(d) andh∗(Pr(d)) is a configuration inG, i.e., an element ofLa(G). Moreoverg is a
domain morphism. In fact it is

• ¹-preserving. Let d, d′ ∈ D, with d ≺ d′. ThenPr(d′) − Pr(d) = {p} and thus

g(d′) − g(d)

= h∗(Pr(d′)) − h∗(Pr(d))

⊆ {h(p)}.

Therefore|g(d′) − g(d)| ≤ 1 and, since it is easy to see thatg(d) v g(d′), by Lemma 3.5 we conclude
g(d) ¹ g(d′).

• Additive. Let X ⊆ D be a pairwise compatible set. Then:

g(
⊔

X)

= h∗(Pr(
⊔

X))

= h∗(
⋃

x∈X Pr(x)) [sincePr(
⊔

X) = ⋃
x∈X Pr(x)]

= ⋃
x∈X h∗(Pr(x))

= ⊔
x∈X g(x).

• Stable. Let d, d′ ∈ D with d ↑ d′, then:

g(d u d′) =
= h∗(Pr(d u d′))
= h∗(Pr(d) ∩ Pr(d′)) [sincePr(d u d′) = Pr(d) ∩ Pr(d′)

andh injective onPr(d) ∪ Pr(d′)]
= h∗(Pr(d)) ∩ h∗(Pr(d′))
= g(d) u g(d′).

The morphismg defined as above makes the diagram commute. In fact, letp ∈ Pr(D) (=Pa(D))
and let us use Lemma 3.2 to determinePa(g)(p). We have:

g(p) −⋃
g(Pr(p) − {p})

= h∗(Pr(p)) −⋃{h∗(Pr(p′)) | p′ ∈ Pr(D), p′@ p}
= h∗(Pr(p)) − {h(p′′) | p′′ ∈ Pr(D), p′′@ p}
= h∗(Pr(p)) − h∗(Pr(p) − {p})
= {h(p)} [sinceh injective onPr(p)].
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Therefore, ifh(p) is undefined thenPa(g)(p) = ⊥ and thusεG (Pa(g)(p)) = ⊥. If h(p) = e then
Pa(g)(p) = g(p)[[e]] and thusεG (Pa(g)(p)) = e = h(p). Summing up we conclude

εG ◦ Pa(g) = h.

Uniqueness. Let g′ : D → La(G) be another morphism such that

εG ◦ Pa(g′) = h.

By Lemma 3.8, for allp ∈ Pr(D) we have:

Pa(g′)(p) =
{

⊥ if g′(p) −⋃
g′(Pr(p) − {p}) = ∅

g′(p)[[e]] if g′(p) −⋃
g′(Pr(p) − {p}) = {e}.

Therefore

h(p) = εG (Pa(g′)(p)) =
{

⊥ if g′(p) −⋃
g′(Pr(p) − {p}) = ∅

e if g′(p) −⋃
g′(Pr(p) − {p}) = {e}. (2)

Let us show thatg′(p) = g(p) for all p ∈ Pr(D), by induction onk = |Pr(p)| (that is finite, sinceD is
finitary).

(k = 1) In this caseg′(p)−⋃ g′(Pr(p)−{p}) = g′(p). Thus, by (2), ifh(p) = ⊥ theng′(p) = ∅ = g(p),
otherwise,g′(p) = {h(p)} = g(p).

(k → k + 1) First notice that beingg′ monotonic, for allp′ ∈ Pr(p) we haveg′(p′) v g′(p), thus

g′(p) = (g′(p) − (
⋃

g′(Pr(p) − {p}))) ∪ (
⋃

g′(Pr(p) − {p})).
By inductive hypothesis,

⋃
g′(Pr(p)−{p}) = ⋃

g(Pr(p)−{p}), thus, reasoning as in the case (k = 1)
we conclude.

Recalling thatg andg′ are additive, since they coincide on the complete primes ofD which is prime
algebraic, we conclude that they coincide on the whole domainD.

Observe that the above result is, in a sense, modular with respect to some properties of AES’s
established along this section. Basically it relies on the fact that the configurations of an AES form a
domain where the complete prime elements are the possible histories of events and the greatest lower
bound and least upper bound of (pairwise) compatible sets are given by set-theoretical intersection and
union, respectively. This fact suggests the possibility of extending the results of this section to other
classes of event structures, like flow, bundle, or prioritized event structures which should fulfill the
mentioned properties.

4. CONTEXTUAL NETS

Contextual netsextend ordinary Petri nets with the possibility of handling contexts: in a contex-
tual net, transitions can have not only preconditions and postconditions, but alsocontextconditions.
A transition can fire if enough tokens are present in its preconditions and context conditions. In the
firing, preconditions are consumed, context conditions remainsunchanged, and new tokens are gen-
erated in the postconditions. This section introduces (marked) contextual P/T nets[26] (or c-nets
for short) that, following the lines suggested in [20] for C/E systems, add contexts to ordinary P/T
nets.

To give the definition of c-net we need some notation for multisets and multirelations. LetA be
a set. Amultisetof A is a functionM : A → N. Such a multiset will be denoted sometimes as a
formal sumM = ∑

a∈A na · a, wherena = M(a). The set of multisets ofA is denoted byµA. The usual
operations and relations on multisets are used. For instance, multiset union is denoted by+ and defined as
(M + M ′)(a) = M(a) + M ′(a); multiset difference (M−M ′) is defined as (M−M ′)(a) = M(a)−M ′(a)
if M(a) ≥ M ′(a) and (M − M ′)(a) = 0 otherwise. We writeM ≤ M ′ if M(a) ≤ M ′(a) for all a ∈ A.
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If M is a multiset ofA, we denote by [[M ]] the flattening ofM , namely the multiset
∑

{a∈A|M(a)>0} 1 · a,
obtained by changing all nonzero coefficients ofM to 1. Sometimes we will confuse the multiset
[[ M ]] ∈ µA with the corresponding subset{a ∈ A | M(a) > 0} ⊆ A and use on it the usual set
operations and relations. For instance, we say that a multisetM is finite if [[ M ]], seen as a set, is finite.
Conversely, a setX ⊆ A will be sometimes identified with the multiset

∑
a∈X 1 · a. A multirelation

f : A↔ B is a multiset ofA × B. It is calledfinitary if for all a ∈ A the set{b ∈ B | f (a, b) > 0}
is finite. The composition of two finitary multirelationsf : A↔ B andg : B ↔ C is the (finitary)
multirelationg ◦ f : A↔ C defined as (g ◦ f )(a, c) = ∑

b∈B f (a, b) · g(b, c). Observe that working
with general multirelations the composition may be undefined since infinite coefficients are not allowed.
For a multirelationf : A↔ B we denote byµ f : µA → µB the (possibly partial) function defined by
µ f (

∑
a∈A na · a) = ∑

b∈B

∑
a∈A(na · f (a, b)) · b when the summation is well defined and undefined

otherwise. Observe that if we think of a multisetM ∈ µA as a multirelationM : 1↔ A (where 1 is
any singleton set), thenµ f (M) is the composition of multirelationsf ◦ M , hence the partiality of the
functionµ f . If the multisetM is finite, thenµ f (M) is always defined. When a multirelationf : A↔ B
satisfies f (a, b) ≤ 1 for all a ∈ A and b ∈ B we sometimes confuse it with the corresponding
set-relation and writef (a, b) for f (a, b) = 1.

We are now able to give the definition of a contextual P/T net.

DEFINITION 4.17 (c-net). A (marked) contextual Petri net(c-net) is a tupleN = 〈S, T, F,C,m〉,
where

• S is a set ofplaces;

• T is a set oftransitions;

• F = 〈Fpre, Fpost〉 is a pair of multirelations, fromT to S.

• C ⊆ T × S is a relation, called thecontext relation;

• m is a multiset ofS, called theinitial marking.

We assume, without loss of generality, thatS∩ T = ∅. Moreover, we require that for each transition
t ∈ T , there exists a places ∈ Ssuch thatFpre(t, s) > 0.6

In the following when considering a c-netN, we implicitly assume thatN = 〈S, T, F,C,m〉.
Moreover superscripts and subscripts on the nets names carry over the names of the involved sets,
functions, and relations. For instanceNi = 〈Si , Ti , Fi ,Ci ,mi 〉.

DEFINITION 4.18 (Pre-set, Post-set, and Context). LetN be a c-net. The functions fromµT to µS
induced by the multirelationsFpre andFpost are denoted by•( ) and ( )•, respectively. IfA ∈ µT is a
finite multiset of transitions,• A is called itspre-set, while A• is called itspost-set. Moreover, byA

¯
we

denote thecontextof A, defined as the setA
¯

= ⋃
A(t)>0 C(t).

An analogous notation is used to denote the functions fromS to 2T defined as, for anys ∈ S,
•s = {t ∈ T | Fpost(t, s) > 0}, s• = {t ∈ T | Fpre(t, s) > 0} ands

¯
= {t ∈ T | C(t, s)}.

A different notion of contextual net is conceivable, where the context relation is replaced by a context
multirelationand the context of transitions is defined as a multiset, rather than a set. We will explain
in Section 10 the intuition underlying this different model and how our theory can be extended to cope
with it.

A multiset of transitionsA is enabled by a markingM if it contains the pre-set ofA and,additionally,
the context ofA. Since the context is a set, this formalizes the intuition that a token in a place can be
used as contextconcurrentlyby many transitions.

DEFINITION 4.19 (Token Game). LetN be a c-net and letM be a marking ofN, that is a multiset
M ∈ µS. Given a finite multiset of transitionsA ∈ µT , we say thatA is enabledby M if • A+ A

¯
≤ M .

Thestep relationbetween markings is defined as

M [ A〉 M ′ iff A is enabled byM and M ′ = M − • A + A•.

We call M [ A〉 M ′ a step. A simple step or a firing is a step involving a single transition, i.e.,M [t〉 M ′.
A marking M is calledreachableif there exists a finite step sequence

6 This is a weak version of the condition ofT-restrictednessthat requires alsoFpost(t, s) > 0, for somes ∈ S.
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m [ A0〉 M1 [ A1〉 M2 . . . [ An〉 M

starting from the initial marking and leading toM .

Other authors (e.g. [24, 27]) allow for the concurrent firing of transitions that use the same token as
context and precondition. For instance, in [24] the formal condition for a multisetA of transitions to be
enabled by a markingM is (• A ≤ M ∧ A

¯
≤ M). Our definition does not admit such steps, the idea

being that concurrent transitions should be allowed to fire also in any order.
A c-net morphism between two nets maps transitions and places of the first net into transitions and

multisets of places of the second net, respectively, in such a way that the initial marking as well as the
pre-set, post-set, and context of each transition are “preserved.”

DEFINITION 4.20 (c-net Morphism). LetN0 and N1 be c-nets. Amorphism h: N0 → N1 is a pair
h = 〈hT , hS〉, wherehT : T0 → T1 is apartial function andhS : S0 ↔ S1 is afinitary multirelation such
that

1. µhS(m0) is defined andµhS(m0) = m1;

2. for each transitiont ∈ T0, µhS(•t), µhS(t•) andµhS(t
¯
) are defined, and

(i) µhS(•t) = •µhT (t);
(ii) µhS(t•) = µhT (t)•;

(iii) µhS(t
¯
) = µhT (t).

We denote byCN the category having c-nets as objects and c-net morphisms as arrows.

Observe thatµhT (t) = hT (t) whenhT (t) 6= ⊥, andµhT (t) = ∅ otherwise. In the last case, by
the definition above, the places in the pre-set, post-set, and context oft are forced to be mapped to
the empty set; i.e.,µhS(•t + t• + t

¯
) = ∅. Furthermore, it is immediate to see that, for any (finite)

multiset of transitionsA ∈ µT , we have that (i)µhS(• A) = •µhT (A), (ii) µhS(A•) = µhT (A)• and
(iii) [[ µhS(A

¯
)]] = µhT (A).

A basic result to prove (to check that the definition of morphism is “meaningful”) is that the token
game is preserved by c-net morphisms. As an immediate consequence morphisms preserve reachable
markings.

PROPOSITION 4.1 (Morphisms Preserve the Token Game).Let N0 and N1 be c-nets, and let
h : N0 → N1 be a morphism. Then for each M,M ′ ∈ µS0 and A∈ µT0

M [ A〉 M ′ ⇒µhS(M) [µhT (A)〉µhS(M ′).

Thereforec-net morphisms preserve reachable markings, i.e., if M is a reachable marking in N0 then
µhS(M) is reachable in N1.

Proof. First notice thatµhT (A) is enabled byµhS(M). In fact, sinceA is enabled byM , we have
M ≥ • A + A

¯
. Thus

µhS(M)
≥ µhS(• A + A

¯
)

= µhS(• A) + µhS(A
¯
)

≥ µhS(• A) + [[µhS(A
¯
)]]

= •µhT (A) + µhT (A) [by def. of c-net morphism].

MoreoverµhS(M ′) = µhS(M) − •µhT (A) + µhT (A)•. In fact, M ′ = M − • A + A•; therefore we
have:

µhS(M ′)
= µhS(M) − µhS(• A) + µhS(A•)
= µhS(M) − •µhT (A) + µhT (A)• [by def. of c-net morphism].

The seminal work by Winskel [10] presents a coreflection between prime event structures and a
subclass of P/T nets, namelysafenets. In [14] it is shown that essentially the same constructions work
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for the larger category of “semi-weighted nets” as well (while the generalization to the whole category
of P/T nets requires some original technical machinery and allows one to obtain a proper adjunction
rather than a coreflection [9]). In the next sections we will relate by a coreflection (asymmetric and
prime) event structures and “semi-weighted c-nets.”

DEFINITION 4.21 (Semi-weighted and Safe c-nets). Asemi-weighted c-net isa c-netN such that the
initial markingm is a set andFpost is a relation (i.e.,t• is a set for allt ∈ T). We denote bySW-CN the
full subcategory ofCN having semi-weighted c-nets as objects.

A semi-weighted c-net is calledsafeif also Fpre is a relation (i.e.,•t is a set for allt ∈ T) and each
reachable marking is a set. The full subcategory ofSW-CN containing all safe c-nets is denoted by
S-CN.

Notice that the condition characterizing safe nets involves the dynamics of the net itself, while
the one defining semi-weighted nets is “syntactical” in the sense that it can be checked statically, by
looking only at the structure of the net. The relation between safe and semi-weighted contextual nets is
further investigated in Section 8, where a more precise comparison of their expressive power is carried
out.

5. OCCURRENCE CONTEXTUAL NETS

In the previous section the behaviour of a c-net has been described in a dynamic way, by defining
how the token game evolves. Occurrence contextual nets are intended to represent, via the unfolding
construction, the behaviour of c-nets in a more static way, by expressing the events (firing of transitions)
which can occur in a computation and the dependency relations between them. Occurrence c-nets will
be defined as safe c-nets where the dependency relations between transitions satisfy suitable acyclicity
and well-foundedness requirements. While for ordinary occurrence nets one has to take into account
the causality and the (symmetric) conflict relations, by the presence of contexts, we have to consider an
asymmetric conflict (or weak dependency) relation as well. The conflict relation, as already seen in the
more abstract setting of AES’s, turns out to be a derived relation.

5.1. Dependency Relations on Transitions

Causality is defined as for ordinary safe nets, with an additional clause stating that transitiont causes
t ′ if it generates a token in a context place oft ′.

DEFINITION 5.22 (Causality). LetN be a safe c-net. Thecausality relation<N is the transitive closure
of the relation≺ defined by:

1. if s ∈ •t thens ≺ t ;

2. if s ∈ t• thent ≺ s;

3. if t• ∩ t
¯
′ 6= ∅ thent ≺ t ′.

Given a place or transitionx ∈ S ∪ T , we denote bybxc the set ofcausesof x in T , defined as
bxc = {t ∈ T | t ≤N x} ⊆ T , where≤N is the reflexive closure of<N .

DEFINITION 5.23 (Asymmetric Conflict). LetN be a safe c-net. Thestrict asymmetric conflict relation
ÃN is defined as

t ÃNt ′ iff t ∩ •t ′ 6= ∅ or (t 6= t ′ ∧ •t ∩ •t ′ 6= ∅).

The asymmetric conflict relation↗N is the union of the strict asymmetric conflict and causality
relations:

t ↗Nt ′ iff t <N t ′ or t ÃNt ′.

In our informal interpretation, ift ↗N t ′ thent must precedet ′ in each computationC in which both
fire or, equivalently,t ′ preventst to be fired, namely

occur(t,C) ∧ occur(t ′,C) ⇒ precC(t, t ′). (†)
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FIG. 5. An occurrence c-net with a cycle of asymmetric conflict.

As suggested by the considerations in the Introduction, in an acyclic safe c-net where any transition
is enabled at most once in each computation, condition (†) is surely satisfied when the same places
appears in the context oft and in the pre-set oft ′. But (†) is trivially true (witht andt ′ in interchangeable
roles) whent andt ′ have a common precondition, since they never fire in the same computation. This is
apparently a little tricky but corresponds to the clear intuition that a symmetric (direct) conflict leads to
asymmetric conflicts in both directions. Furthermore, since, as noticed for the abstract model of AES’s,
(†) is weaker than the condition that expresses causality, the condition (†) is satisfied whent causes
(in the usual sense)t ′.7 For technical reasons it is convenient to have a special notation for the strict
asymmetric conflict. In the following, when the netN is clear from the context, the subscripts in the
relations≤N and ↗N will be omitted.

The c-netN4 in Fig. 5 shows that, as expected, also in this setting the relation↗ is not transitive. In
fact we havet1 ↗ t3 ↗ t2 ↗ t1, but, for instance, it is not true thatt1 ↗ t2.

An occurrence c-net is a safe c-net that exhibits an acyclic behaviour and such that each transition
can fire in some computation of the net. Furthermore, to allow for the interpretation of the places as
token occurrences, each place has at most one transition in its pre-set.

DEFINITION 5.24 (Occurrence c-nets). Anoccurrence c-netis a safe c-netN satisfying the following
requirements

1. each places ∈ S is in the post-set of at most one transition; i.e.,|•s| ≤ 1;

2. the reflexive closure≤N of the causality relation<N is a partial order andbtc is finite for any
t ∈ T ;

3. m = {s ∈ S | •s = ∅}; i.e., the initial markingm coincides with the set of minimal places
with respect to≤N ;

4. (↗N)btc is acyclic for all transitionst ∈ T .

With O-CN we denote the full subcategory ofS-CNhaving occurrence c-nets as objects.

Conditions (1)–(3) are the same as for ordinary occurrence nets. Condition (4) corresponds to the
requirement of irreflexivity for the conflict relation in ordinary occurrence nets. In fact, if the causes of
a transitiont contain a↗N cycle thent can never fire, since in an occurrence c-net, the order in which
transitions appear in a firing sequence must be compatible with the transitive closure of the (restriction
to the transitions in the sequence of the) asymmetric conflict relation.

As mentioned before the asymmetric conflict relation induces a symmetric conflict relation (on sets
of transitions) defined in the following way:

DEFINITION 5.25 (Conflict). LetN be a c-net. Theconflict relation# ⊆ 2T
fin associated toN is defined

as:

#{t0, t1, . . . , tn}
t0 ↗ t1 ↗ . . . ↗ tn ↗ t0

#(A ∪ {t ′}) t ≤ t ′

#(A ∪ {t}) ,

whereA is a finite subset ofT . As for AES’s, we use the infix notationt # t ′ for #{t, t ′}.
For instance, referring to Fig. 5, we have #{t1, t2, t3}, while #{ti , t j } does not hold for anyi, j ∈

{1, 2, 3}. Notice that, by definition, the binary conflict relation # is symmetric. Moreover in an occurrence
c-net # is irreflexive by the fourth condition in Definition 5.24.

7 This is the origin of the weak causality interpretation of↗ .
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Finally, observe that irreflexivity of the asymmetric conflict relation↗N in an occurrence c-netN
implies that the pre-set, the post-set, and the context of any transitiont in N are disjoint (any possible
intersection would lead tot ↗N t).

5.2. Concurrency and Reachability

As for ordinary occurrence nets, a set of placesM is called concurrent if there is a reachable marking
in which all the places ofM contain a token. Here, due to the presence of contexts some places that
a transition needs to be fired (contexts) can be concurrent with the places it produces. However, the
concurrency of a set of places can still be checked locally by looking only at the causes of such places
and thus can be expressed via a “syntactical” condition. This section introduces such a condition and
then shows that it correctly formalizes the intuitive idea of concurrency.

DEFINITION 5.26 (Concurrency Relation). LetN be an occurrence c-net. A set of placesM ⊆ S is
calledconcurrent, writtenconc(M), if

1. ∀s, s′ ∈ M. ¬(s< s′);
2. bMc is finite, wherebMc = ⋃{bsc | s ∈ M};
3. ↗bMc is acyclic (and thus well-founded, sincebMc is finite).

In particular, for each transitiont in an occurrence c-net the set of places consisting of its pre-set and
context is concurrent.

PROPOSITION5.1. For any transition t of an occurrence c-net, conc(•t + t
¯
).

Proof. Sinceb•t + tc̄ ∪ {t} = btc conditions (2) and (3) of Definition 5.26 are satisfied by the
definition of occurrence c-net. As for the first condition, suppose thats < s′ for s, s′ ∈ •t + t

¯
. Then

there is a transitiont ′ such thats ∈ •t ′ andt ′ < s′. Now, sincet ′ < s′ ands′ ∈ •t + t
¯
, we havet ′ < t

and, sinces ∈ •t + t
¯

ands ∈ •t ′, we have alsot ↗ t ′. Thereforet ′ < t ↗ t ′ is a ↗ -cycle in btc,
contradicting the definition of occurrence c-net. Thus, condition (1) is also satisfied.

The next two lemmata show that given a concurrent set of places, we can interpret it as the result of a
computation and perform a backward or forward step in such a computation, still obtaining a concurrent
set.

LEMMA 5.1 (Backward Steps Preserve Concurrency).Let N be an occurrence c-net and let M⊆ S
be a set of places. If conc(M) and t ∈ bMc is maximal with respect to( ↗bMc)+ then

1. ∃st ∈ S. st ∈ t• ∩ M ;

2. conc(M − t• + •t).

Proof. 1. Sincet ∈ bMc, there isst ∈ M andt ′ ∈ T such thatt ≤ t ′ andst ∈ t ′•. But recalling
that< implies ↗ , by using maximality oft , we can conclude thatt = t ′.

2. LetM ′ = M − t• + •t . ClearlybM ′c = bMc−{t} and thusbM ′c is finite and↗bM ′c is acyclic.
Moreover, we have to show there are no causally dependent (distinct) places inM ′. Sinceconc(M − t•),
by hypothesis, andconc(•t), by Proposition 5.2, the only problematic case could bes ∈ M − t• and
s′ ∈ •t . But

• if s< s′ then, by transitivity of<, we haves< st ;

• if s′ < s then there is a transitiont ′ such thats′ ∈ •t ′ andt ′ ≤ s. Sinces′ ∈ •t ∩ •t ′, we have
thatt ↗ t ′ ↗ t is a ↗ -cycle inbMc.

In both cases we reach a contradiction with the hypothesisconc(M).

LEMMA 5.2 (Forward Steps Preserve Concurrency).Let N be an occurrence c-net and let M⊆ S
be a set of places. If conc(M) and M [t〉 M ′ then conc(M ′).

Proof. The transitiont is enabled byM , i.e., •t + t
¯
⊆ M and thus¬(t ↗ t ′) for all t ′ ∈ bMc. In fact

let t ′ ∈ bMc, that is t ′< s′ for some s′ ∈ M . Clearly it cannot betÃ t ′; otherwise, if
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s ∈ •t ′ ∩ (•t ∪ t
¯
) ⊆ M thens < s′, contradicting the hypothesisconc(M). In the same way, ift < t ′

then given anys ∈ •t (which is included inM), we would haves< s′.
Therefore, sincebM ′c ⊆ bMc ∪ {t} (the strict inclusion holds whent• = ∅) and, by hypothesis,

↗bMc is acyclic, we can conclude that↗bM ′c is acyclic. Moreover, sincebMc is finite, alsobM ′c is
finite.

Finally, we have to show that there are no (distinct) causally dependent places inM ′. Sinceconc(M−•t)
andconc(t•) the only problematic case could bes ∈ M − •t ands′ ∈ t•. But

• if s< s′ thens< s′′ for somes′′ ∈ •t ∪ t ;

• if s′ < s then, fors′′ ∈ •t , by transitivity of<, s′′ < s.

In both cases we reach a contradiction with the hypothesisconc(M).

It is now quite easy to conclude that, as mentioned before, the concurrent sets of places of a c-net
indeed coincide with the (subsets of) reachable markings.

PROPOSITION5.2 (Concurrency and Reachability).Let N be an occurrence c-net and let M⊆ S be
a set of places. Then

conc(M) iff M ⊆ M ′ for some reachable marking M′.

Proof. (⇒) By definition of the concurrency relation,bMc is finite. Moreover↗bMc is acyclic and
therefore there is an enumerationt (1), . . . , t (k) of the transitions inbMc compatible with (↗bMc)+. Let
us show by induction onk = |bMc| that

m = M (0)
[
t (1)
〉
M (1)

[
t (2)
〉
M (2) . . .

[
t (k)
〉
M (k) ⊇ M .

(k = 0) In this case simplym ⊇ M and thusm = M (0) ⊇ M .

(k > 0) By construction,t (k) is maximal inbMc with respect to (↗bMc)+. Thus, by Lemma 5.1,
if we defineM ′′ = M − t (k)• + •t (k), we haveconc(M ′′) andbM ′′c = {t (1), . . . , t (k−1)}. Therefore, by
inductive hypothesis, there is a firing sequence

m
[
t (1)
〉
M (1) . . .

[
t (k−1)

〉
M (k−1) ⊇ M ′′. (3)

Now, by construction,•t (k) ⊆ M ′′. Moreover alsot (k) ⊆ M ′′. In fact, if s ∈ t (k) thens ∈ m or s ∈ t (h)•

for someh < k. Thus a token ins is generated in the firing sequence (3), and no transitiont (l ) can
consume this token, otherwiset (k) ↗ t (l ), contradicting the maximality oft (k). Finally, by definition of
occurrence c-net,•t (k) ∩ t (k) = ∅, being ↗ irreflexive. Thereforet (k) is enabled inM ′′ so that we can
extend the firing sequence (3) to

m
[
t (1)
〉
M (1) . . .

[
t (k−1)

〉
M (k−1)

[
t (k)
〉
M (k),

whereM (k) = M (k−1) − •t (k) + t (k)• ⊇ M ′′ − •t (k) + t (k)• = M .

(⇐) Let us suppose that there exists a firing sequence

m
[
t (1)
〉
M (1)

[
t (2)
〉
M (2) . . .

[
t (k)
〉
M (k) ⊇ M

and let us prove thatconc(M (k)) (and thusconc(M)). If (k = 0), thenM ⊆ m and clearlyconc(m). If
k > 0 then an inductive reasoning that uses Lemma 5.2 allows one to conclude.j

As an immediate corollary we obtain that each transition of an occurrence c-net is firable in some
computation of the net.

COROLLARY 5.1. For any transition t of an occurrence c-net N there is a reachable marking M of
N which enables t.

Proof. By Proposition 5.1,conc(•t + t
¯
) and thus, by Proposition 5.2, we can find a reachable

markingM of N, such thatM ⊇ •t + t
¯
, enablingt .
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5.3. Morphisms on Occurrence Contextual Nets

This section states some properties of c-net morphisms between occurrence c-nets that will be useful
in the following. We start with a characterization of such morphisms.

LEMMA 5.3 (Occurrence c-nets Morphisms).Let N0 and N1 be occurrence c-nets and let h: N0 → N1

be a morphism. Then hS is a relationand

• ∀s1 ∈ m1. ∃!s0 ∈ m0. hS(s0, s1);

• for each t0 ∈ T0 and t1 ∈ T1, if hT (t0) = t1 then
— ∀s1 ∈ •t1. ∃!s0 ∈ •t0. hS(s0, s1);
— ∀s1 ∈ t1. ∃!s0 ∈ t0. hS(s0, s1);
— ∀s1 ∈ t1•. ∃!s0 ∈ t0•. hS(s0, s1);

Moreover given any s0 ∈ S0, s1 ∈ S1, t1 ∈ T1:

• s1 ∈ m1 ∧ hS(s0, s1) ⇒ s0 ∈ m0;

• s1 ∈ t1• ∧ hS(s0, s1) ⇒ ∃!t0 ∈ T0. (s0 ∈ t0• ∧ hT (t0) = t1).

Proof (Sketch). The result is easily proved by using the structural properties of occurrence c-nets.
We treat just the first point. Lets1 ∈ m1. Since it must beµhS(m0) = m1, there existss0 ∈ m0 such
that hS(s0, s1). Suchs0 must be unique, since otherwise the initial marking ofN1 should be a proper
multiset, rather than a set, contradicting the definition of occurrence c-net.

As an easy consequence of the results in the previous section, c-net morphisms preserve the concur-
rency relation.

COROLLARY 5.2 (Morphisms Preserve Concurrency).Let N0 and N1 be occurrence c-nets and let
h : N0 → N1 be a morphism. Given M0 ⊆ S0, if conc(M0) thenµhS(M0) is a set and conc(µhS(M0)).

Proof. Let M0 ⊆ S0, with conc(M0). Then, by Proposition 5.2, there exists a firing sequence inN0:

m0
[
t (1)
〉
M (1) . . .

[
t (n)
〉
M (n) ⊇ M0.

By Proposition 4.1, morphisms preserve the token game and thus

m1 = µhS(m0)
[
hT
(
t (1)
)〉
µhS

(
M (1)

)
. . .
[
hT
(
t (n)
)〉
µhS

(
M (n)

) ⊇ µhS(M0).

is a firing sequence inN1. HenceµhS(M0) is a set and, by Proposition 5.2,conc(µhS(M0)).

Notice that the corollary implicitly states that morphisms are “injective” on concurrent sets of places, in
the sense that ifconc(M) ands 6= s′ are inM thenµhS(s) andµhS(s′) are sets, andµhS(s)∩µhS(s′) = ∅
(otherwiseµS(M) would be a proper multiset).

In the next theorem we show that, more generally, morphisms preserve the “amount of concurrency,”
namely they reflect causality and conflict, while asymmetric conflict is reflected or becomes conflict.
The fact that asymmetric conflict is not necessarily reflected is related to the fact that the asymmetric
conflict relation for an occurrence c-net does not satisfy the saturation condition required for AES’s
(see Definition 2.4).

THEOREM 5.1. Let N0 and N1 be occurrence c-nets and let h: N0 → N1 be a morphism. Then, for
all t0, t ′

0 ∈ T0 such that hT (t0) 6= ⊥ 6= hT (t ′
0)

1. bhT (t0)c ⊆ hT (bt0c);

2. (hT (t0) = hT (t ′
0)) ∧ (t0 6= t ′

0) ⇒ t0#0t ′
0;

3. hT (t0) ↗1hT (t ′
0) ⇒ (t0 ↗0t ′

0) ∨ (t0#0t ′
0);

4. #hT (A) ⇒ #A′, for some A′ ⊆ A.

Proof. 1. Let the symbol≺ denote the immediate causal dependency between transitions, namely
t ≺ t ′ if t < t ′ and there does not existt ′′ such thatt < t ′′ < t ′. The desired property easily follows
by observing that c-net morphisms reflect≺-chains, namely that ift (0)

1 ≺ t (1)
1 ≺ · · · ≺ t (n)

1 is a chain
of transitions inN1 such thatt (n)

1 = hT (t (n)
0 ), then there exists a chaint (0)

0 ≺ t (1)
0 ≺ · · · ≺ t (n)

0 in N0
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such thatt (i )
1 = hT (t (i )

0 ) for all i ∈ {0, . . . ,n}. This fact can be proved by induction onn, exploiting
Lemma 5.3.

2. Let hT (t0) = hT (t ′
0) and t0 6= t ′

0. Consider a chain of transitionst (0)
1 ≺ · · · ≺ t (k)

1 = hT (t0)
such that•t (0)

1 ⊆ m1 and t (i )
1

• ∩ •t (i +1)
1 6= ∅ for all i ∈ {0, . . . , k − 1} (the existence of such a finite

chain is an immediate consequence of the definition of occurrence c-net). Since, as observed in point
(1), morphisms reflects≺-chains, there are inT0 two ≺-chains of transitions,

t (0)
0 ≺ · · · ≺ t (k)

0 and t ′(0)
0 ≺ · · · ≺ t ′(k)

0 ,

such that,hT (t (i )
0 ) = hT (t ′(i )

0 ) = t (i )
1 , for all i ∈ {1, . . . , k} andt0 = t (k)

0 , t ′
0 = t ′(k)

0 .
Let j be the least index such thatt ( j )

0 6= t ′( j )
0 . If j = 0 (and thus•t ( j )

1 ⊆ m1) consider a generic
s1 ∈ •t (0)

1 . By definition of morphism there ares0 ∈ •t (0)
0 and s′

0 ∈ •t ′(0)
0 such thathS(s0, s1) and

hS(s′
0, s1). By Lemma 5.3, sinces1 ∈ m1, alsos0 ands′

0 are in the initial marking and thuss0 = s′
0. Hence

t (0)
0 ↗0 t ′(0)

0 ↗0 t (0)
0 and thus, by definition of #,t0 #0 t ′

0. If j > 0, then considerings1 ∈ t ( j −1)
1

• ∩ •t ( j )
1 ,

the same reasoning applies.

3. We distinguish two cases. IfhT (t0)Ã1 hT (t ′
0) then there is a places1 ∈ (hT (t0) ∪ •hT (t0)) ∩

•hT (t ′
0). Thus there ares0 ∈ (t0 ∪ •t0) such thathS(s0, s1) ands′

0 ∈ •t ′
0 such thathS(s′

0, s1). If s1 is in the
initial marking thens0 = s′

0 and thust0Ã1 t ′
0. Otherwises0 ands′

0 are in the post-sets of two transitions
t (0)
0 andt ′(0)

0 , which are mapped to the same transition inN1 (the transition which hass1 in its post-set).
By point (2),t (0)

0 andt ′(0)
0 are identical or in conflict: in the first cases0 = s′

0 and thust0Ã0 t ′
0, while in

the second caset0 #0 t ′
0.

If, instead,hT (t0) <1 hT (t ′
0), then, by point (1), there existst ′′

0 ∈ T0 such thatt ′′
0 <0 t ′

0 andhT (t ′′
0 ) =

hT (t0). It follows from point (2) that eithert ′′
0 = t0 and thust0 <0 t ′

0, or t ′′
0 #0 t0 and thust0 #0 t ′

0.

4. Recall that if #hT (A) thenbhT (A)c contains a cycle of asymmetric conflict. Now, by point (1),
bhT (A)c ⊆ hT (bAc) and thus, by point (3), it is easy to conclude the thesis.

6. UNFOLDING: FROM SEMI-WEIGHTED TO OCCURRENCE CONTEXTUAL NETS

This section shows how, given a semi-weighted c-netN, anunfoldingconstruction allows us to obtain
an occurrence c-netUa(N) that describes the behaviour ofN. As for ordinary nets, each transition in
Ua(N) represents a firing of a transition inN, and places inUa(N) represent occurrences of tokens in
the places ofN. Each item (place or transition) of the unfolding is mapped to the corresponding item
of the original net by a c-net morphismfN :Ua(N) → N, called the folding morphism. The unfolding
operation can be extended to a functorUa : SW-CN→ O-CN that is right adjoint to the inclusion functor
Ioc : O-CN → SW-CN and thus establishes a coreflection betweenSW-CN andO-CN.

We first introduce some technical notions. We say that a c-netN0 is asubnetof N1, written N0E N1,
if S0 ⊆ S1, T0 ⊆ T1 and the inclusion〈i T , i S〉 (with i T (t) = t for t ∈ T0, andi S(s, s′) = 1 if s = s′

and 0 otherwise, fors, s′ ∈ S0) is a c-net morphism. In words,N0E N1 if N0 coincides with an initial
segment ofN1. In the following it will be useful to consider the subnets of an occurrence c-net obtained
by truncating the original net at a given “causal depth,” where the notion of depth is defined in the
natural way.

DEFINITION 6.27 (Depth). LetN be an occurrence c-net. The functiondepth: S∪ T → N is defined
inductively as follows:

depth(s) = 0 for s ∈ m;
depth(t) = max{depth(s) | s ∈ •t ∪ t} + 1 for t ∈ T ;
depth(s) = depth(t) for s ∈ t•.

It is not difficult to prove thatdepthis a well-defined total function, since infinite descending chains of
causality are disallowed in occurrence c-nets. Moreover, given an occurrence c-netN, the net containing
only the items ofdepthless than or equal tok, denoted byN [k] , is a well-defined occurrence c-net and
it is a subnet ofN. The following simple result holds:
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PROPOSITION6.1. An occurrence c-net N is the(componentwise) union of its subnets N[k], of depth k.

The unfolding of a semi-weighted c-netN can be constructed inductively by starting from the initial
marking ofN, and then by adding, at each step, an instance of each transition ofN which is enabled by
(the image of) a concurrent subset of places in the partial unfolding currently generated. For technical
reasons we prefer to give an equivalent axiomatic definition.

DEFINITION 6.28 (Unfolding). LetN = 〈S, T, F,C,m〉 be a semi-weighted c-net. The unfolding
Ua(N) = 〈S′, T ′, F ′,C′,m′〉 of the netN and the folding morphismfN = 〈 fT , fS 〉 : Ua(N) → N are
the unique occurrence c-net and c-net morphism satisfying the following equations:

m′ = {〈∅, s〉 | s ∈ m}
S′ = m′ ∪ {〈t ′, s〉 | t ′ = 〈Mp,Mc, t〉 ∈ T ′ ∧ s ∈ t•}
T ′ = {〈Mp,Mc, t〉 | Mp,Mc ⊆ S′ ∧ Mp ∩ Mc = ∅ ∧ conc(Mp ∪ Mc) ∧

t ∈ T ∧ µ fS(Mp) = •t ∧ µ fS(Mc) = t}

F ′
pre(t

′, s′) iff t ′ = 〈Mp,Mc, t〉 ∧ s′ ∈ Mp(t ∈ T)

C′(t ′, s′) iff t ′ = 〈Mp,Mc, t〉 ∧ s′ ∈ Mc(t ∈ T)

F ′
post(t

′, s′) iff s′ = 〈t ′, s〉 (s ∈ S)

fT (t ′) = t iff t ′ = 〈Mp,Mc, t〉
fS(s′, s) iff s′ = 〈x, s〉 (x ∈ T ′ ∪ {∅}).

The existence of the unfolding can be proved by explicitly giving its inductive definition. Uniqueness
follows from the fact that each item in an occurrence c-net has a finite depth.

Places and transitions in the unfolding of a c-net represent, respectively, tokens and firing of transitions
in the original net. Each place in the unfolding is a pair recording the “history” of the token and the
corresponding place in the original net. Each transition is a triple recording the pre-set and context
used in the firing and the corresponding transition in the original net. A new place with empty history
〈∅, s〉 is generated for each places in the initial markingm of N (recall thatm is a set sinceN is semi-
weighted). Moreover a new transitiont ′ = 〈Mp,Mc, t〉 is inserted in the unfolding whenever we can
find a concurrent set of placesMp + Mc that corresponds, in the original net, to a marking that enablest
(Mp corresponds to the pre-set andMc to the context used byt). For each places in the post-set of such
a transitiont , a new place〈t ′, s〉 is generated, belonging to the post-set oft ′. The folding morphismf
maps each place (transition) of the unfolding to the corresponding place (transition) in the original net.
Figure 6 shows a c-netN and an initial part of its unfolding (formally, it is the subnet of the unfolding of
depth 3, namelyUa(N)[3]). The folding morphism is represented by labelling the items of the unfolding
with the names of the corresponding items ofN, enriched with a superscript. The figure also reports
the concrete identity of the items of the unfolding.

Occurrence c-nets are particular semi-weighted c-nets and thus we can consider the inclusion functor
Ioc : O-CN → SW-CN that acts as identity on objects and morphisms. We show now that the unfolding
of a c-netUa(N) and the folding morphismfN are cofree overN. ThereforeUa extends to a functor
that is right adjoint ofIoc and thus establishes a coreflection betweenSW-CN andO-CN.

THEOREM 6.1 (Coreflection betweenSW-CN andO-CN). Ioc a Ua.

Proof. Let N be a semi-weighted c-net, letUa(N) = 〈S′, T ′, F ′,C′,m′〉 be its unfolding, and
let fN : Ua(N) → N be the folding morphism as in Definition 6.28. We have to show that for any
occurrence c-netN1 and for any morphismg : N1 → N there exists a unique morphismh : N1 → Ua(N)
such that the following diagram commutes:
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FIG. 6. A c-net and (a part of) its unfolding.

Existence. We define a sequence of morphismsh[k] : N1
[k] → Ua(N) such that, for anyk,

h[k] ⊆ h[k+1] and fN ◦ h[k] = g|N1
[k] ,

then the morphismh we are looking for will beh = ⋃
k h[k] . We give an inductive definition:

(k = 0) The c-netN1
[0] consists only of the initial marking ofN1 with no transitions, i.e.,N1

[0] =
〈m1, ∅, ∅, ∅,m1〉. Thereforeh[0] has to be defined:

hT
[0] = ∅,

hS
[0] (s1, 〈∅, s〉) = gS(s1, s) for all s1 ∈ S1

[0] = m1 and s ∈ S.

(k → k + 1) The morphismh[k+1] extendsh[k] on items with depth equal tok + 1 as follows. Let
t1 ∈ T [k+1] with depth(t1) = k + 1. By definition of depth,depth(s) ≤ k for all s ∈ •t1 ∪ t1 and thus
h[k] is defined on the pre-set and on the context oft1. We must definehT on t1 andhS on its post-set.
Two cases arise:

• If gT (t1) = ⊥ then necessarilyhT
[k+1](t1) = ⊥ andhS

[k+1](s1, s′) = 0 for all s1 ∈ t1• and
s′ ∈ S′.
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• If gT (t1) = t then consider the sets

Mp = µhS
[k] (•t1) Mc = µhS

[k] (t1).

Since N1 is an occurrence c-net,•t1 ∩ t1 = ∅ and, by Proposition 5.2,conc(•t1 ∪ t1). Hence, by
Corollary 5.2,

Mp ∩ Mc = ∅ and conc(Mp ∪ Mc).

Moreover, by construction,fN ◦ h[k] = g|N1
[k] , and therefore

µ fS(Mp) = µ fS
(
µhS

[k] (•t1)
) = µgS(•t1) = •t ,

where the last passage is justified by the definition of c-net morphism, and in the same wayµ fS(Mc) = t
¯
.

Thus, by the definition of unfolding, there exists a transitiont ′ = 〈Mp,Mc, t〉 in T ′.
It is clear that, to obtain a well-defined morphism that makes the diagram commute, we must define

hT
[k+1](t1) = t ′

and, sinceµgS(t1•) = t•, for all s1 ∈ t1• ands ∈ t•

hS
[k+1](s1, 〈t ′, s〉) = gS(s1, s).

A routine check allows us to prove that, for eachk, h[k] is a well-defined morphism andfN ◦ h[k] =
g|N1

[k] .

Uniqueness. The morphismh is clearly unique since at each step we were forced to define it as
we did to ensure commutativity. Formally, leth′ : N1 → Ua(N) be a morphism such that the diagram
commutes, i.e.,fN ◦ h′ = g. Then, we show, that for allk

h′
|N1

[k] = h|N1
[k] .

We proceed by induction onk:

(k = 0) The c-netN1
[0] consists only of the initial marking ofN1 and thus we have:

h′
T

[0] = ∅ = hT
[0] ,

h′
S

[0] (s1, 〈∅, s〉) = gS(s1, s) = hS
[0] (s1, 〈∅, s〉), for all s1 ∈ S1

[0] = m1 and s ∈ S.

(k → k + 1) For all t1 ∈ T [k+1], with depth(t1) = k + 1 we distinguish two cases:

• If gT (t1) = ⊥ then necessarilyh′
T

[k+1](t1) = ⊥ andµhS
[k+1](t1•) = ∅. Thush′[k+1] coincides

with h[k+1] on t1 and its post-set.

• If gT (t1) = t then

h′
T

[k+1](t1) = t ′ = 〈Mp,Mc, t〉 ∈ T ′,

with Mp = •t ′ = µh′
S(•t1) and Mc = t ′ = µh′

S(t1). By inductive hypothesis, sincedepth(s1) ≤ k
for all s1 ∈ •t1 ∪ t1, we have thatµhS(•t1) = Mp andµhS(t1) = Mc. Therefore, by definition ofh,
hT (t1) = 〈Mp,Mc, t〉 = h′

T (t1).
Moreover, for alls1 ∈ t1• and for alls ∈ t•, again by reasoning on commutativity of the diagram,

h′
S(s1, 〈t ′, s〉) = gS(s1, s) = hS(s1, 〈t ′, s〉).

7. OCCURRENCE CONTEXTUAL NETS AND ASYMMETRIC EVENT STRUCTURES

This section shows that the semantics of semi-weighted c-nets given in terms of occurrence c-nets
can be abstracted to an event structure and to a domain semantics. First the existence of a coreflection
betweenAES andO-CN is proved, substantiating the claim according to which AES’s represent a
suitable model for giving event-based semantics to c-nets. Then the coreflection betweenAES and
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Dom, defined in Section 2, can be exploited to complete the chain of coreflections fromSW-CN
to Dom.

Given an occurrence c-net we can obtain a pre-AES by simply forgetting the places and remembering
the dependency relations that they induce between transitions, namely causality and asymmetric conflict.
The corresponding (saturated) AES has the same causal relation≤N , while asymmetric conflict is
given by the union of asymmetric conflict↗N and of the induced binary conflict #N . Furthermore
a morphism between occurrence c-nets naturally restricts to a morphism between the corresponding
AES’s.

DEFINITION 7.29 (From Occurrence c-nets to AES’s). LetEa : O-CN → AES be the functor defined
as:

• for each occurrence c-netN, if #N denotes the induced binary conflict inN:

Ea(N) = 〈T,≤N, ↗N ∪ #N〉;
• for each morphismh : N0 → N1:

Ea(h : N0 → N1) = hT .

Notice that the induced conflict relation #a in the AESEa(N) (see Definition 2.3) coincides with the
induced conflict relation in the netN (see Definition 5.25). Therefore in the following we will confuse
the two relations and simply write # to denote both of them.

PROPOSITION7.1 (Well-definedness).Ea is a well-defined functor.

Proof. Given any occurrence c-netN, by Definition 5.24 and the considerations on the saturation
of pre-AES’s following Definition 2.4, we immediately have thatEa(N) is an AES. Furthermore, if
h : N0 → N1 is a c-net morphism, then, by Theorem 5.1,Ea(h) = hT is an AES-morphism. FinallyEa

obviously preserves arrow composition and identities.

To go the other way around, from an AES we can obtain a canonical occurrence c-net via a free
construction that mimics Winskel’s. In the constructed c-net the events are used as transitions, and
for each set of events related in a certain way by causality and asymmetric conflict, a unique place is
generated that induces such kind of relations on the corresponding transitions.

DEFINITION 7.30 (From AES’s to Occurrence c-nets). LetG = 〈E,≤, ↗ 〉 be an AES. ThenNa(G)
is the netN = 〈S, T, F,C,m〉 defined as follows:

• m =
{
〈∅, A, B〉 | A, B ⊆ E, ∀a ∈ A. ∀b ∈ B. a ↗ b,

∀b, b′ ∈ B. b 6= b′ ⇒ b#b′

}
;

• S = m ∪

〈{e}, A, B〉 |
A, B ⊆ E, e ∈ E, ∀x ∈ A ∪ B. e< x,

∀a ∈ A. ∀b ∈ B. a ↗ b,

∀b, b′ ∈ B. b 6= b′ ⇒ b#b′

;

• T = E;

• F = 〈Fpre, Fpost〉, with
Fpre = {(e, s) | s = 〈x, A, B〉 ∈ S, e ∈ B},
Fpost = {(e, s) | s = 〈{e}, A, B〉 ∈ S};

• C = {(e, s) | s = 〈x, A, B〉 ∈ S, e ∈ A}.
As anticipated, the transitions ofNa(G) are simply the events ofG, while places are triples of the form

〈x, A, B〉, with x, A, B ⊆ E, and|x| ≤ 1. A place〈x, A, B〉 is a precondition for all the events inB and
a context for all the events inA. Moreover, ifx = {e}, such a place is a postcondition fore, otherwise if
x = ∅ the place belongs to the initial marking. Therefore each place gives rise to a conflict between each
pair of (distinct) events inB and to an asymmetric conflict between each pair of eventsa ∈ A andb ∈ B.
Figure 7 presents some examples of basic AES’s with the corresponding c-nets. The cases of an AES
with two events related, respectively, by causality, asymmetric conflict, and (immediate symmetric)



32 BALDAN, CORRADINI, AND MONTANARI

FIG. 7. Three simple AES’s and the corresponding occurrence c-nets produced by the functorNa.

conflict are considered. Pictorially, an asymmetric conflicte0 ↗ e1 is represented by a dotted arrow
from e0 to e1. Causality is represented, as usual, by plain arrows. In the first case the places of the net
are annotated with their concrete identity.

The next proposition relates the causality and asymmetric conflict relations of an AES with the
corresponding relations of the c-netNa(G). In particular, this will be useful in proving thatNa(G) is
indeed an occurrence c-net.

LEMMA 7.1. Let G = 〈E,≤, ↗ 〉 be anAESand letNa(G) be the c-net N= 〈S, T, F,C,m〉. Then
for all e, e′ ∈ E:

1. e< Ne′ iff e < e′;
2. e′Ã Ne′ iff e ↗ e′;
3. e ↗ Ne′ iff e ↗ e′.

Proof. 1. Let≺N denote the immediate causality relation inN. If e≺ N e′ then there exists a place
〈{e}, A, B〉 ∈ S with e′ ∈ A ∪ B and thus, by definition ofNa, e < e′. In contrast, ife < e′ then
〈{e}, ∅, {e′}〉 ∈ S and thuse ≺N e′. Since<N is the transitive closure of≺N and< is a transitive
relation we conclude the thesis.



UNFOLDING SEMANTICS OF CONTEXTUAL NETS 33

2. If eÃNe′ then there exists a place〈x, A, B〉 ∈ S with e ∈ A ∪ B ande′ ∈ B and thus either
e ↗ e′ or e#e′. But sinceG is an AES, the binary conflict is included in the asymmetric conflict and
thus, also in the second case,e ↗ e′. In contrast, ife ↗ e′ then〈∅, {e}, {e′}〉 ∈ Sand thuseÃNe′.

3. Easy consequence of points (1) and (2).

As an immediate corollary we have:

COROLLARY 7.1. Let G = 〈E,≤, ↗ 〉 be anAES. ThenNa(G) = N = 〈S, T, F,C,m〉 is an
occurrence c-net.

Proof. By Lemma 7.1 the causality relation≤N = ≤ and the asymmetric conflict↗N = ↗
inherits the necessary properties from those ofG.

Let G = 〈E,≤, ↗ 〉 be an AES. Fore ∈ E, we define the set ofconsequencesd{e}e as follows
(considering the singleton{e} instead ofe itself will later simplify the notation).

d{e}e = {e′ ∈ E | e< e′}.

This function is extended also to the empty set, byd∅e = E. We use the same notation for occurrence
c-nets, referring to the underlying AES.

The next technical lemma gives a property of morphisms between occurrence c-nets which will be
useful in the proof of the coreflection result.

LEMMA 7.2. Let N0 and N1 be occurrence c-nets and let h: N0 → N1 be a morphism. For all
s0 ∈ S0 and s1 ∈ S1, if hS(s0, s1) then

1. hT (•s0) = •s1;

2. s0
• = h−1

T (s1
•) ∩ d•s0e;

3. s0 = h−1
T (s1) ∩ d•s0e.

Proof. Let s0 ∈ S0 ands1 ∈ S1 such thathS(s0, s1).

1. If •s0 = ∅, i.e.,s0 ∈ m0 thens1 ∈ m1 and thus•s1 = ∅ = hT (•s0). Otherwise, let•s0 = {t0}.8
ThereforehT (t0) = t1 is defined (see the remark after Definition 4.20) ands1 ∈ t1•. Thus•s1 = {t1} =
hT (•s0).

2. Let t0 ∈ s0
•, i.e.,s0 ∈ •t0. SincehS(s0, s1), we have thathT (t0) = t1 is defined ands1 ∈ •t1.

Thust0 ∈ h−1
T (s1

•) ∩ d•s0e.
For the converse inclusion, lett0 ∈ h−1

T (s1
•)∩d•s0e. Thens1 ∈ •hT (t0) and thus there iss′

0 ∈ •t0 such
thathS(s′

0, s1). Now, reasoning as in Theorem 5.3.(2), we conclude thats′
0 ands0 necessarily coincide,

otherwise they would be in the post-set of conflicting transitions and thus, sincet0 ∈ d•s0e, we would
havet0#t0.

3. Analogous to (2).

Recall that, by Lemma 7.1, for any AESG = 〈E,≤, ↗ 〉 the causality and asymmetric conflict
relations inNa(G) coincide with≤ and ↗ . HenceEa(Na(G)) = 〈E,≤, ↗ ′〉, with ↗ ′ = ↗ ∪ # =
↗ , where the last equality is justified by the fact that in an AES #⊆ ↗ . HenceEa ◦Na is the identity
on objects.

We next prove thatNa extends to a functor fromAES to O-CN, which is left adjoint toEa (with unit
the identityidG). More precisely they establish a coreflection betweenAES andO-CN.

THEOREM 7.1 (Coreflection betweenO-CN andAES). Na a Ea.

Proof. Let G = 〈E,≤, ↗ 〉 be an AES and letNa(G) = 〈S, T, F,C,m〉 be as in Definition 7.30.
We have to show that for any occurrence c-netN0 and for any morphismg : G → Ea(N0) there exists a

8 There is a unique transition generatings0, sinceN0 is an occurrence c-net.
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unique morphismh : Na(G) → N0, such that the following diagram commutes:

The behaviour ofh on transitions is determined immediately byg:

hT = g.

Therefore we only have to show that a multirelationhS : S ↔ S0 such that〈hT , hS〉 is a c-net morphism
exists and it is uniquely determined byhT .

Existence. Let us definehS in such a way it satisfies the conditions of Lemma 7.2, specialized to
the netNa(G); that is, for alls = 〈x, A, B〉 ∈ Sands0 ∈ S0:

hS(s, s0) iff (( x = ∅ ∧ s0 ∈ m0) ∨ (x = {t} ∧ s0 ∈ hT (t)•))
∧ B = h−1

T (s0
•) ∩ dxe

∧ A = h−1
T (s0) ∩ dxe.

To prove that the pairh = 〈hT , hS〉 is indeed a morphism, let us verify the conditions on the preservation
of the initial marking and of the pre-set, post-set, and context of transitions.

First observe thatµhS(m) = m0. In fact, if s = 〈x, A, B〉 ∈ m andhS(s, s0) thenx = ∅ and thus, by
definition ofhS, s0 ∈ m0. In contrast, lets0 ∈ m0 and let

A = h−1
T (s0) and B = h−1

T (s0
•).

Sincet0 # t ′
0 for all t0, t ′

0 ∈ s0
• and t0 ↗ t ′

0 for all t0 ∈ s0, t ′
0 ∈ s0

•, by definition of AES-morphism,
t # t ′ for all t, t ′ ∈ B andt ↗ t ′ for all t ∈ A andt ′ ∈ B. Hence there is a places = 〈∅, A, B〉 ∈ m and
hS(s, s0).

Now, let t ∈ T be any transition, such thathT (t) is defined. Then

• µhS(•t) = •hT (t).
In fact, lets = 〈x, A, B〉 ∈ •t , that ist ∈ B, and lethS(s, s0). Then, by definition ofhS, hT (t) ∈ s0

•, or
equivalentlys0 ∈ •hT (t). For the converse inclusion, lets0 ∈ •hT (t) and letx = h−1

T (•s0) ∩ btc. Since
N0 is an occurrence c-net| •s0 |≤ 1 and thus| x |≤ 1 (more preciselyx = ∅ if s0 ∈ m0, otherwise,x
contains the uniquet ′ ≤ t , such thathT (t ′) = t0, with •s0 = {t0}). Consider

A = h−1
T (s0) ∩ dxe and B = h−1

T (s0
•) ∩ dxe.

Sincet0 # t ′
0 for all t0, t ′

0 ∈ s0
• andt0 ↗ t ′

0 for all t0 ∈ s0, t ′
0 ∈ s0

•, as in the previous case, we have that
s = 〈x, A, B〉 ∈ S is a place such thathS(s, s0). Clearlyt ∈ dxe, thust ∈ B and therefores ∈ •t and
s0 ∈ µhS(•t).

• µhS(t) = hT (t).
Analogous to the previous case.

• µhS(t•) = hT (t)•.
If s = 〈x, A, B〉 ∈ t•, that isx = {t}, andhS(s, s0), then, by definition ofhS, we haves0 ∈ hT (t)•. For
the converse, lets0 ∈ hT (t)•. As above, consider

A = h−1
T (s0) ∩ d{t}e and B = h−1

T (s0
•) ∩ d{t}e.

Thens = 〈{t}, A, B〉 ∈ t• and, by definition ofhS, we havehS(s, s0).

Finally, if hT (t) is not defined, then the definition ofhS implies thatµhS(•t) = µhS(t) = µhS(t•) = ∅.
This concludes the proof thath is a c-net morphism.
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Uniqueness. The multirelationhS such that〈hT , hS〉 is a c-net morphism is unique essentially
because it is completely determined by the conditions of Lemma 7.2. More precisely, ifh′

S : S↔ S0 is
another multirelation such that〈hT , h′

S〉 is a morphism andh′
S(s, s0), then necessarily by Lemma 7.2,

hS(s, s0). Conversely, lethS(s, s0), with s = 〈x, A, B〉. Then, ifx = ∅, by properties of net morphisms,
s0 ∈ m0. Therefore there must bes′ ∈ m such thath′

S(s′, s0). But, by Lemma 7.2 and the definition
of hS, s′ = h−1

T (s0) = A and similarlys′• = h−1
T (s0

•) = B. Therefores′ = 〈∅, A, B〉 = s and thus
h′

S(s, s0). An analogous reasoning allows us to conclude whenx = {t}.
We know by the previous theorem thatNa extends to a functor fromAES to O-CN. The behaviour

ofNa on morphisms is suggested by the proof of the theorem. Leth : G0 → G1 be an AES-morphism
and letNa(Gi ) = 〈Si , Ti , Fi ,Ci ,mi 〉 for i ∈ {0, 1}. ThenNa(h) = 〈h, hS〉, with hS defined as follows:

• for all places〈∅, A1, B1〉
hS(〈∅, h−1(A1), h−1(B1)〉, 〈∅, A1, B1〉),

• for all e0 ∈ T0 such thathT (e0) = e1 and for all places〈{e1}, A1, B1〉
hS(〈{e0}, h−1(A1) ∩ de0e, h−1(B1) ∩ de0e〉, 〈{e1}, A1, B1〉).

As mentioned before, once we have an AES semantics for contextual nets, the coreflection between
AES anDom (Theorem 3.2) immediately provides a domain semantics. Then, the equivalence between
PESandDom (see Section 3.1) can be used to “translate” the domain semantics of semi-weighted c-nets
into a prime event structure semantics. This completes the following chain of coreflections between
SW-CN andPES:

Figure 8 shows (a part of) the AES, the domain, and the PES associated to the c-net of Fig. 6. Although
(for the sake of readability) not explicitly drawn, in the PES all the “copies” oft4, namely the eventst x

4 ,
are in conflict.

We remark that the PES semantics is obtained from the AES semantics by introducing an event for
each possible different history of events in the AES, as discussed in the Introduction. For instance, the
PES semantics of the netN3 in Fig. 9 is given byP, wheree′

1 represents the firing of the transitiont1 by
itself, with an empty history, ande′′

1 the firing of the transitiont1 aftert0. Obviously the AES semantics
is finer than the PES semantics, or, in other words, the translation fromAES to PEScauses a loss of
information. For example, the netsN3 andN ′

3 in Fig. 9 have the same PES semantics, but different AES
semantics.

8. RELATION WITH WINSKEL’S SEMANTICS FOR ORDINARY NETS

In this section we study the relationship between the proposed semantics for semi-weighted contextual
nets and the classical Winskel’s semantics for safe ordinary nets (generalized to semi-weighted ordinary
nets in [31]). Then, we formally compare the expressiveness of semi-weighted and safe contextual nets
by resorting to their prime event structure semantics.

Let us start by considering the diagram in Fig. 10. The top row represents the chain of coreflections
defined in [14, 31], leading from the categorySW-Nof semi-weighted ordinary nets to the categoryDom,
through the categoryO-N of occurrence nets. In the mentioned paper it is shown that such coreflections
restrict, for safe nets, to Winskel’s coreflections. The bottom row, instead, summarizes our coreflective
semantics for contextual nets. The vertical functorsInc : SW-N → SW-CN andInco : O-N → O-CN
are inclusions, whileJ : PES→ AES is the full embedding functor introduced in Proposition 2.1. We
want to show that, as suggested by some previous informal considerations, each of our coreflections
cuts down to Winskel’s coreflection between the corresponding subcategories.

Let us first concentrate on square (1). It is easy to see that the unfolding functorUa restricts toU in
the sense thatInco◦ U = Ua ◦ Inc. Similarly, the inclusionIoc restricts toIo; i.e.,Inc ◦ Io = Ioc ◦ Inco.
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FIG. 8. The (a) AES, (b) domain, and (c) PES for the c-netN of Fig. 6.

FIG. 9. AES semantics is finer than PES semantics.
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.

FIG. 10. Relating the semantics of ordinary and contextual nets.

Since the inclusionsInc andInco are full embeddings, by general categorical arguments, from the fact
thatUa ` Ioc is a coreflection we immediately conclude thatU ` Io and that such adjunction is a
coreflection as well. A similar reasoning applies to the “degenerate” square (3) (we can imagine its right
edge to be the identity functor onDom), just observing thatJ ◦ P = Pa andLa ◦ J = L.

When considering square (2) instead, the correspondence is not completely straightforward. The
vertical “edges” of the square, namelyInco andJ , are still full embedding functors andJ ◦ E =
Ea ◦ Inco, but the other commutativity property, i.e.,Inco ◦ N = Na ◦J fails to hold. In fact, given
a PESP, the netInco(N (P)) is obtained by saturatingP with places acting as preconditions and
postconditions for the events inP, while in Na(J (P)) also context places are added. In this case
we resort to the following categorical result which generalizes the observation used for the other two
squares.

LEMMA 8.1. LetA i andBi for i ∈ {0, 1} be categories, let Fi : A i → Bi , Gi : Bi → A i be functors,
and let IA : A0 → A1, I B : B0 → B1 be full embedding functors(see Fig.11).Suppose that

1. F1 ` G1;

2. F1 ◦ I A = I B ◦ F0;

3. there is a natural transformationα : G1 ◦ I B → I A ◦ G0, such that for all objects A inA0 and
B in B0, each arrow g: G1(I B(B)) → I A(A) uniquely factorizes throughαB, i.e., there exists a unique
f : I A(G0(B)) → I A(A) such that g= f ◦ αB

Then F0 ` G0. Furthermore if the units of F1 ` G1 and F1 ◦ α are natural isomorphisms then so is the
unit of F0 ` G0 as well.

Proof (Sketch). Letη1 : 1 → F1 ◦ G1 be the unit of the adjunctionF1 ` G1. Given an objectB in
B0, consider the arrowF1(αB) ◦ η1

I B(B) : I B(B) → I B(F0(G0(B)))

IB(B)
η1

I B (B)
−−−−−−−→ F1(G1(I B(B)))

F1(αB)−−−−−−−→ F1(I A(G0(B))) = I B(F0(G0(B))).

Then one can prove thatF0 ` G0 with unit η0
B = I −1

B (F1(αB) ◦ η1
I B(B)).

Coming back to square (2), observe that there is a natural transformationα : Na ◦ J → Inco ◦N ,
which essentially forgets the contexts. The component at a PESP = 〈E,≤, #〉 of α is given by
αP = 〈idE, αPS〉 : Na(J (P)) → Inco(N (P)), whereαPS is a partial function defined, for any places
in the contextual netNa(J (P)), as follows:

αPS(s) =
{⊥ if s is a context place for some transitiont

s otherwise.

Furthermore, given any PESP and (ordinary) occurrence netN, each arrowg : Na(J (P)) → Inco(N)
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FIG. 11. Restriction of an adjunction.

can be factorized uniquely asf ◦ αP, for f : Inco(N (P)) → Inco(N):

In fact, since the transitions inInco(N) have an empty context, necessarilyg must map the context
places inNa(J (P)) to the empty multiset, and thusf is uniquely determined as the restriction ofg
to Inco(N (P)). Finally, it is easy to verify thatEa ◦ α is a natural isomorphism. Hence we can apply
Lemma 8.1 to conclude that our coreflectionEa ` Na induces the coreflectionE ` N .

Let us now comment on the expressiveness of semi-weighted and safe contextual nets by exploiting
the proposed event structure semantics as a formal means to compare the two classes of nets. As
discussed in the Introduction, in the case of ordinary nets the safeness condition prevents one to model
an unbounded degree of concurrency. Formally, in the PES semantics of a finite safe netN the cardinality
of a concurrent set of events is bounded by the number of transitions inN; the same applies to finite
safecontextualnets as well. Instead, observe that the PES semantics of the semi-weighted c-netN4 of
Fig. 12 includes sets of concurrent events of unbounded cardinality, namely all finite subsets off −1

N4
(t1),

where fN4 : Ua(N4) → N4 is the folding morphism. Even more interestingly, let us first recall that, as
proved in [20], any finite safe contextual net can be translated into a finite safe ordinary net, having the
same process semantics and thus, a fortiori, the same PES semantics. Instead there is no finite general
(ordinary) P/T net having the same PES semantics asN4. In fact, in the PES associated to any P/T
net, the number of events which are directly caused by a single evente is bounded by the number of
tokens produced by the transition corresponding toe. Instead, in the PES associated toN4 the event
corresponding tot2 is an immediate cause of infinitely many other events (all the events corresponding
to transitiont1).

FIG. 12. A semi-weighted contextual netN4 and (a part of) its unfolding where a transition occurrence directly causes
infinitely many other transition occurrences.
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9. PROCESSES AND UNFOLDING

The notion of occurrence c-net introduced in Section 5 naturally suggests a notion of nondeterministic
process for c-nets, which can be defined as an occurrence c-net with a morphism (mapping places into
places and total on transitions) to the original net. Deterministic c-net processes can then be defined
as particular nondeterministic processes such that the underlying occurrence c-net satisfies a further
conflict-freeness requirement. Interestingly, the resulting notion of deterministic process turns out to
coincide with those proposed by other authors, such as [8, 26, 29, 39]. In her Ph.D. thesis [3], Busi
introduces processes for nets with read and inhibitor arcs, which, restricted to the subclass of nets without
inhibitor arcs, still coincide with ours. Furthermore it is worth recalling that the stress on the necessity
of using an additional relation of “weak-causality” to be able to fully express the causal structure of net
computations in the presence of read or inhibitor arcs can be found already in [11, 37].9

The papers [26, 29, 39] extend the theory of concatenable processes of ordinary nets [4] to c-nets by
showing that the concatenable processes of a c-netN form the arrows of a symmetric monoidal category
CP[N], where objects are the elements of the free commutative monoid over the set of places (multisets
of places). In particular, in [29] a purely algebraic characterization of such a category is given.

Since the categoryCP[N] of concatenable processes of a netN provides a computational model for
N, expressing its operational behaviour, we are naturally lead to compare such semantics with the one
based on the unfolding, proposed in our paper. In this section, relying on the notion of concatenable c-net
process and exploiting the chain of coreflections fromSW-CN toDom, we establish a close relationship
between process and unfolding semantics for c-nets. More precisely, we generalize to c-nets (in the
semi-weighted case) a result proved in [9] for ordinary nets, stating that the domain associated to a semi-
weighted netN (in our caseLa(Ea(Ua(N)))) coincides with the completion of the preorder obtained
as the comma category ofCP[N] under the initial marking. Roughly speaking, the result says that the
domain obtained via the unfolding of a c-net can be equivalently described as the collection of the
deterministic processes of the net, ordered by prefix.

9.1. Contextual Net Processes

A process of a c-netN can be naturally defined as an occurrence c-netNπ , together with a morphism
π to the original net. In fact, since morphisms preserve the token game,π maps computations ofNπ
into computations ofN in such a way that the process can be seen as a representative of a set of possible
computations ofN. The occurrence c-netNπ makes explicit the causal structure of such computations
since each transition is fired at most once and each place is filled with at most one token during each
computation. In this way (as it happens in the unfolding) transitions and places ofNπ can be thought
of, respectively, as firing of transitions and tokens in places of the original net. Actually, to allow for
such an interpretation, some further restrictions have to be imposed on the morphismπ , namely it must
map places into places (rather than into multisets of places) and it must be total on transitions.

Besides “marked processes,” representing computations of the net starting from its initial marking, we
will introduce also “unmarked processes,” representing computations starting from a generic marking.
This is needed to be able to define a meaningful notion of concatenation between processes.

DEFINITION 9.31 (Process). Amarked processof a c-net N = 〈S, T, F,C,m〉 is a mapping
π : Nπ → N, whereNπ is an occurrence c-net andπ is a strongc-net morphism, namely a c-net
morphism such thatπT is total andπS maps places into places. The process is calleddiscreteif Nπ has
no transitions.

An unmarked process ofN is defined in the same way, where the mappingπ is an “unmarked
morphism,” namelyπ is not required to preserve the initial marking (it satisfies all conditions of
Definition 4.20, but (1)).

Equivalently, if we denote byCN∗ the subcategory ofCN where the arrows arestrong c-net
morphisms, the processes ofN can be seen as objects of the comma category (O-CN ↓ N) in

9 A different notion of enabling allowing for the simultaneous firing of weakly dependent transitions is used in [11], making
difficult a complete direct comparison. For the same reason, although “syntactically” the processes of [8] coincide with ours, they
are intended to represent the same firing sequences, but different step sequences.



40 BALDAN, CORRADINI, AND MONTANARI

CN∗.10 This gives also the (obvious) notion of isomorphism between processes, which is an isomorphism
between the underlying occurrence nets “consistent” with the mappings to the original net. Analogous
definitions can be given also for the unmarked processes of a netN. It is worth remarking that if we
want each truly concurrent computation of the netN to be represented by at most one configuration of
the nondeterministic process, an additional constraint must be imposed onπ , requiring that•t1 = •t2,
t1 = t2, andπ (t1) = π (t2) impliest1 = t2, as in [5]. However, the two notions of process collapse when
we restrict to deterministic processes which are the focus of this section.

A deterministic process represents a set of computations which differ only for the order in which
independent transitions are fired. In our setting a deterministic process is thus defined as a process such
that, in the underlying occurrence net, the transitive closure of asymmetric conflict is a finitary partial
order, in such a way that all transitions can be fired in a single computation of the net. Deterministic
occurrence c-nets will be always denoted byO, possibly with subscripts.

DEFINITION 9.32 (Deterministic Occurrence c-Net). An occurrence c-netO is calleddeterministic
if the asymmetric conflict↗O is acyclic and well founded.

Equivalently, one could have asked the transitive closure of the asymmetric conflict relation (↗O)∗

to be a partial order, such that for each transitiont in O, the set{t ′ | t ′( ↗O)∗t} is finite. Alternatively,
it can be easily seen that a finite occurrence c-net is deterministic if and only if the corresponding AES
is conflict free.

We denote by min(O) and max(O) the sets of minimal and maximal places ofO with respect to the
partial order≤O.

DEFINITION 9.33 (Deterministic Process). A (marked or unmarked) processπ is calleddeterministic
if the occurrence c-netOπ is deterministic. The process isfinite if the set of transitions inOπ is finite.
In this case, we denote by min(π ) and max(π ) the sets min(Oπ ) and max(Oπ ), respectively. Moreover
we denote by•π andπ• the multisetsµπS(min(π )) andµπS(max(π )), called respectively thesource
and thetargetof π .

Clearly, in the case of a marked processπ of a c-netN, the marking•π coincides with the initial
marking ofN.

9.2. Concatenable Processes

As in [29, 39] a notion of concatenable process for contextual nets, endowed with an operation of
sequential (and parallel) composition, can be easily defined, generalizing the concatenable processes
of [4]. Obviously, a meaningful operation of sequential composition can be defined only on the unmarked
processes of a c-net. In order to properly define such an operation we need to impose a suitable ordering
over the places in min(π ) and max(π ) for each processπ . Such ordering allows us to distinguish among
“interface” places ofOπ which are mapped to the same place of the original net, a capability which is
essential to make sequential composition consistent with the causal dependencies.

DEFINITION 9.34. LetA and B be sets and letf : A → B be a function. Anf -indexed ordering
is a familyα = {αb | b ∈ B} of bijectionsαb : f −1(b) → [| f −1(b)|], where [i ] denotes the subset
{1, . . . , i } of N , and f −1(b) = {a ∈ A | f (a) = b}.

The f -indexed orderingα will be often identified with the function fromA to N that it naturally
induces (formally defined as

⋃
b∈B αb).

DEFINITION 9.35 (Concatenable Process). Aconcatenable processof a c-netN is a triple δ =
〈µ, π, ν〉, where

• π is a finite deterministic unmarked process ofN;

• µ is π -indexed ordering of min(π );

• ν is π -indexed ordering of max(π ).

10 Recall that given a categoryC and an objectx of C, thecomma category of objects (ofC) over x, denoted (C ↓ x), has
arrows f : y → x in C as objects. Moreover, givenf : y → x andg : z → x, an arrowk : f → g in (C ↓ x) is an arrow
k : y → z in C such thatf = g ◦ k. Symmetrically, thecomma category of objects (ofC) under x, denoted (x ↓ C), has arrows
f : x → y in C as objects. Furthermore, givenf : x → y andg : x → z, an arrowk : f → g in (x ↓ C) is an arrowk : y → z
in C such thatk ◦ f = g.
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Two concatenable processesδ1 = 〈µ1, π1, ν1〉 andδ2 = 〈µ2, π2, ν2〉 of a c-netN are isomorphic
if there exists an isomorphism of processesf : π1 → π2, consistent with the decorations, i.e., such
thatµ2( fS(s1)) = µ1(s1) for eachs1 ∈ min(π1) andν2( fS(s1)) = ν1(s1) for eachs1 ∈ max(π1). An
isomorphism class of processes is called(abstract) concatenable processand denoted by [δ], whereδ
is a member of that class. In the following we will often omit the word “abstract” and writeδ to denote
the corresponding equivalence class.

The operation of sequential composition on concatenable processes is defined in the natural way.
Given two concatenable processes〈µ1, π1, ν1〉 and〈µ2, π2, ν2〉 such thatπ1

• = •π2 their concatenation
is defined as the process obtained by gluing the maximal places ofπ1 and the minimal places ofπ2

according to the ordering of such places.

DEFINITION 9.36 (Sequential Composition). Letδ1 = 〈µ1, π1, ν1〉 and δ2 = 〈µ2, π2, ν2〉 be two
concatenable processes of a c-netN such thatπ1

• = •π2. SupposeT1 ∩ T2 = ∅ and S1 ∩ S2 =
max(π1) = min(π2), with π1(s) = π2(s) andν1(s) = µ2(s) for eachs ∈ S1 ∩ S2. In wordsδ1 and
δ2 overlap only on max(π1) = min(π2), and on such places the labelling on the original net and the
ordering coincide. Then theirconcatenationδ1; δ2 is the concatenable processδ = 〈µ1, π, ν2〉, where
the processπ is the (componentwise) union ofπ1 andπ2.

It is easy to see that concatenation induces a well-defined operation of sequential composition between
abstract processes. In particular, if [δ1] and [δ2] are abstract concatenable processes such thatδ1

• = •δ2

then we can always findδ′
2 ∈ [δ2] such thatδ1; δ′

2 is defined. Moreover the result of the composition
seen at abstract level, namely [δ1; δ′

2], does not depend on the particular choice of the representatives.

DEFINITION 9.37 (Category of Concatenable Processes). LetN be a c-net. Thecategory of (abstract)
concatenable processesof N, denoted byCP[N], is defined as follows. Objects are multisets of places
of N, namely elements ofµS. Each (abstract) concatenable process [〈µ, π, ν〉] of N is an arrow from
•π to π•.

One could also define a tensor operation⊗, modeling parallel composition of processes, making the
categoryCP[N] a symmetric monoidal category. Since such an operation is not relevant for our present
aim, we refer the interested reader to [29, 39].

9.3. Relating Processes and Unfolding

Let N = 〈S, T, F,C,m〉 be a c-net and consider the comma category (m ↓ CP[N]). The objects of
such a category are concatenable processes ofN starting from the initial marking. An arrow exists from
a processδ1 to δ2 if the second one can be obtained by concatenating the first one with a third process
δ. This can be interpreted as a kind of prefix ordering.

LEMMA 9.1. For any c-net N= 〈S, T, F,C,m〉 the comma category(m ↓ CP[N]) is a preorder.

Proof. Let δi : m → Mi (i ∈ {1, 2}) be two objects in (m ↓ CP[N]), and suppose there are two
arrowsδ′, δ′′ : δ1 → δ2. By definition of comma categoryδ1; δ′ = δ1; δ′′ = δ2, which, by definition of
sequential composition, easily impliesδ′ = δ′′. j

In the following the preorder relation over (m ↓ CP[N]) (induced by sequential composition) will
be denoted by.N or simply by., when the netN is clear from the context. Therefore we writeδ1. δ2

if there existsδ such thatδ1; δ = δ2.
We provide an alternative characterization of the preorder relation. N which will be useful in the

following. It essentially formalizes the intuitive idea that the preorder on (m ↓ CP[N]) is a generalization
of the prefix relation. First, we need to introduce the notion of left-injection for processes.

DEFINITION 9.38 (Left Injection). Letδi : m → Mi (i ∈ {1, 2}) be two objects in (m ↓ CP[N]), with
δi = 〈µi , πi , νi 〉. A left injectionι : δ1 → δ2 is a morphism of marked processesι : π1 → π2, such that

1. ι is consistent with the indexing of minimal places, namelyµ1(s) = µ2(ι(s)) for all s ∈
min(π1);

2. ι is “rigid” on transitions, namely fort ′
2 in Oπ2 andt1 in Oπ1, if t ′

2 ↗ ι(t1) thent ′
2 = ι(t ′

1) for
somet ′

1 in Oπ1.
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The name “injection” is justified by the fact that a morphismιbetween marked deterministic processes
(being a morphism between the underlying deterministic occurrence c-nets) is injective on places and
transitions, as it can be shown easily by using the properties of (occurrence) c-nets morphisms proved in
Section 5. The word “left” is instead related to the requirement of consistency with the decoration of the
minimal items. Finally, the rigidity of the morphism ensures thatδ2 does not extendδ1 with transitions
inhibited inδ1.

LEMMA 9.2. Let δi : m → Mi (i ∈ {1, 2}) be two objects in(m ↓ CP[N]), with δi = 〈µi , πi , νi 〉.
Then

δ1 . δ2 iff there exists a left injectionι : δ1 → δ2.

Proof. (⇒) Letδ1 . δ2, namelyδ2 = δ1; δ for some processδ = 〈µ, π, ν〉. Without loss of generality,
we can imagine thatπ2 is obtained as the componentwise union ofπ1 andπ and this immediately gives
a morphism of marked processes (the inclusion)ι : π1 → π2, consistent with the indexing of minimal
places. To conclude it remains only to show thatι is rigid. Suppose thatt ′

2 ↗ ι(t1) for some transitions
t1 in Oπ1 andt ′

2 in Oπ2, and thus, by Definition 5.23, eithert ′
2Ãι(t1) or t ′

2 < ι(t1). To conclude thatι is
rigid we must show that in both casest ′

2 is in Oπ1.

• If t ′
2Ãι(t1), since the processπ2 is deterministic,t ′

2 andι(t1) cannot be in conflict and thus it must
bet ′

2 ∩ •ι(t1) 6= ∅. Sincet ′
2 uses as context a place which is not maximal inOπ1, necessarilyt ′

2 is in Oπ1,
otherwise it could not be added by concatenatingπ to π1.

• If t ′
2 < ι(t1) then we can find a transitiont ′

3 in Oπ2 such thatt ′
2 < t ′

3 andt ′
3
• ∩ (•ι(t1) ∪ ι(t1)). As

above,t ′
3 must be inOπ1 since it uses as postcondition a place inOπ1. An inductive reasoning based on

this argument shows that alsot ′
2 is in Oπ1.

(⇐) Let ι : δ1 → δ2 be a left injection. We can suppose without loss of generality thatOπ1 is a subnet
of Oπ2, in such a way thatι is the inclusion andµ1 = µ2. Let Oπ be the net (Oπ2\Oπ1) ∪ max(Oπ1),
where difference and union are defined componentwise. More preciselyOπ = 〈S, T, F,C〉, with:

• S = (S2 \ S1) ∪ max(π1)

• T = T2 \ T1

• the relationsF andC are the restrictions ofF2 andC2 to T .

It is easy to see thatOπ is a well-defined occurrence c-net and min(Oπ ) = max(Oπ1). In particular, the
fact thatF is well defined, namely that ift ∈ T then•t, t• ⊆ S, immediately derives from the fact that
the inclusionι is a morphism of deterministic occurrence c-nets. On the other hand the well-definedness
of C is related to the fact that the injection is rigid. In fact, lets ∈ t for t ∈ T and suppose thats 6∈ S.
Therefores ∈ •t1, for somet1 ∈ T1 and thust ↗ t1, which, by rigidity, impliest ∈ T1, contradicting
t ∈ T .

Therefore, if we denote byδ the concatenable process〈ν1, π, ν2〉, thenδ1; δ = δ2, and thusδ1.
δ2. j

We can now show that the ideal completion of the preorder (m ↓ CP[N]) is isomorphic to the domain
obtained from the unfolding of the netN, namelyLa(Ea(Ua(N))). Besides exploiting the characterization
of the preorder relation on (m ↓ CP[N]) given above, the result strongly relies on the description of the
unfolding construction as chain of adjunctions.

First, it is worth recalling some definitions and results on the ideal completion of (pre)orders.

DEFINITION 9.39 (Ideal). LetP be a preorder. Anidealof P is a subsetS ⊆ P, directed and downward
closed (namelyS = ⋃{↓x | x ∈ S}). The set of ideals ofP, ordered by subset inclusion, is denoted
by Idl(P).

Given a preorderP, the partial orderIdl(P) is an algebraic CPO, with compact elementsK(Idl(P)) =
{↓ p | p ∈ P}. MoreoverIdl(P) ' Idl(P/≡), whereP/≡ is the partial order induced by the preorder
P. Finally, recall that ifD is an algebraic CPO, thenIdl(K(D)) ' D.

LEMMA 9.3. Let P1 and P2 be preorders and let f: P1 → P2 be a surjective function such that
p1 v p′

1 iff f (p1) v f (p′
1). Then the function f∗ : Idl(P1) → Idl(P2), defined by f∗(I ) = { f (x) | x ∈

I }, for I ∈ Idl(P1), is an isomorphism of partial orders.
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Proof. The function f ∗ is surjective since for every idealI2 ∈ Idl(P2) it can be easily proved that
f −1(I2) is an ideal andf ∗( f −1(I2)) = I2 by surjectivity of f . Moreover, notice that ifI1, I ′

1 ∈ Idl(P1)
are two ideals thenI1 ⊆ I ′

1 if and only if f ∗(I1) ⊆ f ∗(I ′
1). The right implication is obvious. For the

left one, assumef ∗(I1) ⊆ f ∗(I ′
1). Then observe that ifx ∈ I1 then f (x) ∈ f ∗(I1) ⊆ f ∗(I ′

1). Hence
there existsx′ ∈ I ′

1 such thatf (x′) = f (x). Thus by hypothesis onf we havex v x′ and therefore, by
definition of ideal,x ∈ I ′

1.
Then we can conclude thatf ∗ is also injective, thus it is a bijection, and clearlyf ∗ as well as its

inverse are monotone functions.j

Notice that in particular, ifP is a preorder,D is an algebraic CPO andf : P → K(D) is a surjection
such thatp v p′ iff f (p) v f (p′), thenIdl(P) ' Idl(K(D)) ' D.

We can now prove the main result of this section, which establishes a tight relationship between the
unfolding and the process semantics of semi-weighted c-nets. We show that the ideal completion of
the preorder (m ↓ CP[N]) and the domain associated to the netN through the unfolding construction
are isomorphic. To understand which is the meaning of taking the ideal completion of the preorder
(m ↓ CP[N]), first notice that the elements of the partial order induced by the preorder (m ↓ CP[N])
are classes of concatenable processes with respect to an equivalence≡l defined byδ1 ≡l δ2 if there exists
a discrete concatenable processδ such thatδ1 ; δ = δ2. In other words,δ1 ≡l δ2 can be read as “δ1 andδ2

left isomorphic,” where “left” means that the isomorphism is required to be consistent only with respect
to the ordering of the minimal places. Since the netN is semi-weighted, the equivalence≡l turns out to
coincide with isomorphism of marked processes. In fact, being the initial marking ofN a set, only one
possible ordering function exists for the minimal places of a marked process. Finally, since processes
are finite, taking the ideal completion of the partial order induced by the preorder (m ↓ CP[N]) (which
produces the same result as taking directly the ideal completion of (m ↓ CP[N])) is necessary to move
from finite computations to arbitrary ones.

THEOREM 9.1 (Unfolding vs. Concatenable Processes).Let N be a semi-weighted c-net. Then
Idl((m ↓ CP[N])) is isomorphic to the domainLa(Ea(Ua(N))).

Proof. Let N = 〈S, T, F,C,m〉 be a c-net. It is worth recalling that the compact elements of
the domainLa(Ea(Ua(N))) associated toN are exactly the finite configurations ofEa(Ua(N)) (see
Theorem 3.1). By Lemma 9.3, to prove the thesis it suffices to show that it is possible to define a function
ξ : (m ↓ CP[N]) → K(La(Ea(Ua(N)))) such thatf is surjective, and for allδ1, δ2 in (m ↓ CP[N]),

δ1. δ2 iff ξ (δ1) v ξ (δ2).

The functionξ can be defined as follows. Letδ = 〈µ, π, ν〉be a concatenable process in (m ↓ CP[N]).
Sinceπ is a marked process ofN (and thus a c-net morphismπ : Oπ → N), by the universal property
of coreflections, there exists a unique arrowπ ′ : Oπ → Ua(N), making the diagram below commute.

In other words, the coreflection betweenSW-CNandO-CN gives a one-to-one correspondence between
the (marked) processes ofN and of those of its unfoldingUa(N).

Then we defineξ (δ) = π ′
T (Tπ ), whereTπ is the set of transitions ofOπ . To see thatξ is a well-

defined function, just observe that it could have been written, more precisely, asEa(Ua(π ))(Tπ ) andTπ
is a configuration ofEa(Ua(Oπ )) = Ea(Oπ ) sinceOπ is a deterministic occurrence c-net.

• ξ is surjective
Let C ∈ K(La(Ea(Ua(N)))) be a finite configuration. ThenC determines a deterministic process
π ′

C :Oπ ′
C

→ Ua(N) of the unfolding ofN, havingC as set of transitions.11 Thusπ = fN ◦ π ′
C is

a deterministic process ofN, and, by the definition ofξ , we immediately get thatξ (π ) = π ′
C(Tπ ′

C
) = C.

11 EssentiallyOπ ′
C

is the obvious subnet ofUa(N) havingC as set of transitions andπ ′
C is an inclusion.
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• ξ is monotone

Let δ1 andδ2 be processes in (m ↓ CP[N]) and letδ1. δ2. Then, by Lemma 9.2, there exists a left-
injectionι : δ1 → δ2. The picture below illustrates the situation, by depicting also the processesπ ′

1 and
π ′

2 of the unfolding ofN, induced byπ1 andπ2, respectively.

We have thatξ (δ1) = π ′
1(Tπ1) = π ′

2(ι(Tπ1)) ⊆ π ′
2(Tπ2) = ξ (δ2). Therefore, to conclude that

ξ (δ1) v ξ (δ2) we must show that the second condition of Definition 3.14 is also satisfied. Lett2 ∈ ξ (δ2)
andt1 ∈ ξ (δ1), with t2 ↗ t1. By definition ofξ , ti = π ′

i (t
′
i ) with t ′

i in Oπi , for i ∈ {1, 2} and thus:

π ′
2(t ′

2) ↗ π ′
1(t ′

1) = π ′
2(ι(t ′

1)).

By properties of occurrence net morphisms (Theorem 5.1 and the fact thatOπ2 is deterministic), this
impliest ′

2 ↗ ι(t ′
1) and thus, sinceι is a left injection, by rigidityt ′

2 = ι(t) for somet in Oπ1. Therefore
t2 = π ′

2(t ′
2) = π ′

2(ι(t)) = π ′
1(t) belongs toξ (δ1), as desired.

• ξ (δ1) v ξ (δ2) impliesδ1. δ2.

Let ξ (δ1) v ξ (δ2). The inclusionξ (δ1) ⊆ ξ (δ2), immediately induces a mappingι of the transitions of
Oπ1 into the transitions ofOπ2, defined byι(t1) = t2 if π ′

1(t1) = π ′
2(t2) (see the picture above). This

function is well defined since processes are deterministic and thus morphismsπ ′
i are injective. Since

the initial marking ofN is a set, the mapping of min(π1) into min(π2) is uniquely determined and thus
ι uniquely extends to a (marked) process morphism betweenπ1 andπ2. Again for the fact thatN is
semi-weighted (and thus there exists a unique indexing for the minimal places of each process starting
from the initial marking) such morphism is consistent with the indexing of minimal places. Finally,ι

is rigid. In fact, lett2 ↗ ι(t1), for t1 in Oπ1 andt2 in Oπ2. By properties of occurrence c-net morphisms
(Lemma 5.3),π ′

2(t2) ↗ π ′
2(ι(t1)). The wayι is defined implies thatπ ′

2(ι(t1)) = π ′
1(t1), and thus

π ′
2(t2) ↗ π ′

1(t1).

Sinceπ ′
i (ti ) ∈ ξ (δi ) for i ∈ {1, 2}, by definition of the order on configurations, we immediately have

thatπ ′
2(t2) ∈ ξ (δ1), hence there ist ′

1 in Oπ1 such thatπ ′
1(t ′

1) = π ′
2(t2), and thusι(t ′

1) = t2.

By Lemma 9.2, the existence of the left injectionι : δ1 → δ2, impliesδ1. δ2. j

10. CONTEXTUAL NETS WITH MULTISET CONTEXTS

In this section we discuss how the theory developed in this paper can be extended to deal with the
more general class of (semi-weighted) contextual nets where the context of a transition is a multiset
rather than a simple set. This is a natural choice if we think of transitions as agents which compute some
results, i.e., their post-set, starting from some arguments, i.e., their pre-set, which is destroyed, and their
context, which is instead accessed in a nondestructive manner. A token in a places is thus interpreted
as an argument of “type”s and hence the multiplicities of pre-set, post-set, and context of transitions
have a very clear meaning: a transitions can consume and read several arguments of the same type and,
similarly, produce several results of the same type.

DEFINITION 10.40 (mc-net). Amultiset contextual Petri net (mc-net)is a tupleN = 〈S, T, F,C,m〉,
whereS, T , F andm are defined as for c-nets, whileC : T ↔ S is a multirelation, called thecontext
multirelation.
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FIG. 13. A simple mc-net.

Thecontextof a finite multiset of transitionsA ∈ µT is, in this case, a multiset defined asA = µC(A).
The notion ofenablingremains essentially unchanged: a finite multiset of transitionsA is enabled by
a markingM if, besides the pre-set ofA, the multisetM contains at least oneadditionaltoken in each
place in the context ofA. This corresponds to the intuition that a token in a place can be used as context
not only by many transitions at the same time, but also with multiplicity greater than one by the same
transition.

DEFINITION 10.41 (Token Game). LetN be an mc-net and letM be a marking ofN. A finite multiset
of transitionsA ∈ µT is enabledby M if • A + [[ A]] ≤ M . In this caseM [ A〉 M + A• − • A.

Since here we consider contexts with multiplicities, the reader could have expected a notion of
enabling requiring for the presence of each context with the corresponding multiplicity, namely

M [ A〉 iff • A + A ≤ M. (†)

We remark that this would not fit with the intuition underlying contextual nets. Consider, for instance, the
netN1 in Fig. 1 and the multiset of transitionst0 + t1. We have•(t0 + t1) = s0 + s1 and (t0 + t1) = 2 · s.
According to (†), the marking ofN1 in Fig. 1, namelys0 + s1 + s would not enablet0 + t1, contradicting
the idea that a single token ins can be read concurrently byt0 andt1.

Still, one could think that, although it is natural to allow contexts to be shared among different
transitions, each single transition, to be enabled, should require its context with the right multiplicities.
The idea of allowing for the firing of a transition when at least one token is present in each context place
can be understood by recalling the interpretation of transitions as agents and of contexts as read-only
arguments of such agents: in this view not only different agents can share read-only arguments, but also
an agent requiring two “read” parameters of the same type can read twice the same argument. At a more
formal level, we have been influenced also by the correspondence between contextual nets and graph
transformation systems [17, 20]. In fact, in a graph transformation system, which can be thought of as
a “generalized” contextual net, a graph production may specify a context with multiple occurrences of
the same resource and can be applied with a match which is noninjective on the context.

According to the multiplicities of places in the context of a transitiont , the firing oft may involve a
multiset of tokens larger than [[t ]] (ranging from [[t ]] to t). For example, in the net of Fig. 13, after the
firing of t1 + t0, we may have three “different” firings oft , sincet can use as context

• both the tokens generated byt0 and byt1;

• twice the token generated byt0;

• twice the token generated byt1.

In the first case the occurrence oft causally depends both ont0 and ont1, in the second case it depends
only on t0, and in the third case only ont1. More precisely, as the functions•(.), (.)• : µT → µS
associate to each multiset of transitionsA the multiset of tokens which are consumed and produced by
the firing of A, in the presence of contexts we can introduce a relationread ⊆ µT × µS such that
A read M means thatM can be used as context in the firing ofA. According to the discussion above,
read can be formally defined as: for all finite multisetsA ∈ µT and for allX ∈ µS,

A read X iff [[ A]] ≤ X ≤ A.

Observe that, different from•(.) and (.)•, which are functions,read is a relation.
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A mc-net morphism is still required to preserve the initial marking as well as the pre- and post-sets
of transitions, while contexts are preserved in a weak sense.

DEFINITION 10.42 (mc-net Morphism). LetN0 and N1 be mc-nets. Amorphism h: N0 → N1 is a
pairh = 〈hT , hS〉, wherehT : T0 → T1 is apartial function andhS : S0 ↔ S1 is afinitary multirelation
such that

1. µhS(m0) is defined andµhS(m0) = m1;

2. for each transitiont ∈ µT0, µhS(•t), µhS(t•) andµhS(t) are defined, and
(i) µhS(•t) = •µhT (t);
(ii) µhS(t•) = µhT (t)•;

(iii) [[ µhT (t)]] ≤ µhS(t) ≤ µhT (t).

We denote byMCN the category having mc-nets as objects and mc-net morphisms as arrows.

Conditions (1), (2.i), and (2.ii) are the same as in Definition 4.20, but condition (2.iii), regarding
contexts, deserves some comments. Like the image of the pre-set (post-set) oft is required to be a
multiset of tokens which is the pre-set (post-set) of the image oft , similarly, given a multiset of tokens
X which can be used as context byt , its image must be a set of tokens that can be used as context by the
image oft . By using the “read ” notation defined before, this requirement can be expressed as follows:
for any X ∈ µS0

t read X ⇒ µhT (t) readµhS(X).

According to the definition of read, this condition can be rephrased by asking that for anyX ∈ µS0,
if [[ t ]] ≤ X ≤ t then [[µhT (t)]] ≤ µhS(X) ≤ µhT (t), which is in turn equivalent to condition (2.iii)
above. It is easy to prove that the token game and thus reachable markings are preserved by mc-net
morphisms.

Observe thatCN is a full subcategory ofMCN . In fact if N is a c-net, namely an mc-net where the
context multirelationC is a relation (i.e.,C = [[C]]), then for any transitiont , we havet = t . Therefore,
when N0 and N1 are c-nets, condition (2.iii) in the definition of mc-net morphism above reduces to
µhT (t) = µhS(t ), i.e., to condition (2.iii) in the definition of c-net morphism (Definition 4.20).

If we denote bySW-MCN the full subcategory ofMCN having semi-weighted mc-nets as objects,
then the whole theory developed in this paper forSW-CN, comprising the coreflective semantics of
semi-weighted nets, their process semantics, and the relationship between the two approaches, smoothly
extends to the wider categorySW-MCN. The notion of safe net, occurrence net, and the corresponding
categories remains the same. In proving thatO-CN coreflects inSW-MCN we only need to modify
the definition of the unfolding (see Definition 6.28). The equation defining the set transitions of the
unfolding slightly changes in order to generate a different occurrence of a transitiont for each possible
multiset of tokens thatt can use in its firing:

T ′ = {〈Mp,Mc, t〉 | Mp,Mc ⊆ S′ ∧ Mp ∩ Mc = ∅ ∧ conc(Mp ∪ Mc) ∧
t ∈ T ∧ µ fS(Mp) = •t ∧ [[ t ]] ≤ µ fS(Mc) ≤ t}.

11. CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is a truly concurrent event-based semantics for (semi-weighted)
P/T contextual nets. The semantics is given at categorical level via a coreflection between the categories
SW-CN of semi-weighted c-nets andDom of finitary coherent prime algebraic domains (or equiva-
lently PES of prime event structures). Such a coreflection factorizes through the following chain of
coreflections:

Such a construction is a consistent extension of Winskel’s one [10], in the sense that it associates
to a safe c-net without context places the same occurrence net and domain produced by Winskel’s
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construction. More precisely, we have shown how each of our coreflections cuts down to Winskel’s
coreflection between the corresponding subcategories.

We have also shown that a close relationship exists between the unfolding semantics and the determin-
istic process semantics, generalizing a result of [9] to c-nets. Roughly speaking, the domain associated
to a semi-weighted contextual net by the above functors is shown to be isomorphic to the set of deter-
ministic processes of the net starting from the initial marking, endowed with a kind of prefix ordering.

A key role in our semantics is played by asymmetric event structures, an extension of Winskel’s (prime)
event structures (with binary conflict), introduced to deal with asymmetric conflicts. Asymmetric event
structures are closely related to other models in the literature, such as PES’s with possible events [43],
flow event structures with possible flow [43], and extended bundle event structures [33]. However, none
of the above models was adequate for our aims: PES’s with possible events are not sufficiently expressive,
while the other two models look too general and unnecessarily complex for the concerns of this paper,
due to their capability of expressing multiple disjunctive causes for an event. Moreover, no categorical
treatment of the more general models was available and, due to their greater complexity, it is still unclear
if the coreflection result betweenAES andDom of this paper extends to them. Understanding which
part of the results presented in this paper for AES’s extends to flow event structures with possible flow
and to bundle event structures with asymmetric conflict is an interesting matter of further investigation.

We already mentioned that the McMillan algorithm for the construction of a finite prefix of the un-
folding has been generalized in [5] to a subclass of safe contextual nets, called read-persistent contextual
nets, and it has been applied to the analysis of asynchronous circuits. We are confident that the results
in the present paper, and in particular the notion of a set of possible histories of an event in a contextual
net, may ease the extension of the technique proposed in [5] from the subclass of read-persistent nets
to the whole class of semi-weighted c-nets (perhaps at the price of a growth of the complexity).

Recall that Winskel’s construction has been generalized in [9] not only to the subclass of semi-
weighted P/T nets, but also to the full class of P/T nets. In the last case, some additional effort is needed
and only a proper adjunction rather than a coreflection can be obtained. We believe that also the results
of this paper could be extended to the full class of P/T contextual nets by following the guidelines
traced in [9] and exploiting, in particular, a suitable generalization to c-nets of the notions of decorated
occurrence net and family morphism introduced in that work.

Apart from the application to c-nets analyzed in this paper, asymmetric event structures seem to
be rather promising in the semantic treatment of models of computation, such as string, term, and
graph rewriting, allowing context sensitive firing of events. Therefore, as suggested in [43], it would
be interesting to investigate the possibility of developing a theory of general event structures with
asymmetric conflict (or weak causality) similar to that in [10].

Finally, we remark that one of the motivations of the research on contextual nets is their relationship
with graph transformation systems(GTS’s) [22, 34], a formalism for the specification of concurrent
and distributed systems which can be an appropriate alternative to Petri nets when one is interested in
having a more structured description of the state. In fact, in a GTS the state is represented by a graph
and local transformations of the state are modelled via the application of graph productions, which,
roughly speaking, are rules specifying that the left-hand side of the rule, in a given context, rewrites
to its right-hand side. Since Petri nets are essentially rewriting systems on multisets, it is quite natural
to see GTS’s as a proper extension of Petri nets both for the fact that they allow for a more complex
state and for their capability of expressing “contextual” rewritings. It is worth noting that, in the case of
GTS’s, “contexts” are not an optional feature but an essential part of the rewriting mechanism, which
permits specification of how the subgraph added by the step is connected to the remaining part of the
state. To better understand this fact, recall that, according to [22], a graph production consists of a
left-hand side graphL, a right-hand side graphR, and a (common) interface graphK embedded both
in R and inL, as depicted in the top part of Fig. 14. Informally, to apply such a rule to a graphG we
must find an occurrence of its left-hand sideL in G. The rewriting mechanism first removes the part of
the left-hand sideL which is not in the interfaceK producing the graphD and then adds the part of
the right-hand sideR which is not in the interfaceK , thus obtaining the graphH . The interface graph
K is “preserved”: it is necessary to perform the rewriting step, but it is not affected by the step itself,
and as such it corresponds to the contexts of our contextual nets. Notice that the interfaceK plays a
fundamental role in specifying how the right-hand side has to be glued with the graphD. Working
without contexts, which in a grammar-theoretical framework would mean working with productions
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FIG. 14. A (double pushout) graph rewriting step.

having an empty interface graphK , the expressive power of graph grammars would drastically decrease:
only disconnected subgraphs could be added.

To present GTS’s as a formalism for concurrent and distributed systems, people working in this area
have been naturally led to the attempt of providing them with an appropriate concurrent semantics. In
particular, some efforts have been spent in the direction of recasting in this more general framework
notions, constructions, and results from Petri nets theory. Unfortunately, the reason for which graph
grammars represent an appealing generalization of Petri nets, namely the fact that they extend nets with
some nontrivial features, makes nontrivial also such generalizations. Some successful results in the
project of extending the constructions from net theory to GTS’s have been obtained in the development
of a theory of nonsequential processes for GTS’s [32, 38]. Since contextual nets extend ordinary nets
with one of the new features of GTS’s, namely with the capability of preserving part of the state in
a rewriting step, we think that the work on c-nets could help in transferring notions and results from
nets to GTS’s. Indeed, (a part of) the results of this paper have been recasted for GTS’s [12, 30], but a
coreflective semantics for GTS’s is still missing and constitutes a direction of further research.
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