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We present an event structure semanticsctortextual netsan extension of P/T Petri nets where
transitions can check for the presence of tokens without consuming them (read-only operations). A
basic role is played bgsymmetric event structuresgeneralization of Winskel's prime event structures
where symmetric conflictis replaced by a relation modeklisgmmetric confliairweak causalityused
to represent a new kind of dependency between events arising in contextual nets. Extending Winskel's
seminal work on safe nets, the truly concurrent event-based semantics of contextual nets is given at
categorical level via a chain of coreflections leading from the cate§dfiCN of semi-weighted con-
textual nets to the categoBom of finitary prime algebraic domains. First an unfolding construction
generates from a contextual net a correspondeayrrence contextual nétom where an asymmetric
event structure is extracted. Then the configurations of the asymmetric event structure, endowed with a
suitable order, are shown to form a finitary prime algebraic domain. We also investigate the relation be-
tween the proposed unfolding semantics and several deterministic process semantics for contextual nets
in the literature. In particular, the domain obtained via the unfolding is characterized as the collection
of the deterministic processes of the net endowed with a kind of prefix orderiagoo1 Eisevier Science

Key Words contextual Petri nets; read arcs; asymmetric conflict; concurrent semantics; unfolding;
event structures; domains; processes.

1. INTRODUCTION

Petri nets are widely accepted as an adequate formalism for the specification of the behavi
concurrent and distributed systems [25, 41]. In fact the state of a net has an intrinsic distributed r
being a set ofokensdistributed among a set @llaces A transitionis enabled in a state if enougt
tokens are present in its preconditions, and, in this case, the firing of the tramsitiomesuch tokens
andproducesnew tokens in its postconditions. More transitions can fire together when they con:s
mutually disjoint sets of tokens. This informal description should already suggest how Petri net
specify in a natural way phenomena such as mutual exclusion, concurrency, sequential compc
and nondeterminism.

A limit in the expressiveness of Petri nets is represented by the fact that transitions caarsuyne
andproducetokens, and thus a net cannot express in a natural way nondestructive reading operatiol
naive technique of representing the reading of a token via a consume—produce cycle causes a los:
currency. Consider the nBly in Fig. 1, where placsis intended to represent aresource whichis acces
by two transitiongp andt; in a read-only modality. Different from what one could expect the two tran
tions cannot read the instance of the shared resswaecurrently, but their accesses must be serializ

Contextual nets. Contextual n¢28, 23], also called nets with test arcs [18], with activator arcs [1
or with read arcs [27], extend classical nets with the possibility of checking for the presence of t
which are not consumed. Concretely, besides the usual preconditions and postconditions, a trans
a contextual net has also som@ntextconditions that, informally speaking, specify that the transitic
to be enabled requires the presence of some tokens, which, however, are not affected by the f
the transition. In other words, a context can be thought of as an item whiehdsbut not consumed
by the transition, in the same way as preconditions can be considered being read and consun

1 Research partly supported by the EC TMR NetwGgneral Theory of Graph Transformati¢GETGRATS), by the Esprit
Working GroupApplications of Graph TransformatioPPLIGRAPH), and by the MURST Proje€tpi, Ordine Superiore e
Concorrenzg TOSCA).
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FIG. 1. Ordinary nets do not allow for concurrent read-only operations.

postconditions being simply written. Coherently with this view, the same token can be used as ¢
by many transitions at the same time. For instance, the situation of two agents reading a shared r
discussed above can be modelled directly by the contextudiinef Fig. 1, where the transitiorts
andt; use the placs as context. According to the informal description of the behaviour of contex
nets, inN; the transitiongy andt; can fire concurrently. Notice that in the pictorial representation
a contextual net directed arcs represent, as usual, preconditions and postconditions, while, fol
[20], nondirected (usually horizontal) arcs are used to represent context conditions.

The ability of faithfully representing the “reading of resources” allows contextual nets to model r
concrete situations more naturally than classical nets. In recent years they have been used tc
concurrent accesses to shared data (e.g., reading in a database) [26], to provide concurrent sem
concurrent constraint (CC) programs [16], to model priorities [24], and to specify a net semantics f
m-calculus [36]. Moreover, they have been studied for their connections with another powerful form
for the specification of concurrent computations, namely graph transformation systems [17, 20].
think of the states of a net as sets (of tokens) labelled by place names, then a P/T net can be s
rewriting system on labelled sets (or equivalently on discrete graphs), the rewriting rules being spt
by the transitions. Therefore contextual nets can be seen as an intermediate step between class
and graph grammars, and as such they can be used for transferring to graph grammars the great
of notions and results developed for nets (see, e.g., [12, 32, 42)).

In his seminal work [10], Winskel, starting from some results in [1], shows that an event stru
semantics fosafenets can be given via a chain of coreflections leading from the cat&gdepf safe
netsto the categoRESof prime event structures, through categdgcof occurrence nets. In particular
the event structure associated with a net is obtained by first constructing a “nondeterministic unfo
of the net and then by extracting from it the events (which correspond to transition occurrence!
the causality and conflict relations among them. In [14, 31] it has been shown that essentially the
construction applies to the wider categorysgfimi-weightedhets, i.e., P/T nets in which the initial
marking is a set and transitions can generate at most one token in each postcondition. It is
noting that, besides being more general than safe nets, semi-weighted nets present the adva
being characterized by a “static condition” not involving the behaviour but just the structure of the
Figure 2 shows two examples of semi-weighted P/T nets which are not safe. Interestingly, from the
of view of expressiveness, semi-weighted nets allow one to model an unbounded degree of conct
which instead is not expressible in safe nets. For instance, in the semi-weightéfiafetig. 2, after
n firings of transitiont, the places containsn tokens and thus copies oft; can fire in parallel.

This paper generalizes such results to the settimgofextual netby showing that an event structurt
for a semi-weighted contextual metlescribing its concurrent behaviour, can be obtained via a sim
chain of coreflections. The resulting semantics is then shown to be “consistent” with the determ
process semantics proposed in the literature for contextual nets.

We try next to outline the main problems which arise in such a development and the way we
decided to solve them.

Asymmetric conflicts and asymmetric event structures. Prime event strU®&®'s) are a simple
event-based model of (concurrent) computations in which events are considered as atomic, indi
and instantaneous steps, which can appear only once in a computation. An event can occur on
some other events (its causes) have taken place and the execution of an event can inhibit the e
of other events. This is formalized via two binary relationausality modelled by a partial order

2 Semi-weighted nets were called “weakly-safe nets” in the conference version of this paper [19].
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FIG. 2. Two semi-weighted P/T nets, which are not safe.

relation, andconflict modelled by a symmetric and irreflexive relation, hereditary with respec
causality.

When working with contextual nets the main critical point is the fact that the presence of co
conditions leads tasymmetric conflictsr weak dependencibgtween events. To understand this bas
concept, consider the nél; of Fig. 3a, with two transitiong andt; which use the same plaseas
context and precondition, respectively.

The possible firing sequences are given by the firing,dhe firing oft;, and the firing of, followed
by t1, denotedy; t;, while t;; tg is not allowed. Also the concurrent firing &f andt; is not possible,
different from what happens in [11] and [27], the idea being that two concurrent events shou
allowed to occur also in any order. This situation cannot be modelled in a direct way within a p
event structurety andt; are neither in conflict nor concurrent nor causally dependent. Simply, as
an ordinary conflict, the firing of, preventsty being executed, so thag can never followt; in a
computation, but the converse is not true, sihcean fire afterty. This situation can be interpretec
naturally as arasymmetric conflicbetween the two transitions. Equivalently, siriggreceded; in
any computation where both transitions fire, in such computatipasts as a cause tf. However,
different from a true causéy is not necessary fay to be fired. Therefore we can also think of th
relation between the two transitions ageakform of causality

A reasonable way to encode this situation in a PES is to represent the firiggvith an eventy,
and the firing ot; with two distinct mutually exclusive events;, representing the executionfthat
preventdy, thus mutually exclusive withy; ande], representing the executiontgfaftert, (thus caused
by &). Such PES is depicted in Fig. 3b, where causality is represented by a plain arrow and c
is represented by a dotted line, labelled by #. However, this solution is not completely satisfz
with respect to the interpretation of contexts as “read-only resources”: ipifcst reads the token in
s without changing it, one would expect the firingtef preceded or not btg, to be represented by a
single event. The proposed encoding may lead to an explosion of the size of the PES, since wt
an event is “duplicated” also all its consequences are duplicated. In addition it should be note
the information on the new kind of dependency determined by read-only operations is completel
because it is “confused” with causality or symmetric conflict.

It is worth noting that the inability of representing the asymmetric conflict between events wit
resorting to duplications is not specific to prime event structures, but it is basically related to the
of general Winskel's event structures (see [10, Definition 1.1.1]) stating that the enabling réfaison
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FIG. 3. A simple contextual net and a prime event structure representing its behaviour.



4 BALDAN, CORRADINI, AND MONTANARI
“monotone” with respect to set inclusion:
Aen AC BAB consistents BlRe.

As a consequence, the computational order between configurations is set inclusion, the idea bein
A andB are finite configurations such thAtC B, then starting fromA we can reacIB by performing
the events iB — A, whenever they become enabled. Obviously, this axiom does not hold in the pre:
of asymmetric conflict.

In order to provide a more direct, event-based representation of contextual net computatio
introduce a new kind of event structure, callsymmetric event structu(AES). An AES, besides the
usual causality relatiog of a prime event structure, has a relatigh that allows us to specify the new
kind of dependency described above. E.g., for the transitipaadt; of the net in Fig. 3 we simply
havety t;. As already noted, the same relation has two natural interpretations: it can be though
an asymmetric version of conflict or as a weak form of causality. We have decided tcasaifritnetric
conflict but the reader should keep in mind both views, since in some situations it will be preferal
refer to theweak causalitynterpretation. Informally, in an AES each event has a set of “strong” cat
(given by the causality relation) and a set of weak causes (due to the presence of the asymmetric
relation). To be fired, each event must be preceded by all strong causes and by a (suitable) st
the weak causes. Therefore, different from PES'’s, an event of an AES can have more than one |
Moreover, the usual symmetric binary conflict can be represented easily by using cycles of asym
conflict: for instance, ie 7 € ande€’  ethen clearlye ande’ can never occur in the same computatio
since each one should precede the other.

Configurationofan AES are defined as sets of events representing possible computations of the
Thenthe set of configurations of an AES, ordered in a suitable way using the asymmetric conflictre
turns out to be a finitary prime algebraic domain. The main difference with respect to the defir
for classical event structures is that the order on configurations is not simply set inclusion, esse
because a configurati@ cannot be extended with an event inhibited by other events already prese
C. Such a construction extends to a functor from the cate§§B§ of asymmetric event structures to th
categoryDom of prime algebraic domains that establishes a coreflection betMe&randDom. By
using the equivalence between the catediwgn and the categor ESof prime event structures [10] we
can then translate any AES into an ordinary PES. Essentially the PES obtained in this way enco
asymmetric conflict by means of causality and symmetric conflict, as depicted in Fig. 3. Observe tt
AES provides a finer semantics than the PES, since different AES’s may be mapped to the same
is remarkable that the “translation” from AES’s to PES’s is done at a categorical level, via a corefle

Several authors pointed out the inadequacy of Winskel's event structures for faithfully mod
general concurrent computations and they proposed alternative definitions. To model nondetern
choice or, equivalently, the possibility of having multiple disjunctive and mutually exclusive cause
an event, Boudol and Castellani [15] introduce the notiorflofv event structurewhere the causality
relation is replaced by an irreflexive (in general nontransifies) relation representing essentially im-
mediate causal dependency, and conflict is no longer hereditary. To face a similar problem, Lange
definesbundle event structuresvhere a set of multiple disjunctive and mutually exclusive causes
an event is called aundle sefor the event and comes into play as a primitive notion. Asymmet
conflicts have been specifically treated by Pinna and Roigf2, 43], where the “operational” notion
of event automaton suggests an enrichment of prime event structures and flow event structur
possible caused he basic idea is that & is a possible cause @f thene can precede or it can be
ignored, but the execution efnever followse'. This is formalized by introducing an explicit subset ¢
possible events in prime event structures or adding a “possible flow relation” in flow event struc
Similar ideas are developed, under a different perspective, by Degaan [21], where prioritized
event structures are introduced as PES’s enriched with a partial order relation modeling prioriti
tween events. Also bundle event structures have been extended by Langerak in [33] to take into ¢
asymmetric conflicts.

Despite some differences in the definition and in the related notions, our AES’s can be see
generalization of event structures with possible events. On the other hand, flow event structure
possible flow and bundle event structures with asymmetric conflict would have been expressive €
for our aims, but less manageable than asymmetric event structures. For example, due to the pre:
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disjunctive causes, given an event there does not exist, in general, a least configuration which th
belongs to, and the problem of establishing if an event is executable in some computation be
undecidable. Understanding which part of the results presented in this paper for AES'’s extel
flow event structures with possible flow and to bundle event structures with asymmetric conflict
interesting matter of further investigation.

Unfolding for contextual nets. As for ordinary nets, the event structure semantics for a contextual
is obtained by first unfolding the netinto an acyclic branching structure that is itself a contextual net.
precisely, arunfoldingconstruction is presented which allows us to associate to each semi-wei
contextual neN anoccurrenceontextual net/;(N) that describes in a static way the behaviouXgby
expressing the events and the dependency relations between them. Each trarigiffd) irepresents
a specific firing of a transition ilN and places id/;(N) represent occurrences of tokens in the plac
of N. The unfolding operation can be extended to a funitpirom SW-CN to the categoryD-CN of
occurrence contextual nets, that is right adjoint to the inclusion futigtor O-CN — SW-CN.

Transitions of an occurrence contextual net are related by causality and asymmetric conflict,
are defined according to the previous discussion. Mutual exclusion is a derived relation, defir
terms of cycles of the asymmetric conflict relation. Thus, the semantics of semi-weighted conte
nets given in terms of occurrence contextual nets can be naturally abstracted to an AES sen
given an occurrence contextual net we obtain an AES by simply forgetting the places, but remem
the dependency relations that they induce between transitions. Again, this construction extenc
categorical level, to a coreflection betwe®BES andO-CN. Therefore occurrence contextual nets c:
be seen as a convenient concrete representation of AES'’s, in the same way as occurrence nets r
PES’s [10] and flow nets represent flow event structures [40]. Finally, the coreflection b&tw8emd
Dom, discussed above, can be exploited to complete the chain of coreflectionSWsGN to Dom.

Independent from the conference version of this paper, which appeared as [19], an unfoldin
struction for (safe finite) contextual nets has been proposed by Veghdrin [5]. Apart from some
matters of presentation, the construction in [5] is based on ideas analogous to ours and it leads,
considered class of nets, to the same unfolding. An interesting result in the mentioned paper, w
ing the practical relevance of the study of the semantics of contextual nets, is the generalizatic
subclass of safe contextual nets, called read-persistent contextual nets, of McMillan’s algorithn
for the construction of a (complete) finite prefix of the unfolding. The algorithm is then applied tc
analysis of asynchronous logic circuits, showing that the use of contexts allows one to model a
via a simpler net with a smaller unfolding, thus making the verification activity more efficient.

The study of the applications of the concurrent semantics of contextual nets goes beyond the
of the present paper. Concerning the unfolding construction, the main differences between [5] a
approach are that we deal with a slightly larger class of nets (including possibly infinite semi-wei
nets) and that we provide a categorical characterization of the unfolding as a coreflection. We thir
the advantages of having a categorical semantics defined via an adjunction are numerous. First, o
to consider a notion of morphism between systems (typically formalizing the idea of “simulation”)
to define the semantical transformation consistently with such notion: a morphism between two sy
must correspond to a morphism between their models. Moreover, there is often an obvious funct
maps models back into the category of systems (this is the case for nets, where occurrence cot
nets are particular contextual nets and thus such a functor is simply the inclusion). Consequer
semantics can be defined naturally as the functor in the opposite direction, forming an adjunction,
(if it exists) is unique up to natural isomorphism. In other words, once one has decided the noti
simulation, there is a unique way to define the semantics consistently with such notion. Finally, s
operations on nets (systems) may be expressed at a categorical level as limit—colimit constructio
instance, a pushout construction can be used to compose two nets, merging some part of them, o
a kind of generalized nondeterministic composition, while synchronization of nets can be modele
product (see [10, 14]). Since left-right adjoint functors preserve colimits—limits, a semantics define
an adjunction turns out to be compositional with respect to such operations. An interesting disci
on the usefulness of category theory in computer science can be found in Goguen'’s paper [13].

Relation with deterministic processesThe problem of providing a truly concurrent semantics f
contextual nets based on (deterministic) processes has been faced by various authors (see, e.
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20, 24, 29, 39]). Each deterministic process of a contextual net records the events occursimgia a
computation of the net and the relationships existing between such events. Clearly, since the un
of a net is essentially a nondeterministic process that completely describes the behaviour of the r
would expect that a relation could be established between the unfolding and the deterministic
semantics. Indeed, we show that, as already known for ordinary nets [9], the domain associated to
weighted contextual ndt through the unfolding construction is isomorphic to the set of determini:
processes of the net starting from the initial marking, endowed with a kind of prefix ordering. This
is stated in an elegant categorical way. First a cateG&jN] of concatenable processes for the Nas
introduced, where objects are markings (states of the net), arrods@etedrocesses (computation:
of the net), and arrow composition is an operation of concatenation of processes consistent with
dependencies, modelling sequential composition of computations [29, 39]. Then the comma ca
(m | CP[N]), wherem is the initial marking of the net, is shown to be a preorder, inducing a pat
order whose ideal completion is isomorphic to the domain associated to the unfolding. Interes
the proof relies on the categorical characterization of the unfolding, and in particular on the fac
since the unfolding functor frorBW-CN to O-CN is right adjoint to the inclusion, the counit of the
adjunction provides a one-to-one correspondence between the deterministic processed\bfiade
those of its unfolding/;(N).

Structure of the paper. The rest of the paper is organized as follows. Section 2 introduces
categoryAES of asymmetric event structures and describes some properties of such structures. ¢
3 defines the coreflection betweARS and the categorfpom of finitary prime algebraic domains.
Section 4 presents contextual nets and focuses on the cat®g6@N of semi-weighted contextual
nets. Section 5 is devoted to the definition and analysis of the cat€@y@\ of occurrence contextual
nets. Section 6 describes the unfolding construction for semi-weighted contextual nets and show
such a construction gives rise, at categorical level, to a coreflection beBVé&IN andO-CN. Section
7 completes the chain of coreflections fr&W-CN to Dom, by presenting a coreflection betwe&@fCN
andAES. Section 8 shows how the proposed semantics for semi-weighted contextual nets is rel:
Winskel's semantics for safe ordinary nets and comments on the expressive power of semi-we
and safe contextual nets. Section 9 investigates the relation between the unfolding and the deter:
process semantics of contextual nets. Section 10 discusses how the results presented in this p
be extended to deal with a wider class of contextual nets, where contexts might have multipli
Finally, Section 11 draws some conclusions and suggests possible directions for further reseal
extended abstract of Sections 2—7 appeared in [19].

2. ASYMMETRIC EVENT STRUCTURES

We stressed in the Introduction that PES’s (and in general Winskel’'s event structures) al
expressive enough to model in a direct way the behaviour of models of computation, such as
term, graph rewriting, and contextual nets, where a rule may preserve a part of the state in the sel
part of the state is necessary for the application of the rule, but it is not affected by such applicat

To allow for a faithful description of the dependencies existing between events in such models,
particular in contextual nets, this section introduces the catége8of asymmetric event structures, al
extension of Winskel’s prime event structures where the usual symmetric conflict relation is replac
the new binary relation”, calledasymmetric conflicfThe intuition underlying the asymmetric conflic
relation has been discussed in the Introductiom; i#” e; then the firing ofe; inhibits ey, namely the
execution ofey may precede the execution&for ey can be ignored, bugy cannot followe;. We will
see that in this setting the symmetric binary conflict is no more a primitive relation, but it is repres
via “cycles” of asymmetric conflict. As a consequence, PES’s can be identified with a special sul
of asymmetric event structures, namely those where all conflicts are actually symmetric.

Let us start by introducing some basic notations on sets, relations, and functionsz etx X be
a binary relation and let C X; then

e ry denotes the restriction ofto Y, i.e.,r N (Y x Y);

e 1t denotes the transitive closure of andr* denotes the reflexive and transitive closul
ofr;
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e r is well foundedf it has no infinite descending chains, i.ég,)icy € X such thatg ;1 €,
e # g1, foralli € N. The relatiorr is acyclicif it has no “cycles”eyr err ... renr ey, withg € X.
In particular, ifr is well founded it has no (nontrivial) cycles;

e riscalled greorderifitis reflexive and transitive; itis partial orderifitis also antisymmetric.

If f:X — X'isa partial function and € X, we write f (x) = L to mean thatf is not defined orx.
Finally, the powerset of a sét is denoted by*, while 2, denotes the set of finite subsetsafWhen
Y € 2X we will write Y Cin X.

It is worth recalling the formal definition of the categdPS of prime event structures with binary
conflicts, informally described in the Introduction.

Derinimion 2.1 (Prime Event Structure). A prime event structure (PES) is a thpte (E, <, #),
whereE is a set ofeventsand <, # are binary relations ok, calledcausality relationand conflict
relation, respectively, such that:

1. therelatior< is a partial order antle] = {€ € E | € < €} is finite for alle € E;

2. therelation#isirreflexive, symmetric, and hereditary with respectite., foralle, €, €’ € E,
if ete’ < €' thene#e’;

Let Pp = (Eq, <o, #y) and P; = (E1, <1, #) be PES’s. A PES-morphisrh : Py — P; is a partial
function f : Eg — Ej such that, for alky, &, € Eo:

1. if f(ep) # L then| f(e)] < f(leo));
2. if f(ep) # L # (&) then
() f(eo)tf(€)) = et €,
(i) (f(eo) = f(€))) A (60 # €) = eoHoe).

The category of prime event structures and PES-morphisms is denoRSy

We can now define the notion of asymmetric event structure. The basic ideas for the treatm
asymmetric conflict in our approach are similar to those suggested by Pinna and Pojgn43]. In
these papers they concentrate on event automata and on the distinction between specification
in the form of event structures) and automata implementing such specifications. Moreover, looki
event structures that allow one to specify adequately features such as priority and asymmetric ¢
they introduce the idea of possible events, namely events that, according to the considered comp
may or may not be causes of other events. Consequently the notions of PES with possible event:
flow event structure with possible flow are considered. Apart from a different presentation, asymr
event structures can be seen as a generalization of PES’s with possible events. Using their termi
wheney ' e we can say thady is a possible cause ef. However, different from what happens fo
event structures with possible events, where a distinct set of possible events is singled out, our
of possible cause is local, being induced by the asymmetric conflict relation. The extended &
event structures of Langerak [33] share with our approach, besides the above mentioned basit
the intuition that when asymmetric conflict is available, the symmetric conflict becomes useless,
it can be represented as an asymmetric conflict in both directions.

For technical reasons we first introduce pre-asymmetric event structures. Then asymmetric
structures will be defined as special pre-asymmetric event structures satisfying a suitable condi
“saturation.”

Deriniion 2.2 (Pre-asymmetric Event Structure). pfe-asymmetric event structure (pre-AESR
tuple G = (E, <, /), whereE is a set okeventsand<,  are binary relations ok calledcausality
relation andasymmetric confli¢trespectively, such that

1. the relation< is a partial order angle] = {€ € E | € < €} is finite for alle € E;
2. therelation / satisfies, for alg, € € E,

i) e<€&=e ¥,

(i) ¢ is acyclic?

3 Equivalently, we can require le))T to be irreflexive. This implies that, in particulay? is irreflexive.
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where, as usual, with < € we meare < € ande # €. If e /' €, according to the double interpretatio
of /' we say thakis preventedy € or e weakly causes.eMloreover, we say thais strictly prevented
by €, writtene~~g€, if e /€ and—(e < €).

The definition can be explained by giving a more precise account of the ideas presented
introduction. Lebccur(e, C) denote the fact that the evaabccurs in a computatio@, later formalized
by the notion of configuration, and lprec. (e, €) indicate that the everd precedes’ in C. Then,
informally,

e < € meansthat VC. occur€,C) = occure, C) A prec:(e, €)
e € meansthat VC. occur(¢, C) A occur(e, C) = prec:(e, €).

Therefore< represents a global order of execution, whjfe determines an order of execution onl
locally to each computation. Thus it is natural to impggeto be an extension 6¢. Moreover, notice
that if some events form a cycle of asymmetric conflict then such events cannot appear in the
computation; otherwise the execution of each event should precede the execution of the even
This explains why we require the transitive closure &f, restricted to the causes| of an eveng, to
be acyclic (and thus well founded, beihg] finite). Otherwise not all causes etould be executed in
the same computation and theigself could not be executed. The informal interpretation also mal
clear that ~ is notin general transitive. I&€ € 7 €’ it is not true that must precede” when both
fire. This holds only in a computation whegealso fires.

The fact that a set of events in a cycle of asymmetric conflict can never occur in the same compt
can be naturally interpreted as a kind of conflict. More formally, it is useful to associate to each pre
an explicit conflict relation (on sets of events) defined in the following way:

Derinimion 2.3 (Induced Conflict Relation). L&t = (E, <, /') be apre-AES. Theonflict relation
# C 2E associated t6 is defined as

&/ .../ & /& #(AU(e}) e<¢
#3{ep, €1, ..., e} #(AU{e)

where A is a finite subset of. The superscriptd” in #2 reminds us that this relation is induced b
asymmetric conflict. Sometimes we will use the infix notation for the “binary version” of the conf
i.e., we writeetf3e for #2{e, €'}.

Notice that if # Athen| A| contains a cycle of asymmetric conflict, and, vice verspAif contains
acycleey €1 ...6, 7 g then there exists a subsi&t C A such that #A’ (for instance, choosing an
eventg; € Asuchthaig < g fori € {0,...,n}, the setA’ canbe{g; |i € {0, ..., n}}).

Clearly, by the rules above, & 7 € ande’ ~ ethen #{e, €}. The converse, instead, does not hol
namely in general we can haeé® € and—(e 7€), as in the AES of Fig. 4, becausé i inherited
along <, while ~ is not. An asymmetric event structure is a pre-AES where each binary confli
induced directly by an asymmetric conflict in both directions.

Derinimion 2.4 (Asymmetric Event Structures).  An asymmetric event structure (AES) is a pre-
G = (E, <, /) suchthatforang, € € E, if e#* € thene /€.

Observe that any pre-AES can be saturated to produce an AES. More precisely, given a pr
G = (E, <, /), its saturation, denoted 1§y, is the AES(E, <, '), where /'’ is defined ag '€
if and only if (e 7 €) v (e#* €). In this situation it is easy to verify that the conflict relationgand
of G coincide.

FIG. 4. A pre-AES with two evente ande€’ in conflict, but not related by asymmetric conflict.
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The notion of AES-morphism is a quite natural extension of the notion of PES-morphism. Intuiti
itis a (possibly partial) mapping of events that “preserves computations,” a property which will be 1
precise later, in Lemma 3.6, after introducing the notion of configuration.

Derinimion 2.5 (AES-morphism).  Letp = (Eo, <o, ) andG1 = (Ej1, <1, 1) be two AES’s.
An AES-morphism f Gy — Gy is a partial functionf : Eg — E; such that, for alky, &, € Eo:

1. if f(eo) # L then|f(e)] < f(leol);
2. if f(eo) # L # (€) then

(i) f(eo) 71 (&) =& 708
(i) (f(eo) = f(&))) A (0 # €h) = v #j &,

It is easy to show that AES-morphisms are closed under composition. In faés,: 16y — G; and
f1: G1 — G2 be AES-morphisms. The fact théto fo satisfies conditions (1) and (2.ii) of Definition 2.t
is proved as for ordinary PES’s. The validity of condition (2.i) is straightforward.

Derinimion 2.6 (CategonAES).  We denote bAES the category having asymmetric event structur
as objects and AES-morphisms as arrows.

In the following when considering a PESand an AESS, we implicitly assume tha® = (E, <, #)
andG = (E, <, ). Moreover superscripts and subscripts on the structure name carry over the n
of the involved sets and relations (e.Gi, = (E;, <i, ).

The binary conflict in an AES is represented by asymmetric conflict in both directions, and
analogously to what happens for PES'’s, it is reflected by AES-morphisms (by condition (2.
Definition 2.5). The next lemma shows that AES-morphisms reflect also the general conflict rel
over sets of events.

Lemma 2.1 (AES-morphisms Reflect Conflicts)Let Gp and Gy be twoAES'’s and let f: Go — G
be anAES-morphism. Given a set of events, Eo, if # f(A) then# A’ for some AC A.

Proof. Let A Ciin Eg and let# f (A). By definition of conflict there is g37;-cyclee; /1€, ;...
/1€, /1€, in | f(A)]. By the definition of AES-morphisms we have th&{(A)] < f (| A])and thuswe
canfindey, ..., e, € |A] suchthag = f(g)foralli € {0,...,n}. ConsiderA’ = {ag, ..., an} € A
suchthal <g g fori € {0, ..., n}. By definition of AES-morphisney ge1 7 ... /o€, and thus
#HA. 1

We conclude this section by formalizing the relation between AES’s and PES’s. We show
AES'’s are a proper extension of PES’s in the sense that, as one would expect, PES’s can be idi
with the subclass of AES’s where the strict asymmetric conflict relation is actually symmetric.
correspondence defines a full embeddin@BfSinto AES.

Lemma 2.2, Let P =(E, <,#) be aPES Then7(P)=(E, <, < U#) is anAES, where the asym-
metric conflict relation is defined as the union of tisrict” causality and conflict relations.

Moreover if f : Po— Py isaPES-morphismthen f is &ES-morphism between the correspondin
AES’'s 7 (Py)and 7 (Py), andifg: 7 (Po) — J(P1) isanAES-morphismthenitis alsoRESmorphism
between the origindPESS.

Proof. Let P=(E, <,#) be a PES. The fact thaf (P)=(E, <, < U#) is an AES is a trivial
consequence of the definitions. In particular, the asymmetric conflict relatigiif is acyclic on the
causes of each event since # is hereditary with respectiad irreflexive, and is a strict partial order
(i.e., an irreflexive and transitive relation) i

Now, let f : Po— P; be a PES-morphism. To prove thatis also an AES-morphism between th
corresponding AES’s/ (Py) and 7 (Py), first observe that, according to the definition<ofpiy and
/" 7(p), the validity of the conditions (1) and (2.ii) of Definition 2.5 follow immediately from tr
corresponding conditions in the definition of PES-morphism (Definition 2.1). As for Condition (2.i
f(e0) /" 7(py T (€1), then, by constructionf (eo) <p, f(e1) or f(ev)#p, f(e1) and thus, by properties of
PES'’s (easily derivable from Definition 2.1), in the first cage<p, €1 or ey #p, € Whilst, in the second
caseg #p, €1. Hence, in both cases; " 7(p,) €1-
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Similar considerations allow us to conclude thag if .7 (Py) — J(Py) is an AES-morphism, then
it is also a PES-morphism betwe®pandP;. B

By the previous lemma, the constructigh extended as the identity on arrows, defines a full emb
ding functor fromPESinto AES.

ProrosiTion2.1 (From PES'’s to AES’s). The functor7 : PES — AES defined by

e JWE,<.#))=(E, <, <U#),
e J(f:Py—>P)=f

is a full embedding dPESinto AES.

3. FROM ASYMMETRIC EVENT STRUCTURES TO DOMAINS

Prime event structures are intimately connected to prime algebraic domains, another mathei
structure widely used in semantics. More precisely the cateB&$ of prime event structures is
equivalent to the categoiom of (finitary coherent) prime algebraic domains. For asymmetric ev
structures this result generalizes to the existence of a coreflection beE®iand Dom. Such a
coreflection allows for an elegant translation of an AES semantics into a domain and thus |
classical PES semantics. The PES semantics obtained in this way represents asymmetric c
via symmetric conflict and causality with a duplication of events, as described in the Introdu
(see Fig. 3).

3.1. Prime Event Structures and Domains

This section reviews the definition of the categbrym and the equivalence betweBom and the
categoryPES[10], which will be needed in the remainder of the paper.

First we need some basic notions and notations for partial orders. A preordered or partially ol
set(D, C) will be often denoted simply aB, by omitting the (pre)order relation. Given an eleme
x € D, we write | X to denote the sty € D | y C x}. A subsetX C D is compatible written + X,
if there exists an upper bourtie D for X (i.e.,x C d for all x € X). It is pairwise compatibléf
1 {X, y} (often writtenx 1 y) for all X, y € X. A subsetX C D is calleddirectedif for any x, y € X
there existz € X such thatx C zandy C z

Derinimion 3.7 ((Finitary) (Algebraic) Complete Partial Order). A partial ord®ris (directed)
complete(CPO) if for any directed subsét C D there exists the least upper bounfiX in D. An
element € D is compacif for any directed seX € D,eC | | X impliese C x for somex € X. The
set of compact elements &f is denoted byK(D).

A CPOD is calledalgebraicif for any x € D, x = |_|({ x N K(D)). We say thaD is finitary if for
each compact elemeate D the set| eis finite.

Given a finitary algebraic CPO we can think of its elements as “pieces of information” expressi
the states of evolution of a process. Finite elements represent states which are reached after
number of steps. Thus algebraicity essentially says that each infinite computation can be approx
with arbitrary precision by the finite ones.

Winskel's domains satisfy stronger completeness properties, which are formalized by the follc
definition.

Derinimion 3.8 ((Prime Algebraic) Coherent Poset). A partial orDas calledcoheren{or pairwise
completg if for all pairwise compatibleX C D, there exists the least upper boynpX of X in D.

A complete primef D is an elemenp € D such that, for any compatiblé < D, if p C |_| X then
p E x for somex € X. The set of complete primes &@f is denoted byPr(D). The partial ordeD is
calledprime algebraidf for any elemend € D we haved = |_| | d N Pr(D). The set, d N Pr(D) of
complete primes ob belowd will be denotedPr(d).



UNFOLDING SEMANTICS OF CONTEXTUAL NETS 11

Not being expressible as the least upper bound of other elements, complete prilnesrobe seen
as elementary indivisible pieces of information (events). Thus prime algebraicity expresses the fe
all the possible computations of the system at hand can be obtained by composing these eler
blocks of information.

Notice that directed sets are pairwise compatible, and thus each coherent partial order is a CF
the same reason, each complete prime is a compact element, rRr(ielyC K(D) and thus prime
algebraicity implies algebraicity. Moreover,ifis coherent then for each nonemptyC D there exists
the greatest lower bour[] X, which can be expressedfaf{ly € D | ¥x € X. y E x}.

Derinimion 3.9 (Domains). The partial orders we shall work with are coherent, prime algeb
finitary partial orders, hereinafter simply referred to \8r(skel’y domains®

The definition of morphism between domains is based on the notion of immediate precedence.
a domainD and two distinct elements # d’ in D we say thatl is animmediate predecessof d’,
writtend < d’, if

dcd AVd"eD.dEd"CEd =d" =dvd =d).

Moreover, we writed < d’ if d < d’ ord = d’. According to the informal interpretation of domair
elements sketched abowk < d’ intuitively means thatl’ is obtained frond by adding a quantum of
information. Domain morphisms are required to preserve such a relation.

Derinimion 3.10 (Categorpom).  Let Dg andD; be domains. A domain morphisiin: Do — Dy is
a function, such that:

e VX,y e Dy, if x < ythenf(x) < f(y); (x - preserving)
e VX C Dy, X pairwise compatiblef (|_| X) = | f(X); (Additive)
e VX C Do, X # ¢ and compatiblef (7] X) =[] f (X). (Stable)

We denote bypom the category having domains as objects and domain morphisms as arrows.

In the paper [10] the categoByom is shown to be equivalent to the categ® S, the equivalence
being established by the two functafs PES — Dom andP : Dom — PES

P

(__
PES z Dom.

The functorL associates to each PES the partial order of its configurations (subsets of event:
closed with respect to causality and conflict free), ordered by subset inclusion. The imayjefvaa
PES-morphismf : Py — P; is the obvious extension df to sets of events.

A more accurate description of the funci®ris needed, since such functor will be used in the ne
section to map domains back into asymmetric event structures. A fundamental role is played |
notion of prime interval.

Derinimion 3.11 (Prime Interval). LetD, C) be a domain. Aprime intervalis a pair f, d'] of
elements oD such thad < d’. Let us define

[c,c] <[d,d] if(c=cnd) A (cCud=d),
and let~ be the equivalence obtained as the transitive and symmetric closure of (the preorder)

The intuition that a prime interval represents a pair of elements differing only for a “quantun
information is confirmed by the fact that there exists a bijective correspondence betwdasses of
prime intervals and complete primes of a domBirfsee [1]). More precisely, the map

[d.d]. — p,
4 The use of this kind of structure in semantics was firstinvestigated by Berry [28], where they ardledtdenins The relation

between Winskel domains and dI-domains, which are finitary distributive consistent-complete algebraic CPO’s, is establi
the fact that for a finitary algebraic consistent-complete (or coherent) CPO, prime algebraicity is equivalent to distributivi
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wherep is the unique element iRr(d’) — Pr(d), is an isomorphism between theclasses of prime
intervals of D and the complete primdr(D) of D, whose inverse is the function:

p—[Ll{ce D|cC p}, p]-~.

The above machinery allows us to give the definition of the funBtdextracting” an event structure
from a domain.

Derinimion 3.12 (From Domains to PES’s).  The funci®r. Dom — PESis defined as follows:
e given a domairD, P(D) = (Pr(D), <, #) where
p<p iff pcp and  p#p iff —=(p1t p);
e given a domain morphisrh : Dg — D1, the morphisnP(f): P(Dg) — P(D,) is the function:

p1 if po > [do, do]~. f(do) < f(dp)and [f(do). f(dp)l~ — pu;

P()(po) =
(1)(Po) 1 otherwise i.e., when f(do) = f(dj).

3.2. Asymmetric Event Structures and Domains

This section defines a coreflection between the cate§&$ and the categoribom. The domain
associated to an AES is obtained by considering the configurations@f suitably ordered using
the asymmetric conflict relation. Vice versa, given a domRinwe obtain the corresponding AES
by applying first the functof® : Dom — PES and then the embedding : PES— AES, defined in
Proposition 2.1.

Generally speaking, a configuration of an event structure is a set of events representing a comg
of the system modelled by the event structure. The presence of the asymmetric conflict relation
such a definition slightly more involved than the traditional one.

Derinimion 3.13 (Configuration).  LetG = (E, <, /) be an AES. Aconfigurationof G is a set of
eventsC C E such that

1. ¢ iswell founded;
2. {€eC|€ 7elisfinite foralle € C;
3. Cisleft-closed with respect tg; i.e., forallee C, € € E, € < eimplies€¢’ € C.

The set of all configurations af is denoted byConf(G).

Condition (3) requires that all the causes of each event are present. Condition (1) first ensur
in C there are no -cycles, and thus, together with (3), it excludes the possibility of having in
a subset of events in conflict (formally, for ady Sqin C, we have—(#2A)). Moreover it guarantees
that ~ has no infinite descending chains@ that, together with condition (2), imply that the se
{¢ € C | €( 7c)"e}is finite for each everd in C; thus each event has to be preceded only by finite
many other events of the configuration.

If a set of eventdA satisfies only the first two properties of Definition 3.13 it is caltedsistentnd
we write co(A). Notice that, unlike for Winskel's event structures, consistency is not a finitary prope
For instance, leA = {g | i € N} C E be a set of events such that@lk are distinct ane ,, ' ¢ for
alli € N. ThenAis not consistent, but each finite subseos.

Let us now define an ord€r on the configurations of an AES, aimed at formalizing the idea
“computational extension,” namely such ti@&t C C, if the configurationC; can evolve intaC,. A
remarkable difference with respect to Winskel's event structures is that the order on configurati
not simply set-inclusion, since a configuratiGncannot be extended with an event inhibited by sor
of the events already presentn

Derinimion 3.14 (Extension). Le&G = (E, <, /) be an AES and lef, A’ C E be sets of events.
We say thatA’ extends Aand we writeA C A, if

5 A property Q on the subsets of a sit is finitary if given anyY < X, from the fact thaQ(Z) holds for all finite subsets
Z C Y itfollows that Q(Y) holds.
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1. ACA;
2. —(¢ /e) foralleec A, € e A—A

Often in the following it will be preferable to use the following condition, equivalent to (2):
Vee AV e A.€ /e = €ecA

The extension relation is a partial order on theGenf((G) of configurations of an AES. Our aim
is now to prove thatConf(G), C) is a finitary prime algebraic domain. This means that like prir
event structures [10], flow event structure [40], and prioritized event structures [21], asymmetric
structures also provide a concrete presentation of prime algebraic domains.

Given an AESG, in the following we will denote byConf(G) both the set of configurations &
and the corresponding partial order. The following proposition presents a simple but useful prope
the partial order of configurations of an AES, strictly connected with coherence.

Lemma 3.1. Let G be anAESand let AC Conf(E) be a pairwise compatible set of configuration:
ThenforallCe Aandee C

el JAANE e eC.

Proof. Let€e e | J Abe an event such that ~e. Then there is a configuratid® € A such that
€ e C'. SinceC andC’ are compatible, there 8” € Conf(G) such thalC,C’ C C”. Thuse € C”
and, sinceC C C”, by definition ofC we conclude tha¢’ ¢ C. &

The next lemma proves that for pairwise compatible sets of configurations the least upper bou!
the greatest lower bound are simply given by union and intersection.

Lemma 3.2 (| and[] for sets of configurations).Let G be anAES. Then

1. if A C Conf(E) is pairwise compatible theh| A = | A;
2. IfCo T ClthenQ)I_ICj_ = Coﬂcl.

Proof. 1. LetA C Conf(E) be a pairwise compatible set of configurations. First notice(that
is a configuration. In fact:

e /yaiswell founded.

Let us suppose that there islin A an infinite descending chain:

...611.'6 "'6€_1,/ ... /&0

LetC € Asuchthagy € C. Lemma 3.1, together with an inductive reasoning, ensures that this infi
chain is entirely contained i@. But this contradict€ € Conf(G).

o {€clUA|€ 7e}isfinite forallee | A.
Lete € [ J A. Then there exist€ € Asuch thae € C. By Lemma 3.1,thesde € | JA | € "€} =
{¢ € C | € 7€}, and thus it is finite.

e | JAis left-closed
It immediately follows from the fact that each € A s left-closed.

The configuratior{ J A is an upper bound foA. In fact, for anyC € A, clearlyC < | J A and
forallee C,€ € |JA, if € 7ethen, by Lemma 3.1¢ € C. ThusC C | J A. Moreover, ifCy is
another upper bound fok, namely a configuration such th@tc Co for all C € A, then|J A C C,.
Furthermore for ang € |J A, € € Cy with € e, sincee € C for someC € A we conclude that
€ € C C |J A ThuslJ A E Cp and this shows thdt) A is the least upper bound .

2. LetCy 1 Cy be two compatible configurations and &t= Cy N C;. Then it is easily seen
thatC is a configuration. Moreovet C C,. In factC € Cpand forallee C, € € Cy, if € e, since
ee CyandCy 4t Cq, by Lemma 3.1¢ € C; and thus’ € C. In the same waf C Cq, and thusC is
a lower bound folCy andC;. To show thaC is the greatest lower bound observe that'ifis another
lower bound forCy andC; then clearlyC’ € C. Furthermore, it € C’, € € C with € ¢, since, in
particular,e € Cy, we concludeg e C'. HenceC'C C. ®
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In a prime event structure an evantiniquely determines its history, that is the et of its causes,
independent of the configuration at hand. In the case of asymmetric event structures, instead, &
e may have different histories, in the sense that the set of events that must peécedeonfiguration
C depends of. Essentially, the possible historiesaére obtained inserting or not in a configuratio
the weak causes @f that thus can be seen as “possible causes.”

Derinimion 3.15 (Possible History). Lefr be an AES and le¢ € E. Given a configuratiol® €
Conf(G) such thake € C, thehistoryof ein C is defined aL[e] = {€¢ € C | €(,"c)*€e}. The set of
(possible) histories of, denoted byHist(e), is then defined as

Hist(e) = {C[€e] | C € Conf(E) A e C}.
We denote byHist((G) the set of possible histories of all eventsih namely
Hist(G) = [ J{Hist(e) | e € E}.

Notice that, by conditions (1) and (2) in the definition of configuration (Definition 3.13), each his
C[ €] is a finite set of events. Moreover, each histd@{ €] is characterized by the fact thatis the
greatest element with respect to"¢¢)*, and, therefore, for any two evergsande’, we have that
Hist(e) N Hist(e') # ¢ if and only ife = €. Itis also easy to see thaf[e])[ €] = C[e€].

Let us now give some other properties of the set of histories. Point (1) below shows that each |
of an evenein a configuratiorC is itself a configuration which is extended By Point (2) essentially
states that although an evanhas in general more than one history, as one would expect, the his
cannot change after the event has occurred. Point (3) asserts that different histories of the san
are incompatible.

Lemva 3.3 (History Properties). Let G be anAES. Then in(Conf(G), ) we have that

1. ifC e Conf(G) and ec C, then (J€] € Conf(G). Moreover (Je] C C;
2. ifC,C' € Conf(G),C 1 C"and eec C N C’ then €] = C'[€]; in particular this holds for
ccc,
3. ifeeE, Cp, Cy € Hist(e) and G 4t C; then G = C;.
Proof. 1. ObviouslyC[e] € Conf(G). In fact, the requirements (1) and (2) in Definition 3.13 a

trivially satisfied, while (3) follows by recalling that” > <. MoreoverC[e] € C and ife’ € C[€],
€ e Cande’ 7€, thene’ 7 €( /c) e thuse’ € C[€]. ThereforeC[e] C C.

2. BylLemma3.1, sinc€ 1 C’ ande € C, an inductive reasoning ensures thagif e, 7 ...
/e, /e withg € CUC/, then eactg, is in C. ThereforeC[e] = (C U C)[e] = C'[ €].

3. SinceCp 1 C; ande € Cy N Cy, by (2), we have
Co= Col[e]l = C1|[E]| = Cs. |

We are now able to show that the complete prime€aiff(G) are exactly the possible histories c
events inG.

Lemma 3.4 (Primes). Let G be anAES. Then
1. for all configurations Ce Conf(G)
C =LJ{C’ e Hist(G) | C’' £ C} = I{C[€] | e € C}.
2. Pr(Conf(G)) = Hist(G) and P{C) = {C[ €] | e C}.

Proof. 1. LetC € Conf(G) and letCy = | |[{C' € Hist(G) | C' £ C}, which exists by
Lemma 3.2.(1). Then clearlyy C C. Moreover for alle € C, by Lemma 3.3.(1), the histo@[e] = C
and thuse € C[ €] C Co. This gives the converse inclusion and allows us to concllide Cy.

2. LetC[e] € Hist(e), for somee € E, be a history and leA C Conf(G) be a pairwise
compatible set of configurations. @[ €] C |_| A, thene € | J A. Thus there exist€ € A such that
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e € Ce. Therefore:

Clel =] Alel [by Lemma 3.2.(2), sinc€[ €] C | | A]
=C[€] [by Lemma 3.2.(2), sinc€. C |_| Al
CCe [by Lemma 3.2.(1)].

ThereforeC[ €] is a complete prime itConf(G).
For the converse, l&@ € Pr(Conf(G)). Then, by point (1),

C = J{C' e His(G) | C' c C}.

SinceC is a complete prime, there must ex@t € Hist(G), C’ C C such thatC = C’ and thus
C=C' e Hist(G). m

Itis now immediate to prove that the configurations of an AES ordered by the extension relation
a finitary prime algebraic domain.

TrHeorem 3.1 (Configurations Form a Domain)For any AES G the partial order{Conf(G), C) is
a (coherent finitary prime algebrajalomain.

Proof. ByLemma 3.2.(1)Conf(G) is a coherent partial order. By Lemma 3.4, for any configurati
C € Conf(G)

Pr(C) = {C[€] | e C}
andC = | | C[€]. ThereforeConf(G) is prime algebraic.

Finally, Conf(G) is finitary, as itimmediately follows from the fact that compact elemen@oinf(G)
are exactly the finite configurations. To see thisdet Conf(G) be finite and let us consider a directe
A C Conf(G) such thatC C | | A. Then we can choose, for @le C, a configuratiorCe € A such
thate € Ce. SinceA is directed andC is finite, the sefC. | e € C} has an upper boun@’ € A.
ThenC = | |..c Cl€] = [Jec Cel€]l E C’ follows immediately from Lemma 3.3.(2). Th@ is
compact. For the converse, {ete Conf(G) be a compact element. Since each possible history is fin
{Uecz Clel | Z Siin C} is a directed set dinite configurations having as least upper bound. Sinct
C is compact, we conclude that there exts s, C suchthaC C | .., C[€]. ThusC = .., Cl €]
is finite. |

An example of AES with the corresponding domain can be found in Figs. 8a and 8b, at the €
Section 7. In particular notice how asymmetric conflict influences the order on configurations, v
is different from set-inclusion. For instandgy, ta} < {to, t;, ta}, but{to, ta} Z {to, t;, ta} Sincet; ta.

The nextlemma gives a characterization of the immediate predecessors of a configuration. Info
it states that, as one could expect, we pass from an immediate predecessor of a configuratior
configuration itself by executing a single event.

Lemma 3.5 (Immediate Precedence)Let G be anAESand let CC C’ be configurations in Corff7).
Then

C<C iff |C—-C|=1

Proof. (=) LetC < C’ and lete,& € C' — C. We haveCC C u (C'[€]) E C’ and thus, by
definition of immediate precedendg, = C U (C'[€]). In the same wayC’ = C U C'[€”]. Hence,
by definition of history, we have'( ¢)*€’( /c)*€ and thus’ = €’ (otherwise /- would not be
acyclic, contradicting the definition of configuration).

(<) Obvious. m
The following lemma leads to the definition of a functor fréx&S to Dom. First we prove that

AES-morphisms preserve configurations and then we show that the function between the dom:
configurations naturally induced by an AES-morphism is a domain morphism.

Lemma 3.6 (AES-morphisms Preserve Configurationd)et Go, G; be two AESs and let
f : Go — Gy be anAES-morphism. Then for eachiCe Conf(Gp) the morphism f is injective
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on Gy and the f-image of gis a configuration of G, i.e.,
f*(Co) = {f(e) | e e Cp} € Conf(Gy).

Moreover f*: Conf(Ggy) — Conf(G;) is a domain morphism.

Proof. LetCy € Conf((Go) be a configuration. Sincg”¢, is well founded and thus:(e# €) for
all e, & € Cyp, the conditions in the definition of AES-morphism (Definition 2.5) imply that foead
in Cp such thatf (e) # L # f(¢€):

Lf(e)] < f(lel)
fe=f(e)=e=¢,

f(e) 7, f(€)=>e €.

Thereforef is injective onCy (as expressed by the second condition) and we immediately conc
that f*(Cop) is a configuration irG;.

Let us now prove thaf *: Conf(Go) — Conf(G;) is a domain morphism. Additivity and stability
follow from Lemma 3.2. In particular for stability one should also observe th&ifand C; are
compatible therf is injective onC; U C, and thusf (C; N Cy) = f(Cy) N (Cy). Finally, the fact that
f* preserves immediate precedence can be straightforwardly derived from Lemm&3.5.

Theorem 3.1 and Lemma 3.3 suggest how to define a functor from the cat&gBrp the category
Dom. Instead, the functor going back froBoom to AES first transforms a domain into a PES Vi
P : Dom — PES, introduced in Definition 3.2, and then embeds such a PERiE®via 7 : PES —
AES, defined in Proposition 2.1.

Derinimion 3.16 (From AES's to Domains and BackwardsY.he functorZ, : AES — Dom is
defined as

e for anyAES-objectG,
La(G) = (Conf(G), C);
e for anyAES-morphism f: Gy — G,
La(f) = 17 La(Go) — La(Gh).
The functorP, : Dom — AES is defined ag7 o P.

It is worth recalling that, concretely, given a domai®, C), the PESP(D) is defined as
(Pr(D), C, #), where # is the incompatibility relation (i.ep# p’ iff p and p’ do not have a com-
mon upper bound). TheR,(D) = J(P(D)) is the corresponding AES, namgir(D), &, C U #).

The functorP;, is left adjoint toL, and they establish a coreflection betwedsS andDom. The
counit of the adjunction maps each history of an eegnto the eveneitself. The next technical lemma
shows that the function defined in this way is indeed an AES-morphism.

Lemma 3.7. Let G be anAES. Theneg : Pa(La(G)) — G defined as
€c(C) =e if C € Hist(e),
is anAES-morphism.

Proof. Observe first thakg is well-defined since, as noticed befordist(e) N Hist(e') =@
for e # €. Let us verify thate; satisfies the three conditions imposed on AES-morphisms: for
C, C’ € Hist(G), with C € Hist(e), C' € Hist(¢):
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* leq(C)] S eq(LC)).
We have:

ec(LC]) =
= €q(Pr(C))
=eq({C[€] | € € C}) [by Lemma 3.4]
=C
2 |e] [sinceC is left-closed]
= lec(C)]

e (eq(C)=¢€¢g(C) A C£C'=CH#HC.
Leteg(C) = e = € = €¢(C’) andC # C'. SinceC, C’ € Hist(e), by Lemma 3.3.(3), we have
=(C 4 C) and thusC #C’ in P(La(G)) and therefore, by definition of , C #2 C’ in P4(La(G)).
e ¢:(C) "ec(Ch)=C ~C.
Leteg(C) = e € = €g(C'). Since the relation” is irreflexive, surelye # € and thusC # C'.
Now, if e ¢ C’ then, by Lemma 3.1, surely(C 1 C’), thusC#C’ in P(L4(G)) and therefore, by
definition of 7, C 7 C’ in P4(L4(G)). Otherwise, ife € C’ we distinguish two cases:
—C =C[€e] =C'[€].
In this case, by Lemma 3.2.(1), we have t@alC C’, and the relation is strict, sin€g@ # C’. Thus, by
definition of P,, C 7 C’ in Pa(La(G)).
—C =C[e€] #C'[e].
In this case, by Lemma 3.3.(2), we conclude tBandC’[ €] are not compatible, and thus(C 1 C’).
HenceC #C’ in P(La(G)) and therefore€ 7 C’ in Py(La(G)). =

The next technical lemma characterizes the behaviour of the fuRgimn morphisms having a domair
of configurations as codomain.

Lemma 3.8. Let G be anAES, D adomain and let g D — £,(G) be a domain morphism. Ther
forall p € Pr(D), | g(p) — U g(Pr(p) — {p}) | < 1and

if g(p) —UJag(Pr(p) —{p}) =0
g(p)lel if g(p) —UJaPr(p) —{p}) = {e}

Proof. Let p € Pr(D) and let us consider the corresponding prime interval

[LIPr(p) — {p}). pI;

Pa(9)(p) =

then

[9(LIPr(p) — {p})), 9(P)], )
is also a prime interval if,(G), and, by definition of the functdf, (Definition 3.16)

L if g(p) = g(LU(Pr(p) — {p}))
C if Pr(g(p)) — Pr(g(LI(Pr(p) — {p}))) = {C}.

Now;, by additivity ofgand Lemma 2.5.(1p(L|(Pr(p)—{p})) = LI 9(Pr(p)—{p}) = U 9(Pr(p)—{p}).
and, since (1) is a prime interval, by Lemma 3%p) — U g(Pr(p) — {p}) has at most one element
If g(p) = U g(Pr(p) — {p}) thenPa(g)(p) = L. Otherwise, ifg(p) — (J g(Pr(p) — {p}) = {e}, then,
by Lemma 3.4.(2), we have tha&r(g(p)) — Pr(Ja(Pr(p) — {p})) = {g(p)[el} and thus we
conclude. m

Pa(9)(p) =

Finally we can prove the main result of this section, namely gis left adjoint toL, and they
establish a coreflection betweAES andDom. Given an AESG, the component & of the counit of
the adjunction igg : P; 0 L5(G) — G.
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THeorewm 3.2 (Coreflection betweeES andDom). P, - L,.

Proof. Let G be an AES and lets : Pa(La(G)) — G be the morphism defined as in Lemma 3.
We have to show that given any domdinand AES-morphisnh:P,(D) — G, there is a unique
domain morphisng: D — L,(G) such that the following diagram commutes:

Pa(La(G)) — G
Palg)

Pa(D).

h

Existence. Letg: D — L,(G) be defined as:

g(d) = h*(Pr(d)).

A straightforward checking shows th&t(d) is a configuration irP,(D) and thus, by Lemma 3.6,
is injective onPr(d) andh*(Pr(d)) is a configuration irG, i.e., an element of ,(G). Moreoverg is a
domain morphism. In fact it is

e <-preservingLetd,d’ € D, withd < d’. ThenPr(d') — Pr(d) = {p} and thus

g(d’) —g(d)
= h*(Pr(d’)) — h*(Pr(d))
< {h(p)}.

Thereforelg(d’) — g(d)| < 1 and, since itis easy to see tigdt) C g(d’), by Lemma 3.5 we conclude
g(d) < g(d).
e Additive Let X € D be a pairwise compatible set. Then:

a(Ld X)
= h*(Pr(L| X))
=h*(Uxex Pr(x))  [sincePr(|_| X) = Uyex Pr(x)]
= Usxex N*(Pr(x))
= UXEX 9(x)-

e Stable Letd, d’ € D withd 1 d’, then:

gdnd) =
= h*(Pr(dnd"))
= h*(Pr(d) N Pr(d") [sincePr(d md") = Pr(d) N Pr(d")
andh injective onPr(d) U Pr(d")]
= h*(Pr(d)) N h*(Pr(d"))
= g(d)ng(d).

The morphismg defined as above makes the diagram commute. In facp etPr(D) (=Pa(D))
and let us use Lemma 3.2 to determirgg)(p). We have:

9(p) — U a(Pr(p) — {p})
= h*(Pr(p)) — Uth*(Pr(p)) | p’ € Pr(D), p'C p}
= h*(Pr(p)) — {h(p") | p” € Pr(D), p"C p}
= h*(Pr(p)) — h*(Pr(p) — {p})
= {h(p)} [sinceh injective onPr(p)].
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Therefore, ifh(p) is undefined therP,(g)(p) = L and thuse(Pa(g)(p)) = L. If h(p) = e then
Pa(9)(p) = g(p)Le] and thuse ¢ (Pa(9)(p)) = e = h(p). Summing up we conclude

€ o Pa(g) = h.
Uniqueness. Letg' : D — L,(G) be another morphism such that
ec oPalg) =h.

By Lemma 3.8, for allp € Pr(D) we have:

Pu(@)(D) = { = it g'(p) —UgPr(p) - (p) = ¥
: g(plel if g(p)—Ug(Pr(p)—{p}) = {e}.

Therefore

_ , )L fge-UgPr(p) - {ph) =0
h(p) = ec(Pa(d)(p)) = {e f g6 — U g PrE) — (D) = (e @

Let us show thag'(p) = g(p) for all p € Pr(D), by induction ork = |Pr(p)| (that is finite, sinceD is
finitary).

(k = 1) Inthiscasey'(p)—J g'(Pr(p)—{p}) = g'(p). Thus, by (2), ih(p) = L theng'(p) = ¥ = g(p),
otherwiseg'(p) = {h(p)} = 9(p)-

(k — k + 1) First notice that being’ monotonic, for allp’ € Pr(p) we haveg'(p’) C g'(p), thus

g'(p) = (9'(P) — (U (Pr(p) — {p))) U (U g'(Pr(p) — {p})-

By inductive hypothesid, ) g'(Pr(p) — {p}) = U g(Pr(p) — {p}), thus, reasoning as in the cake= 1)
we conclude.

Recalling thay andg’ are additive, since they coincide on the complete primd3 which is prime
algebraic, we conclude that they coincide on the whole dorbainm

Observe that the above result is, in a sense, modular with respect to some properties of
established along this section. Basically it relies on the fact that the configurations of an AES ft
domain where the complete prime elements are the possible histories of events and the greate
bound and least upper bound of (pairwise) compatible sets are given by set-theoretical intersect
union, respectively. This fact suggests the possibility of extending the results of this section to
classes of event structures, like flow, bundle, or prioritized event structures which should fulfil
mentioned properties.

4. CONTEXTUAL NETS

Contextual netextend ordinary Petri nets with the possibility of handling contexts: in a cont
tual net, transitions can have not only preconditions and postconditions, butasitextconditions.
A transition can fire if enough tokens are present in its preconditions and context conditions. |
firing, preconditions are consumed, context conditions remanthangedand new tokens are gen-
erated in the postconditions. This section introducearked) contextual P’ T nets[26] (or c-nets
for short) that, following the lines suggested in [20] for C/E systems, add contexts to ordinary
nets.

To give the definition of c-net we need some notation for multisets and multirelation#\ bet
a set. Amultisetof A is a functionM : A — N. Such a multiset will be denoted sometimes as
formal sumM = )", _, Na- a, wheren, = M(a). The set of multisets oA is denoted by: A. The usual
operations and relations on multisets are used. For instance, multiset union is denptattgefined as
(M + M)(a) = M(a) + M’(a); multiset differencel — M’) is defined asil —M’)(a) = M(a)—M’(a)
if M(a) > M’(a) and M — M’)(a) = O otherwise. We writM < M’ if M(a) < M’(a) for alla € A.
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If M is a multiset ofA, we denote by M] the flattening ofM, namely the multise} ", ojm@y-0) 1 @
obtained by changing all nonzero coefficientsMfto 1. Sometimes we will confuse the multise
[M] € nA with the corresponding subsg € A | M(a) > 0} € A and use on it the usual se
operations and relations. For instance, we say that a mulisstfinite if [ M], seen as a set, is finite.
Conversely, a seX € A will be sometimes identified with the multis®t,_, 1 - a. A multirelation
f : A< B is a multiset ofA x B. It is calledfinitary if for all a € Athe setfb € B | f(a, b) > 0}
is finite. The composition of two finitary multirelations : A< B andg : B < C is the (finitary)
multirelationg o f : A< C defined asqo f)(a,c) = Y,z f(a, b) - g(b, c). Observe that working
with general multirelations the composition may be undefined since infinite coefficients are not all
For a multirelationf : A< B we denote by.f : uA — uB the (possibly partial) function defined by
UEQ acaNa-@) = D g D acalNa- f(a, b)) - b when the summation is well defined and undefin
otherwise. Observe that if we think of a multiddt € 1A as a multirelatiorM : 1<« A (where 1 is
any singleton set), themf (M) is the composition of multirelation§ o M, hence the partiality of the
functionu f . If the multisetM is finite, thenw f (M) is always defined. When a multirelatidn: A< B
satisfiesf(a,b) < 1 for alla € A andb € B we sometimes confuse it with the correspondir
set-relation and writd (a, b) for f(a, b) = 1.

We are now able to give the definition of a contextual P/T net.

DeriniTion 4.17 (c-net). A (harked contextual Petri nef{c-ne) is a tupleN = (S, T, F, C, m),
where

Sis a set ofplaces

T is a set oftransitions

F = (Fpre, Fpost IS @ pair of multirelations, fronT to S.
e C C T x Sis arelation, called theontext relation

e mis a multiset ofS, called thanitial marking.

We assume, without loss of generality, ti&h T = ¢. Moreover, we require that for each transitio
t € T, there exists a placee Ssuch thatF,.(t, s) > 08

In the following when considering a c-né&t, we implicitly assume thaN = (S T, F,C, m).
Moreover superscripts and subscripts on the nets names carry over the names of the involve
functions, and relations. For instanse = (S, T;, F, Ci, m;).

Deriniion 4.18 (Pre-set, Post-set, and Context). Nebe a c-net. The functions fromT to uS
induced by the multirelationBye and Fyost are denoted by () and (), respectively. IfA € uT is a
finite multiset of transitions} A is called itspre-sef while A® is called itspost-setMoreover, byA we
denote thecontextof A, defined as the sét = [ ;). C(1).

An analogous notation is used to denote the functions f@to 27 defined as, for ang € S,
*'s={teT|Fposft,s) >0}, ={teT | Fuelt,s) > 0}ands= {t € T | C(t, s)}.

A different notion of contextual net is conceivable, where the context relation is replaced by a cc
multirelationand the context of transitions is defined as a multiset, rather than a set. We will ex
in Section 10 the intuition underlying this different model and how our theory can be extended to
with it.

A multiset of transitionsA is enabled by a markini! if it contains the pre-set oA and,additionally,
the context ofA. Since the context is a set, this formalizes the intuition that a token in a place ce
used as contextoncurrentlyby many transitions.

DeriniTion 4.19 (Token Game). Ldtl be a c-net and lel be a marking ofN, that is a multiset
M e uS. Given a finite multiset of transition& € uT, we say thafA is enablecby M if *A+A < M.
Thestep relatiorbetween markings is defined as

M[A)M’" iff AisenabledbyM and M' =M — *A+ A°.

We callM [A) M’ a step. A simple step or a firing is a step involving a single transition Ngt) M’.
A marking M is calledreachableif there exists a finite step sequence

6 This is a weak version of the condition Bfrestrictednesthat requires als@post(t, s) > 0, for somes € S.



UNFOLDING SEMANTICS OF CONTEXTUAL NETS 21

M[Ao) M [Ag) Mz... [An) M
starting from the initial marking and leading ké.

Other authors (e.g. [24, 27]) allow for the concurrent firing of transitions that use the same tok
context and precondition. For instance, in [24] the formal condition for a mukisétransitions to be
enabled by a markiniyl is (*A < M A A < M). Our definition does not admit such steps, the id
being that concurrent transitions should be allowed to fire also in any order.

A c-net morphism between two nets maps transitions and places of the first net into transitior
multisets of places of the second net, respectively, in such a way that the initial marking as well
pre-set, post-set, and context of each transition are “preserved.”

Derinimion 4.20 (c-net Morphism). LeNg and N; be c-nets. Amorphism i Ng — Nj is a pair
h = (ht, hs), whereht : Ty — T; is apartial function anchs : § < S is afinitary multirelation such
that

1. phg(mg) is defined andchs(mg) = my;
2. for each transitioh € Ty, hs(°t), nhs(t®) anduhs(t) are defined, and

() phs(*t) = *uhr(t);
(i) phs(t®) = phr(t)®
(i) whs(® = phr(t).

We denote byCN the category having c-nets as objects and c-net morphisms as arrows.

Observe thagcht(t) = hr(t) whenhy(t) # L, anduht(t) = @ otherwise. In the last case, by
the definition above, the places in the pre-set, post-set, and contexrefforced to be mapped tc
the empty set; i.euhg(°t + t* + 1) = @. Furthermore, it is immediate to see that, for any (finit
multiset of transitionsA € T, we have that (ixhs(®*A) = *uht(A), (i) uhs(A®) = wht(A)* and
(iii) [ uhs(A)] = puhr(A).

A basic result to prove (to check that the definition of morphism is “meaningful”) is that the to
game is preserved by c-net morphisms. As an immediate consequence morphisms preserve re
markings.

ProprosiTion 4.1 (Morphisms Preserve the Token Gamd)et N, and N, be c-nets and let
h: Ng — Nj; be a morphism. Then for each,Ml’ € uS and Ae 1Ty

M[A) M’ = 1hs(M) [iht (A)) 1ths(M).

Thereforec-net morphisms preserve reachable markirigs, if M is a reachable marking in jNthen
uhs(M) is reachable in N.

Proof. First notice thajuht (A) is enabled byths(M). In fact, sinceA is enabled byM, we have
M > *A+ A Thus

whs(M)
> uhs(*A+ A)
= uhs(*A) + nhs(8)
> uhs(*A) + [hs(A)]
= *uht(A) 4+ uht(A) [by def. of c-net morphism].

Moreoveruhs(M’) = phg(M) — *uht(A) + pht(A)®. In fact, M’ = M — *A 4+ A®; therefore we
have:

phs(M’)
= uhg(M) — uhs(*A) + nhs(A®)
= uhg(M) — *uht(A) + uht(A)® [by def. of c-net morphism]. m

The seminal work by Winskel [10] presents a coreflection between prime event structures
subclass of P/T nets, namedgfenets. In [14] it is shown that essentially the same constructions w
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for the larger category of “semi-weighted nets” as well (while the generalization to the whole cate
of P/T nets requires some original technical machinery and allows one to obtain a proper adju
rather than a coreflection [9]). In the next sections we will relate by a coreflection (asymmetric
prime) event structures and “semi-weighted c-nets.”

Derinimion 4.21 (Semi-weighted and Safe c-nets). sémi-weighted c-net Bc-netN such that the
initial markingm is a set andrpos; is a relation (i.e.t* is a set for alt € T). We denote bysW-CN the
full subcategory ofCN having semi-weighted c-nets as objects.

A semi-weighted c-net is calleshfeif also Fy is a relation (i.e. 't is a set for alk € T) and each
reachable marking is a set. The full subcategorggWf-CN containing all safe c-nets is denoted b
S-CN.

Notice that the condition characterizing safe nets involves the dynamics of the net itself, 1
the one defining semi-weighted nets is “syntactical” in the sense that it can be checked statica
looking only at the structure of the net. The relation between safe and semi-weighted contextual
further investigated in Section 8, where a more precise comparison of their expressive power is
out.

5. OCCURRENCE CONTEXTUAL NETS

In the previous section the behaviour of a c-net has been described in a dynamic way, by de
how the token game evolves. Occurrence contextual nets are intended to represent, via the ur
construction, the behaviour of c-nets in a more static way, by expressing the events (firing of trans
which can occur in a computation and the dependency relations between them. Occurrence c-n
be defined as safe c-nets where the dependency relations between transitions satisfy suitable a
and well-foundedness requirements. While for ordinary occurrence nets one has to take into a
the causality and the (symmetric) conflict relations, by the presence of contexts, we have to cons
asymmetric conflict (or weak dependency) relation as well. The conflict relation, as already seen
more abstract setting of AES's, turns out to be a derived relation.

5.1. Dependency Relations on Transitions

Causality is defined as for ordinary safe nets, with an additional clause stating that transitises
t’" if it generates a token in a context placetof

Derinimion 5.22 (Causality).  LeN be a safe c-net. Theausality relation< y is the transitive closure
of the relation< defined by:

1. ifse *tthens<t;
2. ifset*thent <s;
3. ift*Nt £ @thent <t

Given a place or transitiorn € SU T, we denote by x| the set ofcausesof x in T, defined as
IX] ={teT|t <y X} <T,where<y is the reflexive closure of .

Derinimion 5.23 (Asymmetric Conflict). Lel be a safe c-net. Tharict asymmetric conflict relation
-n is defined as

tnt 0ff tN£P or tEt A CtNCt #0).

The asymmetric conflict relation” is the union of the strict asymmetric conflict and causali
relations:

t At iff t <yt oor tnt

In our informal interpretation, if 7 t’ thent must preced€ in each computatiof in which both
fire or, equivalentlyt’ preventd to be fired, namely

occur(t, C) A occuft’,C) = prec(t, t). (1)
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Ny

t1 ty i3

FIG.5. An occurrence c-net with a cycle of asymmetric conflict.

As suggested by the considerations in the Introduction, in an acyclic safe c-net where any trat
is enabled at most once in each computation, conditipiis(surely satisfied when the same place
appears in the context bhnd in the pre-set df. But (1) is trivially true (witht andt’ in interchangeable
roles) whert andt’” have a common precondition, since they never fire in the same computation. T
apparently a little tricky but corresponds to the clear intuition that a symmetric (direct) conflict lea
asymmetric conflicts in both directions. Furthermore, since, as noticed for the abstract model of £
(1) is weaker than the condition that expresses causality, the condilias gatisfied wher causes
(in the usual sense).” For technical reasons it is convenient to have a special notation for the s
asymmetric conflict. In the following, when the rigtis clear from the context, the subscripts in th
relations<y and 7 will be omitted.

The c-netN, in Fig. 5 shows that, as expected, also in this setting the relatiois not transitive. In
fact we have; 7t3 7t ~t1, but, for instance, it is not true that 7 t,.

An occurrence c-net is a safe c-net that exhibits an acyclic behaviour and such that each tra
can fire in some computation of the net. Furthermore, to allow for the interpretation of the plac
token occurrences, each place has at most one transition in its pre-set.

Derinimion 5.24 (Occurrence c-nets).  Axtcurrence c-nds a safe c-nel satisfying the following
requirements

1. each placs € Sis in the post-set of at most one transition; ijés| < 1;

2. thereflexive closure y of the causality relatior: is a partial order antt | is finite for any
teT,;

3. m={se S| *s =0} ie., the initial markingm coincides with the set of minimal place:
with respect to<y;

4. (/N is acyclic for all transition$ € T.
With O-CN we denote the full subcategory 8fCN having occurrence c-nets as objects.

Conditions (1)—(3) are the same as for ordinary occurrence nets. Condition (4) corresponds
requirement of irreflexivity for the conflict relation in ordinary occurrence nets. In fact, if the cause
a transitiont contain a 7 cycle thert can never fire, since in an occurrence c-net, the order in wh
transitions appear in a firing sequence must be compatible with the transitive closure of the (rest
to the transitions in the sequence of the) asymmetric conflict relation.

As mentioned before the asymmetric conflict relation induces a symmetric conflict relation (or
of transitions) defined in the following way:

Derinimion 5.25 (Conflict).  LetV be a c-net. Theonflict relation# € 2] associated td\ is defined
as:

#{to, t1, ..., tn} #HAUtY) t<t
to,/ 't/ ... /'t o #AU(t)

whereA is a finite subset of . As for AES’s, we use the infix notatidr#t’ for #{t, t'}.

For instance, referring to Fig. 5, we hav@t#t,, t3}, while #t;, t;} does not hold for any, j €
{1, 2, 3}. Notice that, by definition, the binary conflict relation # is symmetric. Moreover in an occurre
c-net # is irreflexive by the fourth condition in Definition 5.24.

7 This is the origin of the weak causality interpretation,of.
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Finally, observe that irreflexivity of the asymmetric conflict relatigfy in an occurrence c-nét
implies that the pre-set, the post-set, and the context of any transitioN are disjoint (any possible
intersection would lead tb 7 t).

5.2. Concurrency and Reachability

As for ordinary occurrence nets, a set of plabess called concurrent if there is a reachable markir
in which all the places oM contain a token. Here, due to the presence of contexts some place:
a transition needs to be fired (contexts) can be concurrent with the places it produces. Howev
concurrency of a set of places can still be checked locally by looking only at the causes of such
and thus can be expressed via a “syntactical” condition. This section introduces such a conditic
then shows that it correctly formalizes the intuitive idea of concurrency.

Derinimion 5.26 (Concurrency Relation). L&t be an occurrence c-net. A set of pladdsC Sis
calledconcurrent writtencondM), if
1. Vs, eM.=(s<59);
2. |M]isfinite, wherelM | = | J{ls] | s € M};
3. /' m, is acyclic (and thus well-founded, sin¢ | is finite).

In particular, for each transitionin an occurrence c-net the set of places consisting of its pre-set
context is concurrent.

ProrosiTion5.1. For any transition t of an occurrence c-netond*t +1).

Proof. Since|°*t +1] U {t} = [t] conditions (2) and (3) of Definition 5.26 are satisfied by tt
definition of occurrence c-net. As for the first condition, supposeghats’ for s, s" € *t +t. Then
there is a transitiotf such thas € °t’ andt’ < s'. Now, sincet’ < s' ands’ € *t +1, we havet’ < t
and, sinces € *t +tands e °t/, we have alsd t’. Thereforet’ <t 7t'isa /-cycle in [t],
contradicting the definition of occurrence c-net. Thus, condition (1) is also satisid.

The next two lemmata show that given a concurrent set of places, we can interpret it as the res
computation and perform a backward or forward step in such a computation, still obtaining a conc
set.

Lemva 5.1 (Backward Steps Preserve Concurrencyet N be an occurrence c-net and let ™S
be a set of places. If cofll) and t € | M | is maximal with respect t6,”| ;)" then

1. 3s €S s et*NM;
2. condM —t* + °t).

Proof. 1. Sincet € [M], thereiss € M andt’ € T such that < t" ands; € t’*. But recalling
that < implies 7, by using maximality of, we can conclude that=t’.

2. LetM’=M—t*+"°t.Clearly|M’] = |[M] —{t} and thug M’] is finite and ',/ is acyclic.
Moreover, we have to show there are no causally dependent (distinct) plddésSimcecondM — t°),
by hypothesis, andond*t), by Proposition 5.2, the only problematic case couldske M — t* and
s’ € °t. But

e if s < g then, by transitivity of<, we haves < s;

e if § < sthen there is a transitiofl such thats’ € *t’ andt’ <s. Sinces’ € *t N *t’, we have
thatt “t’ “tisa /-cyclein|M].

In both cases we reach a contradiction with the hypottesigM). =

Lemma 5.2 (Forward Steps Preserve Concurrencyet N be an occurrence c-net and let & S
be a set of places. If co(®l) and M[t) M’ then con¢M’).

Proof. The transitiort is enabled byM, i.e.,*t +1 < M and thus~(t ~t") forallt’ € [M]. In fact
let t' € |[M], that ist'<s for some s'e M. Clearly it cannot bet~t’; otherwise, if
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s e *t'N(*tUh S M thens < ¢, contradicting the hypothesondM). In the same way, it < t’
then given an € °t (which is included inM), we would haves < s

Therefore, since M’'| € |[M] U {t} (the strict inclusion holds whett = @) and, by hypothesis,
/" v, is acyclic, we can conclude that',,, , is acyclic. Moreover, sinceM | is finite, also|M’] is
finite.

Finally, we have to show thatthere are no (distinct) causally dependent pladesSimcecond M — °t)
andcondt*®) the only problematic case could bee M — °t ands’ € t°. But

e if s < g thens < " for somes” € °t Ut;

e if s < sthen, fors” € *t, by transitivity of<, s” < s.
In both cases we reach a contradiction with the hypottesigM). =

It is now quite easy to conclude that, as mentioned before, the concurrent sets of places of
indeed coincide with the (subsets of) reachable markings.

ProposiTion5.2 (Concurrency and Reachability)Let N be an occurrence c-net and let ™ S be
a set of places. Then

condM) iff M < M’ for some reachable marking M

Proof. (=) By definition of the concurrency relatiopM | is finite. Moreover 7, is acyclic and
therefore there is an enumeratigh, . . ., t®) of the transitions il M | compatible with (7, )*. Let
us show by induction ok = || M| that

m = MO [t®) MO [t@) M@ [t0) M® > M.

(k = 0) In this case simplyn © M and thusn = M© > M.

(k > 0) By constructiont® is maximal in| M | with respect to (/&MJ)JF. Thus, by Lemma 5.1,
if we defineM” = M — t®* 4t} we havecondM”) and|[M” | = {tD ... t&-Dy Therefore, by
inductive hypothesis, there is a firing sequence

m[t®) MO [tED) MED 5 M7, 3)

Now, by constructiontt® < M”. Moreover alsd® < M”. In fact, if s € t%) thens e mors e t™*
for someh < k. Thus a token irs is generated in the firing sequence (3), and no transitibean
consume this token, otherwis® ~t0), contradicting the maximality ¢f%). Finally, by definition of
occurrence c-nett® Nt® = ¢, being 7 irreflexive. Thereforea® is enabled ilM” so that we can
extend the firing sequence (3) to

m[t®) MO [t D) MED[10) M),

whereM® = M&-1) _ ot 4 t(K)e SM — otk 4 e = M.
(<) Let us suppose that there exists a firing sequence
MtOMO[t@IM@  [t©)M® > M

and let us prove thatongdM®) (and thuscongqM)). If (k = 0), thenM < m and clearlycondm). If
k > 0 then an inductive reasoning that uses Lemma 5.2 allows one to conclmde.

As an immediate corollary we obtain that each transition of an occurrence c-net is firable in
computation of the net.

CoroLLARY 5.1. For any transition t of an occurrence c-net N there is a reachable marking M
N which enables t.

Proof. By Proposition 5.1cond*t +1) and thus, by Proposition 5.2, we can find a reachal
markingM of N, such thatM D °t +1, enablingt. =
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5.3. Morphisms on Occurrence Contextual Nets

This section states some properties of c-net morphisms between occurrence c-nets that will be
in the following. We start with a characterization of such morphisms.

Lemma 5.3 (Occurrence c-nets Morphisms).et Nyand N, be occurrence c-netsand let Ny — N;
be a morphism. Thendis arelationand

® Vs e my. 3l € mo. hs(so, 81);
e foreachp e Toand t € Ty, if h(tp) =t then
—Vs € *ty. Alsy € *to. hs(so. 51);
—Vs; € ty. sy € to. hs(so, S1);
—Vs e ty°. Al € to°. hs(So, S1);
Moreover given anygse S, S1 € S, t € To:

* s, € M A hg(so, 81) = S € Mo;
® 5 et1® A hg(S, 1) = o € To. (S € to® A hr(to) = t1).
Proof (Sketch). The result is easily proved by using the structural properties of occurrence c
We treat just the first point. Let; € m;. Since it must bethg(mg) = my, there existsy € mg such

thathg(so, s1). Suchsy must be unique, since otherwise the initial marking\afshould be a proper
multiset, rather than a set, contradicting the definition of occurrence c-met.

As an easy consequence of the results in the previous section, c-net morphisms preserve the
rency relation.

CoroLLARY 5.2 (Morphisms Preserve Concurrency).et Ny and N, be occurrence c-nets and le
h: No — Nz be a morphism. Given MC S, if cond M) thenuhs(Mp) is a set and congchs(Mp)).

Proof. LetMg € &, with condMy). Then, by Proposition 5.2, there exists a firing sequendgin
me[t M@ [tMIM™ > M.
By Proposition 4.1, morphisms preserve the token game and thus
my = uhg(mo)[hr (t®))hs(M®) .. [hr (t™))hs(M®™) > 1hsg(Mo).
is a firing sequence iN;. Henceuhg(Mp) is a set and, by Proposition 5&nduuhs(Mg)). B

Notice thatthe corollary implicitly states thatmorphisms are “injective” on concurrent sets of plac
the sense thatdond M) ands = s’ are inM thenuhs(s) andihs(s') are sets, andhs(s)Nuhs(s) = ¢
(otherwiseus(M) would be a proper multiset).

In the next theorem we show that, more generally, morphisms preserve the “amount of concurr
namely they reflect causality and conflict, while asymmetric conflict is reflected or becomes col
The fact that asymmetric conflict is not necessarily reflected is related to the fact that the asym
conflict relation for an occurrence c-net does not satisfy the saturation condition required for /
(see Definition 2.4).

THeorem5.1. Let Ny and N, be occurrence c-nets and let Ng — N; be a morphism. Thefor
all to, ty € To such that R (to) # L # hr(t))
1 [hr(to)] € hr(lto));
2. (hr(to) =hr(t) A (to # t5) = toFoty;
3. hr(to) /107 (to) = (tooto) V (tototy);
4. #hy(A)=#A, forsome AC A.
Proof. 1. Letthe symbok denote the immediate causal dependency between transitions, na
t <t'if t <t and there does not exist such that < t” < t’. The desired property easily follows
by observing that c-net morphisms reflectchains, namely that it” < t& < ... < t{ is a chain
of transitions inN; such that{” = hr(t{"), then there exists a chatf’ < t{" < --- <t in No
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such thattf) = hT(tO')) foralli € {0, ..., n}. This fact can be proved by induction anexploiting
Lemma 5.3.

2. Lethr(to) = hr(t)) andty # t;. Consider a chain of transition < .- < t*% = h(to)
such that't® < my andt{’* n *t{™ = gforalli € {0,..., k — 1} (the existence of such a finite
chain is an immediate consequence of the definition of occurrence c-net). Since, as observed i
(1), morphisms reflects-chains, there are iy two <-chains of transitions,

0 <. <t and @ <...<t¥,

such thathr (") = hr (") =t for alli € {1, ..., k} andty = t&, t; = ;.

Let j be the least index such thtéf) # t{)(j). If j =0 (and thus‘tij) C my) consider a generic
s € *t{%. By definition of morphism there ar® ¢ *t* ands) € *t{” such thaths(s, s1) and
hs(sp, s1). By Lemma 5.3, since, € my, alsosy ands; are in the initial marking and thiss = s,. Hence
téo) /'Ot[)(o) /'Otéo) and thus, by definition of ##ot). If j > 0, then considering; tij_l)' N 'tij),
the same reasoning applies.

3. We distinguish two cases. lif; (to) ~+1 ht () then there is a placg e (hr(to) U *hr(to)) N
*ht(ty). Thus there argy € (to U *tp) such thahs(sp, s1) ands; € *t; such thahg(sy, s1). If s isin the
initial marking thersy = s and thudy ~~1 t;. Otherwisesy ands; are in the post-sets of two transition:
téo) andt{,(o), which are mapped to the same transitiomin(the transition which has; in its post-set).
By point (2),t3” andt\” are identical or in conflict: in the first casg = §, and thusty ~o t}, while in
the second cadg#t).

If, instead,ht (to) <1 ht(ty), then, by point (1), there exist§ € To such that] <o t; andhr(ty) =
ht(to). It follows from point (2) that eithet] = to and thusy <q tg, ortj #o to and thusto #o t;.

4. Recallthatif #1(A) then|ht (A)] contains a cycle of asymmetric conflict. Now, by point (1
Lht(A)] < ht(LA]) and thus, by point (3), it is easy to conclude the thesis.

6. UNFOLDING: FROM SEMI-WEIGHTED TO OCCURRENCE CONTEXTUAL NETS

This section shows how, given a semi-weighted chhadnunfoldingconstruction allows us to obtain
an occurrence c-nét,(N) that describes the behaviour Nf As for ordinary nets, each transition ir
Ua(N) represents a firing of a transition M, and places id/y(N) represent occurrences of tokens i
the places oN. Each item (place or transition) of the unfolding is mapped to the corresponding |
of the original net by a c-net morphistiy, : 3 (N) — N, called the folding morphism. The unfolding
operation can be extended to a funéigr SW-CN — O-CN thatis right adjoint to the inclusion functor
Zoc . O-CN — SW-CN and thus establishes a coreflection betw8@/CN andO-CN.

We first introduce some technical notions. We say that a dNpé&t asubneof N1, written Ng <1 Ny,
if  C S, To € T; and the inclusionit, is) (withit(t) =t fort € Tp, andig(s,s) =1ifs=¢
and 0 otherwise, fos, s’ € &) is a c-net morphism. In word$yy < N; if Np coincides with an initial
segment ofN;. In the following it will be useful to consider the subnets of an occurrence c-net obta
by truncating the original net at a given “causal depth,” where the notion of depth is defined i
natural way.

Derinimion 6.27 (Depth).  LelN be an occurrence c-net. The functiepth: SUT — Nis defined
inductively as follows:

deptl{(s) =0 forsem;
depth{t) = max{depti{s) |[se *tUt} +1 fort e T;
depth(s) = deptht) fors e t°.

Itis not difficult to prove thatlepthis a well-defined total function, since infinite descending chains
causality are disallowed in occurrence c-nets. Moreover, given an occurrenchlcthenet containing
only the items oflepthless than or equal to, denoted byN¥ | is a well-defined occurrence c-net an
it is a subnet olN. The following simple result holds:
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ProposiTIONG.1. Anoccurrence c-net N is tifeomponentwigeunion of its subnets M, of depth k.

The unfolding of a semi-weighted c-ntcan be constructed inductively by starting from the initi
marking ofN, and then by adding, at each step, an instance of each transifimhbfch is enabled by
(the image of) a concurrent subset of places in the partial unfolding currently generated. For tec
reasons we prefer to give an equivalent axiomatic definition.

Derinimion 6.28 (Unfolding). LetN=(S T, F,C, m) be a semi-weighted c-net. The unfoldin
Uy(N) = (S, T/, F/, C’, ') of the netN and the folding morphisniy = (ft, fs) : Ua(N) — N are
the unique occurrence c-net and c-net morphism satisfying the following equations:

m = {(#,s) | s m}
S =mu{{t,s)|t'=(Mp, Mc,t) e T" A set®}
teT A ufs(Mp) ="°t A pfs(Mc) =t}

Fore(t's S) iff  t'=(Mp, Mc,t) A S eMplteT)
c'(t',s) iff  t'=(Mp, Mc,t) A 8eMcteT)
Frost(t’ss)  iff  s'=(t'.s) (se 9

frt) =t iff  t'=(Mp, Mc, t)

fs(s, s) iff s =(x,8) (xeT U{@).

The existence of the unfolding can be proved by explicitly giving its inductive definition. Uniquel
follows from the fact that each item in an occurrence c-net has a finite depth.

Places and transitions in the unfolding of a c-net represent, respectively, tokens and firing of tran
in the original net. Each place in the unfolding is a pair recording the “history” of the token anc
corresponding place in the original net. Each transition is a triple recording the pre-set and ¢
used in the firing and the corresponding transition in the original net. A new place with empty hi
(@, s) is generated for each plasén the initial markingm of N (recall thatm is a set sincéN is semi-
weighted). Moreover a new transitidh= (Mp, M, t) is inserted in the unfolding whenever we ca
find a concurrent set of placés, + M. that corresponds, in the original net, to a marking that enable
(M, corresponds to the pre-set alld to the context used kty. For each placein the post-set of such
a transitiont, a new placegt’, s) is generated, belonging to the post-set’ o he folding morphismf
maps each place (transition) of the unfolding to the corresponding place (transition) in the origin:
Figure 6 shows a c-n®& and an initial part of its unfolding (formally, it is the subnet of the unfolding
depth 3, namely,(N)E). The folding morphism is represented by labelling the items of the unfold
with the names of the corresponding itemshafenriched with a superscript. The figure also repo
the concrete identity of the items of the unfolding.

Occurrence c-nets are particular semi-weighted c-nets and thus we can consider the inclusion
Zoc - O-CN — SW-CNthat acts as identity on objects and morphisms. We show now that the unfol
of a c-netlfy(N) and the folding morphisnfy are cofree oveN. Thereforeld, extends to a functor
that is right adjoint ofZ,,. and thus establishes a coreflection betw®&itCN andO-CN.

THeorem 6.1 (Coreflection betweeBW-CN andO-CN).  Z,. - U,.

Proof. Let N be a semi-weighted c-net, let,(N) = (S, T’, F’,C’, m') be its unfolding, and
let fy @ Ua(N) — N be the folding morphism as in Definition 6.28. We have to show that for ¢
occurrence c-ndtl; and for any morphisrg: N; — N there exists a unique morphigm N; — Us;(N)
such that the following diagram commutes:

Us(N) s N

~

'y
: 9

M
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FIG. 6. A c-netand (a part of) its unfolding.

Existence. We define a sequence of morphish#§ : N;[X — 24,(N) such that, for an,
hK c i+ and iy o = g,
then the morphisrh we are looking for will beh = |, h!{l. We give an inductive definition:
(k = 0) The c-netN; [ consists only of the initial marking dfi; with no transitions, i.e.N;[% =
(mq, @, @, 3, my). Thereforehl has to be defined:
ht® =g,
hs®(s;, (4, 5)) = gs(s1.8) forallsg e % =m; and se S
(k = k + 1) The morphismhlk+1 extendsh® on items with depth equal to+ 1 as follows. Let
t; € T with deptht;) = k + 1. By definition of depthdeptt(s) < k for all s € *t; Ut and thus

hlkl is defined on the pre-set and on the context; 0f¥Ve must defindir ont; andhg on its post-set.
Two cases arise:

e If gr(t) = L then necessaripr*+(t)) = L andhg®t(s,, ') = 0 for all s; € t;,* and
seS.
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e If gr(ty) =t then consider the sets
Mp = uhs®(*t)) M = puhs(ty).

Since Ny is an occurrence c-netf; Nty = ¢ and, by Proposition 5.2ond*t; Ut;). Hence, by
Corollary 5.2,

MpNMc=0 and condMpU M).
Moreover, by constructionfy o hil = g, and therefore
nfs(Mp) = ufs(uhs(*tr)) = ngs(*t) = *t,

where the last passage is justified by the definition of c-net morphism, and in the saméfidy) = 1.
Thus, by the definition of unfolding, there exists a transitioa: (Mp, M, t) in T'.
Itis clear that, to obtain a well-defined morphism that makes the diagram commute, we must

helr ) =t/

and, sinceugs(t;®) =t*, forall s, € t;* ands € t*
hslH(sy, (1, ) = gs(s1. 9).
A routine check allows us to prove that, for edch¥ is a well-defined morphism antl o hi< =
glNl[k] .

Uniqueness. The morphisnh is clearly unique since at each step we were forced to define i
we did to ensure commutativity. Formally, let: N; — U,(N) be a morphism such that the diagra
commutes, i.e.fy o " = g. Then, we show, that for ak

/ —
h|N1[k] = hINl[k].

We proceed by induction dki
(k = 0) The c-netN; [ consists only of the initial marking dfi; and thus we have:

thIO] =@ =hs9,
ho(s1, (4, 5)) = gs(s1, 8) = hel%(sy, (4, 5)), foralls; e S =my andse S,

(k = k+ 1) For allt; € Tkt with deptht;) = k + 1 we distinguish two cases:

e If gr(ty) = L then necessaril; “*U(ty) = L anduhs®+Y(ty*) = @. Thush’™ ™! coincides
with hikt1l ont, and its post-set.

e If gr(ty) =t then
h{r[k+l](t1) = t/ = <Mp, MC: t) € T/’

with M, = °t" = uhg(*ty) and M = t' = uhg(ty). By inductive hypothesis, sinagepti(s;) < k
forall s, € *t; Uty, we have thaphs(®t;) = Mp anduhs(t;) = Mc. Therefore, by definition of,
hT(tl) = <Mpv MC»':) = h/T(tl)-

Moreover, for alls; € t;* and for alls € t*, again by reasoning on commutativity of the diagrar
his(se, (t', 8)) = gs(s1, S) = hs(sy, (1, s)). =

7. OCCURRENCE CONTEXTUAL NETS AND ASYMMETRIC EVENT STRUCTURES

This section shows that the semantics of semi-weighted c-nets given in terms of occurrence
can be abstracted to an event structure and to a domain semantics. First the existence of a core
betweenAES and O-CN is proved, substantiating the claim according to which AES'’s represel
suitable model for giving event-based semantics to c-nets. Then the coreflection bét&emd
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Dom, defined in Section 2, can be exploited to complete the chain of coreflectionsSv@@N
to Dom.

Given an occurrence c-net we can obtain a pre-AES by simply forgetting the places and remem
the dependency relations that they induce between transitions, namely causality and asymmetric ¢
The corresponding (saturated) AES has the same causal refatiopmwhile asymmetric conflict is
given by the union of asymmetric conflict’y and of the induced binary conflict# Furthermore
a morphism between occurrence c-nets naturally restricts to a morphism between the corresp
AES's.

Derinimion 7.29 (From Occurrence c-netsto AES's). gt O-CN — AES be the functor defined
as:

e for each occurrence c-n8l, if #y denotes the induced binary conflictlit
Ea(N) = (T, =n, /U #n);
e for each morphisni : Ng — Nj:
Ea(h: Ng - Np) = hr.

Notice that the induced conflict relatiof th the AESE,(N) (see Definition 2.3) coincides with the
induced conflict relation in the n&t (see Definition 5.25). Therefore in the following we will confus
the two relations and simply write # to denote both of them.

ProposiTion7.1 (Well-definedness).&, is a well-defined functor.

Proof. Given any occurrence c-nét, by Definition 5.24 and the considerations on the saturati
of pre-AES’s following Definition 2.4, we immediately have thgi(N) is an AES. Furthermore, if
h: No — Nj is a c-net morphism, then, by Theorem 53(h) = ht is an AES-morphism. Finall¥,
obviously preserves arrow composition and identitiem.

To go the other way around, from an AES we can obtain a canonical occurrence c-net via
construction that mimics Winskel's. In the constructed c-net the events are used as transition
for each set of events related in a certain way by causality and asymmetric conflict, a unique pl
generated that induces such kind of relations on the corresponding transitions.

Derinimion 7.30 (From AES's to Occurrence c-nets). It (E, <, ) be an AES. The,(G)
isthe netN = (S, T, F, C, m) defined as follows:
A,BCE,Vae AvbeB.a b,
Vb, bl € B.b# b = b#b/

m:{m,A, B) |

A BCE, ecE, Y xe AUB.e<X,
e S=mU({{e}, A,B)|Vaec AVYbeB.a 7h, ;
Vb, € B.b# b = b#b/

e T=E,

e F = (Fpre, Fposy, With
Foe={(e,s)|s=(x,A,B) €S, ee B},
Foost={(&,5) | s = ({e}, A, B) € S};

e C={(es)|s=( A B)eS ec AL

As anticipated, the transitions af,(G) are simply the events @&, while places are triples of the form
(X, A, B),withx, A, B C E, and|x| < 1. Aplace(x, A, B) is a precondition for all the events Bxand
a context for all the events iA. Moreover, ifx = {e}, such a place is a postcondition fmotherwise if
x = @ the place belongs to the initial marking. Therefore each place gives rise to a conflict betweel
pair of (distinct) events i and to an asymmetric conflict between each pair of eveertsA andb € B.
Figure 7 presents some examples of basic AES’s with the corresponding c-nets. The cases of «
with two events related, respectively, by causality, asymmetric conflict, and (immediate symm
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(0,0,{eo})

(©4eo}.0) (o) @ {ea}fer})
eo {00 () "

Go J Na(Go) tear ey () XA(®) @leoer).0)
e @0{ep (o) "

(3.0 ($)— e (Heo} fe1),0)

{{e1},0,0)

Gy € el Na(Gh)

G: @' e No(G2)

FIG. 7. Three simple AES’s and the corresponding occurrence c-nets produced by the fictor

conflict are considered. Pictorially, an asymmetric conBlict” e; is represented by a dotted arroy
from g to e;. Causality is represented, as usual, by plain arrows. In the first case the places of t
are annotated with their concrete identity.

The next proposition relates the causality and asymmetric conflict relations of an AES witl
corresponding relations of the c-n&%(G). In particular, this will be useful in proving théts (G) is
indeed an occurrence c-net.

Lemma 7.1. LetG= (E, <, ) be anAESand letN3(G) be the c-net N= (S, T, F, C, m). Then
foralle, € € E:

1. e<y€ iff e<¢€;
2. €~\€ iff e ¢€;
3. e € iff e €.

Proof. 1. Let<y denotetheimmediate causality relatioNnlf e < \ € then there exists a place
({e}, A, B) € Swith € € AU B and thus, by definition af\,, e < €. In contrast, ife < € then
{{e}, ¥, {€}) € Sand thuse <y €. Since<y is the transitive closure oky and < is a transitive
relation we conclude the thesis.
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2. If en€ then there exists a plagg, A, B) € Swith e € AU B and€ € B and thus either
e /' € ore#¢€. But sinceG is an AES, the binary conflict is included in the asymmetric conflict a
thus, also in the second cage,” €. In contrast, ife /' € then(d, {e}, {€'}) € Sand thuse~\¥€.

3. Easy consequence of points (1) and (A
As an immediate corollary we have:

CoroLLary 7.1. Let G = (E, <, /) be anAES. ThenN,(G) = N = (S T,F,C,m) is an
occurrence c-net.

Proof. By Lemma 7.1 the causality relationy = < and the asymmetric conflict”y = /
inherits the necessary properties from thos&of m

LetG = (E, <, /) be an AES. Foe € E, we define the set cfonsequencele}] as follows
(considering the singletofe} instead ofe itself will later simplify the notation).

[ell={e cE|e<¢€).

This function is extended also to the empty set[#y = E. We use the same notation for occurrenc
c-nets, referring to the underlying AES.

The next technical lemma gives a property of morphisms between occurrence c-nets which v
useful in the proof of the coreflection result.

Lemma 7.2. Let Ny and Ny be occurrence c-nets and let:thNyg — N; be a morphism. For all
S e Sandg € S, if hg(Sp, s1) then

1 hr(*s0) = *si;
2. %" =hi{(s) N ol
3. so=hr'(s) N "ol

Proof. Letsy € S ands; € § such thahg(sg, Sp)-

1. If*sg=0,i.e.,5 € mpthens; e my and thus’s; = # = hy(*sy). Otherwise, letsy = {to}.2
Thereforeht (to) = t; is defined (see the remark after Definition 4.20) and t;°. Thus®s; = {t;} =
hr (*s0).

2. Letty € 5°, i.e.,5 € *t. Sincehg(sy, S1), we have thah+(tg) = t; is defined and; € °t;.
Thusty € hyl(s1°) N [*o].

For the converse inclusion, lgte h;l(sl')ﬂ [*So]. Thens; € *ht(tp) and thus there is) € *tp such
thaths(s;, s1). Now, reasoning as in Theorem 5.3.(2), we concludeghahdsy necessarily coincide,
otherwise they would be in the post-set of conflicting transitions and thus, tsircé®*sy], we would
havetg#t,.

3. Analogousto (2). m

Recall that, by Lemma 7.1, for any AES = (E, <, ) the causality and asymmetric conflic
relations inV;(G) coincide with< and . Hence&,(Na(G)) = (E, <, /'), with /' = 7 U #=
/', where the last equality is justified by the fact that in an AES #7 . Hence£, o NV; is the identity
on objects.

We next prove thal/, extends to a functor frolAES to O-CN, which is left adjoint taZ, (with unit
the identityidg). More precisely they establish a coreflection betwa&E&s andO-CN.

THeorem 7.1 (Coreflection betwee@-CN andAES). N - &a.

Proof. LetG = (E, <, /) be an AES and leN,(G) = (S, T, F, C, m) be as in Definition 7.30.
We have to show that for any occurrence c-Ngtand for any morphisngy: G — £,(Np) there exists a

8 There is a unique transition generatisg sinceNg is an occurrence c-net.
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unique morphisnn : N3(G) — N, such that the following diagram commutes:

G 6 (N(G) =G
> ?sa(h)
ga(NO)

The behaviour oh on transitions is determined immediately gy
hT =40.

Therefore we only have to show that a multirelatign: S <+ & such thath+, hs) is a c-net morphism
exists and it is uniquely determined hy.

Existence. Let us definehs in such a way it satisfies the conditions of Lemma 7.2, specialize
the net\Va(G); that is, for alls = (x, A, B) € Sands € S

hs(s,s0) iff ((x=0 A soemo) v (x={t} A o€ hr(t)*))
A B =hil (%) N Ix]
A A =hil(so) N IX].

To prove that the palt = (ht, hs) isindeed a morphism, let us verify the conditions on the preservat
of the initial marking and of the pre-set, post-set, and context of transitions.

First observe thaths(m) = mq. In fact, if s = (x, A, B) € mandhg(s, ) thenx = ¢ and thus, by
definition ofhs, g € mg. In contrast, lesg € mg and let

A=hil() and B = hyi(so").

Sinceto #1; for all t, ty € $°* andty 7 t; for all to € s, t) € °, by definition of AES-morphism,
t#t' forallt,t’ e Bandt ~ t'forallt € Aandt’ € B. Hence there is a place= (¢, A, B) € mand
hs(s, o).

Now, lett € T be any transition, such thhg (t) is defined. Then

e phs(*t) = *hr(t).
In fact, lets = (x, A, B) € °t, thatist € B, and lethg(s, ). Then, by definition ofis, ht(t) € s%°, or
equivalentlysy € *h+(t). For the converse inclusion, Ist € *hr(t) and letx = h;l('so) N [t]. Since
Np is an occurrence c-nét'sy |[< 1 and thug x |< 1 (more preciselx = @ if 55 € mgp, otherwise x
contains the uniqug < t, such thah+(t") = tg, with *sy = {to}). Consider

A=hiY(s)NIx] and B =hi'(s*)NIx].

Sincety #t; for all to, t) € so* andty 7 t; for all to € o, t) € s°, as in the previous case, we have th
s = (X, A, B) € Sis a place such thdts(s, 5). Clearlyt € [x], thust € B and therefores € *t and
S € phs(*t).

o uhs(t) =hr(t).
Analogous to the previous case.

e phs(t®) = hr(t)*.
If s=(x, A, B) e t*, thatisx = {t}, andhgs(s, S), then, by definition ohs, we havesy € hy(t)*. For
the converse, lefy € ht(t)*. As above, consider

A=hiY )N T{t}] and B =h(s®) NT{t}.
Thens = ({t}, A, B) € t* and, by definition ohs, we havehs(s, ).

Finally, if hy(t) is not defined, then the definition b implies thatuhs(°t) = phs(t) = nhs(t®) = 4.
This concludes the proof thatis a c-net morphism.
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Uniqueness. The multirelationhs such that(ht, hs) is a c-net morphism is unique essentiall
because it is completely determined by the conditions of Lemma 7.2. More precisgly, §« & is
another multirelation such thétr, hy) is a morphism anth(s, ), then necessarily by Lemma 7.2
hs(s, s). Conversely, lehs(s, S), with s = (x, A, B). Then, ifx = @, by properties of net morphisms.
S € Mo. Therefore there must k& € m such thathy(s', sp). But, by Lemma 7.2 and the definition
of hs, s’ = hy'(s0) = A and similarlys® = h;'(s*) = B. Therefores' = (4, A, B) = s and thus
hs(s, o). An analogous reasoning allows us to conclude when{t}. =

We know by the previous theorem th} extends to a functor frolAES to O-CN. The behaviour
of M on morphisms is suggested by the proof of the theoremh &b, — G; be an AES-morphism
and letNL(Gi) = (S, T, K, Ci, m;) fori € {0, 1}. ThenAL(h) = (h, hs), with hs defined as follows:

e for all places(d, Az, B1)
hs((@, h™*(A1), h™(B1)), (@, A1, B1)),
e forall ey € Ty such thaht(ey) = e; and for all places{es}, A1, B1)

hs({{eo}, h™*(A1) N [e], h™(B1) N Teo1), {{e1}, As, By)).

As mentioned before, once we have an AES semantics for contextual nets, the coreflection b
AES anDom (Theorem 3.2) immediately provides a domain semantics. Then, the equivalence be
PESandDom (see Section 3.1) can be used to “translate” the domain semantics of semi-weighted
into a prime event structure semantics. This completes the following chain of coreflections be
SW-CN andPES

Toe & N Pa L L
SW-CN_ L O-CN_ L AES 1 Dom_ ~  PES
Us £a | La P

Figure 8 shows (a part of) the AES, the domain, and the PES associated to the c-net of Fig. 6. Alt
(for the sake of readability) not explicitly drawn, in the PES all the “copiegs afamely the events,
are in conflict.

We remark that the PES semantics is obtained from the AES semantics by introducing an ev
each possible different history of events in the AES, as discussed in the Introduction. For instan
PES semantics of the ni in Fig. 9 is given byP, whereeg; represents the firing of the transitioroy
itself, with an empty history, ang] the firing of the transitiom, afterty. Obviously the AES semantics
is finer than the PES semantics, or, in other words, the translationAte#to PES causes a loss of
information. For example, the nelilg and Ny in Fig. 9 have the same PES semantics, but different Al
semantics.

8. RELATION WITH WINSKEL'S SEMANTICS FOR ORDINARY NETS

Inthis section we study the relationship between the proposed semantics for semi-weighted con
nets and the classical Winskel's semantics for safe ordinary nets (generalized to semi-weighted o
nets in [31]). Then, we formally compare the expressiveness of semi-weighted and safe contextu
by resorting to their prime event structure semantics.

Let us start by considering the diagram in Fig. 10. The top row represents the chain of corefle
definedin[14, 31], leading from the categ@W-N of semi-weighted ordinary nets to the categoom,
through the categor®-N of occurrence nets. In the mentioned paper it is shown that such coreflec
restrict, for safe nets, to Winskel's coreflections. The bottom row, instead, summarizes our coref
semantics for contextual nets. The vertical funcifs: SW-N — SW-CN andZ,¢, : O-N — O-CN
are inclusions, whileg7 : PES — AES s the full embedding functor introduced in Proposition 2.1. W
want to show that, as suggested by some previous informal considerations, each of our corefls
cuts down to Winskel's coreflection between the corresponding subcategories.

Let us first concentrate on square (1). It is easy to see that the unfolding fiaatestricts ta/ in
the sense th&l,co o U = U, o Ine. Similarly, the inclusior restricts taZy; i.€.,Znc 0 Zo = Zoc © Znco-
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to

L R 7R " ’tg gty
e
tll,;'

(a) £4(Ua(N)) () P(Lal&aUa(N))))

1) \
/ tto} \ i
/ {to, 1} {to,ta} {to, t2} {to,ts}
{io,tll,t,;} {to,t’l,l’{} {lo,t'l,tz) {to,tll,t3} {lo,tg,t4} {to,tg,t4}

{to. £, 21, ta}  {to. 81,8051’} {to.t 15, ta}  {to, 81,80, 82} {to. 11,87, 83}  {to, ], 22,84}

(b) La(€a(Ua(N)))

FIG. 8. The (a) AES, (b) domain, and (c) PES for the c-Neof Fig. 6.

N; G = E.(N3)

P = £,(N}) = P(L(E,(N3)))

FIG. 9. AES semantics is finer than PES semantics.



UNFOLDING SEMANTICS OF CONTEXTUAL NETS 37

. Lo > N
SW-N L ,O:N’ L , PES
ER
x
Toe (1) L  (2) 713, Dom
L
¢ Lo b} ¢ Na La
SWCN_ L  OCN__L _  AES
Ua Ea

FIG. 10. Relating the semantics of ordinary and contextual nets.

Since the inclusion$,; andZ,, are full embeddings, by general categorical arguments, from the
thatif, = Zoc is a coreflection we immediately conclude that- Z, and that such adjunction is &
coreflection as well. A similar reasoning applies to the “degenerate” square (3) (we can imagine it
edge to be the identity functor ddom), just observing thalf o P = Py andLa o J = L.

When considering square (2) instead, the correspondence is not completely straightforwar
vertical “edges” of the square, namely, and 7, are still full embedding functors and o & =
Ea 0 Ineo, but the other commutativity property, i.€hc0 0 N = Nz o J fails to hold. In fact, given
a PESP, the netZy.(N(P)) is obtained by saturating with places acting as preconditions an
postconditions for the events iR, while in AVR(J(P)) also context places are added. In this ca
we resort to the following categorical result which generalizes the observation used for the othe
squares.

Lemma 8.1. LetA; andB; fori € {0, 1} be categoriedet F : Aj — Bj, G : Bj — A be functors
and let I : Ag — Ay, Ig : Bg — By be full embedding functoisee Fig.11). Suppose that

1. FFEGy
2. Fiola=lgoFy
3. thereis a natural transformatios : Gy o lg — |40 Gy, such that for all objects A iAo and

B in By, each arrow g: G1(1g(B)) — I a(A) uniquely factorizes throughg, i.e., there exists a unique
f 1 1a(Go(B)) — Ia(A) suchthatg= f oap

G1(Is(B)) —22 I4(Go(B))

I14(4)
Then Ry = Gg. Furthermore if the units of £~ G; and Rk o « are natural isomorphisms then so is th
unit of iy = Gg as well.

Proof (Sketch). Lety® : 1 — F1 o G be the unit of the adjunctioR; - G;. Given an objecB in
Bo, consider the arros(ag) o nf,g) : 18(B) = 18(Fo(Go(B)))

18B) — 2 F(Ga(1a(B) — P s Fy(1a(Go(B))) = Ia(Fo(Ga(B))).

Then one can prove th& - Go with unit n$ = Igl(Fl(aB) o ’7|15(B))- ]

Coming back to square (2), observe that there is a natural transforneatiofy o 7 — Zneoo N,
which essentially forgets the contexts. The component at a PES (E, <,#) of « is given by
ap = (idg, apg) 1 Na(T(P)) = Znco N (P)), whereap is a partial function defined, for any plase
in the contextual net/, (7 (P)), as follows:

1 if sis a context place for some transitibn
s  otherwise.

ap(S) = {

Furthermore, given any PES and (ordinary) occurrence nbt, each arrovg : Na(7(P)) — Zneo(N)
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¢ - @ @

A1 L Bl
[ S
P

FIG. 11. Restriction of an adjunction.

can be factorized uniquely &so ap, for f : Z,.o(N'(P)) — Znco(N):

Na(T(P)) =5 Teo (V(P)
s
Tnca ().

[)

In fact, since the transitions f,.o(N) have an empty context, necessaglynust map the context
places inVa(J(P)) to the empty multiset, and thuk is uniquely determined as the restrictiongf
to Znco(V(P)). Finally, it is easy to verify thaf, o « is a natural isomorphism. Hence we can app
Lemma 8.1 to conclude that our coreflectifin— Nz induces the coreflectiofi - N.

Let us now comment on the expressiveness of semi-weighted and safe contextual nets by ex|
the proposed event structure semantics as a formal means to compare the two classes of 1
discussed in the Introduction, in the case of ordinary nets the safeness condition prevents one tc
an unbounded degree of concurrency. Formally, in the PES semantics of a finite $atb@eardinality
of a concurrent set of events is bounded by the number of transitioNs ihe same applies to finite
safecontextuahets as well. Instead, observe that the PES semantics of the semi-weighted,oofhet
Fig. 12 includes sets of concurrent events of unbounded cardinality, namely all finite sub&;@etgt
where fy, : Ua(Ng) — Ng is the folding morphism. Even more interestingly, let us first recall that,
proved in [20], any finite safe contextual net can be translated into a finite safe ordinary net, havi
same process semantics and thus, a fortiori, the same PES semantics. Instead there is no finite
(ordinary) P/T net having the same PES semantichladn fact, in the PES associated to any P/
net, the number of events which are directly caused by a single evstounded by the number of
tokens produced by the transition corresponding.tmstead, in the PES associatedNg the event
corresponding tt, is an immediate cause of infinitely many other events (all the events correspor
to transitiont,).

N4 L{a(N4)

FIG. 12. A semi-weighted contextual nés and (a part of) its unfolding where a transition occurrence directly cau:
infinitely many other transition occurrences.
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9. PROCESSES AND UNFOLDING

The notion of occurrence c-netintroduced in Section 5 naturally suggests a notion of nondeterm
process for c-nets, which can be defined as an occurrence c-net with a morphism (mapping plac
places and total on transitions) to the original net. Deterministic c-net processes can then be c
as particular nondeterministic processes such that the underlying occurrence c-net satisfies a
conflict-freeness requirement. Interestingly, the resulting notion of deterministic process turns
coincide with those proposed by other authors, such as [8, 26, 29, 39]. In her Ph.D. thesis [3]
introduces processes for nets with read and inhibitor arcs, which, restricted to the subclass of nets:
inhibitor arcs, still coincide with ours. Furthermore it is worth recalling that the stress on the nece
of using an additional relation of “weak-causality” to be able to fully express the causal structure «
computations in the presence of read or inhibitor arcs can be found already in [£1, 37].

The papers [26, 29, 39] extend the theory of concatenable processes of ordinary nets [4] to c-I
showing that the concatenable processes of a &drietm the arrows of a symmetric monoidal categot
CP[N], where objects are the elements of the free commutative monoid over the set of places (mt
of places). In particular, in [29] a purely algebraic characterization of such a category is given.

Since the categorZP[N] of concatenable processes of a Neprovides a computational model for
N, expressing its operational behaviour, we are naturally lead to compare such semantics with t
based on the unfolding, proposed in our paper. In this section, relying on the notion of concatenabl
process and exploiting the chain of coreflections f@¥i-CN to Dom, we establish a close relationshi
between process and unfolding semantics for c-nets. More precisely, we generalize to c-nets
semi-weighted case) a result proved in [9] for ordinary nets, stating that the domain associated to ¢
weighted netN (in our caseL,(E5(Ua(N)))) coincides with the completion of the preorder obtaine
as the comma category 6P[N] under the initial marking. Roughly speaking, the result says that
domain obtained via the unfolding of a c-net can be equivalently described as the collection
deterministic processes of the net, ordered by prefix.

9.1. Contextual Net Processes

A process of a c-ndtl can be naturally defined as an occurrence c\yetogether with a morphism
7 to the original net. In fact, since morphisms preserve the token gamegps computations dfl,
into computations oN in such a way that the process can be seen as a representative of a set of p«
computations ofN. The occurrence c-n&l, makes explicit the causal structure of such computatic
since each transition is fired at most once and each place is filled with at most one token durin
computation. In this way (as it happens in the unfolding) transitions and pladés oén be thought
of, respectively, as firing of transitions and tokens in places of the original net. Actually, to allov
such an interpretation, some further restrictions have to be imposed on the mosphiamely it must
map places into places (rather than into multisets of places) and it must be total on transitions.

Besides “marked processes,’ representing computations of the net starting from its initial markir
will introduce also “unmarked processes,” representing computations starting from a generic ma
This is needed to be able to define a meaningful notion of concatenation between processes.

Derinimion 9.31 (Process). Amarked proces®f a c-netN = (S, T, F,C, m) is a mapping
7 : N, — N, whereN, is an occurrence c-net andis astrongc-net morphism, namely a c-ne
morphism such thaty is total andrs maps places into places. The process is calisdreteif N, has
no transitions.

An unmarked process dfl is defined in the same way, where the mappings an “unmarked
morphism,” namelyr is not required to preserve the initial marking (it satisfies all conditions
Definition 4.20, but (1)).

Equivalently, if we denote bYCN* the subcategory o€N where the arrows arstrong c-net
morphisms, the processes Bf can be seen as objects of the comma categorCN | N) in

9 A different notion of enabling allowing for the simultaneous firing of weakly dependent transitions is used in [11], mz
difficult a complete direct comparison. For the same reason, although “syntactically” the processes of [8] coincide with our
are intended to represent the same firing sequences, but different step sequences.
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CN*.20This gives also the (obvious) notion of isomorphism between processes, which is anisomor
between the underlying occurrence nets “consistent” with the mappings to the original net. Anals
definitions can be given also for the unmarked processes of B nietis worth remarking that if we
want each truly concurrent computation of the Neto be represented by at most one configuration
the nondeterministic process, an additional constraint must be imposedrequiring that't; = °t,,

t1 = tp, andn (1) = 7 (t2) impliest; = t,, as in [5]. However, the two notions of process collapse wh
we restrict to deterministic processes which are the focus of this section.

A deterministic process represents a set of computations which differ only for the order in v
independent transitions are fired. In our setting a deterministic process is thus defined as a proce
that, in the underlying occurrence net, the transitive closure of asymmetric conflict is a finitary p
order, in such a way that all transitions can be fired in a single computation of the net. Determi
occurrence c-nets will be always denoted®ypossibly with subscripts.

Derinimion 9.32 (Deterministic Occurrence c-Net). An occurrence cés calleddeterministic
if the asymmetric conflict 7, is acyclic and well founded.

Equivalently, one could have asked the transitive closure of the asymmetric conflict relatigh (
to be a partial order, such that for each transitiam O, the sef{t’ | t'( "g)*t} is finite. Alternatively,
it can be easily seen that a finite occurrence c-net is deterministic if and only if the corresponding
is conflict free.

We denote by minD) and maxQ) the sets of minimal and maximal places®@fwith respect to the
partial order<g.

DeriniTion 9.33 (Deterministic Process). A (marked or unmarked) pragéssalleddeterministic
if the occurrence c-ndD, is deterministic. The processfigite if the set of transitions irfD,, is finite.
In this case, we denote by minf and maxf) the sets minQ,.) and maxQ,), respectively. Moreover
we denote by'w andx® the multisetsurs(min(r)) andurs(max(r)), called respectively theource
and thetargetof .

Clearly, in the case of a marked processf a c-netN, the marking®z coincides with the initial
marking ofN.

9.2. Concatenable Processes

As in [29, 39] a notion of concatenable process for contextual nets, endowed with an operat
sequential (and parallel) composition, can be easily defined, generalizing the concatenable pr
of [4]. Obviously, a meaningful operation of sequential composition can be defined only onthe unm
processes of a c-net. In order to properly define such an operation we need to impose a suitable ¢
over the places in min() and maxf) for each process. Such ordering allows us to distinguish amor
“interface” places o0, which are mapped to the same place of the original net, a capability whic
essential to make sequential composition consistent with the causal dependencies.

Derinmion 9.34.  LetA and B be sets and lef : A — B be a function. Anf -indexed ordering
is a familya = {ap | b € B} of bijectionsay, : f~1(b) — [| f ~X(b)|], where |] denotes the subset
{1,...,i}ofN,andf1(b) = {ae A| f(a) = b}.

The f-indexed orderingy will be often identified with the function fronA to N that it naturally
induces (formally defined dgly,_g ab).

Derinimion 9.35 (Concatenable Process). cAncatenable processf a c-netN is a triples =
{(u, , v), where

e 7 is a finite deterministic unmarked processa\of
e uism-indexed ordering of min);
e visx-indexed ordering of max().

10 Recall that given a categofy and an objeck of C, the comma category of objects (6) over x, denoted € | x), has
arrows f : y — x in C as objects. Moreover, giveh : y — xandg : z— x, anarrowk : f — gin (C | x) is an arrow
k:y — zin C such thatf = g o k. Symmetrically, theomma category of objects (6) under x denotedx | C), has arrows
f : x — yin C as objects. Furthermore, givdn: x — yandg: X — z,anarronk : f — gin(x | C)isanarronk: y — z
in Csuchthako f =g.
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Two concatenable process®s= (i1, 71, v1) andd, = (o, 2, v2) of a c-netN areisomorphic
if there exists an isomorphism of procesdes 71 — 2, consistent with the decorations, i.e., suc
that uo(fs(sy)) = wa(sy) for eachs; € min(ry) andvy(fs(sy)) = vi(si) for eachs; € max(ri). An
isomorphism class of processes is callabstract) concatenable proceard denoted byd], wheres
is a member of that class. In the following we will often omit the word “abstract” and Witibedenote
the corresponding equivalence class.

The operation of sequential composition on concatenable processes is defined in the natur
Given two concatenable process$gs, w1, v1) and{u,, 72, v2) such thatr,® = *m, their concatenation
is defined as the process obtained by gluing the maximal places afid the minimal places of,
according to the ordering of such places.

Derinimion 9.36 (Sequential Composition). Lét = (uq, 1, v1) andds, = {(up, w2, v2) be two
concatenable processes of a c-hDesuch thatr;®* = ®m,. Supposel1 N T, = JandS NS =
max@r;) = min(my), with 71(S) = m2(S) andvi(s) = ua(s) for eachs € § N S. In wordsé§; and
8, overlap only on max{;) = min(r,), and on such places the labelling on the original net and
ordering coincide. Then the@oncatenatior$y; 8, is the concatenable process= (u1, 7, v2), where
the process is the (componentwise) union af ands.

Itis easy to see that concatenation induces a well-defined operation of sequential composition b
abstract processes. In particulargif]land [5,] are abstract concatenable processes suclithat *5,
then we can always finél, € [8,] such thatsy; & is defined. Moreover the result of the compositic
seen at abstract level, namedy;[6;], does not depend on the particular choice of the representativ

Derinimion 9.37 (Category of Concatenable Processes). NLe¢ a c-net. Theategory of (abstract)
concatenable processetN, denoted byCP[N], is defined as follows. Objects are multisets of plac
of N, namely elements qi S. Each (abstract) concatenable procégs f, v)] of N is an arrow from
‘rtom”®.

One could also define a tensor operati®nmodeling parallel composition of processes, making t
categoryCP[N] a symmetric monoidal category. Since such an operation is not relevant for our pre
aim, we refer the interested reader to [29, 39].

9.3. Relating Processes and Unfolding

LetN = (S, T, F, C, m) be a c-net and consider the comma category, (CP[N]). The objects of
such a category are concatenable processHsstéirting from the initial marking. An arrow exists fromn
a process; to §; if the second one can be obtained by concatenating the first one with a third prc
8. This can be interpreted as a kind of prefix ordering.

Lemma 9.1. For any c-net N= (S, T, F, C, m) the comma categor§m | CP[N]) is a preorder.

Proof. Lets : m — M; (i € {1,2}) be two objects inrt |, CP[N]), and suppose there are tw
arrowsd’, 8” : 81 — 8. By definition of comma categomds; 8’ = §1;8” = 82, which, by definition of
sequential composition, easily impli¢s=5". m

In the following the preorder relation ovem(| CP[N]) (induced by sequential composition) will
be denoted by or simply by<, when the nelN is clear from the context. Therefore we wrte< &,
if there existss such that; 6 = 5,.

We provide an alternative characterization of the preorder relatigrwhich will be useful in the
following. It essentially formalizes the intuitive idea that the preordenog (CP[ N]) is a generalization
of the prefix relation. First, we need to introduce the notion of left-injection for processes.

Derinimion 9.38 (Left Injection). Le; : m — M; (i € {1, 2}) be two objects inrfy | CP[N]), with
8i = (ui, 7, vi). Aleftinjection: : 8; — &2 is a morphism of marked processesr; — 7, such that

1. ¢ is consistent with the indexing of minimal places, namglys) = u2(«(s)) for all s €
min(r);

2. s "rigid” on transitions, namely fot, in O, andty in Oy, if t; 7 «(ty) thent, = «(t;) for
somet; in O,.
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The name “injection” is justified by the fact that a morphidmetween marked deterministic process
(being a morphism between the underlying deterministic occurrence c-nets) is injective on plact
transitions, as it can be shown easily by using the properties of (occurrence) c-nets morphisms pr
Section 5. The word “left” is instead related to the requirement of consistency with the decoration
minimal items. Finally, the rigidity of the morphism ensures #$aoes not extend; with transitions
inhibited ind;.

Lemma 9.2. Letdi:m — M; (i € {1, 2}) be two objects ifm | CP[N]), with § = (u;, i, v).
Then

81 .8, Iiff there exists a left injection: §; — §5.

Proof. (=)Letd; . 52, namelys, = §;; 8 for some process= (u, , v). Withoutloss of generality,
we can imagine that; is obtained as the componentwise uniompfndr and this immediately gives
a morphism of marked processes (the inclusiary; — 5, consistent with the indexing of minimal
places. To conclude it remains only to show thistrigid. Suppose thaj 7 ((t1) for some transitions
t; in O, andt; in O, and thus, by Definition 5.23, eith&fr:(t1) ort; < «(t1). To conclude that is
rigid we must show that in both casgss in O,.

e If t)-(ty), since the process is deterministict, and:(t;) cannot be in conflict and thus it mus
bet; N *u(t1) # ¥. Sincet) uses as context a place which is not maximaDiy), necessarily; is in O,
otherwise it could not be added by concatenating 7.

e If t; < (t1) thenwe can find a transitidgin O,, such that; < t; andt;® N (*u(ty) U «(ty)). As
above t; must be inO,, since it uses as postcondition a placé&iy. An inductive reasoning based o
this argument shows that algpis in O, .

(<) Let: : 81 — 82 bealeftinjection. We can suppose without loss of generality@hais a subnet
of O, in such a way thatis the inclusion ang; = p». Let O, be the net ©,,\O,,) U max(Oy,),
where difference and union are defined componentwise. More pre€isely (S, T, F, C), with:

e S=($\S)Umax(r)
o T = T2 \ T1
e the relations= andC are the restrictions df, andC,to T.

Itis easy to see thdD, is a well-defined occurrence c-net and nipj = max(O,). In particular, the
fact thatF is well defined, namely thatife T then*t,t* € S immediately derives from the fact tha
the inclusion is a morphism of deterministic occurrence c-nets. On the other hand the well-define
of C is related to the fact that the injection is rigid. In fact,det t fort € T and suppose thatg S.
Therefores € °ty, for somet; € T; and thugt ~t;, which, by rigidity, impliest € T, contradicting
teT.

Therefore, if we denote by the concatenable proceés, n, v,), thendy;§ = &2, and thuss; <
So. W

We can now show that the ideal completion of the preonsief (CP[N]) is isomorphic to the domain
obtained from the unfolding of the nist, namelyL, (Ea(Ua(N))). Besides exploiting the characterizatio
of the preorder relation om{ | CP[N]) given above, the result strongly relies on the description of 1
unfolding construction as chain of adjunctions.

First, it is worth recalling some definitions and results on the ideal completion of (pre)orders.

Derinmion 9.39 (Ideal). LeP be apreorder. Aidealof P isasubseb € P, directed and downward
closed (namelys = [ J{| X | X € S}). The set of ideals oP, ordered by subset inclusion, is denote
by IdI(P).

Given a preordeP, the partial orderdI(P) is an algebraic CPO, with compact elemadtsli(P)) =
{{ p| p e P}. Moreoverldl(P) ~ IdI(P/-), whereP/_ is the partial order induced by the preorde
P. Finally, recall that ifD is an algebraic CPO, thddI(K(D)) >~ D.

Lemma 9.3. Let P and R be preorders and let fP; — P, be a surjective function such tha
p1 E p; iff f(py) E f(py). Then the function f: IdI(P;) — IdI(P,), defined by f(l1) = {f(x) | x €
I}, for | € IdI(Py), is an isomorphism of partial orders.
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Proof. The functionf* is surjective since for every ide&d € IdI(P,) it can be easily proved that
f=1(1,) is an ideal andf *( f ~1(1,)) = 1, by surjectivity of . Moreover, notice that if;, 1,  IdI(Py)
are two ideals thety < I] if and only if *(1;) € f*(l;). The right implication is obvious. For the
left one, assumd *(I;) < f*(I;). Then observe that i € 1, then f(x) € f*(I1) € f*(I;). Hence
there existx’ € 1] such thatf (x') = f(x). Thus by hypothesis of we havex E x’ and therefore, by
definition of ideal x € I;.

Then we can conclude thdt* is also injective, thus it is a bijection, and clearly as well as its
inverse are monotone functionsm

Notice that in particular, iP is a preorderD is an algebraic CPO anfl: P — K(D) is a surjection
such thatp E p'iff f(p) E f(p), thenldl(P) ~ IdI(K(D)) ~ D.

We can now prove the main result of this section, which establishes a tight relationship betwe
unfolding and the process semantics of semi-weighted c-nets. We show that the ideal comple
the preorderrq | CP[N]) and the domain associated to the hethrough the unfolding construction
are isomorphic. To understand which is the meaning of taking the ideal completion of the pre
(m | CP[N]), first notice that the elements of the partial order induced by the preard¢r@P[N])
are classes of concatenable processes with respect to an equivalelefi@ed bys; =, §, if there exists
a discrete concatenable procéssich thad; ; § = §,. In other words§; =, 8, can be read as; ands,
leftisomorphic,” where “left” means that the isomorphism is required to be consistent only with re:
to the ordering of the minimal places. Since the Nés semi-weighted, the equivaleneg turns out to
coincide with isomorphism of marked processes. In fact, being the initial markiNgeo$et, only one
possible ordering function exists for the minimal places of a marked process. Finally, since proc
are finite, taking the ideal completion of the partial order induced by the preorder@P[N]) (which
produces the same result as taking directly the ideal completian ¢fCP[N])) is necessary to move
from finite computations to arbitrary ones.

Treorem 9.1 (Unfolding vs. Concatenable Processeset N be a semi-weighted c-net. The
IdI((m | CP[N])) is isomorphic to the domaifi;(Ea(Ua(N))).

Proof. Let N = (S, T, F,C, m) be a c-net. It is worth recalling that the compact elements
the domainL,(Ea(Ua(N))) associated tdN are exactly the finite configurations &f(i/a(N)) (see
Theorem 3.1). By Lemma 9.3, to prove the thesis it suffices to show that it is possible to define a ful
&:(m |} CP[N]) = K(La(Ea(U4a(N)))) such thatf is surjective and for allsy, 52 in (m | CP[N]),

81562 I £(81) E £(82).

The functiorg can be defined as follows. Lét= (u, 7, v) be aconcatenable processtim ( CP[N]).
Sincer is a marked process & (and thus a c-net morphism: O, — N), by the universal property
of coreflections, there exists a unique arrow O,, — U,(N), making the diagram below commute.

UM 2 N
0,
56
In other words, the coreflection betwe8W-CNandO-CN gives a one-to-one correspondence betwe
the (marked) processes WNfand of those of its unfoldingy,(N).
Then we defin& (8) = 71 (T;), whereT, is the set of transitions oD,. To see that is a well-

defined function, just observe that it could have been written, more precisély(lag7))(T,) andT,
is a configuration of,(U4(0,)) = £4(O,) sinceO,, is a deterministic occurrence c-net.

e £ issurjective
Let C e K(La(Ea(UUa(N)))) be a finite configuration. The® determines a deterministic proces
7¢:On. — Ua(N) of the unfolding ofN, havingC as set of transitions. Thusz = fy o g IS
a deterministic process &f, and, by the definition of, we immediately get thdt(r) = 7 (T,.) = C.

u Essentiallyo,,/c is the obvious subnet fa(N) havingC as set of transitions and- is an inclusion.
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e £ ismonotone

Let §; andé, be processes im( | CP[N]) and leté; < 82. Then, by Lemma 9.2, there exists a lef
injectiont : 8, — 8». The picture below illustrates the situation, by depicting also the processesl
w5 of the unfolding ofN, induced byr; andrs, respectively.

U (V) s
ST m
S
™ O‘"’z ™
o

We have thai£(81) = m1(Ts,) = m3((Tr)) S 75(Ts,) = &(82). Therefore, to conclude that
£(81) C &(82) we must show that the second condition of Definition 3.14 is also satisfieth. E€1(5>)
andt; € £(81), witht, 7 t1. By definition of¢, ti = =/ (t/) with t/ in O, fori € {1, 2} and thus:

7ty) /7 7 (ty) = ma(u(ty).

By properties of occurrence net morphisms (Theorem 5.1 and the faddthét deterministic), this
impliest; 7 «(t;) and thus, sinceis a left injection, by rigidityt; = «(t) for somet in O,. Therefore
to = 75(t)) = m5(u(t)) = 71 (t) belongs tcs (81), as desired.

® £(61) T &(82) impliesdy < 8z.

Let£(81) C &£(82). The inclusiort (81) C £(82), immediately induces a mappin@f the transitions of
O, into the transitions 0f0,,, defined byi(t1) = t; if 7;(t1) = 75(t2) (See the picture above). This
function is well defined since processes are deterministic and thus morphjisans injective. Since
the initial marking ofN is a set, the mapping of mim() into min(r,) is uniquely determined and thu
¢t uniquely extends to a (marked) process morphism betwgemnd .. Again for the fact thaiN is
semi-weighted (and thus there exists a unique indexing for the minimal places of each process ¢
from the initial marking) such morphism is consistent with the indexing of minimal places. Final
is rigid. In fact, lett, 7 «(t1), for t; in O, andt in O,. By properties of occurrence c-net morphisir
(Lemma 5.3)5(t2) 7 m5((t1)). The way: is defined implies that;(:(t1)) = 71(t1), and thus

myte) /' mi(ta).

Sincer{(t) € £(&) fori € {1, 2}, by definition of the order on configurations, we immediately ha
thatm;(to) € £(81), hence there iy in O, such thatr(t;) = m5(t2), and thus(t;) = to.

By Lemma 9.2, the existence of the left injectiard; — &, impliesé; < 5. ®

10. CONTEXTUAL NETS WITH MULTISET CONTEXTS

In this section we discuss how the theory developed in this paper can be extended to deal w
more general class of (semi-weighted) contextual nets where the context of a transition is a m
rather than a simple set. This is a natural choice if we think of transitions as agents which compute
results, i.e., their post-set, starting from some arguments, i.e., their pre-set, which is destroyed, al
context, which is instead accessed in a nondestructive manner. A token in & dabes interpreted
as an argument of “types and hence the multiplicities of pre-set, post-set, and context of transit
have a very clear meaning: a transitions can consume and read several arguments of the same
similarly, produce several results of the same type.

Derinimion 10.40 (mc-net).  Anultiset contextual Petri net (mc-nét)a tupleN = (S, T, F, C, m),
whereS, T, F andm are defined as for c-nets, whi®: T <> Sis a multirelation, called theontext
multirelation
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FIG. 13. A simple mc-net.

Thecontexbf a finite multiset of transitioné € uT is, in this case, a multiset defined&s= £ C(A).
The notion ofenablingremains essentially unchanged: a finite multiset of transitidisenabled by
a markingM if, besides the pre-set &, the multisetM contains at least oredditionaltoken in each
place in the context 0. This corresponds to the intuition that a token in a place can be used as co
not only by many transitions at the same time, but also with multiplicity greater than one by the
transition.

Derinimion 10.41 (Token Game). Léd be an mc-net and lél be a marking oN. A finite multiset
of transitionsA € uT isenabledby M if *A+ [A] < M. Inthis caseM [A) M + A® — * A,

Since here we consider contexts with multiplicities, the reader could have expected a noti
enabling requiring for the presence of each context with the corresponding multiplicity, namely

M[A) iff *A+A<M. ()

We remark that this would not fit with the intuition underlying contextual nets. Consider, for instance
netN;j in Fig. 1 and the multiset of transitiomg+ t;. We have®(tp+t;) = s+ and o +t1) = 2-s.
According to (), the marking ofN; in Fig. 1, namelysy + s; + s would not enablé, + f;, contradicting
the idea that a single token &can be read concurrently liyandt;.

Still, one could think that, although it is natural to allow contexts to be shared among diffe
transitions, each single transition, to be enabled, should require its context with the right multiplic
The idea of allowing for the firing of a transition when at least one token is present in each context
can be understood by recalling the interpretation of transitions as agents and of contexts as re:
arguments of such agents: in this view not only different agents can share read-only arguments, &
an agent requiring two “read” parameters of the same type can read twice the same argument. At
formal level, we have been influenced also by the correspondence between contextual nets an
transformation systems [17, 20]. In fact, in a graph transformation system, which can be though
a “generalized” contextual net, a graph production may specify a context with multiple occurrenc
the same resource and can be applied with a match which is noninjective on the context.

According to the multiplicities of places in the context of a transitiotihe firing oft may involve a
multiset of tokens larger thart] (ranging from [t] to t). For example, in the net of Fig. 13, after th
firing of t; + to, we may have three “different” firings of sincet can use as context

e both the tokens generated fyyand byt;;

e twice the token generated Ity

e twice the token generated by
In the first case the occurrencetafausally depends both dnand onty, in the second case it depend
only ontg, and in the third case only an. More precisely, as the functiortg.), ()* : uT — uS
associate to each multiset of transitiohshe multiset of tokens which are consumed and produced
the firing of A, in the presence of contexts we can introduce a relatead < T x uSsuch that
Aread M means thaM can be used as context in the firing&f According to the discussion above
read can be formally defined as: for all finite multisedse T and for allX € uS,

Aread X iff [A]l <X <A

Observe that, different frort(.) and ()°*, which are functionsread is a relation.
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A mc-net morphism is still required to preserve the initial marking as well as the pre- and pos
of transitions, while contexts are preserved in a weak sense.

Derinimion 10.42 (mc-net Morphism). Léty and Ny be mc-nets. Anorphism h Ng — Nj is a
pairh = (ht, hs), whereht : Ty — T, is apartial function anchs: & < S is afinitary multirelation
such that

1. phg(mp) is defined angehg(mg) = my;
2. for each transitioh € uTo, uhg(°t), uhs(t®) anduphs(t) are defined, and
() whs(*t) = *uhr(t); -
(i) phs(t®) = phr(t)®;
(i) [ phr®] < pnhs@®) < phr(t).

We denote byMCN the category having mc-nets as objects and mc-net morphisms as arrows.

Conditions (1), (2.i), and (2.ii) are the same as in Definition 4.20, but condition (2.iii), regar
contexts, deserves some comments. Like the image of the pre-set (postis&)refuired to be a
multiset of tokens which is the pre-set (post-set) of the imadegmilarly, given a multiset of tokens
X which can be used as contextthyts image must be a set of tokens that can be used as context b
image oft. By using the ‘read " notation defined before, this requirement can be expressed as follc
foranyX e uS

tread X = phr(t) read pwhs(X).

According to the definition of read, this condition can be rephrased by asking that fof any S,

if [t] < X < tthen [uhr(t)] < whs(X) < wht(t), which is in turn equivalent to condition (2.iii)
above. It is easy to prove that the token game and thus reachable markings are preserved by
morphisms.

Observe tha€N is a full subcategory ofMMCN. In fact if N is a c-net, namely an mc-net where th
context multirelatiorC is a relation (i.e.C = [C]), then for any transition, we have = t. Therefore,
when Ny and N; are c-nets, condition (2.iii) in the definition of mc-net morphism above reduce
uht(t) = nhg(t), i.e., to condition (2.iii) in the definition of c-net morphism (Definition 4.20).

If we denote bySW-MCN the full subcategory ofMMCN having semi-weighted mc-nets as object
then the whole theory developed in this paper $a¥-CN, comprising the coreflective semantics ¢
semi-weighted nets, their process semantics, and the relationship between the two approaches, s
extends to the wider catego8¥W-MCN. The notion of safe net, occurrence net, and the corresponc
categories remains the same. In proving BaEN coreflects inSW-MCN we only need to modify
the definition of the unfolding (see Definition 6.28). The equation defining the set transitions ¢
unfolding slightly changes in order to generate a different occurrence of a trariditioeach possible
multiset of tokens that can use in its firing:

T = {{Mp, M, t) | Mp, Mc €S A MpN M=% A condMp U M) A
teT A ufs(Mp) ="t A [t] < ufs(Mc) < t).

11. CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is a truly concurrent event-based semantics for (semi-wei
P/T contextual nets. The semantics is given at categorical level via a coreflection between the cat
SW-CN of semi-weighted c-nets aridom of finitary coherent prime algebraic domains (or equiv
lently PES of prime event structures). Such a coreflection factorizes through the following cha
coreflections:

Toc 5 Na , Pa L
SW-CN L O-CN_ L AES + Dom_ ~ . PES
Uq Ea Lo P

Such a construction is a consistent extension of Winskel's one [10], in the sense that it ass
to a safe c-net without context places the same occurrence net and domain produced by Wi
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construction. More precisely, we have shown how each of our coreflections cuts down to Win:
coreflection between the corresponding subcategories.

We have also shown that a close relationship exists between the unfolding semantics and the de
istic process semantics, generalizing a result of [9] to c-nets. Roughly speaking, the domain ass
to a semi-weighted contextual net by the above functors is shown to be isomorphic to the set of
ministic processes of the net starting from the initial marking, endowed with a kind of prefix orde

Akeyrole inour semanticsis played by asymmetric event structures, an extension of Winskel's (f
event structures (with binary conflict), introduced to deal with asymmetric conflicts. Asymmetric €
structures are closely related to other models in the literature, such as PES’s with possible even
flow event structures with possible flow [43], and extended bundle event structures [33]. However
ofthe above models was adequate for our aims: PES’s with possible events are not sufficiently expr
while the other two models look too general and unnecessarily complex for the concerns of this |
due to their capability of expressing multiple disjunctive causes for an event. Moreover, no categ
treatment of the more general models was available and, due to their greater complexity, it is still u
if the coreflection result betweekES andDom of this paper extends to them. Understanding whi
part of the results presented in this paper for AES’s extends to flow event structures with possibl
and to bundle event structures with asymmetric conflict is an interesting matter of further investig

We already mentioned that the McMillan algorithm for the construction of a finite prefix of the
folding has been generalized in [5] to a subclass of safe contextual nets, called read-persistent col
nets, and it has been applied to the analysis of asynchronous circuits. We are confident that the
in the present paper, and in particular the notion of a set of possible histories of an event in a con
net, may ease the extension of the technique proposed in [5] from the subclass of read-persiste
to the whole class of semi-weighted c-nets (perhaps at the price of a growth of the complexity).

Recall that Winskel's construction has been generalized in [9] not only to the subclass of ¢
weighted P/T nets, but also to the full class of P/T nets. In the last case, some additional effortis r
and only a proper adjunction rather than a coreflection can be obtained. We believe that also the
of this paper could be extended to the full class of P/T contextual nets by following the guide
traced in [9] and exploiting, in particular, a suitable generalization to c-nets of the notions of decc
occurrence net and family morphism introduced in that work.

Apart from the application to c-nets analyzed in this paper, asymmetric event structures se
be rather promising in the semantic treatment of models of computation, such as string, tern
graph rewriting, allowing context sensitive firing of events. Therefore, as suggested in [43], it w
be interesting to investigate the possibility of developing a theory of general event structures
asymmetric conflict (or weak causality) similar to that in [10].

Finally, we remark that one of the motivations of the research on contextual nets is their relatio
with graph transformation systen{&TS’s) [22, 34], a formalism for the specification of concurrel
and distributed systems which can be an appropriate alternative to Petri nets when one is intere
having a more structured description of the state. In fact, in a GTS the state is represented by ¢
and local transformations of the state are modelled via the application of graph productions, v
roughly speaking, are rules specifying that the left-hand side of the rule, in a given context, re\
to its right-hand side. Since Petri nets are essentially rewriting systems on multisets, it is quite n
to see GTS'’s as a proper extension of Petri nets both for the fact that they allow for a more col
state and for their capability of expressing “contextual” rewritings. It is worth noting that, in the ca:
GTS's, “contexts” are not an optional feature but an essential part of the rewriting mechanism, \
permits specification of how the subgraph added by the step is connected to the remaining par
state. To better understand this fact, recall that, according to [22], a graph production consist
left-hand side graph, a right-hand side grapR, and a (common) interface graphembedded both
in Rand inL, as depicted in the top part of Fig. 14. Informally, to apply such a rule to a deapk
must find an occurrence of its left-hand sidén G. The rewriting mechanism first removes the part «
the left-hand sidd. which is not in the interfac& producing the grapt® and then adds the part of
the right-hand sid®R which is not in the interfac&, thus obtaining the grapH. The interface graph
K is “preserved”: it is necessary to perform the rewriting step, but it is not affected by the step i
and as such it corresponds to the contexts of our contextual nets. Notice that the intebnes a
fundamental role in specifying how the right-hand side has to be glued with the graVorking
without contexts, which in a grammar-theoretical framework would mean working with product
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L R

FIG. 14. A (double pushout) graph rewriting step.

having an empty interface graph the expressive power of graph grammars would drastically decre
only disconnected subgraphs could be added.

To present GTS'’s as a formalism for concurrent and distributed systems, people working in thi
have been naturally led to the attempt of providing them with an appropriate concurrent semant
particular, some efforts have been spent in the direction of recasting in this more general fram
notions, constructions, and results from Petri nets theory. Unfortunately, the reason for which
grammars represent an appealing generalization of Petri nets, namely the fact that they extend n
some nontrivial features, makes nontrivial also such generalizations. Some successful results
project of extending the constructions from net theory to GTS’s have been obtained in the develo
of a theory of nonsequential processes for GTS's [32, 38]. Since contextual nets extend ordina
with one of the new features of GTS’s, namely with the capability of preserving part of the sta
a rewriting step, we think that the work on c-nets could help in transferring notions and results
nets to GTS’s. Indeed, (a part of) the results of this paper have been recasted for GTS’s [12, 30
coreflective semantics for GTS’s is still missing and constitutes a direction of further research.
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