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Abstract

This paper describes a numerical strategy for the detection of hidden corrosion in an

internal, unobservable surface of a material object, whose geometry and material prop-

erties are known. Since the corrosion is not directly measurable, it is estimated using

a nondestructive infrared thermographic inspection. The a priori knowledge about the

material object allows us to use a physical-mathematical model to support the estimate.

Given a suitable parametrization of the depth of the real corroded profile, the numeri-

cal algorithm performs a nonlinear estimate of the corroded model domain parameters,

adopting a predictor-corrector scheme.
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1. Introduction

In this paper we solve numerically an inverse problem of corrosion de-
tection in an unobservable surface of a metal slab, whose thickness and
thermo physical properties are known. Since the corrosion is not directly
measurable, we estimate it using a nondestructive infrared thermographic
inspection. The a priori knowledge about the material object allows us to
use a physical-mathematical model to support the estimate. Given a suit-
able discretization of the corrosion geometric profile and starting from the
reference (sound) domain, the mathematical problem consists in estimating
the corrosion depth at each interval of the discrete profile.

Pulsed infrared thermography becomes practical in detecting hidden
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corrosion when induced temperature signals are high enough, even if they
exist for short time intervals. The 1D approach models only the depth
dimension and it therefore assumes that transient thermal events occur
simultaneously in sound and corroded areas of the surface: the defects have
to be very large so that the boundary heat diffusion effect can be neglected
in their center. In such a case an analytical approach is possible. However,
when dealing with small defects, the lateral heat diffusion is no longer
negligible and must be taken into account (2D and 3D cases) [1]. This
paper is focused on the 2D problem: a Finite Element (FE) model is used
in an optimization loop to solve the inverse heat transfer problem.

In the framework of the two-dimensional (2D) approach, it has been
shown that pulse heating is capable of producing high temperature con-
trasts but absolute temperature signals might be low due to the insufficient
amount of total energy injected into the sample. Oppositely, long heating
can significantly warm up the tested object but provides lower contrasts
over defects [2]. In the literature, different aspects and solution methods
for this kind of problems have been studied. In [3,4] the authors consider
the time-harmonic case. Uniqueness and stability have been studied in [5–7].

In the numerical model adopted in this paper, the depth of the real
corroded profile is approximated by a general piecewise-constant function.
Since it can have high gradients in unknown positions, the simplest strategy
is to use a uniform small subdivision step. However, this corresponds to a
large number of parameters to be estimated, increasing the computational
complexity of the estimation problem. Considering also its ill-conditioning,
it may ask for prohibitive computing times for a real-time diagnostic in-
strument. In principle less parameters could be sufficient to have a good
approximation of the depth of the real corroded profile, for example where
it possesses small gradients. In identification theory using a model of com-
plexity not higher than necessary is a guideline [8]. In the problem at hand,
this can be accomplished by using an adaptive subdivision of the profile,
based on a posteriori indicators, obtained after iterative comparisons be-
tween the experimental measurements and the predictions given by a ref-
erence adaptive FE model. In [9], two different algorithms were presented
to solve the corrosion estimation problem from the experimental data pro-
duced by infrared thermography. While the first one (inner-outer loop al-
gorithm) estimates the values of parameters using two nested loops, in the
second one (predictor-corrector algorithm), to reduce computational costs,
the adaptation of the parametrization is done by a linear predictor step,
while parameter estimation is done in the nonlinear corrector step. In this
paper a novel formulation of the prediction step is presented, theoretically
supported by Lemma 4.1 and described in section 4.4.
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In section 2, the mathematical problem is presented in the general and
2D cases. In section 3 a suitable parametrization is chosen for the discrete
inverse problem at hand. The numerical strategy is described in section 4
and tested in section 5.

2. Problem formulation

Fig. 1. 3D problem: corroded piece of material (red), absorbs the heat flux q (left);
2D reduction, dealing with its section over z = 0 (right).

Suppose to deal with a metal slab, D
(0)
c , whose thickness and thermo

physical properties are known, and to interact only with one face S, which
is provided with ny temperature sensors. A nondestructive test is used,
consisting of an infrared thermographic inspection: in the time interval
[0, tf ], tf > 0, S is heated with a thermal flash q(t) and experimental
temperatures are collected. Suppose that the material surface, excluding S,
is adiabatic: there is no heat exchange with the outside environment (cfr.
Remark 2.1).

The underlying mathematical model is based on solving the heat equa-
tion on the corroded domain.

More precisely,

let D
(0)
c = [0, 1] × [0, L] × [−z0, z0] be the reference uncorroded (sound)

domain (Figure 1 left), S := {(x, 0, z), x ∈ [0, 1], z ∈ [−z0, z0]} and solve
the following linear heat conduction problem

(1)



















ρC ∂
∂t
T (0) = k ∆T (0), in D

(0)
c × [0, tf ]

k ∇T (0) · nS = q(t), on S × [0, tf ]

k ∇T (0) · n = 0, on δD
(0)
c /S × [0, tf ]

T (0)(0, ·) = T0(·), in D
(0)
c .
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ρC is the heat capacity of the material, k is its thermal conductivity, and

nS and n are respectively the outward normal to S and δD
(0)
c /S. Suppose

to know ρC, k and the heat flux q(t) = −q(t)nS, which is assumed to be
approximately a Dirac impulse in time, centered in t = 0, and constant

over S. In section 5 the heat flux is modelled by q(t) = Wt
σ2
q
e
−

√
t

σq , with

σq > 0 sufficiently small to have a narrow pulse and W > 0. The initial
condition T0(·) is simply set as a constant temperature over the spatial
domain. Observe that (1) is the reference sound model. Consider a temporal
discretization of [0, tf ], {t0, . . . , tN−1}, t0 = 0, tN−1 = tf . The experimental
data of the sound model are denoted by T s

uc ∈ R
ny×N , such that (T s

uc)ij
represents the temperature in the i-th sensor at time tj−1. The FE solution

of (1) in S’ ny nodes is denoted by T
(0)
h ∈ R

ny×N . More details regarding the
FE discretization of the heat equation can be found for example in [10,11].
The quantity

σ :=
∥

∥

∥
T s
uc − T

(0)
h

∥

∥

∥

2

is a measure of the goodness of the model.

Consider now the real corroded domain D
(ϑ)
c (cfr. the dashed domain

in Figure 1), described by a scalar function ϑ ∈ L2(S). The corresponding

PDE over D
(ϑ)
c is the following

(2)



















ρC ∂
∂t
T (ϑ) = k ∆T (ϑ), in D

(ϑ)
c × [0, tf ]

k ∇T (ϑ) · nS = q(t), on S × [0, tf ]

k ∇T (ϑ) · n = 0, on δD
(ϑ)
c /S × [0, tf ]

T (ϑ)(0, ·) = T0(·), in D
(ϑ)
c .

Assume that the corrosion does not modify the boundary conditions, but
only the geometry of the domain.

Supposing that the temperatures T (ϑ)(t, ·) |S are known, the continuous

inverse problem consists in finding a suitable approximation ϑ̄ ∈ L2(S) of
the depth of the real corroded profile ϑ s.t.

(3) ϑ̄ = arg min
f∈L2(S)

∫ tf

0

∥

∥

∥
T (ϑ)(t, ·) |S − T (f)(t, ·) |S

∥

∥

∥

L2(S)
dt.

This non-destructive approach is physically motivated by the fact that, in
presence of corrosion, the heat supplied at the surface accessible from the
source, S, has less material to diffuse within and the superficial temper-
ature in S remains locally higher for a nontrivial time-interval [0, tf ]: a
mathematical proof of this property is given in Lemma 4.1.
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In the following it is assumed that, if we are able to accurately describe
the depth of the real corroded profile, we can describe the thermal response
of the corroded system at the same level of accuracy that we do with the
uncorroded one (σ). In this way we can distinguish whether a suboptimal
estimate of the profile have been reached.

Remark 2.1. The adiabatic hypothesis is usually invoked in thermal Non-
Destructive Evaluation when dealing with thin metal slab. Indeed the key
parameter is the Biot number which is defined as the ratio of the heat
transfer resistances inside of and at the surface of a body. The smaller the
Biot number the better the approximation of the real thermal process with
an adiabatic one. In figure 2, the surface temperature evolutions (analyti-
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Fig. 2. First row: metal slab. Left: comparison between surface temperature evolu-
tion of a 5 mm thick metal slab in adiabatic and non-adiabatic conditions. Right:
Relative error caused by modeling the non-adiabatic process with an adiabatic one.
Second row: plastic slab. Left: comparison between surface temperature evolution of
a 5 mm thick plastic slab in adiabatic and non-adiabatic conditions. Right: Relative
error caused by modeling the non-adiabatic process with an adiabatic one.

cally computed) for a 5 mm thick slab heated by a Dirac energy pulse in
adiabatic and non-adiabatic conditions are shown, for two different mate-
rials: metal and plastic. In case of plastic, the Biot number is more than
600 times larger than metal. In this example, the assumption of adiabatic
thermal process causes errors in temperature less than 0.1% in case of metal
and less than 10% for plastic.

Moreover, in [7] a numerical approach is used to support the consistency
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of the adiabatic hypothesis.

2.1. Reduction to a 2D problem

In the following, we assume that the corrosion does not vary along the
z-axis, such that (1) and (2) can be restated as 2D problems, considering

S = [0, 1] and D
(0)
c = [0, 1] × [0, L] (Figure 1 right). Thus we can describe

analytically the corroded region in the following way:

D(ϑ)
c := {(x, y) s.t. x ∈ [0, 1], 0 ≤ y ≤ L− ϑ(x)} ,

where ϑ(x) : [0, 1] → [0, L] is a suitable smooth non negative function, s.t.
ϑ(0) = 0 = ϑ(1), which represents the the depth of the real corroded profile.

2.2. Choice of a numerical solution strategy

In [3], under suitable hypothesis, the corrosion estimation problem has
been solved analytically: assuming a sinusoidal impulse q(t), using a change
of coordinates, (2) is rewritten as a heat equation over the sound domain

D
(0)
c × [0, tf ], with its PDE coefficients depending on θ. However, in this

paper it is assumed that the heating flux q(t) is approximately a Dirac
pulse heating. Its use is motivated by higher contrast signal and shorter test
duration. Indeed pulse thermography, that is a transient technique, does not
require the sample to reach the stationary periodic regime, as in case of an
harmonic heating. Since the analytical solution of the corresponding heat
equation becomes very difficult, a numerical approach has been adopted.
Observe that a discrete restatement of the inverse problem (3) is proper,
since we suppose to deal with collected experimental data T s

c ∈ R
ny×N .

3. The discrete inverse problem

To restate (3) as a discrete inverse problem, a particular approximation
of the depth of the real corroded profile ϑ(x) is introduced, choosing a
piecewise constant function (Figure 1 right).

Consider a subdivision of [0, 1], coincident with a subset of the ny
temperature sensors’ locations, with distinct spatial nodes {xi}i=1,...,nθ

,
nθ ≤ ny, x0 = 0, xnθ

= 1, and a uniform subdivision of [0, L], with step hy,
{yi}i=0,...,nL

, y0 = 0, ynL
= L. Define

θj :=
1

hc(j)

∫ xj+1

xj

ϑ(x)dx ≈ L− yk,

for a suitable k ∈ {0, . . . , nL}, hc(j) := |xj+1 − xj | , j = 1, . . . , nθ − 1.
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Consider now the set of functions

P =







ϑ̃ s.t. ϑ̃ : [0, 1] −→ [0, L], ϑ̃(x) =

nθ−1
∑

j=1

θjχ[xi,xi+1)(x)







,

where χ[xi,xi+1)(x) =

{

1, x ∈ [xi, xi+1)
0, elsewhere

is the characteristic function of

[xi, xi+1). The approximated corroded domain is defined as follows

D(θ̃)
c := D(0)

c \

∫ 1

0
ϑ̃(x)dx.

Thus D
(θ̃)
c is identified by the vector of parameters θ ∈ R

nθ−1.

Define now the matrix of prediction errors Eθ := T s
c − T

(θ)
h ∈ R

ny×N

where T
(θ)
h ∈ R

ny×N denotes the FE solution at every time discretization

point in S’ ny nodes, solving (2) on an approximated corroded domain D
(θ̃)
c .

Consider the real valued function FN : R
nθ−1 → R,

(4) FN (θ) :=
1

N

N
∑

n=1

‖Eθ(·, n)‖
2
2 .

The discrete version of the inverse problem (3) corresponds to find the
optimal ϑ̃∗ ∈ P, or equivalently the optimal parameters θ∗j , j = 1, . . . , nθ−1
such that

(5) θ∗ = arg min
θ∈Rnθ−1

FN (θ).

Reshaping the matrices, define eθ,y, ŷθ ∈ R
nyN s.t.

eθ((n − 1)ny + 1 : nny) = Eθ(:, n),
y((n − 1)ny + 1 : nny) = T s

c (:, n),
ŷθ((n − 1)ny + 1 : nny) = T h

θ (:, n)

n = 1, . . . , N . The sensitivity matrix ψθ ∈ R
nyN×nθ is such that ψθ(:, i) :=

∂
∂θi

ŷθ, for all i = 1, . . . , nθ.
Since a piecewise constant approximation of ϑ(x) is chosen, it must be

assumed that every parameter corresponds to a well-defined piece of the
real corrosion profile, whose length strictly depends on the local behavior
of ϑ(x). Moreover it is assumed to deal with non overlapping parameters.

In the following the depth of the approximated corroded profile is iden-
tified with the real one, which is thus assumed to be piecewise constant.
Also numerical experimental data are collected assuming a profile belonging
to P.
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4. Adopted numerical approach

Assuming that the real corroded profile is a parametric piecewise con-
stant function, the aim of the numerical algorithm is to estimate the real
shape of the domain. It solves the discrete inverse problem (5), using (2) as
the underlying direct model, solved in the approximated corroded domain

D
(θ̃)
c .

4.1. Key assumption

Let ī ∈ [1, nθ−1], a key assumption in the development of the algorithm
is that when at iteration k + 1, k ≥ 0, the estimation algorithm changes
the ī-th component of the estimate θ̂(k)(̄i) to a value θ̂(k+1)(̄i) closer to
the real one, leaving unchanged the others, the cost function diminishes
monotonically. This property is an immediate consequence of the following
physical principle: in [0, tf ], under the same initial and boundary conditions,
ifDc,1 ⊂ Dc,2, then temperatures corresponding to the smallest domainDc,1

are higher supposing that we are dealing with initial constant temperatures
and a thermal flux q which is independent on the space variable. In fact,

assuming that D
(θ∗)
c ⊂ D

(θ̂(k+1))
c ⊂ D

(θ̂(k))
c , it can be deduced that T c

s >

T
(θ̂(k+1))
h > T

(θ̂(k))
h and thus FN (θ̂

(k+1)
) < FN (θ̂

(k)
). A rigorous proof of

this property is given in the following Lemma.

Lemma 4.1. Consider the heat problems represented in Figure 3, solving

Fig. 3.

the heat equation model

(6)















ρC ∂
∂t
Ti = k ∆Ti, in Dc,i × [0, tf ]

kTi,y = −q(t), on S × [0, tf ]
k ∇Ti · n = 0, on δDc,i \ S × [0, tf ]
Ti(0, x, y) = T0(x, y), in Dc,i.
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where i = 1, 2 and S = [0, 1]. Moreover define ∂Ti

∂x
= Ti,x and ∂Ti

∂y
= Ti,y.

Suppose that temperatures at t = 0 are constant in space, T0(x, y) = T0 ∈ R,
and that q(t, x) = q(t) > 0. Then T1(x, y) > T2(x, y) for every (x, y) ∈ Dc,1.

Proof. (Lemma 4.1) The proof is a consequence of the maximum principle
for parabolic operators [12]. To compare temperatures T1 and T2 in Dc,1,
it is necessary to collect information about the values taken by T2 in Dc,1.
To do this, define v := T2,x: v satisfies the heat equation ∂v

∂t
= ∆v, under

the boundary conditions of Figure 4 (up left), where we have used vy =
T2,xy = (T2,y),x. Thus, using the maximum principle for parabolic operators,
we know that strictly maximum and minimum values are taken at the
boundary, where Dirichlet boundary conditions are applied, or at t = 0.
Since we assume that T0 is constant, v = 0 at t = 0. It follows that

T2,x(t, x, y) = v(t, x, y) = 0

for every (t, x, y) ∈ [0, tf ]×Dc,2. Moreover define z := T2,y: z is a solution of

Fig. 4. v := T2,x, z := T2,y, w := T2 − T1.

the heat equation ∂z
∂t

= ∆z, under the boundary conditions of Figure 4 (up
right), where we have used zx = T2,yx = (T2,x),y. Using again the maximum
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principle we conclude that

−q(t) ≤ T2,y(t, x, y) = z(t, x, y) ≤ 0,

for every t ∈ [0, tf ] and (x, y) in the interior of Dc,2. All this information is
summarized in Figure 4 (bottom left). Now we can compare directly T1 and
T2 over Dc,1 ⊂ Dc,2: define w := T2 − T1, which solves the heat equation
∂w
∂t

= ∆w, under the boundary conditions of Figure 4 (bottom right). Now
we can again apply the maximum principle. Since we suppose that at t = 0
T2 = T1, w = 0 in t = 0. Moreover if a maximum is taken, then it must be
placed on the boundary, where wy > 0 [12]. Since is always wy ≤ 0, then a
maximum does not exists, thus w < 0 over Dc,1.

4.2. Projected damped Gauss-Newton iterations

Given the damping parameter µk and θ̂
k
, the k+1-th iteration θ̂

k+1
=

θ̂
k
+ µksk, is obtained substituting the standard Newton step

F
′′

N (θ̂
k
)sk = −F

′

N (θ̂
k
)

by the Gauss-Newton approximation:

ψ
θ̂k
sk = e

θ̂k
.

To compute numerically the sensitivity matrix a centered finite differ-
ence scheme is needed: this is computationally expensive, since, in order to
estimate one single column, two different temperatures predictions must be
computed.

The perturbation of different parameters may produce quite similar re-
sponses in the simulation data, generating couples of columns in the matrix
ψθ which are close to linear dependence. In our problem, this is related to
the length of the corrosion profile segment corresponding to each parame-
ter. Thus, the presence of short segments hc(i), i = 1, . . . , nθ − 1, produces,
in general, an ill-conditioned matrix ψθ. Therefore, the search for a bet-
ter accuracy in the determination of the depth of the real corroded profile,
which means to reduce the size of a few parameters, brings to higher numer-
ical problems, as usually happens solving inverse problems [13,14]. Thus a
regularization technique is needed [9].

4.3. Convergence properties of the projected damped Gauss-Newton method

In this section it will be proved that, if the finer parametrization is
chosen and the sites of corrosion are known, then the inverse problem of
corrosion estimation is well-posed, or equivalently there are no local minima.
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Suppose to use the finer parametrization and to know exactly the sites
of corrosion {̄i1, . . . , īl} of the real corroded profile θ∗, īj ∈ [1, ny]. Thus
FN (θ∗) < FN (θ) for every θ ∈ Ψ, where Ψ denotes the set of profiles with
corrosion sites {̄i1, . . . , īl}:

Ψ =
{

θ ∈ R
nθ−1 s.t. nθ = ny, θ(j) = 0, ∀j /∈ {ī1, . . . , īl}

}

.

A local minima θ̄, is a corrosion profile such that FN (θ̄) < FN (θ) for
every θ ∈ Ψθ̄, where Ψθ̄ is the set of Ψ’s profiles perturbed of a quantity δ:

Ψθ̄ =
{

θ ∈ Ψ, θ(j) = θ̄(j) + δj , ∀j ∈ {ī1, . . . , īl}
}

, δj ∈ {0, hy,−hy} , δ 6= 0.

The following Proposition is equivalent to prove that there are no local
minima.

Proposition 4.1. For every θ̄ ∈ Ψ, θ̄ 6= θ∗, there exists at least a sequence
of profiles {θ}n, θ0 = θ̄, θn+1 ∈ Ψθn, converging decreasing in L2(Rnθ−1)
to the real corrosion profile θ∗, such that FN (θn) ↓ FN (θ∗).

First of all we demonstrate the following Lemma.

Lemma 4.2. Given {ī1, . . . , īl}, for every θ̄ ∈ Ψ, θ̄ 6= θ∗, and for every
k ∈ [1, l] such that θ∗(ik) 6= θ̄(ik), define

(7) θ∗,k(j) :=

{

θ̄(j), j 6= īk
θ∗(j), j = īk

,

j = 1, . . . , nθ − 1. Thus for every θ̄ ∈ Ψ there exists at least a sequence of
profiles {θn}n, θ0 = θ̄, θn+1 ∈ Ψθn , converging decreasing in L2(Rnθ−1) to
θ∗,k: FN (θn) ↓ FN (θ∗,k).

Proof. (Lemma 4.2)

We indicate with T s,k
c temperatures corresponding to θ∗,k.

Let r ∈ Z such that θ̄(̄ik)− θ∗,k(̄ik) = rhy 6= 0 by hypothesis.
Suppose that r > 0: consider the following converging sequence

(8) θn(j) :=

{

θ̄(j), j 6= īk
θ̄(j)− nhy, j = īk

,

for n = 0, . . . , r, θr = θ∗,k by construction, and θs := θr, s ≥ n. An ex-
ample is sketched in Figure 5 (left). By definition θ0(̄ik) > . . . > θj (̄ik) >

θj+1(̄ik) > . . . > θ∗,k(̄ik), or equivalently D
(θ0)
c ⊂ . . . ⊂ D

(θj)
c ⊂ . . . ⊂

D
(θ∗,k)
c . Thus the underlying heat equation operator tells us that tem-

peratures corresponding to θj are greater than those corresponding to
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Fig. 5. Converging sequence (8) (left) and (9) (right): in blue θ̄(̄ik), in black the
optimal profile θ∗,k (̄ik), in red θj (̄ik) and in green θj+1 (̄ik).

θj+1, and they are both greater than T s,k
c , applying Lemma 4.1. Thus

FN (θ0) > . . . > FN (θ∗,k).
Finally observe that if r < 0, the proof is analogous considering

(9) θn(j) :=

{

θ̄(j), j 6= īk
θ̄(j) + nhy, j = īk

,

for n = 0, . . . , |r| instead of (8) (Figure 5 (right)).

Proof. (Proposition 4.1).
We use the above Lemma 4.2. In fact, suppose that the corrosion sites

are {̄i1, . . . , īl}. Thus we can construct the sequence {θn}n in the follow-
ing way. Suppose that k1 ∈ [1, l] is the first index s.t. θ̄(̄ik1) − θ∗(̄ik1) =
r1hy, r1 ∈ Z \ {0}. Thus

(10) θn(j) :=







θ̄(j), j ∈ [1, nθ − 1] \ {̄ik1}
θ̄(j) + nhy, j = īk1 , r1 < 0
θ̄(j)− nhy, j = īk1 , r1 > 0

,

for n = 0, . . . , |r1|. Using Lemma 4.2 we know that FN (θ0) > FN (θ1) >
. . . > FN (θ|r1|) and by construction

θ|r1|(j) =

{

θ̄(j), j ∈ [1, nθ − 1] \ {̄ik1}
θ∗(j), j = īk1

.

Now we choose the second index k2 ∈ [1, l] s.t. θ̄(̄ik2) − θ∗(̄ik2) =
r2hy, r2 ∈ Z \ {0} and define θ|r1|+1, . . . ,θ|r1|+|r2|, using (10), replacing
r1 with r2 and k1 with k2. Using Lemma 4.2 we know that FN (θ|r1|) >
FN (θ|r1|+1) > . . . > FN (θ|r2|) and by construction

θ|r2|(j) =

{

θ̄(j), j ∈ [1, nθ − 1] \ {̄ik1 , īk2}
θ∗(j), j ∈ {̄ik1 , īk2}

.
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This idea can be repeated for every k ∈ [1, l] s.t. θ̄(̄ik) − θ∗(̄ik) 6= 0.
Finally we obtain the desired decreasing sequence {θn}n, converging in
L2(Rnθ−1) to the real profile θ∗, s.t. FN (θn) ↓ FN (θ∗).

4.4. Predictor-Corrector algorithm

As demonstrated in the previous section, the problem is well-posed, if
the finer discretization is used and the sites of corrosion are known. Un-
fortunately the last ones are unknown and using the finer discretization
could be very expensive. Thus the practically intrinsic ill-posedness of the
inverse problem of corrosion detection, is mainly due to its adaptive formu-
lation, which is necessary to reduce the computational cost. In this paper
the adaptive parametrization is determined starting from an initial sub-
division of the corrosion profile with quite large hc(i), i = 1, . . . , nθ − 1
values. According to a suitable a posteriori indicator, the algorithm decides
where eventually to refine locally the subdivision of the corrosion profile.
The refinement operation corresponds to a bisection of the indicated seg-
ments, with a consequent increase in the number of segments and, therefore,
of parameters of the model. This is iteratively made until the comparison
between the actual value of the cost function and the reference value, pre-
viously obtained for the sound (uncorroded) system, shows that the model
describes the experimental data in an optimal way. As in [9], the a pos-
teriori indicator is based upon parameter estimates, obtained at previous
iterations. In general these values are accurate only when the parameteri-
zation is good, thus they are not always reliable estimates of the corrosion
depth; otherwise they are reliable indicators of the regions where the cor-
rosion exists. Note that the accuracy of this localization is disturbed by the
strong diffusive character of the heat conduction process.

It is assumed to use as initial point the null corrosion profile over a

chosen coarse subdivision of S,
{

x01, . . . , x
0
n0
θ

}

, x01 = 0, x0
n0
θ

= 1. Observe

that this assumption is motivated by the physical problem: first of all it is
important to understand if the material is sound. If not, it is meaningful to
adopt a proper research strategy.

4.4.1. Inner-Outer loop algorithm

Given two estimates of θ∗, θ̂
l−1

∈ R
nl−1
θ and θ̂

l
∈ R

nl−1
θ , if there exists

at least one j ∈ [1, nlθ − 1] such that θl(j) > θl−1(j), Θ is defined as the set
of all indexes j satisfying this property. Otherwise, Θ is the set of j such

that θl(j) > 0. The new iteration θ̂
l+1

is obtained bisecting every segment
[xlj, x

l
j+1] of the l-th subdivision of S, such that j ∈ Θ. Then, in the inner

loop, the projected damped Gauss-Newton method is applied with respect
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to the refined subdivision. This method in general converges, but it is slow,
due to the computational cost of two nested loops. In fact while the outer
loop adapts the parametrization, the inner one estimates model parameters’
values for the current refinement level of [0, 1]. Moreover this strategy tends
to over-refine S.

4.4.2. Formulation of the predictor-corrector algorithm

The high computational cost of the inner-outer loop algorithm has mo-
tivated the research of a smarter algorithm: the idea is to reorganize it in
a predictor-corrector form [9]. Observe that, since it is assumed to start

from the null corrosion profile θ̂
0
it is known that, if the material is cor-

roded, we are underestimating its corrosion profile. The idea is to try to

build a sequence of estimated corroded domains,
{

θ̂
l
}

, l ≥ 0, avoiding huge

overestimations of θ̂
∗
. In fact in practice small overestimations are usually

allowed and preferred to underestimations. To limit progressive refinements
and to obtain a better conditioned matrix ψθ, two estimators are used: the
L2 norm and the mean of the prediction error eθ respectively. While the

norm is a measure of the distance between θ̂
l
and θ̂

∗
, the mean permits to

understand if θ̂
l
is a big overestimate of the profile. In fact, using Lemma

4.1, it is known that a local big overestimate corresponds to local negative
values of the prediction error, whose absolute values are big too. More pre-
cisely, the predictor step works as follows: given Λ = ∅, which represents
the set of parameters to be estimated in the corrector step, given a fixed
scalar perturbation δ > 0 and two suitable thresholds αη, αν > 0, substi-

tute the outer loop with the linear predictor step. Given θ̂
l
∈ R

nl
θ
−1 and

the l-th subdivision of S,
{

xl1, . . . , x
l
nl
θ

}

, for every i ∈ [1, nlθ − 1], consider

the perturbed parameter

(11) θ̂
l

δ,i :=

{

θ̂l(k) + δ, if k = i

θ̂l(k), elsewhere

and compute the corresponding prediction error E
θ̂l
δ,i

∈ R
nl
θ
×N . Then for

all j ∈ [1, nlθ], η
l
δ(i, j) and ν

l
δ(i, j) are computed, the norm and the temporal

mean of E
θ̂l
δ,i
(j, :) respectively.

Given ηlδ, ν
l
δ ∈ R

nl
θ
−1×nl

θ , the algorithm proceeds as follows: initialize
{

xl+1
1 , . . . , xl+1

nl+1
θ

}

=
{

xl1, . . . , x
l
nl
θ

}

. Given I := [1, nlθ − 1], for all i ∈ I

• if the perturbation θ̂
l

δ,i improves significatively the cost function, or
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equivalently if ηlδ(i, i) and ηlδ(i, i + 1) are both less than αη and it
does not correspond to a big overestimate, or likewise if νlδ(i, i) and
νlδ(i, i + 1) are both greater than −αν , then Λ = Λ ∪ {i};

• otherwise, if there is a small improvement in the cost function in

at least one node using θ̂
l

δ,i, or equivalently the minimum of ηlδ(i, :)
is less than αη and it does not correspond to a big overestimate,
or likewise if νlδ(i, i) and νlδ(i, i + 1) are both greater than −αν , or
if there is a change of sign between νlδ(i, i) and νlδ(i, i + 1), bisect

the segment [xl+1
i , xl+1

i+1]:

{

xl+1
1 , . . . , xl+1

nl+1
θ

}

∪
xl+1
i +xl+1

i+1

2 . Consider I =

I+1 and compute θ̂
l

δ,s, where s represents the indexes of parameters

corresponding to the new two subsegments. Then ηlδ and νlδ are
updated considering also those values.

Observe that only nθ − 1 matrix-vector products are needed in
this phase. The choice of the thresholds αη and αν characterized the
parametrization: in fact if αη is chosen too big the algorithm will refine
the parameterization less than necessary, whether if it is too small the al-
gorithm will over-refine the parameterization. Instead αν is a limit for the
allowed overestimation permitted. The optimal choice depends obviously on
the specific application, but its tuning is not a problem. Instead, a general
auto-tuning strategy is not easy to formulate.

In the corrector step, the projected damped Gauss-Newton method (al-
gorithm 4.1) is applied only to those parameters whose indexes belongs
to Λ. Observe that this strategy reduce the ill-conditioning of ψθ, since
we choose not to optimize parameters which do not improve the value of
the cost function, or equivalently parameters whose perturbations do not
change significatively the predicted temperatures.

The detailed description of the predictor-corrector is given in algorithm
4.1.

Remark 4.1. Observe that to obtain more reliable estimates, in the pre-
dictor step it is better to consider two different perturbation parameters
δ1, δ2, and then to consider for every node the minimum value between ηlδ1
and ηlδ2 and between νlδ1 and νlδ2 respectively.

5. Numerical results

In this section some numerical experiments are described, to validate
the algorithms presented. In particular in (1) and (2) the following values
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Algorithm 4.1 Predictor-Corrector algorithm:

1: Fix a uniform step in [0, 1], ∆0x. Consider the coarse subdivision
{

x01, . . . , x
0
n0
θ

}

,

x01 = 0, x0i = (i− 1)∆0x, x0
n0
θ

= 1, h0c(i) = ∆0x, i = 1, . . . , n0
θ − 1;

2: fix αη , αν , l = 0, a small parameter perturbation δ;

3: θ̂
0
= 0n0

θ
−1 ∈ R

n0
θ
−1;

4: while Fn(θ̂
l
) ≈ σ do {% σ is the reference value of the cost function obtained for the sound

model }

5:

{

xl+1
1 , . . . , xl+1

n
l+1

θ

}

=
{

xl1, . . . , x
l
nl

θ

}

, hl+1
c (i) = hlc(i), i = 1, . . . , nl

θ − 1

6: ∆l+1x = ∆
lx
2

, nl+1
θ

= nl
θ, I = nl+1

θ
− 1

7: Λ = ∅, set of indexes of parameters to be optimized
8: for all i ∈ [1, I ] do

9: compute θ̂
l
δ,i, η

l
δ(i, :) and νlδ(i, :)

10: end for

11: for all i ∈ [1, I ] do

12: if max
{

ηlδ(i, i), η
l
δ(i, i+ 1)

}

< αη and min
{

νlδ(i, i), ν
l
δ(i, i+ 1)

}

> −αν then

{substantial decrease of the cost function, without overestimating }
13: Λ = Λ ∪ {i} % this is a parameter to be optimized

14: i = i+ 1;
15: end if

16: if minj

{

ηlδ(i, j)
}

< αη and min
{

νlδ(i, i), ν
l
δ(i, i+ 1)

}

> −αν , or νlδ(i, i) ·

νlδ(i, i+ 1) < 0 then { moderate decrease of the cost function, without overestimating

or change of sign in ν }

17: nl+1
θ

= nl+1
θ

+ 1, I = I + 1; % bisect the corresponding segment

18:

{

xl+1
1 , . . . , xl+1

n
l+1

θ

}

∪
x
l+1

i+1
−x

l+1

i

2
,

19: hl+1
c (i) = hl+1

c (i+ 1) = ∆l+1x, hl+1
c (i+ 2 : end) = hlc(i+ 1 : end),

20: ηlδ(i+2 : end+1, :) = ηlδ(i+1 : end, :), νlδ(i+2 : end+1, :) = νlδ(i+1 : end, :).

21: for all i ∈ [i, i+ 1] do

22: compute θ̂
l
δ,i, η

l
δ(i, :) and νlδ(i, :)

23: end for

24: end if

25: end for

26: given the subdivision

{

xl+1
1 , . . . , xl+1

n
l+1

θ

}

27: apply the projected damped Gauss-Newton method, optimizing only parameters

whose indexes belong to Λ obtaining θ̂
l+1

∈ R
n
l+1

θ
−1

28: l = l + 1;
29: end while

of constants are used: tf = 1.51 s, L = 0.1 m; ρC = 3.2 · 106 J
m3 ◦C

,
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k = 3.77 · 103 W
m◦C

, and

(12) q(t) =
Wt

σ2q
e
−

√
t

σq , t ∈ (0, tf ]

where σq = 0.0106, W = 2.9511 · 1017 J . The initial condition is set to
T0(·) = 20◦C. In this section an Implicit Euler method is adopted for the
time discretization, using a temporal step ∆t = 0.0005 in (0, 0.1] and ∆t =
0.05 in (0.1, tf ]. A P1-FE method is used for space discretization, on a
variable mesh, whose step length along y is hy = 0.01 m or hy = 0.005 m,
and a variable step along x, depending on the adaptive parametrization. The
sensors are supposed to be ny = 11 or ny = 21, distributed with uniform
distance hx = 0.1 m or hx = 0.05 m respectively. Numerical experiments
are carried out using MATLAB.

In all the examples presented, experimental temperatures are simulated
numerically. The first step is to validate the numerical model: dealing with
pure experimental data, this step is fundamental also to decide the opti-
mal values of the coefficients of the model. In our simulated context, it is
still important to estimate the reference minimal value of the cost function
σ. To obtain a significative threshold σ, the validation is done using the
initial coarse grid used in the estimation of the corroded one. Thus the
predictor-corrector strategy reveals uncorroded domains, comparing their
cost functions with σ.

In this section the predictor step is applied considering two distinct
perturbation parameters, δ1 = 2hy and δ2 = 0.03 (cfr. Remark 4.1), while
the inner-outer strategy builds the sensitivity matrix using a perturbation
δ = 0.02.

In Figure 6 the real corroded profiles (left) are compared to the inner-
outer (center) and predictor-corrector (right) estimates respectively. As can
be seen the predictor strategy tends to refine less and it is also less com-
putationally expensive, due to its linear predictor step. It is important to
note that it is formulated such that small overestimates are preferred to
underestimates: as a consequence usually the estimated corroded domain is
contained in the optimal one, but the distance is small enough. In contrast,
although inner-outer algorithm is a simpler strategy, it is more expensive
and also tends to over-refine the profile, bisecting also segments which cor-
responds to null corrosion in the real profile.

In Figure 7, given the real corrosion profile represented in the up-left
picture, some iterations of the predictor-corrector algorithm are collected.
The algorithm refines properly the segment S: thus ψθ in the Newton
method is computed only for a small subset of parameters, improving its
ill-conditioning. Observe that predictor-corrector overestimates only just
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Fig. 6. Real corroded profiles (left), inner-outer (center) and predictor-corrector
(right) estimates.

outside the corrosion front, due to the diffusive nature of the underlying
heat equation. In Figure 8 both the L2-norm of the error (left) and the
O(1) estimate of the order of convergence are presented. Thus the adap-
tive refinement strategy, although it diminishes the computational cost, it
causes a slow down in the convergence of a Newton-type algorithm, which is
usually O(2), starting near enough to the optimum. Finally observe that, in
contrast to the inner-outer algorithm, the predictor-corrector convergence is
approximately monotonic, since the refinement of S is entirely done before
the local optimization of parameters.

Figure 9 (left) shows a real profile difficult to estimate, due to the
presence of two deep corrosion fronts, close to each other. The predictor-
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Fig. 7. Real corrosion profile (first row left) and some iterations of the predictor-
corrector method.
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Fig. 8. L2-norm of the error and estimates of the order of convergence.

corrector strategy converges to a local minimum (Figure 9 (right)). In fact,
as mentioned in section 4.4, the adaptive strategy could introduce local
minima in the problem. Observe that inner-outer algorithm could be more
robust (Figure 9, center), although it is more computationally expensive.
However the estimated predictor-corrector’s minimum is a satisfying one,
because it reveals both the local position of corrosion and its shape.
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Fig. 9. Real corrosion profile (left), inner-outer (center) and predictor-corrector
(right) estimates.

6. Conclusions

In this paper a 2D inverse problem of corrosion detection has been pre-
sented. Its mathematical formulation suggests to solve it numerically. The
numerical approach adopted is based upon an adaptive FE discretization
of the heat equation over a variable domain. The inverse problem consists
in estimating the vector of parameters that best describes the depth of
the real corroded profile. Two algorithms have been presented: Inner-Outer
Loop algorithm and Predictor-Corrector algorithm. While the first one is
more simple, usually it over-refine S, it is computationally more expensive
and corresponds to a worse conditioned problem. The predictor-corrector
strategy uses a linear strategy to substitute the outer loop. Moreover it
is able to limit the local refinement procedure to proper parts of S, using
the norm and the mean of the prediction error. This strategy allows the
presence of small overestimates, penalizing huge ones. Due to its linear pre-
dictor step and the application of the corrector step only to some selected
parameters, it is both less computational expensive and better conditioned.
Conducted numerical experiments reveals its ability to refine only where it
is necessary and its tendency to obtain small overestimates of the corroded
profile.
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