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CONSTRUCTIVE ANALYSIS OF
PURELY INTEGRAL BOLTZMANN MODELS

ALVISE SOMMARIVA AND MARCO VIANELLO

ABSTRACT. Existence and uniqueness of nonnegative
L1 stationary solutions of the space homogeneous force-free
Boltzmann equation are proved. Classical assumptions are
weakened, and certain unphysical restrictions are removed.
The proof is constructive, being based on Picard iterations
for an equivalent Hammerstein type formulation, within the
theory of decreasing operators in ordered function spaces.

1. Introduction. Within the so-called “scattering kernel” formula-
tion of the Boltzmann equation [4], modeling diffusion of particles in
a mixture of two species (field particles and test particles), study of
the space homogeneous forceless case leads naturally to the nonlinear
integral equation

(1)
Nĝr(|v|)f(v) + f(v)

∫
R3

gr(|v − v′|)f(v′) dv′ = Q0S(v),

v ∈ R3,

which amounts to the search for stationary solutions, cf., eg., [1 and
references therein]. In (1) ĝr and gr describe the removal effects between
particles, N is the fixed total density of the field particles, and Q0S(v)
represents the constant and space uniform emission rate of the test
particles, with

∫
R3 S(v) dv = 1.

As pointed out in [1], equation (1) provides a model for physical
situations where removal of test particles between themselves is a dom-
inant event, like, for instance, in the study of chemical and biological
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action of radiations. It is worth noting that all relevant functions and
parameters are positive, or at least nonnegative, due to their physi-
cal meaning; for the same reason, one is interested in a nonnegative
L1 solution, which represents the distribution of the test particles as
a function of the speed. In particular, the L1 norm of f provides the
unknown density of the test particles.

In the isotropic case, S(v) = (4π)−1S0(v), it can be seen that
f(v) = (4π)−1f0(v) solves (1), provided that f0(v) is a solution to

(2)
Nĝr(v)f(v) + f(v)

∫ ∞

0

G(v, v′)f(v′)dv′ = Q0S0(v),

v ∈ (0,∞),

where the kernel G is given by

(3) G(v, v′) =
1

2vv′

∫ v+v′

|v−v′|
tgr(t) dt.

Both (1) and (2) fall into the class of nonlinear integral equations
with the following quadratic structure

(4) a(x)φ(x) + φ(x)
∫

D

K(x, t)φ(t) dt = b(x), x ∈ D ⊆ Rd,

where a, b : D → R+ and K : D2 → R+ are measurable, and we assume
that

(5) ab > 0 a.e. in D; b/a ∈ L1(D).

Observe that almost everywhere positivity of a and b is not restrictive,
provided that they do not vanish simultaneously on a positive measure
subset; indeed, it is sufficient to change the domain into {x ∈ D :
a(x)b(x) > 0}, since φ = 0 where b = 0.

If we consider the fractional functional transformation

(6) φ =
b

a(1 + u)
,

equation (4) can be reformulated as

(7) u(x) =
∫

D

K(x, t)b(t)
a(x)a(t)

1
1 + u(t)

dt, x ∈ D.
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The basic assumption b(·)K(x, ·)/a(·) ∈ L1(D) guarantees that the
integral Hammerstein problem (7) is well-defined. We stress that any
nonnegative and measurable solution of (7) corresponds via (6) to a
nonnegative integrable solution of (4), and conversely.

This relationship has been used in [1] to obtain existence of solutions
to (2), by means of successive approximations on a Hammerstein
formulation essentially equivalent to (7). The approach is classical
[14] and requires strong assumptions on the kernel G, which are not
satisfied even in very simple but physically meaningful instances, like
gr(v) = cvp, c > 0, with p = −1, 0, 1.

In order to circumvent this technical difficulty, in [1] equation (2)
rewritten as

(8) f(v) =
Q0S0(v)
Nĝr(v)

− f(v)
Nĝr(v)

∫ ∞

0

G(v, v′)f(v′) dv′, v ∈ (0,∞),

has been faced directly as a fixed-point problem in the Banach space
L1(0,∞), by means of the contraction mapping principle. This ap-
proach allows us to include in the analysis several physically meaningful
cases of removal collision frequencies gr and ĝr, but provides existence
and uniqueness only in suitable balls of L1, and still requires unphysical
restrictions on some parameters.

A further improvement can be found in [2] where the alternative
fixed-point formulation of (4)

(9)
h(x) = a(x)φ(x) = b(x)

(
1 +

∫
D

K(x, t)h(t)
a(x)a(t)

dt

)−1

,

x ∈ D,

has been studied in the regularly ordered Banach spaces Lp(D), 1 ≤
p ≤ ∞, with D bounded or unbounded real interval. Existence and
uniqueness are there proved constructively, avoiding the constraints
imposed by the contraction mapping approach, under the assumptions
that b ∈ Lp(D) for some p, there exists a constant M > 0 such that

(10) ess sup
x∈D

1
a(x)

∣∣∣∣
∫

D

K(x, t)h(t)
a(t)

dt

∣∣∣∣ ≤ M‖h‖p,
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for each h ∈ Lp(D), and

(11) ess inf
x∈D

1
a(x)

∫
D

K(x, t)b(t)
a(t)

dt > 0.

This approach recalls previous applications to Chandrasekhar H-
equation [10] and substantially relies on the fact that the nonlinear
operator in (9) is decreasing on Lp

+(D).

In the next section, starting from an idea of [2], we obtain existence
and almost everywhere uniqueness of a nonnegative measurable solu-
tion of (7) via convergence of Picard iterations. We exploit the special
decreasing structure of the Hammerstein operator, together with the
key assumptions that

(12) K(x, t) = K(t, x) for a.e. (x, t) ∈ D2, b ∈ L1(D),

which is verified in the Boltzmann case, and

(13)
K(x, ·)b(·)

a(·) ∈ L1(D), for a.e. x ∈ D,

which strongly weakens (10) (put h = b) in the application to Boltz-
mann instances; moreover, now (11) is not required at all. Concerning
(1) (2), we stress that, differently from the contraction mapping prin-
ciple, both (10) (11) and (12) (13) are not affected by the magnitude
of the parameter Q0.

Going back to quadratic integral equations by the transformation (6),
in Section 3 we finally obtain convergence pointwise almost everywhere
and in ‖ · ‖1 of the corresponding iterations to the unique nonnegative
L1 solution. In the case of Maxwellian sources, our approach allows
to treat rigorously instances of removal collision frequencies, for which
only numerical investigations were feasible [3].

2. The Hammerstein formulation. In this section we study the
following generalization of the Hammerstein integral equation (7)

(14) u(x) =
∫

D

k(x, t)g(u(t)) dt, x ∈ D ⊆ Rd,
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where k is measurable and almost everywhere nonnegative in D2, the
nonlinear term g : [0, +∞) → (0, +∞) is continuous and nonincreasing,
and

(H1) the kernel k(x, ·) ∈ L1(D) for almost every x ∈ D, and there
exists a measurable and almost everywhere positive function β such
that

(15) k(x, t)β(x) = k(t, x)β(t) for almost every (x, t) ∈ D2;

(H2) the mapping y �→ yg(y) is strictly increasing, and

(16) β

∫
D

k(·, y) dt g

(
g(0)

∫
D

k(·, y) dt

)
∈ L1(D).

We point out that g > 0 is continuous nonincreasing and y �→ yg(y) is
strictly increasing in [0, +∞), if and only if

(17) g(y) =
1

c + q(y)
, c > 0,

where q ≥ 0 has the following properties: it is continuous and non-
decreasing in [0, +∞), and it is sublinear, i.e., q(τy) ≥ τq(y) for ev-
ery τ ∈ (0, 1), y > 0. An example of such a q, relevant to our
application, is given by q(y) =

∑m
i=1 ciy

αi , where ci ∈ R+, and
0 < α1 < · · · < αm ≤ 1, cf. [6, 8, 9].

Observe that, for every almost everywhere nonnegative measurable
function u, we have by hypothesis (H1),

(18)

∫
D

k(x, t)g(u(t)) dt ≤
∫

D

k(x, t)g(0) dt < ∞,

for a.e. x ∈ D,

so that it makes sense to look for a nonnegative solution of (14) in any
subspace of M(D), the quotient space of measurable functions modulo
almost everywhere equivalence. We also stress that a usual assumption
in similar frameworks, cf., [6, 8, 13], i.e.,

(19) ess sup
x∈D

∫
D

k(x, t) dt < ∞,
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is now dropped and substituted by (H1), which allows an infinite
supremum.

2.1. Existence and uniqueness of a measurable solution.
The quotient space M(D) is naturally endowed with the pointwise
almost everywhere convergence, and can be partially ordered by the
closed cone M+(D) = {u ∈ M(D) : u(x) ≥ 0 a.e.}, i.e., v 
 u
if v − u ∈ M+(D). Such a cone is regular, i.e., any monotone and
bounded in order sequence in M+(D) has a limit. Clearly the cone is
also normal, in the sense that the “two militia-men theorem” holds [9,
11]. The operator A : M+(D) → M+(D) defined by

(20) A(u)(x) =
∫

D

k(x, t)g(u(t)) dt, x ∈ D,

is decreasing, i.e., u � v implies A(u) 
 A(v).

We are now ready to state and prove our main result about solvability
and uniqueness for the present class of Hammerstein integral equations.

Theorem 2.1. Assume that (H1) and (H2) hold. Then the Ham-
merstein integral equation (14) has a unique solution in M+(D) which
is the pointwise almost everywhere limit of Picard iterations, un+1 =
A(un), n = 0, 1, 2, . . . , starting from any u0 ∈ M+(D).

Proof. If we consider the Picard iterations un+1 = A(un), u0 =
θ (the zero element of M(D)), by a classical reasoning within the
theory of decreasing operators in abstract cones [9, Section 2.1], it
is straightforward to prove that

(21) θ = u0 � u2 � · · · � u2n � u2n+1 � · · · � u3 � u1 = A(θ).

Moreover, there exist in M+(D) the pointwise limits

(22) θ � lim u2n = u∗ � v∗ = limu2n+1 � A(θ),

and, by the dominated convergence theorem,

(23) u∗ = A(v∗), v∗ = A(u∗).
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We shall prove below that (H1) and (H2) imply the existence result
u∗ = v∗; the procedure is very close to that used in [12], where a point-
wise approach allows one to work in general (nonnormed) ordered func-
tional spaces. From the latter result uniqueness of a nonnegative mea-
surable fixed-point immediately follows: in fact, if ξ = A(ξ) ∈ M+(D),
inductively one proves u2n � ξ � u2n+1 for every n, wherefrom ξ = u∗.
Similarly it can be shown that Picard iterations converge to the unique
nonnegative fixed-point, starting from any u0 ∈ M+(D), cf. [9, Theo-
rem 2.1.5].

When (H1) and (H2) hold, starting from (23) we write

(24)
β(x)u∗(x)g(u∗(x)) = β(x)g(u∗(x))

∫
D

k(x, t)g(v∗(t)) dt,

β(x)v∗(x)g(v∗(x)) = β(x)g(v∗(x))
∫

D

k(x, t)g(u∗(t)) dt.

The lefthand sides of (24) are both in L1(D) in view of (H2) and (22);
indeed, A(θ) = g(0)

∫
D

k(·, t) dt and βA(θ)g(A(θ)) ∈ L1(D) by (16).
Integrating on both sides of (24) and subtracting, we get by Fubini
theorem and symmetry of k(x, t)β(x)

(25)
∫

D

β(x)[v∗(x)g(v∗(x)) − u∗(x)g(u∗(x))] dx = 0.

Now, almost everywhere positivity of β entails that v∗(x)g(v∗(x)) =
u∗(x)g(u∗(x)) for almost every x ∈ D, and thus, in view of the strict
monotonicity of yg(y), u∗ = v∗ in M+(D).

Remark 2.2. We stress that the existence result u∗ = v∗ is equivalent
to nonexistence of distinct and comparable coupled fixed-points of A
in M+(D). In fact, if ξ1, ξ2 ∈ M+(D), ξ1 = A(ξ2), ξ2 = A(ξ1), and
ξ1 � ξ2, then by induction we get u2n � ξ1 � ξ2 � u2n+1, and thus
u∗ = ξ1 = ξ2 = v∗.

Remark 2.3. When D is bounded, convergence is almost uniform,
in view of the Severini-Egoroff theorem [7, Chapter 2]. The same
observation applies if k ∈ L1(D2), which also ensures (dominated)
convergence in L1(D).
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Remark 2.4. In many applications it is important to know whether
the solution is continuous in D. This is ensured whenever

(26) lim
x→x0

∫
D

|k(x, t) − k(x0, t)| dt = 0, x0 ∈ D,

by the regularizing effect of the integral operator. This also gives con-
tinuity of the Picard approximations, together with pointwise every-
where convergence to the fixed-point, and even uniform convergence
on compact subsets of D (by Dini’s theorem [5, Theorem 7.2.2]).

3. Application to particle transport theory. The results
of Section 2 are applicable to the Hammerstein formulation (7) of
the quadratic integral equation (4), via the transformation (6). We
state the ensuing solvability and uniqueness for (4) as a corollary of
Theorem 2.1; this corollary will then be applied to the Boltzmann
models (1) (2).

Corollary 3.1. Assume that (5), (12) and (13) hold. Then the
quadratic integral equation (4) has a unique solution in L1

+(D), say
φ∗, which the limit, pointwise almost everywhere and in ‖ · ‖1 of the
sequence

(27) φn+1(x) =
b(x)

a(x) +
∫

D
K(x, t)φn(t) dt

, n = 0, 1, 2, . . . ,

starting from any φ0 such that 0 ≤ φ0(x) ≤ b(x)/a(x) for almost every
x ∈ D.

When a, b ∈ C(D), a(x) > 0 for every x ∈ D and

(28) lim
x→x0

∫
D

|K(x, t) −K(x0, t)| b(t)
a(t)

dt = 0, x0 ∈ D,

then φ∗ and φn are continuous in D, and φn converges to φ∗ uniformly
on compact subsets of D.

Remark 3.2. Observe that (28) is certainly satisfied if K(x, t) is
continuous at every x0 for almost every t ∈ D, and K(x, t)b(t)/a(t)
is locally bounded in x by an integrable function, i.e., there exist
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δ0 > 0 and h0 ∈ L1(D) such that K(x, t)b(t)/a(t) ≤ h0(t) for all
x ∈ B[x0, δ0] ∩ D and for almost every t ∈ D. In fact, in this case we
are entitle to take the limit under the integral symbol, cf. [7, Theorem
2.27].

Proof of Corollary 3.1. Identifying the kernel and the decreasing
nonlinearity in the Hammerstein formulation (7) as

(29) k(x, t) =
K(x, t)b(t)
a(x)a(t)

, g(y) =
1

1 + y
,

assumption (H1) of Theorem 2.1 is immediately verified, as by (5) and
(13) we have that k(x, ·) ∈ L1(D), and by symmetry of K, cf. (12),
property (15) holds choosing the “symmetrizer” β = b. Moreover, (H2)
is trivially satisfied, since β = b ∈ L1(D) by (12), and y �→ yg(y) is
strictly increasing and bounded.

Thus we are entitled to assert that equation (7), under assumptions
(12) (13), has a unique solution in M+(D), say u∗, which is the
pointwise almost everywhere limit of Picard iterations, starting from
any u0 ∈ M+(D). Applying the transformation (6), φ = b/(a(1 + u)),
we obtain that the quadratic integral equation (4) (5) has a unique
solution in L1

+(D),

(30) θ � φ∗ =
b

a(1 + u∗)
� b

a
∈ L1(D),

which is the pointwise almost everywhere limit of the transformed
sequence φn = b/(a(1 + un)), cf. (27); convergence holds also in
‖ · ‖1, being dominated by b/a. In fact, as already observed in
the introduction, any nonnegative and measurable solution of (7)
corresponds via (6) to a nonnegative integrable solution of (4), and
conversely, because if φ 
 θ solves (4) then, necessarily, φ � b/a.

Remark 3.2 ensures that the Picard iterations un, as well as the
solution u∗, are continuous in D, whenever (26) holds; in such a case
convergence is uniform on compact subsets of D. Here (26) is implied
by (28) when a is continuous and everywhere positive in D, since 1/a
turns out to be continuous, cf. (5). Thus, when (28) holds, a, b ∈ C(D),
and a(x) > 0 for every x ∈ D, we have that φ∗ and φn are continuous,
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and φn converges to φ∗ pointwise everywhere in D. Again, such a
convergence becomes uniform on compact subsets of D, since

(31) |φn(x) − φ∗(x)| ≤ b(x)
a(x)

|un(x) − u∗(x)|, x ∈ D,

and b/a is locally bounded in D, being continuous there.

We’ll now check the validity of (5) and (13) in some instances of the
functions gr, ĝr and S, characterizing the Boltzmann models (1) (2),
as special cases of (4). Note that (12) is certainly satisfied, since the
kernels are symmetric and the sources are integrable, in view of their
physical meaning.

Concerning (1), consider the case of a concentrated source like
S(v) = c|v|χ[−1,1]3(v), c−1 =

∫
[−1,1]3

|v′| dv′ = 4/3, and of constant
cross section for the removal frequencies, i.e., ĝr = gr = id, cf. [3].
Assumptions (5) and (13) trivially hold for D = [−1, 1]3, while (10)
does not, since

(32)
1
|v|

∫
[−1,1]3

S(v′)
|v′| |v − v′| dv′ −→ ∞, |v| → 0,

where we put h = b (= Q0S) in (10). This simple example makes
it clear that (13) is much weaker than (10), as pointed out in the
introduction.

Following [3], in the isotropic case (2) we consider a Maxwellian
source

(33) S0(v) = 4π−1/2μ3/2v2e−μv2
,

with μ positive constant proportional to the mass of a test particle,
and removal collision frequencies of the form

(34)
ĝr(v) = ĉvl, gr(v) = cvq,

l, q = −2,−1, 0, 1, 2, c, ĉ > 0,

which ensures the validity of (5). We get immediately from (3)
(35)

G(v, v′) =
{

c((v + v′)q+2 − |v − v′|q+2)/(2(q + 2)vv′) if q = −2,
c(log(v + v′) − log(|v − v′|))/2vv′ if q = −2.
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It is easily seen that (v′)2−lG(v, v′) ∈ L1
v′(0, v) for every pair (l, q),

and thus (13) is satisfied; hence, the first part of Corollary 3.1 applies.
Moreover, when q = −2, it can be checked that, for every v0 > 0 and
for every δ ∈ (0, v0), there exist α = α(v0, δ) and β = β(v0, δ), such
that the following estimate

(36)
G(v, v′) ≤ αχ(0,v0+δ](v′) + β(v′)qχ(v0+δ,∞)(v′),

v ∈ [v0 − δ, v0 + δ], v′ > 0,

holds. In deriving (36), we have considered three cases, namely,
0 < v′ < v0 − δ ≤ v, v′ > v0 + δ ≥ v, and v′ ∈ [v0 − δ, v0 + δ]; in
the latter, G(v, v′) is bounded, being continuous in (0,∞) × (0,∞).
We omit, for brevity, the rest of the easy but tedious check. Now
Remark 3.2 ensures that (28) is satisfied, and thus the solution of (2) is
continuous in (0,∞), and it is the uniform limit of the Picard iterations
on compact subsets of (0,∞).

On the other hand, for some pairs (l, q), the results in [2] cannot be
applied. In fact, for q ≤ 0, and l > 0, it is not difficult to show that

(37) lim
v→0+

1
vl

∫ ∞

0

G(v, v′)(v′)2−le−μ(v′)2 dv′ = ∞,

i.e., (10) does not hold (put h = b = Q0S0). Summarizing, we
have shown that the method proposed in [3] converges pointwise al-
most everywhere and in L1(0,∞), to the unique positive solution of
(2) (33) (34), with no need of artificial restrictions.
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