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Bulk and collective properties of a dilute Fermi gas in the BCS-BEC crossover
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We investigate the zero-temperature properties of a dilute two-component Fermi gas with attractive inter-
species interaction in the BCS-BEC crossover. We build an efficient parametrization of the energy per particle
based on Monte Carlo data and asymptotic behavior. This parametrization provides, in turn, analytical expres-
sions for several bulk properties of the system such as the chemical potential, the pressure, and the sound
velocity. In addition, by using a time-dependent density functional approach, we determine the collective
modes of the Fermi gas under harmonic confinement. The calculated collective frequencies are compared to
experimental data on confined vapors®bf atoms and with other theoretical predictions.
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I. INTRODUCTION weakly attractive regimg-1<x<0) one expects a BCS

A hot topic in current many-body physics is the study of Fermi gas o_f We_akly bound (_Zooper pairs. As the s_uperflwd
Fermi gases at ultralow temperature. Indeed, current experfl@p correction is exponentially small, the functiaix)
ments with atomic vapors are able to operate in the regime c§hould follow the Fermi-gas expansigh5]
deep Fermi degeneradyl,2]. The two-component Fermi 10 4(11-21n2
gases of these experiments are dilute because the effective e(x)=1+—x+ ﬂxu 2)
rangeR, of the interaction is much smaller than the mean o 2172
interparticle distance—i.ekzRy<1 wherek:=(37?n)¥3 is
the Fermi wave vector amdlis the gas number density. Even . )
in this dilute regime theswave scattering lengta can be ~ '€Pulsive Bose gas of dimers. Such Bose-condensed mol-
very large: the interaction parametes can be varied over a €cules of masany,=2m and densityny =n/2 interact with a
very wide range using the Feshbach resonance techniquB0Sitive scattering lengtay =0.6a, as predicted by Petroat
which permits one to vary the magnitude and the siga.of a!. [_16]. In this regime, _after subtraction of the molecular
The available experimental data 8ni atoms are concen- binding energy, the functioe(x) should follow the Bose-gas
trated across the resonance, whegmes from large negative expansior{17]

In the weak BEC regimé0<x<1) one expects a weakly

to large positive valueg3,4] and where a crossover from a 5 128 32
Bardeen-Cooper-Schrieffe(BCS) superfluid to a Bose- e(x) = _a_MX{l + #(a_M) 32 4 } (3)
Einstein condensatdEC) of molecular pairs has been pre- 187 a 15V672\ a

dicted[5-7].

In the so-called unitarity limi{x=+c0) one expects that the

In this paper we propose a reliable analytical fitting for- o ' , -
energy per particle is proportional to that of a noninteracting

mula for the ener er particle of a homogeneous two ) ; o
component Fermi ggyasp bypanalyzing the fixeg-node Montd €rmi gad18]. The f|>_<ed-n0de d_lffusmn Monte Carlo calcu-
Carlo data of Astrakharchikt al. [8]. From this analytical @tion of Astrakharchilet al. [8] finds
formula it is straightforward to calculate several bulk prop- e(x= +0)=0.42 +0.01, (4)
erties of the system by means of standard themodynamical
relations. This fitting formula enables us to calculate also thevhile an analogous calculaton of Carlsen al. [19] gave
collective modes of the Fermi gas under harmonic confine€(x=*%)=0.44+0.01. The calculation of Astrakharchét
ment by using the hydrodynamic theory in the local-densityal. [8] is quite complete and gives the behavior of the energy
approximation(LDA), including also a quantum pressure Of system across the unitarity limit. It is a standard conven-
term. We compare our results with other theoretical prediction to use the inverse interaction parametgr1/x
tions [9-14] and, in particular, with the experimental fre- =1/(kg@) as the independent variable. In Fig. 1 we plot the
guencies of the collective breathing modé]. data of e(y) reported by Astrakharchikt al. [8,20]. On the
basis of the data of Carlsaet al. [19], Bulgac and Bertsch
Il. BULK PROPERTIES [14] proposed the following behavior @fy) neary=0:

At zero temperature, the bulk energy per partiélepf a

dilute Fermi gas can be written as ey)=E-Ly+ -, (5)
3 with ¢=0.44 and{=1 for both positive and negatiwe The
&= EGFG(X)- (1) denser data of Ref8] suggest instead a continuous but not

differentiable behavior ofe(y) near y=0—namely, with§¢
where eF:hzkﬁl(Zm) is the Fermi energy and(x) is a yet =0.42 and{=¢_=1 in the BCS region(y<0) but {={,
unknown function of the interaction parameterkza. Inthe  =1/3 in the BECregion (y>0). As expected, for larggy|,
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FIG. 2. Chemical potentigl/eg, pressureP/(neg), and sound
velocity c/vg, obtained from the parametric functioi®). The
dashed line represents the simple modep/eF%
—(1/m)arctanimy/2) of Ref.[12].

FIG. 1. The energy per partickdy) as defined in Eq(1), where
y=1/x=1/(kga). Solid circles represent the fixed-node Monte Carlo
data of Ref[8]. The solid line is the parametric functidf) based
on the values of Table I. The dotted line is the Padé approximatiofparameters.
of Ref.[11]. Dashed lines represent the asymptotic expressions Eq. Figure 1 compares this fitting functideolid curve to the
(2) and(3). Monte Carlo data. For the sake of completeness, in Fig. 1 we

also show the dotted curve obtained with {i2¢ Padé ap-

the Monte Carlo data shown in Fig. 1 follow the asymptoticProximation of Kim and Zubarey11], based only on the
trends of Egs(1) and (2). asymptotes and the Monte Carlo vall#9] at y=0. Our

We propose here the analytical fitting formula parametric formula is more accurate, especially aroynd
=0.
Bty The advantage of a functional parametrizatione0f) is
—,3 +yl)’ (6) that it allows straightforward analytical calculations of sev-
2 eral ground-state physical properties of the bulk Fermi gas

interpolating the Monte Carlo energy per particle and thézz]' For example, the chemical potentjalis given by
limiting behaviors for large and smail|. Here the parameter a(né)
oy is fixed by the valu€e of €(y) aty=0, the parameted, is m=

fixed by the value ofe(y) at y=«, and a3 is fixed by the an
asymptotic 1y coefficient ofe(y) at largely| [Egs. (2) and
(3)]. The ratioB,;/ 3, is determined by the linear behavitr
of €(y) neary=0. The value of$3; is then determined by 26 )
minimizing the mean-square deviation from the Monte Carlo _2%¢ _ = _Y,
data[21]. gOf course, V\?e consider two different sets of pa- P=n an nGF(56(y) 5° (y)). ®
rameters: one set in the BCS regigrn< 0) and a separate set
in the BEC regior(y>0). Table | reports the values of these

ey)=a; - azarctar< azy

- EF(G@ - E—Y)e'(w), (7)

as found by using Eq(1l) and taking into account that
dayl an=-y[(3n), while the pressur® reads

The sound velocity ¢ is instead obtained asc§
=(n/m)dulan, from which we get

TABLE |. Parameters of the fitting functio(®). 1 y y2 ,
cs:vp\/ge(w =€ W)+ 3EW), (9)
BCS (y<0) BEC (y>0)
Expression Value Expression Value wherevg=(2¢e-/m)¥? is the Fermi velocity. Figure 2 reports
the chemical potentiglk, the pressurd®, and the sound ve-
1 5 g 0.4200 25 0.4200 locity ¢ as a function ofy. Our theory predicts that all these
a 7(1-ay) 0.3692 T 0.2674  macroscopic properties show a kink at the unitarity point,
a3 o 1.0440 B ) 5.0400  due tol_# ¢,. Figure 2 shows also the curve of the chemical
By [fitted] 1.4328 [fitted] 0.1126 potential obtained with the simple analytical model proposed
Ba ezl - 0.5523 apasByl L 0.4552 by Combescot and Leyron442]. The sound velocitycs is

accessible experimentally, and the dotted curve of Fig. 2 is
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our prediction of the waycg evolves frova/\@ to zero

through the BCS-BEC crossover. Lsep
IIl. HARMONICALLY CONFINED GAS 1.58 1 ST
We consider now the effect of confinement due to an ex- o 1.57F E
ternal anisotropic harmonic potential o156 - E
U(r) = Nw2p? + 022 (10) 155 Fr ;
=5 (wpp™+ wyZ), o T ]
1.54 = =

wherew,, is the cylindric radial frequency and, is the cy-
lindric longitudinal frequency. Assuming that the density @*-
field n(r,t) varies sufficiently slowly(this assumption is at

the basis of the LDA at each point the gas can be consid- =
ered in local equilibrium and the local chemical potential is 2 =
u[n(r,t)]. Within the LDA, the dynamics can be described ]
by means of the hydrodynamic equations of superfluids 1.95 ]
an g 1

—+V -(nv)=0, 1y g E

at ]

1.85 .

av 1 ]

m+V (M[n(r,t)]+ u(r) +5mv2) =0, (12 18 ;

wherev(r,t) is the velocity field andu[n] is the chemical
potential of Eq.(7). It has been shown by Cozzini and Strin-
gari[23] that assuming a power-law dependepceugn” for
the chemical pOtem'a[pOIV_trOp'C equ,at'on of s_tatélz]) FIG. 3. Frequencies of the longitudinal and radial collective
from Egs.(11) and(12) one finds analytic expressions for the preathing modes of the Fermi gas as a functionagf (Nea)
collective frequencies. In particular, for the very elongated- »1/2316)(k_a)=21/231/6y. () experimental data from Ref4] and
cigarshaped traps used in recent experiméaw,>20),  (, experimental data from Ref3(@)] (square and Ref.[3(b)]
the collective radial breathing-mode frequeri@y is given  (circles, both for°Li. Joined dots with solid lines: TDDFT of Eq.

(b) aH/(NHZ)

by [23] (16), with N=4x10° 0,/ w,=31.9 for Q, and with N=2
= X 105,w/,/wz=22.1 forw,. Dot-dashed line: variational approxima-
Qp‘ V2(y+ 1)“’p' (13 tion to TDDFT [11]. Dashed line: polytropic hydrodynamic ap-

proximation, Egs(13) and (14). Dotted line: the mean-field BCS

while the collective longitudinal breathing-modk, is
9 9 o, theory of Ref[10].

3y+2
0,= "0, (14)
'y+l

J h?
—yr,t) = [ = —=VZ+U(r) + un(r,H] |%(r,1),
In our problem we introduce an effective polytropic index ot 2m

v as the logarithmic derivative of the chemical potential (16)
u—that is,
_Ndu _ %e(y)—ngg’(y)+>l’—;g'(y) where ¢(r,t) is the superfluid wave function such that

an Q) - (19 nr,t)=|r vz, v=hV In(/n¥?)/(im), and u[n] is the
5 chemical potential of Eq(7). Equation(16) can be inter-

We have verified that indeegt remains relatively close to preted as the Euler-Lagrange equation of a time-dependent
unity for all y: the results of the local polytropic equation are density functional theoryfTDDFT) [11]. In Ref.[11], Eq.
thus useful to have a simple analytical prediction of the col{16) is approached via a variational scheme. Here instead,
lective frequencies. Based on this polytropic hydrodynamideq. (16) is solved numerically by using a finite-difference
approximation (PHA), by using Eg.(6) we obtain the Crank-Nicolson predictor-corrector schem24]. First we
breathing-mode frequencies shown in Fig. 3 as dashed linesbtain the ground state by integrating E#6) in imaginary

The analytical prediction of Eq913)—(15) can be im- time. Then we let a slightly perturbed wave function evolve
proved by releasing the polytropic approximation and explic4in real time for approximately one period of oscillation of the
itly integrating Egs.(11) and (12). We have done such a lowest (longitudina) frequency(},. In the same time span,
calculation by including also a quantum pressure ternthe density also undergoes several radial oscillations of fre-
(-h?V2yn)/(2myn) in Eq. (12). In practice, one must solve quency(),. As discussed in the Appendix, we extract both
the following time-dependent nonlinear Schrodinger equafrequencies by fitting the mean-square widths\of,t) with
tion the sum of two cosines. The breathing-mode frequencies ob-
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tained in this way are shown in Fig. 3 as dots joined by solid Lo,
lines. 12 14 16 18 20 22
The quantum pressure term is important for small number (a)' ! | !

of atoms, as it improves the determination of the density “l
profile close to the surface of the vapor clodd]. For the . =~ 0.0001j

number of particles of the experimer(fd=10°), the quan- X

tum pressure term is a relatively small correction, and ac- g ' “]
cording to our calculation it accounts for about 0.5% of the = 0 ‘||

total energy. !

Figure 3 shows substantial accord between the PHA anc
TDDFT. The main difference is the location of the predicted L L B
maximum in the bosonic regiop>0. The differences are
not only due to the approximations involved in the PHA, but 1.79
also to numerical errors in TDDFT introduced by space and g*
time discretizatior(estimated to less than 1; see the Appen- o
dix). We observe that, according to our predictions, the col- 1.785
lective frequencies reach the asymptotic lajgdimits more
slowly than the theory of Het al.[10] based on mean-field
BCS Bogoliubov—de Gennes equations within the LDA. In
particular, in the BEC region, our numerical and analytical 1.54 L
results(see the inset of Fig.)3show that, contrary to the . -
mean-field prediction(}, approaches its asymptotic value g, 1535 B
2w, passing through a local maximu#, has the same non- G- L
monotonic behavior while reaching /2w, for largey. This -
qualitative behavior was previously suggested by Stringari 153 (a) | | B e |
[9]. The Q|ﬁerent asymptotic behavior of the BCS mean-fleld 0 0000l 0000z 0 0000l 0.0002
frequencies is due to the neglect of beyond mean-field cor- At At o
rections. Note also that further discrepancies on the BEC ’ :

side are due to the mean-field relatiap=2a, rather than FIG. 4. Panel@): the lower curve is the time evolution of the

an=0.6a5 as provided by four-body scatterin@6] and used  mean-squared radial width of the cigar-shaped Fermirgpd) re-

in our calculation. The, curve computed in Ref11] (dot-  ferred to its mean value; the upper curve is the fitted functionof

dashed line in Fig. Bagrees rather well with our calculation. Eq. (A1) displaced by 10* for clarity (N=2X10°,w,/w,=22.1,
Different theories are compared to the experimental datiteraction parametery/(NY%a)=-1.69838—i.e.,y=-1). Panel

by Kinastet al. [3] for the radial mode(2, and those by (b): convergence of the collective breathing frequencies with the

Bartensteiret al.[4] for the longitudinal modé),. In Fig. 3,  integration time intervalt [parameters as in pan@)], f(t) fitted to

we use the standard variabdg/(NY%a)=2Y23Y6y and fol-  an evolution time;y=4.1/w, (diamonds, f(t) fitted to an evolution

low Ref.[25] to determine the scattering lengihas a func-  time ti=41/w,(X), frequency obtained by means of Fourier trans-

tion of the magnetic fiel® near the Feshbach resonance: formation of the time seriegircles with errorbar Panel(c): same
as panel b, but interaction parametgy/ (N/®a)=1.69838—i.e.y

=1.
], (17)

y=0, instead of the expected valm?,/wf\f’m:l.sz ob-
where By=83.4149 mTa,=-1405a,,A=30.0 mT, anda  tained from Eq(13) for y=2, characteristic of th&enormal-
=0.004@mT)~%. For the longitudinal frequencg),, our re- ized free Fermi gas.

sults are in quantitative agreement with the experimental
data, not unlike the mean-field prediction. The accord is less
good for the radial mode. Experimental uncertainty of the
position of the resonant fiel®, could partly account for We propose analytic expressions for the equations of state
these discrepancies. In particular the upward feature neaf a uniform dilute Fermi gas across the BCS-BEC transi-
ay/(NY®a) =-1.5 has been relatd@,12] to the breaking of tion. These expressions are based on recent Monte Carlo data
the Cooper pairgsdue to the sizable ratio between the collec-and well-established asymptotic expansions. By using a hy-
tive energyh(), and the gap energy [12]), causing a failure  drodynamic local-density approximation we include the ef-
of the hydrodynamical approximation. Finite-temperaturefect of harmonic confinement. We compare the predictions of
and non-LDA effects not taken into account in the theorieghis approach with the experimental frequencies of confined
could be relevant. Note also that the experimental situation ifLi vapors. Other predicted physical quantites can be ac-
not completely clear. The experimental measurement3,of cessed by future experiments. The hydrodynamic approach is
performed by Bartensteipet al. [4] (not shown in Fig. 3  improved, to address small number of atoms, by including a
disagree with the data of Kinast al.[3]. In particular, Bar- quantum-pressure term. Indeed, our parametric form@gas
tensteinet al. [4] find Q,/w,=1.6 at the unitarity limit and(7) provide an accurate expression for fheéerm in Eq.

2.02

2.015

2.01

1.59

1.58

1.57

1.56

1.55

a:ab[1+a(B—Bo)]{1+ 5B,

IV. DISCUSSION

033625-4



BULK AND COLLECTIVE PROPERTIES OF A DILUTE.. PHYSICAL REVIEW A 71, 033625(2005

(16), which gives a better determination of the density and otime series contains only two characteristic frequen(ieis

the collective frequencies. This generalized quantum hydrois of course confirmed by Fourier analysiét is therefore

dynamic approach, which takes into account the beyondratural to fit the time series to the sum of two cosines:

mean-field corrections, provides a reliable tool to determine (1) = a,c04Q,1) + a,cod 1) + ag. (A1)

the density profile of the fermionic cloud and to investigate

its collective dynamical properties, including also mode couFigure 4a) compares the computed time evolution with the

pling and anharmonic oscillations. fitted f(t): the accord is very good, all discrepancies being

related to a very weak intermode coupling. In fact, the mean-

square discrepancy between the actual time evolution and the

fitting function is an exceedingly sensitive function of the
The authors thank A. Parola and L. Reatto for useful disfrequencies), and(},,: for this reason the fitting procedure

cussions and J.E. Thomas for drawing their attention to newnust be carried out with some care, but eventually precisely
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experimental determinations 6f,. this sensitivity guarantees th&, and (), are determined
with high accuracy, even based on a time series shorter than
APPENDIX: NUMERICAL DETERMINATION OF THE the longest period of oscillation. We therefore choose this
FREQUENCIES fitting method to extract the frequenci€s and(}, reported

as solid lines in Fig. 3 and diamonds in Figgbyand 4c).

Figure 4a) reports a section of a typical time evolution of The length of all the time series employedtis=4.1/w,,
the mean-square width ok ,t) in an asymmetric harmonic marginally longer than one period of ti§, oscillation.
trap, computed by numerical integration of Ed.6). The Figures 4b) and 4c) confirm the high accuracy of the
starting density is very close to the equilibrium density: it method by comparing the frequency determination based on
has been obtained by an initial Gaussian state evolved ia single(), period (diamond and that based on a 10-times-
imaginary time so as to filter away most of the excited com-onger time serie$x). This figure reports also the frequen-
ponents. The small residual excited components involve aleies computed based on the Fourier transform of the long-
most exclusively the collective breathing modes. time series: the accuracy of this determination (®f is

To extract(), and(},, one would normally resort to Fou- clearly inferior.
rier analysis of this time series. This approach is viable pro- Figures 4b) and 4c) also illustrate the convergence of the
vided that the time series available is long compared to theomputed frequency as a function of the integration time step
inverse lowest frequencf) to be determined, as the separa- At. Clearly all systematic errors induced by a finite time step
tion between adjacent Fourier frequencies is of the order cind the fitting procedure are well within 1%, even with a
the inverse of the total integration timg,. Rather than at- time stepAt=1.25X 107/ w,, which we adopt for all calcu-
tempting a long expensive integration of Edj6), we prefer lations of Fig. 3. The error induced by tmespace discreti-
to take advantage of the special character of the observeghtion was checked to be much smaller on the employed
density oscillations—namely, that, as Figajshows, the 200X 200 cylindrical grid.
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