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We investigate the zero-temperature properties of a dilute two-component Fermi gas with attractive inter-
species interaction in the BCS-BEC crossover. We build an efficient parametrization of the energy per particle
based on Monte Carlo data and asymptotic behavior. This parametrization provides, in turn, analytical expres-
sions for several bulk properties of the system such as the chemical potential, the pressure, and the sound
velocity. In addition, by using a time-dependent density functional approach, we determine the collective
modes of the Fermi gas under harmonic confinement. The calculated collective frequencies are compared to
experimental data on confined vapors of6Li atoms and with other theoretical predictions.
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I. INTRODUCTION

A hot topic in current many-body physics is the study of
Fermi gases at ultralow temperature. Indeed, current experi-
ments with atomic vapors are able to operate in the regime of
deep Fermi degeneracyf1,2g. The two-component Fermi
gases of these experiments are dilute because the effective
rangeR0 of the interaction is much smaller than the mean
interparticle distance—i.e.,kFR0!1 wherekF=s3p2nd1/3 is
the Fermi wave vector andn is the gas number density. Even
in this dilute regime thes-wave scattering lengtha can be
very large: the interaction parameterkFa can be varied over a
very wide range using the Feshbach resonance technique,
which permits one to vary the magnitude and the sign ofa.
The available experimental data on6Li atoms are concen-
trated across the resonance, wherea goes from large negative
to large positive valuesf3,4g and where a crossover from a
Bardeen-Cooper-SchrieffersBCSd superfluid to a Bose-
Einstein condensatesBECd of molecular pairs has been pre-
dicted f5–7g.

In this paper we propose a reliable analytical fitting for-
mula for the energy per particle of a homogeneous two-
component Fermi gas by analyzing the fixed-node Monte
Carlo data of Astrakharchiket al. f8g. From this analytical
formula it is straightforward to calculate several bulk prop-
erties of the system by means of standard themodynamical
relations. This fitting formula enables us to calculate also the
collective modes of the Fermi gas under harmonic confine-
ment by using the hydrodynamic theory in the local-density
approximationsLDA d, including also a quantum pressure
term. We compare our results with other theoretical predic-
tions f9–14g and, in particular, with the experimental fre-
quencies of the collective breathing modesf3,4g.

II. BULK PROPERTIES

At zero temperature, the bulk energy per particle,E, of a
dilute Fermi gas can be written as

E =
3

5
eFesxd, s1d

whereeF=q2kF
2 / s2md is the Fermi energy andesxd is a yet

unknown function of the interaction parameterx=kFa. In the

weakly attractive regimes−1!x,0d one expects a BCS
Fermi gas of weakly bound Cooper pairs. As the superfluid
gap correction is exponentially small, the functionesxd
should follow the Fermi-gas expansionf15g

esxd = 1 +
10

9p
x +

4s11 − 2 lns2dd
21p2 x2 + ¯ . s2d

In the weak BEC regimes0,x!1d one expects a weakly
repulsive Bose gas of dimers. Such Bose-condensed mol-
ecules of massmM =2m and densitynM =n/2 interact with a
positive scattering lengthaM =0.6a, as predicted by Petrovet
al. f16g. In this regime, after subtraction of the molecular
binding energy, the functionesxd should follow the Bose-gas
expansionf17g

esxd =
5

18p

aM

a
xF1 +

128

15Î6p2SaM

a
D3/2

x3/2 + ¯G . s3d

In the so-called unitarity limitsx= ±`d one expects that the
energy per particle is proportional to that of a noninteracting
Fermi gasf18g. The fixed-node diffusion Monte Carlo calcu-
lation of Astrakharchiket al. f8g finds

esx = ± `d = 0.42 ± 0.01, s4d

while an analogous calculaton of Carlsonet al. f19g gave
esx= ±`d=0.44±0.01. The calculation of Astrakharchiket
al. f8g is quite complete and gives the behavior of the energy
of system across the unitarity limit. It is a standard conven-
tion to use the inverse interaction parametery=1/x
=1/skFad as the independent variable. In Fig. 1 we plot the
data ofesyd reported by Astrakharchiket al. f8,20g. On the
basis of the data of Carlsonet al. f19g, Bulgac and Bertsch
f14g proposed the following behavior ofesyd neary=0:

esyd = j − z y + ¯ , s5d

with j=0.44 andz=1 for both positive and negativey. The
denser data of Ref.f8g suggest instead a continuous but not
differentiable behavior ofesyd near y=0—namely, withj
=0.42 andz=z−=1 in the BCS regionsy,0d but z=z+

=1/3 in the BECregion sy.0d. As expected, for largeuyu,
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the Monte Carlo data shown in Fig. 1 follow the asymptotic
trends of Eqs.s1d and s2d.

We propose here the analytical fitting formula

esyd = a1 − a2arctanSa3y
b1 + uyu
b2 + uyuD , s6d

interpolating the Monte Carlo energy per particle and the
limiting behaviors for large and smalluyu. Here the parameter
a1 is fixed by the valuej of esyd at y=0, the parametera2 is
fixed by the value ofesyd at y=`, and a3 is fixed by the
asymptotic 1/y coefficient ofesyd at largeuyu fEqs. s2d and
s3dg. The ratiob1/b2 is determined by the linear behaviorz
of esyd near y=0. The value ofb1 is then determined by
minimizing the mean-square deviation from the Monte Carlo
data f21g. Of course, we consider two different sets of pa-
rameters: one set in the BCS regionsy,0d and a separate set
in the BEC regionsy.0d. Table I reports the values of these

parameters.
Figure 1 compares this fitting functionssolid curved to the

Monte Carlo data. For the sake of completeness, in Fig. 1 we
also show the dotted curve obtained with thef2g Padé ap-
proximation of Kim and Zubarevf11g, based only on the
asymptotes and the Monte Carlo valuef19g at y=0. Our
parametric formula is more accurate, especially aroundy
=0.

The advantage of a functional parametrization ofesyd is
that it allows straightforward analytical calculations of sev-
eral ground-state physical properties of the bulk Fermi gas
f22g. For example, the chemical potentialm is given by

m =
]snEd

]n
= eFSesyd −

y

5
e8sydD , s7d

as found by using Eq.s1d and taking into account that
]y/]n=−y/ s3nd, while the pressureP reads

P = n2
]E
]n

= neFS2

5
esyd −

y

5
e8sydD . s8d

The sound velocity cs is instead obtained ascs
2

=sn/md]m /]n, from which we get

cs = vFÎ1

3
esyd −

y

5
e8syd +

y2

30
e9syd, s9d

wherevF=s2eF /md1/2 is the Fermi velocity. Figure 2 reports
the chemical potentialm, the pressureP, and the sound ve-
locity cs as a function ofy. Our theory predicts that all these
macroscopic properties show a kink at the unitarity point,
due toz−Þz+. Figure 2 shows also the curve of the chemical
potential obtained with the simple analytical model proposed
by Combescot and Leyronasf12g. The sound velocitycs is
accessible experimentally, and the dotted curve of Fig. 2 is

FIG. 1. The energy per particleesyd as defined in Eq.s1d, where
y=1/x=1/skFad. Solid circles represent the fixed-node Monte Carlo
data of Ref.f8g. The solid line is the parametric functions6d based
on the values of Table I. The dotted line is the Padé approximation
of Ref. f11g. Dashed lines represent the asymptotic expressions Eq.
s2d and s3d.

TABLE I. Parameters of the fitting functions6d.

BCS sy,0d BEC sy.0d
Expression Value Expression Value

a1 j 0.4200 j 0.4200

a2
2
p s1−a1d 0.3692 2

pa1 0.2674

a3
9p
10a2 1.0440 18p

5 a2
aM

a
5.0400

b1 ffittedg 1.4328 ffittedg 0.1126

b2 a2a3b1/z− 0.5523 a2a3b1/z+ 0.4552

FIG. 2. Chemical potentialm /eF, pressureP/ sneFd, and sound
velocity cs/vF, obtained from the parametric functions6d. The
dashed line represents the simple modelm /eF= 1

2
−s1/pdarctanspy/2d of Ref. f12g.
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our prediction of the waycs evolves fromvF /Î3 to zero
through the BCS-BEC crossover.

III. HARMONICALLY CONFINED GAS

We consider now the effect of confinement due to an ex-
ternal anisotropic harmonic potential

Usr d =
m

2
svr

2r2 + vz
2z2d, s10d

wherevr is the cylindric radial frequency andvz is the cy-
lindric longitudinal frequency. Assuming that the density
field nsr ,td varies sufficiently slowlysthis assumption is at
the basis of the LDAd, at each pointr the gas can be consid-
ered in local equilibrium and the local chemical potential is
mfnsr ,tdg. Within the LDA, the dynamics can be described
by means of the hydrodynamic equations of superfluids

]n

]t
+ ¹ · snvd = 0, s11d

m
]v

]t
+ ¹ Smfnsr ,tdg + Usr d +

1

2
mv2D = 0, s12d

wherevsr ,td is the velocity field andmfng is the chemical
potential of Eq.s7d. It has been shown by Cozzini and Strin-
gari f23g that assuming a power-law dependencem=m0n

g for
the chemical potentialspolytropic equation of statef12gd
from Eqs.s11d ands12d one finds analytic expressions for the
collective frequencies. In particular, for the very elongated
cigarshaped traps used in recent experimentssvr /vz.20d,
the collective radial breathing-mode frequencyVr is given
by f23g

Vr = Î2sg + 1dvr, s13d

while the collective longitudinal breathing-modeVz is

Vz =Î3g + 2

g + 1
vz. s14d

In our problem we introduce an effective polytropic index
g as the logarithmic derivative of the chemical potential
m—that is,

g =
n

m

]m

]n
=

2
3esyd − 2y

5 e8syd + y2

15e9syd

esyd − y
5e8syd

. s15d

We have verified that indeedg remains relatively close to
unity for all y: the results of the local polytropic equation are
thus useful to have a simple analytical prediction of the col-
lective frequencies. Based on this polytropic hydrodynamic
approximation sPHAd, by using Eq. s6d we obtain the
breathing-mode frequencies shown in Fig. 3 as dashed lines.

The analytical prediction of Eqs.s13d–s15d can be im-
proved by releasing the polytropic approximation and explic-
itly integrating Eqs.s11d and s12d. We have done such a
calculation by including also a quantum pressure term
s−q2¹2Înd / s2mÎnd in Eq. s12d. In practice, one must solve
the following time-dependent nonlinear Schrödinger equa-
tion

iq
]

]t
csr ,td = F−

q2

2m
¹2 + Usr d + mfnsr ,tdgGcsr ,td,

s16d

where csr ,td is the superfluid wave function such that
nsr ,td= ucsr ,tdu2,v=q¹ lnsc /n1/2d / simd, and mfng is the
chemical potential of Eq.s7d. Equations16d can be inter-
preted as the Euler-Lagrange equation of a time-dependent
density functional theorysTDDFTd f11g. In Ref. f11g, Eq.
s16d is approached via a variational scheme. Here instead,
Eq. s16d is solved numerically by using a finite-difference
Crank-Nicolson predictor-corrector schemef24g. First we
obtain the ground state by integrating Eq.s16d in imaginary
time. Then we let a slightly perturbed wave function evolve
in real time for approximately one period of oscillation of the
lowest slongitudinald frequencyVz. In the same time span,
the density also undergoes several radial oscillations of fre-
quencyVr. As discussed in the Appendix, we extract both
frequencies by fitting the mean-square widths ofnsr ,td with
the sum of two cosines. The breathing-mode frequencies ob-

FIG. 3. Frequencies of the longitudinal and radial collective
breathing modes of the Fermi gas as a function ofaH / sN1/6ad
=21/231/6/ skFad=21/231/6y. Vz experimental data from Ref.f4g and
Vr experimental data from Ref.f3sadg ssquaresd and Ref. f3sbdg
scirclesd, both for 6Li. Joined dots with solid lines: TDDFT of Eq.
s16d, with N=43105,vr /vz=31.9 for Vz and with N=2
3105,vr /vz=22.1 forvr. Dot-dashed line: variational approxima-
tion to TDDFT f11g. Dashed line: polytropic hydrodynamic ap-
proximation, Eqs.s13d and s14d. Dotted line: the mean-field BCS
theory of Ref.f10g.
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tained in this way are shown in Fig. 3 as dots joined by solid
lines.

The quantum pressure term is important for small number
of atoms, as it improves the determination of the density
profile close to the surface of the vapor cloudf11g. For the
number of particles of the experimentssN*105d, the quan-
tum pressure term is a relatively small correction, and ac-
cording to our calculation it accounts for about 0.5% of the
total energy.

Figure 3 shows substantial accord between the PHA and
TDDFT. The main difference is the location of the predicted
maximum in the bosonic regiony.0. The differences are
not only due to the approximations involved in the PHA, but
also to numerical errors in TDDFT introduced by space and
time discretizationsestimated to less than 1; see the Appen-
dixd. We observe that, according to our predictions, the col-
lective frequencies reach the asymptotic large-uyu limits more
slowly than the theory of Huet al. f10g based on mean-field
BCS Bogoliubov–de Gennes equations within the LDA. In
particular, in the BEC region, our numerical and analytical
results ssee the inset of Fig. 3d show that, contrary to the
mean-field prediction,Vr approaches its asymptotic value
2vr passing through a local maximum.Vz has the same non-
monotonic behavior while reachingÎ5/2vz for largey. This
qualitative behavior was previously suggested by Stringari
f9g. The different asymptotic behavior of the BCS mean-field
frequencies is due to the neglect of beyond mean-field cor-
rections. Note also that further discrepancies on the BEC
side are due to the mean-field relationam=2as rather than
am=0.6as as provided by four-body scatteringf16g and used
in our calculation. TheVr curve computed in Ref.f11g sdot-
dashed line in Fig. 3d agrees rather well with our calculation.

Different theories are compared to the experimental data
by Kinast et al. f3g for the radial modeVr and those by
Bartensteinet al. f4g for the longitudinal modeVz. In Fig. 3,
we use the standard variableaH / sN1/6ad=21/231/6y and fol-
low Ref. f25g to determine the scattering lengtha as a func-
tion of the magnetic fieldB near the Feshbach resonance:

a = abf1 + asB − B0dgF1 +
D

B − B0
G , s17d

where B0=83.4149 mT,ab=−1405a0,D=30.0 mT, anda
=0.0040smTd−1. For the longitudinal frequencyVz, our re-
sults are in quantitative agreement with the experimental
data, not unlike the mean-field prediction. The accord is less
good for the radial mode. Experimental uncertainty of the
position of the resonant fieldB0 could partly account for
these discrepancies. In particular the upward feature near
aH / sN1/6ad.−1.5 has been relatedf3,12g to the breaking of
the Cooper pairssdue to the sizable ratio between the collec-
tive energyqVr and the gap energyD f12gd, causing a failure
of the hydrodynamical approximation. Finite-temperature
and non-LDA effects not taken into account in the theories
could be relevant. Note also that the experimental situation is
not completely clear. The experimental measurements ofVr

performed by Bartensteinet al. f4g snot shown in Fig. 3d
disagree with the data of Kinastet al. f3g. In particular, Bar-
tenstein et al. f4g find Vr /vr.1.6 at the unitarity limit

y=0, instead of the expected valueVr /vr=Î10/3=1.82 ob-
tained from Eq.s13d for g=2, characteristic of thesrenormal-
izedd free Fermi gas.

IV. DISCUSSION

We propose analytic expressions for the equations of state
of a uniform dilute Fermi gas across the BCS-BEC transi-
tion. These expressions are based on recent Monte Carlo data
and well-established asymptotic expansions. By using a hy-
drodynamic local-density approximation we include the ef-
fect of harmonic confinement. We compare the predictions of
this approach with the experimental frequencies of confined
6Li vapors. Other predicted physical quantites can be ac-
cessed by future experiments. The hydrodynamic approach is
improved, to address small number of atoms, by including a
quantum-pressure term. Indeed, our parametric formulass6d
ands7d provide an accurate expression for them term in Eq.

FIG. 4. Panelsad: the lower curve is the time evolution of the
mean-squared radial width of the cigar-shaped Fermi gasDkr2l re-
ferred to its mean value; the upper curve is the fitted functionfstd of
Eq. sA1d displaced by 10−4 for clarity sN=23105,vr /vz=22.1,
interaction parameteraH / sN1/6ad=−1.69838—i.e.,y=−1d. Panel
sbd: convergence of the collective breathing frequencies with the
integration time intervalDt fparameters as in panelsadg, fstd fitted to
an evolution timettot=4.1/vz sdiamondsd, fstd fitted to an evolution
time ttot=41/vzs3d, frequency obtained by means of Fourier trans-
formation of the time seriesscircles with errorbard. Panelscd: same
as panel b, but interaction parameteraH / sN1/6ad=1.69838—i.e.,y
=1.
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s16d, which gives a better determination of the density and of
the collective frequencies. This generalized quantum hydro-
dynamic approach, which takes into account the beyond-
mean-field corrections, provides a reliable tool to determine
the density profile of the fermionic cloud and to investigate
its collective dynamical properties, including also mode cou-
pling and anharmonic oscillations.
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APPENDIX: NUMERICAL DETERMINATION OF THE
FREQUENCIES

Figure 4sad reports a section of a typical time evolution of
the mean-square width ofnsr ,td in an asymmetric harmonic
trap, computed by numerical integration of Eq.s16d. The
starting density is very close to the equilibrium density: it
has been obtained by an initial Gaussian state evolved in
imaginary time so as to filter away most of the excited com-
ponents. The small residual excited components involve al-
most exclusively the collective breathing modes.

To extractVr andVz, one would normally resort to Fou-
rier analysis of this time series. This approach is viable pro-
vided that the time series available is long compared to the
inverse lowest frequencyV to be determined, as the separa-
tion between adjacent Fourier frequencies is of the order of
the inverse of the total integration timettot. Rather than at-
tempting a long expensive integration of Eq.s16d, we prefer
to take advantage of the special character of the observed
density oscillations—namely, that, as Fig. 4sad shows, the

time series contains only two characteristic frequenciessthis
is of course confirmed by Fourier analysisd. It is therefore
natural to fit the time series to the sum of two cosines:

fstd = a1cossVztd + a2cossVrtd + a3. sA1d

Figure 4sad compares the computed time evolution with the
fitted fstd: the accord is very good, all discrepancies being
related to a very weak intermode coupling. In fact, the mean-
square discrepancy between the actual time evolution and the
fitting function is an exceedingly sensitive function of the
frequenciesVz andVr: for this reason the fitting procedure
must be carried out with some care, but eventually precisely
this sensitivity guarantees thatVz and Vr are determined
with high accuracy, even based on a time series shorter than
the longest period of oscillation. We therefore choose this
fitting method to extract the frequenciesVz andVr reported
as solid lines in Fig. 3 and diamonds in Figs. 4sbd and 4scd.
The length of all the time series employed isttot=4.1/vz,
marginally longer than one period of theVz oscillation.

Figures 4sbd and 4scd confirm the high accuracy of the
method by comparing the frequency determination based on
a singleVz period sdiamondd and that based on a 10-times-
longer time seriess3d. This figure reports also the frequen-
cies computed based on the Fourier transform of the long-
time series: the accuracy of this determination ofVz is
clearly inferior.

Figures 4sbd and 4scd also illustrate the convergence of the
computed frequency as a function of the integration time step
Dt. Clearly all systematic errors induced by a finite time step
and the fitting procedure are well within 1%, even with a
time stepDt=1.25Ã10−4/vz, which we adopt for all calcu-
lations of Fig. 3. The error induced by ther -space discreti-
zation was checked to be much smaller on the employed
2003200 cylindrical grid.
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