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1=f� Noise in Spectral Fluctuations of Quantum Systems
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The power law 1=f� in the power spectrum characterizes the fluctuating observables of many complex
natural systems. Considering the energy levels of a quantum system as a discrete time series where the
energy plays the role of time, the level fluctuations can be characterized by the power spectrum. Using a
family of quantum billiards, we analyze the order-to-chaos transition in terms of this power spectrum. A
power law 1=f� is found at all the transition stages, and it is shown that the exponent � is related to the
chaotic component of the classical phase space of the quantum system.
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Of the different features which characterize complex
physical systems, perhaps the most ubiquitous, interesting,
and puzzling is the presence of 1=f� noise [1] in fluctuat-
ing physical variables, i.e., the Fourier power spectrum
S�f� behaves as 1=f� in terms of the frequency f. This
kind of noise has been detected in condensed matter sys-
tems, traffic engineering, DNA sequence, quasar emis-
sions, river discharge, human behavior, heartbeat and dy-
namic images, among many others. Despite this ubiquity,
there is no universal explanation about this phenomenon. It
does not arise as a consequence of particular physical
interactions, but it is a generic manifestation of complex
systems.

Recently, it was conjectured that the energy spectra of
chaotic quantum systems are characterized by 1=f noise
[2]. The original idea was that the sequence of discrete
energy levels in a quantum system can be considered as a
discrete time series, where the energy plays the role of
time. In that case, the energy level fluctuations can be
studied using traditional methods of time series analysis,
like the study of the power spectrum. When the idea was
applied to typical chaotic quantum systems, the power
spectrum showed a very accurate 1=f behavior [2].
Hence, chaotic quantum systems can be added to the
long list of complex natural systems which exhibit 1=f
noise. However, this new point of view also raises new
questions. Is this a consequence of the universal behavior
of fluctuations in chaotic quantum systems? What happens
in quantum systems which are neither fully chaotic nor
fully regular? In this Letter we try to find some answers
using a quantum billiard to study the power spectrum in the
order-to-chaos transition. As shown below, the ubiquitous
1=f� noise appears at all the transition stages, with the
exponent smoothly decreasing from � � 2 in a regular
system to � � 1 in a chaotic system. This is quite a
remarkable result indeed, since it contradicts the predic-
tions of the strict semiclassical limit [3].
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The concept of quantum chaos, or wave chaos in more
general terms [4], has no unique precise definition as yet,
but definitely can be described as quantum or wave like
signatures of classical chaos. It is well known that there is a
relationship between the energy level fluctuation properties
of a quantum system and the dynamics of its classical limit.
Classically integrable systems give rise to uncorrelated
adjacent energy levels, which are well described by
Poisson statistics [5]. In contrast, spectral fluctuations of
a quantum system whose classical limit is fully chaotic
(ergodic) show a strong repulsion between energy levels
and follow the predictions of random matrix theory (RMT)
[6,7]. In practice, quantum systems without classical limit
are assumed to be chaotic when their fluctuations coincide
with RMT predictions.

The essential feature of chaotic energy spectra is the
existence of level repulsion and correlations (leading to
strong spectral rigidity), i.e., the spacing of two adjacent
levels is unlikely to deviate much from the mean spacing.
This property is similar to the antipersistence characteristic
of some time series [1]. Antipersistence, with different
intensity degrees, appears in time series with 1=f� noise,
with 1<�< 2. Could the analogue level repulsion feature
be also associated to 1=f� noise?

To study the spectral fluctuations of quantum systems
we follow the method introduced in [2]. We use the statistic
�n defined by

�n �
Xn
i�1

�si � hsi� � 
n�1 � 
1 � n; (1)

where 
i are the unfolded energy levels, si � 
i�1 � 
i,
and hsi � 1 is the average value of si. Thus �n represents
the fluctuation of the nth excited state. Formally �n is
similar to a time series where the level order index n plays
the role of a discrete time. Therefore the statistical behav-
ior of level fluctuations can be investigated studying the
power spectrum S�k� of the signal, given by
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where M is the size of the series and f � 2�k=M plays the
role of a frequency.

To investigate the behavior of S�k� in the mixed regime
between integrability and chaos, we analyze it in the
Robnik billiard [8]. Quantum billiards are considered as
a paradigm in quantum chaos. They have a discrete spec-
trum with an infinite number of eigenvalues, and therefore
it is possible to reach high statistical precision by comput-
ing a large number of them. Furthermore, they can also be
studied experimentally [4,9].

The boundary of the Robnik billiard is defined as the set
of points w in the complex plane C which satisfy the
equation w � z� �z2, where jzj � 1 and � is the defor-
mation parameter. It has been shown [8] that this billiard
exhibits a smooth transition from the integrable case (� �
0) to an almost chaotic case (1=4 
 � 
 1=2). In order to
obtain a smooth analytic boundary, � must lie in the
interval �0; 1=2�. The Robnik billiard is one of the best
systems to investigate the order-to-chaos transition
[8,10,11]. Compared to other quantum billiards, it has the
advantage that there are no bouncing ball orbits. For small
values of � the billiard is a typical Kol’mogorov-Arnol’d-
Moser system, whereas for larger values of � only one
chaotic region dominates the phase space with only few
stability islands covered with invariant tori. The total area
in the bounce map (Poincaré surface of section) of these
invariant tori decreases monotonically with � and becomes
negligible when the shape of the billiard becomes non-
convex, for � > 1=4. For � � 1=2 it has been shown
rigorously by Markarian [12] that the billiard is ergodic.

The quantum energy levels En of the Robnik billiard
are numerically calculated by solving the stationary
Schrödinger equation of a free particle whose wave func-
-5
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FIG. 1. Plot of the statistic �n for a set of 256 consecutive
energy levels of odd parity in the Robnik billiard, for several
values of the deformation parameter �.
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tion  �w� is zero at the boundary of the billiard. The
billiard has reflection symmetry with respect to the real
axis, so there are two types of states: those with even parity
 �w� �  �w�� and those with odd parity  �w� � � �w��;
odd and even parity states must be treated separately
[10,11]. For each symmetry, our calculation uses approxi-
mately 80 000 basis states, giving good eigenvalues for
about 65 000 levels for � � 0 and about 30 000 levels for
� � 0:5.

Figure 1 shows the energy level fluctuations of the
Robnik billiard given by �n. It illustrates the effect of level
repulsion in the order-to-chaos transition, and its relation-
ship with the antipersistence of �n considered as a time
series. For the regular system (� � 0), the levels are un-
correlated and therefore �n is neither persistent nor anti-
persistent. As � increases the system becomes more
chaotic, and �n looks like a typical antipersistent series
in the almost chaotic region for � > 1=4.

Figure 2 shows the power spectrum of �n obtained from
the energy levels En of the Robnik billiard for several
values of �. The contour of the billiard is shown as an
inset in each panel. We calculate an ensemble average of
S�k� in order to reduce statistical fluctuations and clarify
its main trend. The average hS�k�i is calculated with 25 sets
of 256 consecutive high energy levels of odd parity. It
is clearly seen that for each value of � it follows the scal-
ing law

hS�k�i 

1

k�
; (3)

where � depends on �. In fact the fit of hS�k�i to the power
law 1=k� is excellent. In all cases the error in the linear
regression is less than 3%. For � � 0 (integrable case) the
exponent is � � 1:98, as expected for uncorrelated energy
levels. As � increases the exponent � decreases and be-
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FIG. 2 (color online). Average power spectrum hS�k�i of the
statistic �n for the odd parity energy levels corresponding to the
shapes of the Robnik billiard inserted in the figures. The four
values of the deformation parameter � are the same as in Fig. 1.
The solid (red) line is the best fit to the power law 1=k�.

1-2



PRL 94, 084101 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
4 MARCH 2005
comes � ’ 1 for � ’ 1=2. Thus, � may serve as a mea-
sure of the chaoticity of the system, since it changes from
� � 2 for regular systems to � � 1 for chaotic ones.

It is worthwhile to compare this result with the behavior
of more conventional statistics, like the nearest neighbor
spacing distribution P�s�, which measures short range
correlations, and the Dyson �3�L� statistic appropriate
for correlations of length L [13]. Figure 3 displays P�s�
for several values of �. At � � 0 the histogram follows the
predicted curve for regular systems (Poisson limit). For
� � 0:15, P�s� deviates from Poisson toward the RMT
limit. As we shall see below, this behavior of P�s� reflects
that the underlying classical dynamics is neither regular
nor ergodic (chaotic). Finally, for � � 0:25 and � � 0:4
the system exhibits short range correlations characteristic
of chaotic systems (RMT limit). Figure 4 shows the spec-
tral average h�3�L�i for energy intervals of length L rang-
ing from L � 2 to L � 50, for several values of �. The
spectral average is calculated using 25 sets of L consecu-
tive high energy levels to avoid, as far as possible, the
influence of short periodic orbits. The evolution of this
statistic with � is analogous to that of P�s�. When � � 0,
h��L�i falls near the Poisson prediction for regular sys-
tems, and for � � 0:25 and 0.4 it is almost indistinguish-
able from the RMT prediction for chaotic systems.
Therefore, P�s� and h�3�L�i have a smooth behavior in
terms of �. Nevertheless, they move faster than �n toward
the RMT limit as � increases. For instance, both P�s� and
h�3�L�i coincide with RMT predictions for � � 0:25,
while �n still points to an intermediate regime between
regularity and chaos.

Let us now compare the evolution of the parameter � as
a function of � with the fraction �cl

1 of regular classical
trajectories in the phase space, and with the Brody parame-
ter ! [14]. This is an ad hoc parameter, without any known
physical meaning, which quantifies to some extent the
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FIG. 3. Nearest neighbor spacing distributions for the spectra
of four different shapes of the Robnik billiard. The solid line is
the Poisson distribution and the dotted line corresponds to the
Wigner distribution predicted by RMT.
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chaoticity of the system. It nevertheless captures well the
important feature of fractional power law level repulsion,
that is the behavior of P�s� at small s [10,11]. For ! � 0
we get the Poisson distribution of regular systems, and
at the other extreme, ! � 1, we obtain the Wigner distri-
bution predicted by RMT for chaotic systems. Figure 5
shows the behavior of �, !, and �cl

1 . There is a clear
correlation among these three variables, although the tran-
sition is smoother for ! and especially for � than for �cl

1 .
However, while the fraction of regular classical trajectories
is almost zero near � � 0:25, the power spectrum, and to a
lesser extent the P�s� distribution, indicate an intermediate
situation between regular and chaotic motion. This clearly
shows that ! and � are not only functions of �cl

1 , but
depend on finer details of the underlying classical mechan-
ics as well.

It is well known that in the strict semiclassical limit
the quantum eigenstates of a quantum system with ge-
neric (mixed) classical dynamics can be classified as regu-
lar and irregular following the original proposition of
Percival [15]. This has been further developed and raised
to a principle of uniform semiclassical condensation of
Wigner functions of the eigenstates [16]. From this it
follows that in the strict semiclassical limit the regular
and irregular level sequences are statistically independent,
but for themselves, have Poisson or RMT level statistics,
respectively. This theory has been excellently confirmed in
hard numerical calculations [17]. Nevertheless, if the sys-
tem is not deep enough in the semiclassical regime one can
see substantial deviations from such a behavior, manifested
in the fractional power law level repulsion [10,11] in P�s�
at small s. A similar recent analysis [3] has demonstrated
that in the strict semiclassical limit we should not expect a
power law behavior for the power spectrum but something
more complicated. Therefore it is quite an unexpected
result of the present Letter that the power spectrum S�k�
is a power law at all k in mixed systems at low energies.
Indeed, when going sufficiently deep into the semiclassical
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FIG. 4. Spectral average h�3�L�i values calculated numerically
for the Robnik billiard using the same deformation parameters as
in previous figures. The results of the Poisson statistics (solid
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regime, the theory of Ref. [3] should be expected and
confirmed.

In conclusion, the analogy between quantum energy
spectra and time series opens a new and fruitful perspective
on the universal properties of quantum level fluctuations.
The �n function gives the level fluctuations, and its power
spectrum S�k� is an intrinsic characteristic of the quantum
system. The important point is that it exhibits a power law
behavior, similar to the well known 1=f� noise found in
many complex systems.

In the order-to-chaos transition, the chaoticity of a quan-
tum system is usually qualitatively assessed by how close
to Poisson or RMT its fluctuation properties are. In the
present power spectrum approach, the exponent changes
smoothly from � � 2 for a regular system to � � 1 for a
chaotic system. Contrary to the Dyson �3�L� statistic, that
must be plotted for different values of L, the exponent �
quantifies the chaoticity of the system in a single parame-
ter. Moreover, � has a physical meaning. It is a natural
measure of the fluctuation properties of a quantum system
through the power spectrum, and provides an intrinsic
quantitative measure of the regular and chaotic dynamical
features.

The origin of the universal power law behavior S�k� 

1=k� is now understood in the integrable case (� � 2) and
in the fully chaotic case (� � 1) on the basis of RMT [18]
and semiclassical periodic orbit theory [3]. The origin of
08410
the 1=f� power law in the mixed regime still remains as an
important open problem.
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