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Pairing Hamiltonian for one pair of identical nucleons bound in a potential well
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The problem of one pair of identical nucleons sittingAfisingle particle levels of a potential well and
interacting through the pairing force is treated introducing even Grassmann variables. The eigenvectors are
analytically expressed solely in terms of these with coefficients fixed by the eigenvalues and the single particle
energies. When the latter are those of a harmonic oscillator well an accurate expression is derived for both the
collective eigenvalue and for those trapped in between the single particle levels, for any strength of the pairing
interaction and any number of levels. Notably the trapped solutions are labeled through an index upon which
they depend parabolically.
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We have recently obtained, in the framework of thewhich extends the one we introduced in REE] and de-
Grassmann algebra, the analytic expressions of the eigenvaleribes the two nucleons in the same single-particle level. In
ues and the eigenvectors of a systemnopairs of like- Eg.(3), 2Q0,=2j,+1 is the degeneracy of the levg).
nucleons interacting through the pairing Hamiltonian and sit- For one pair, only states with seniority=0 and 2 are

ting in one single-particle levétl]. allowed. In the basi$3) the eigenvalues of the=2 states
We extend the analysis to the case./dfsingle-particle are trivial, whereas for those of the=0 states one recovers

levels, with energie®,,e,, ... ey and angular momenta the well-known secular equatidi]
j1:d2s - - -,jn (@l the j's being assumed to be differgnt N
here the Hamiltonian, for identical particles, reads 1 . Q,

—+f(E)=0 with f(E)=>, . (4)

N iy G =1 E—2e,
H= 21 e :2_1_ N m Nim, The corresponding eigenvectors are
SIS P00 = \J1- - (o] [cb“”]*]
-G ¥ imo 1 =2 = -0 D =SS i
,u,uz:l m;uz m;llz ®im, ®im, @ ’ Q, vQ,—1
5
where\j,, andAj;, are the oddanticommuting, nilpotent and
and[2]
_ N
@im=(—1)""™\_\jm 2 P (D)= Zl w O, - 11 [® D7
=

the even(commuting, nilpotent Grassmann variables. The
latter is associated with a pair of fermions with vanishing n 1 (W7 ©6)
third component of the total angular momentui€0). To Q,-1 u '

start with we confine ourselves to consider one pair only.

Notwithstanding the presence of both t's and theg's,  with v=1,... N, the coefficientswﬁf) fulfilling the system
the Hamiltonian(1) is diagonalized in the & dimensional  of equations

basid
N
oo 1 ig (E(V)—2eM)W§;’)+ngl Qw=0. 7
’ VQ,—1 m,=12 Fhms v=1,... N . . . .
L ' ' ' The above system is easily solved and yields the noticeable
CI>(V ) = i, i, formula (see alsd4])
) .
E'Y —ZEN
(€ A RV )
s E(V)—Ze# WA ®)

Yf a single particle level withj,=1/2 (2,=1) is present, the _ _ _ _ _
dimension of the basis is actually\2- 1, because, obviouslp!®  which shows that for a given set of single-particle energies
is identically zero. thev =0 eigenvectors are fixed by the corresponding eigen-
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B finding for the first three coefficients the expressions
15 1 ~
— al=§J\/(N+ 2)[G(N+1)-3], (13
10 [ ———
e L &
a,==NN-1)[ - G(N+1)(N+2)(2N+3)
0. > 0.15 0.2
- +3N2+ 1IN+ 11], (14)
1 ~
-10 a3= g MN - 1)(N2—4)[G(N+ 1)(15N2+ 40N+ 27)

FIG. 1. The figure shows the solutiofis of Eq. (10), for A/ ,
=6 (upper curvesand 8(lower curve$, as functions of5. One can ~INFH 3N 3)]. (15
see that with the harmonic oscillator well each trapped solt@n  Then the first three Vie equations, namely,
for G>0.1 tends approximately to the single particle energy 2

N-2
values. WherG is large Eq.(4) develops a collective solu- > Ex=-a,-E, (16)
tion with largeE: hence the associated, tend to become all =0
equal and correspond to a coherent superposition of the so- N-2
calleds quasibosons. On the other hand, in the li@it-0, > NE%: a?—2a,—E2, (17)
whereE=2¢,, only one component of the basis, i.e., tith N=0
one, survives in the wave function of the “trapped” states.
In general the eigenvalu¢and hence the eigenvectpof N2 ~3 5 ~3
Eq. (1) stem from an interplay between the single-particle NEO EN=—3as—ai(a;—3a) —E, (18)

energies and degeneracies. Of course this interplay can be
numerically explored. Here we pursue the scope analytically,

! yield a nonlinear system in the unknowasb, andc, if E is
ihich the_ey and theﬂv are ava||ab|e.. One_of the few cases j 0 This system can be solved by expressing, via Eq.
where this occurs is for the harmonic oscillator well, where

(16), c as a function ofa andb

3 1
_ _ 1 (. b
=[N 3o ana au=govenov2) c(ab)=- 11| Eet 3= DN-2)+ SN- D
N=0,... . €) 1
_ _ —2)(2N=3)+ MN+2)[G(N+1)—3]{.
Accordingly the secular equatidd), for A levels, becomes 3
19
"SNHD)(N+2) 19

(10 In turn Eq.(19), inserted into Eq(17), yieldsb as a function

1
N=0o 2N+3-E G of a. One finds

wherefazGIZﬁw and the energies are measured in units of 15a(N4— 6N 3+ 13V2— 12+ 4) + A
ho (2ey=2N+3). b(a)=— .
In Fig. 1 the numerical solutions of E¢LO) are displayed ISN=1)AN=2)

for V=6 and 8 versu§&. Remarkably, the dependence upon (20

G is seen to be lost fo6=0.1. Furthermore in this regime with
the trapped solutions are mildly dependent upén ) 5 )
Although aware that the solutions of EQLO) cannot, in A=—15N=1)Y(N=2){a (N=D)A(N=1)(N=2)(N
eneral, be algebraically expressgdr A’=5), we explore ~ ~ ~ ~
\?vhether the si?nple ansgtz P : P —3)+ 2009+ 6E(N+2)(GA+G—3) ~3(N?

—4AN?— 13N~ 11) — GPMN—2)(N+ 1)A(N+2)?

Ey=aN?+bN+c, N=0,...N=2 (1))
. : +3G(N+ + 2—4N-3)]}.
provides a good representation of the trapped solutitres SENHDNF2) (W= 4N=3)]} @D
collective solution~EC will be separately treated Finally, from Eq.(18), a cumbersome equation farfol-
To fix the coefficientsa, b, andc, we recast Eq(10) in lows, not reported here. While Eqdl6) and(17) are easily
the polynomial form solved analytically, the nonlinear equati@h8) for a can

5 _ _ _ only be solved numerically and admits, in general, several
EV+a, BN 1+a,EN 2+ .. -ay-_1E+tay=0, (12 solutions. The one appropriate for our problem is selected by
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TABLE |. Comparison between the exdef? and the approximate® [Egs.(25) and (28)] collective

energies for some values 8f andG=0.05 and 0.1.

G=0.05
N EO E® E® E® E® E©
2 2.87617 2.88394 2.88349 2.88348 2.88348 2.88348
3 2.81180 2.87628 2.86196 2.86014 2.86012 2.86012
4 2.70198 2.89185 2.84845 2.82471 2.82056 2.82046
5 2.53580 2.86975 2.80333 2.75484 2.74104 2.74028
6 2.24594 2.63571 2.54951 2.52958 2.52886 2.52886
7 1.61587 1.84837 1.83108 1.83094 1.83094 1.83094
8 0.134714 0.136135 0.136135 0.136135 0.136135 0.136135
G=01
N EO E® E®@ E® E® E©
2 2.70757 2.72972 2.72822 2.72822 2.72822 2.72822
3 2.45586 2.61626 2.58336 2.58335 2.58335 2.58335
4 1.96617 2.21918 2.18238 2.18238 2.18238 2.18238
5 0.919942 1.00125 1.00000 1.00000 1.00000 1.00000
6 —1.66966 —1.47625 —1.48025 —1.48025 —1.48025 —1.48025
7 —8.37559 —4.88888 —5.44566 —5.44568 —5.44568 —5.44568
8 —24.4931 —3.26859 —10.7011 —11.0491 —11.0546 —11.0546

requiring that the trapped energies lie in between the singlefhe

particle levels of the harmonic oscillators. Moreover, itG)
should be pointed out that, owing to the high degree of non-
linearity of Eq.(18), this solution turns out to be extremely
sensitive to the collective enerdy,, especially wherG is

large.

Hence an accurate expression for the collective energy is
needed. We look for the latter in the domain of sn@lisay
G=0.05-0.1), as it follows from the empirical determina-
tion of G in atomic nuclei and from the experimental nuclear
single-particle level$5].

above constraints are fulfilled by the cubic function

o = - oE
EOG,N=3-2G—-|9+ a_éc

~4|G,

l
6 &

onN

Gy
~ ~3
2|8, |2

°|5

3
0

(25

For this scope we start by realizing tfag(0,\M)=3 and  which thus provides an excellent representation of the col-
E(Gy,NM)=0, being lective energy(see Table)l If an even betteE, is desired,
one can proceed perturbatively setting

& _ N INFD(N+2) ’s
T & (2N+3) 22 E=EO+s 26
Moreover and expanding in the very small parame#M (N) where
IEL(G, -
°(~ M =-2 (23) M(N)=2N+3-EQ. (27)
JG & o
One thus gets the recursive relation
and
~ N-1 2 1 MH(N+D)(N+2)
&EC(G,N)|~ o (N+1)(N+2) Bl DR |2 S i
5 6% T & T 2N+3 ¢ ¢ |G =0 2N+3-EW
_ ~ N-1 -1
y Nzl(N+1)(N+2) ! o (N+1)(N+2) 28
o (2N+3)2 N=0 (2N+3-EX)?
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TABLE Il. Comparison between exa@) “trapped” solutions of Eq.(10) and approximategpp) ones,
obtained from the ansafd 1) for N=5 levels. The coefficientsa(b,c) of the parabola aré0.086, 1.738,

4.281) when G=0.05, (0.014, 2.183, 3.497when G=

2.167, 3.151whenG=5.

0.1, (0.027, 2.175, 3.160when G=1, and(0.029,

G=0.05 G=0.1 G=1 G=5
N =(e) =(app) = =(app) (e) =(@app) = =(@pp)
N EN EN EN EN EN EN EN EN
0 4.2872 4.2812 3.4245 3.4266 3.1583 3.1601 3.1493 3.1510
1 6.0892 6.1056 5.6302 5.6237 5.3673 5.3621 5.3524 5.3472
2 8.1171 8.1021 7.8422 7.8485 7.6136 7.6190 7.5965 7.6015
3 10.266 10.271 10.103 10.101 9.9314 9.9297 9.9157 9.9140

The energies provided by E¢R8) rapidly converge to the

G=1 andG=5 and Eq.(25) when G=0.05 andG=0.1.

exact solution, as shown in Table |, but, as mentioned aboveyur results are seen to agree with the exact ones obtained via
a high precision is required, which is obtained after fourthe numerical solution of Eq10) to better than 0.27%. This

iterations.

Formula(28) yields E. also whenG is large. Here how-
ever the analogous of E(R5) follows by expanding Eq.10)

in the parameter (I8+3)/E. One thus gets for collective
energy, expanded up to termsGl/the expression

~0_ G 3
E/=— §N(N+ L(N+2)+ §(N+ 1)

IN-1)(N+3) 1
C20MNFL)(N+2) G

(29

The above, when inserted in E@8), yields results as accu-

rate as those obtained in the domain of sn@ll
With the collective energy fixed, the coefficiertsh, and

occurs as well for all the cases we have explored. Thus the
simple ansatZ11) is remarkably accurate. Furthermore the

solutions(11), whenG is large, scale irG. Indeed, in this
condition, the right-hand sides of the eequationg16)—

(18) are easily seen to b® independent when the collective
solution is given by Eq(29).

In conclusion, although the pairing problem can of course,
be solved numerically, we believe that our semianalytical
solution might be of some help for treating the situation
when n pairs, sitting in a harmonic oscillator well, are
present. Also of interest is the appearance of the extension of
the present analysis to the situation where the pair is made
out of a neutron and a proton, particularly when these are in
an isospin singlet stafé]. In this case indeed the partners, in
order to feel the pairing interaction, are forced to be in dif-
ferent shells, at least72y apart. Whether or not in these

¢ can be found. We quote in Table I, as an example, ouconditions our semianalytical solution holds valid as well
predictions for the eigenvalues of the pairing Hamiltonianand a collective mode eventually develops is an issue we are

for one pair in theN'=5 case, using as input ER9) when

currently exploring.
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