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Pairing Hamiltonian for one pair of identical nucleons bound in a potential well
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The problem of one pair of identical nucleons sitting inN single particle levels of a potential well and
interacting through the pairing force is treated introducing even Grassmann variables. The eigenvectors are
analytically expressed solely in terms of these with coefficients fixed by the eigenvalues and the single particle
energies. When the latter are those of a harmonic oscillator well an accurate expression is derived for both the
collective eigenvalue and for those trapped in between the single particle levels, for any strength of the pairing
interaction and any number of levels. Notably the trapped solutions are labeled through an index upon which
they depend parabolically.
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We have recently obtained, in the framework of t
Grassmann algebra, the analytic expressions of the eigen
ues and the eigenvectors of a system ofn pairs of like-
nucleons interacting through the pairing Hamiltonian and
ting in one single-particle level@1#.

We extend the analysis to the case ofN single-particle
levels, with energiese1 ,e2 , . . . ,eN and angular momenta
j 1 , j 2 , . . . ,j N ~all the j ’s being assumed to be different!:
here the Hamiltonian, for identical particles, reads
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wherel jm and l jm* are the odd~anticommuting, nilpotent!
and @2#

w jm[~21! j 2ml j 2ml jm ~2!

the even~commuting, nilpotent! Grassmann variables. Th
latter is associated with a pair of fermions with vanishi
third component of the total angular momentum (M50). To
start with we confine ourselves to consider one pair only

Notwithstanding the presence of both thel ’s and thew ’s,
the Hamiltonian~1! is diagonalized in the 2N dimensional
basis1
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, n51, . . . ,N,

~3!

1If a single particle level withj n51/2 (Vn51) is present, the
dimension of the basis is actually 2N21, because, obviously,Fn

(0)

is identically zero.
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which extends the one we introduced in Ref.@1# and de-
scribes the two nucleons in the same single-particle leve
Eq. ~3!, 2Vn52 j n11 is the degeneracy of the levelj n .

For one pair, only states with seniorityv50 and 2 are
allowed. In the basis~3! the eigenvalues of thev52 states
are trivial, whereas for those of thev50 states one recover
the well-known secular equation@3#

1

G
1 f ~E!50 with f ~E!5 (

n51

N
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E22en
. ~4!

The corresponding eigenvectors are

cv52
(n) ~F* !5A12
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and
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with n51, . . . ,N, the coefficientswm
(n) fulfilling the system

of equations

~E(n)22em!wm
(n)1G (

s51

N
Vsws

(n)50. ~7!

The above system is easily solved and yields the notice
formula ~see also@4#!

wm
(n)5

E(n)22eN
E(n)22em

wN
(n) , ~8!

which shows that for a given set of single-particle energ
the v50 eigenvectors are fixed by the corresponding eig
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values. WhenG is large Eq.~4! develops a collective solu
tion with largeE: hence the associatedwm tend to become al
equal and correspond to a coherent superposition of the
calleds quasibosons. On the other hand, in the limitG→0,
whereE.2en , only one component of the basis, i.e., thenth
one, survives in the wave function of the ‘‘trapped’’ state

In general the eigenvalues~and hence the eigenvectors! of
Eq. ~1! stem from an interplay between the single-parti
energies and degeneracies. Of course this interplay ca
numerically explored. Here we pursue the scope analytica
when theen and theVn are available. One of the few case
where this occurs is for the harmonic oscillator well, whe

eN5S N1
3

2D\v and VN5
1

2
~N11!~N12!,

N50, . . . ,̀ . ~9!

Accordingly the secular equation~4!, for N levels, becomes

(
N50

N21
~N11!~N12!

2N132Ẽ
5

1

G̃
, ~10!

whereG̃5G/2\v and the energies are measured in units
\v (2ẽN52N13).

In Fig. 1 the numerical solutions of Eq.~10! are displayed
for N56 and 8 versusG̃. Remarkably, the dependence up
G̃ is seen to be lost forG̃>0.1. Furthermore in this regim
the trapped solutions are mildly dependent uponN.

Although aware that the solutions of Eq.~10! cannot, in
general, be algebraically expressed~for N>5), we explore
whether the simple ansatz

ẼN̄5aN̄21bN̄1c, N̄50, . . . ,N22 ~11!

provides a good representation of the trapped solutions~the
collective solutionẼc will be separately treated!.

To fix the coefficientsa, b, andc, we recast Eq.~10! in
the polynomial form

ẼN1a1ẼN211a2ẼN221•••aN21Ẽ1aN50, ~12!

FIG. 1. The figure shows the solutionsẼ of Eq. ~10!, for N
56 ~upper curves! and 8~lower curves!, as functions ofG̃. One can

see that with the harmonic oscillator well each trapped solutionẼN

for G̃.0.1 tends approximately to the single particle energy 2ẽN .
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finding for the first three coefficients the expressions

a15
1

3
N~N12!@G̃~N11!23#, ~13!

a25
1

6
N~N21!@2G̃~N11!~N12!~2N13!

13N 2111N111#, ~14!

a35
1

90
N~N21!~N 224!@G̃~N11!~15N 2140N127!

215~N 213N13!#. ~15!

Then the first three Vie`te equations, namely,

(
N̄50

N22

ẼN̄52a12Ẽc , ~16!

(
N̄50

N22

ẼN̄
2

5a1
222a22Ẽc

2 , ~17!

(
N̄50

N22

ẼN̄
3

523a32a1~a1
223a2!2Ẽc

3 , ~18!

yield a nonlinear system in the unknownsa, b, andc, if Ẽc is
known. This system can be solved by expressing, via
~16!, c as a function ofa andb

c~a,b!52
1

N21 H Ẽc1
b

2
~N21!~N22!1

a

6
~N21!~N

22!~2N23!1
1

3
N~N12!@G̃~N11!23#J .

~19!

In turn Eq.~19!, inserted into Eq.~17!, yieldsb as a function
of a. One finds

b~a!52
15a~N 426N 3113N 2212N14!1AD

15~N21!2~N22!
~20!

with

D5215~N21!2~N22!$a2~N21!2~N21!~N22!~N
23!120@9Ẽc

216Ẽc~N12!~G̃N1G̃23!23~N 3

24N 2213N211!2G̃2N~N22!~N11!2~N12!2

13G̃~N11!~N12!~N 224N23!#%. ~21!

Finally, from Eq.~18!, a cumbersome equation fora fol-
lows, not reported here. While Eqs.~16! and ~17! are easily
solved analytically, the nonlinear equation~18! for a can
only be solved numerically and admits, in general, seve
solutions. The one appropriate for our problem is selected
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TABLE I. Comparison between the exactẼc
(e) and the approximateẼc

(k) @Eqs.~25! and ~28!# collective

energies for some values ofN andG̃50.05 and 0.1.

G̃50.05

N Ẽc
(0) Ẽc

(1) Ẽc
(2) Ẽc

(3) Ẽc
(4) Ẽc

(e)

2 2.87617 2.88394 2.88349 2.88348 2.88348 2.88348
3 2.81180 2.87628 2.86196 2.86014 2.86012 2.86012
4 2.70198 2.89185 2.84845 2.82471 2.82056 2.82046
5 2.53580 2.86975 2.80333 2.75484 2.74104 2.74028
6 2.24594 2.63571 2.54951 2.52958 2.52886 2.52886
7 1.61587 1.84837 1.83108 1.83094 1.83094 1.83094
8 0.134714 0.136135 0.136135 0.136135 0.136135 0.13613

G̃50.1

N Ẽc
(0) Ẽc

(1) Ẽc
(2) Ẽc

(3) Ẽc
(4) Ẽc

(e)

2 2.70757 2.72972 2.72822 2.72822 2.72822 2.72822
3 2.45586 2.61626 2.58336 2.58335 2.58335 2.58335
4 1.96617 2.21918 2.18238 2.18238 2.18238 2.18238
5 0.919942 1.00125 1.00000 1.00000 1.00000 1.00000
6 21.66966 21.47625 21.48025 21.48025 21.48025 21.48025
7 28.37559 24.88888 25.44566 25.44568 25.44568 25.44568
8 224.4931 23.26859 210.7011 211.0491 211.0546 211.0546
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requiring that the trapped energies lie in between the sin
particle levels of the harmonic oscillators. Moreover,
should be pointed out that, owing to the high degree of n
linearity of Eq.~18!, this solution turns out to be extreme
sensitive to the collective energyẼc , especially whenG̃ is
large.

Hence an accurate expression for the collective energ
needed. We look for the latter in the domain of smallG̃ ~say
G̃50.05–0.1), as it follows from the empirical determin
tion of G in atomic nuclei and from the experimental nucle
single-particle levels@5#.

For this scope we start by realizing thatẼc(0,N)53 and
Ẽc(G̃0 ,N)50, being

G̃05F (
N50

N21
~N11!~N12!

~2N13! G21

. ~22!

Moreover

]Ẽc~G̃,N!

]G̃
U

G̃50

522 ~23!

and
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]G̃
uG̃5G̃0

52F (
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N21
~N11!~N12!

2N13 G2

3F (
N50

N21
~N11!~N12!

~2N13!2 G21

. ~24!
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The above constraints are fulfilled by the cubic function~in
G̃)

Ẽc
(0)~G̃,N!5322G̃2F 91S ]Ẽc

]G̃
U

G̃0

24D G̃0G G̃2

G̃0
2

1F 61S ]Ẽc

]G̃
U

G̃0

22D G̃0G G̃3

G̃0
3

, ~25!

which thus provides an excellent representation of the c
lective energy~see Table I!. If an even betterẼc is desired,
one can proceed perturbatively setting

Ẽc5Ẽc
(0)1d ~26!

and expanding in the very small parameterd/M (N) where

M ~N!52N132Ẽc
(0) . ~27!

One thus gets the recursive relation

Ẽc
(k11)5Ẽc

(k)1F 1

G̃
2 (

N50

N21
~N11!~N12!

2N132Ẽc
(k) G

3F (
N50

N21
~N11!~N12!

~2N132Ẽc
(k)!2G21

. ~28!
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TABLE II. Comparison between exact~e! ‘‘trapped’’ solutions of Eq.~10! and approximate (app) ones,
obtained from the ansatz~11! for N55 levels. The coefficients (a,b,c) of the parabola are~0.086, 1.738,

4.281! when G̃50.05, ~0.014, 2.183, 3.427! when G̃50.1, ~0.027, 2.175, 3.160! when G̃51, and~0.029,

2.167, 3.151! whenG̃55.

G̃50.05 G̃50.1 G̃51 G̃55

N̄ ẼN̄
(e)

ẼN̄
(app)

ẼN̄
(e)

ẼN̄
(app)

ẼN̄
(e)

ẼN̄
(app)

ẼN̄
(e)

ẼN̄
(app)

0 4.2872 4.2812 3.4245 3.4266 3.1583 3.1601 3.1493 3.151
1 6.0892 6.1056 5.6302 5.6237 5.3673 5.3621 5.3524 5.347
2 8.1171 8.1021 7.8422 7.8485 7.6136 7.6190 7.5965 7.601
3 10.266 10.271 10.103 10.101 9.9314 9.9297 9.9157 9.914
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The energies provided by Eq.~28! rapidly converge to the
exact solution, as shown in Table I, but, as mentioned ab
a high precision is required, which is obtained after fo
iterations.

Formula~28! yields Ẽc also whenG̃ is large. Here how-
ever the analogous of Eq.~25! follows by expanding Eq.~10!

in the parameter (2N13)/Ẽ. One thus gets for collective
energy, expanded up to terms 1/G̃, the expression

Ẽc
(0)52

G̃

3
N~N11!~N12!1

3

2
~N11!

2
9~N21!~N13!

20N~N11!~N12!

1

G̃
. ~29!

The above, when inserted in Eq.~28!, yields results as accu
rate as those obtained in the domain of smallG̃.

With the collective energy fixed, the coefficientsa, b, and
c can be found. We quote in Table II, as an example,
predictions for the eigenvalues of the pairing Hamiltoni
for one pair in theN55 case, using as input Eq.~29! when
a,

s.

01130
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G̃51 and G̃55 and Eq.~25! when G̃50.05 andG̃50.1.
Our results are seen to agree with the exact ones obtaine
the numerical solution of Eq.~10! to better than 0.27%. This
occurs as well for all the cases we have explored. Thus
simple ansatz~11! is remarkably accurate. Furthermore th
solutions~11!, when G̃ is large, scale inG̃. Indeed, in this
condition, the right-hand sides of the Vie`te equations~16!–
~18! are easily seen to beG̃ independent when the collectiv
solution is given by Eq.~29!.

In conclusion, although the pairing problem can of cour
be solved numerically, we believe that our semianalyti
solution might be of some help for treating the situati
when n pairs, sitting in a harmonic oscillator well, ar
present. Also of interest is the appearance of the extensio
the present analysis to the situation where the pair is m
out of a neutron and a proton, particularly when these ar
an isospin singlet state@6#. In this case indeed the partners,
order to feel the pairing interaction, are forced to be in d
ferent shells, at least 2\v apart. Whether or not in thes
conditions our semianalytical solution holds valid as w
and a collective mode eventually develops is an issue we
currently exploring.
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