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An approximate solution at the critical point of the pairing transition from harmonic vibration to
deformed rotation in gauge space is found by analytic solution of the collective pairing Hamiltonian. The
eigenvalues are expressed in terms of the zeros of Bessel functions of integer order. The results are
compared to the pairing bands based on the Pb isotopes.
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Pair correlations in electron motion are directly related
to macroscopic phenomena such as superconductivity [1].
The concepts that were developed to describe such corre-
lations found immediate application in nuclear physics and
provided a key to understanding the excitation spectra of
even A nuclei, odd-even mass differences, rotational mo-
ments of inertia, and a variety of other phenomena [2,3].
Pair correlations are also of great importance in describing
the behavior of other finite fermion systems such as *He
clusters, Fermi-gas condensates, fullerines, quantum dots,
and metal clusters [4]. Ideas to describe phenomena asso-
ciated with pair correlations in any one system are likely to
find application in the others.

An early approach to describing pair correlations in
nuclei was the development of a collective model by Bes
and co-workers [5]. The variables in the model are a pair
deformation « (which can be related to the gap parameter)
and a gauge angle ¢ (which is the canonical conjugate to
the particle-number operator N). The collective pairing
Hamiltonian was derived in direct analogy to the Bohr
collective Hamiltonian which describes the quadrupole
degree of freedom for the nuclear shape [6].

Notable benchmarks of nuclear behavior such as the
harmonic vibrator [7], the symmetrically deformed rotor
[8], and the soft triaxial rotor [9] correspond to analytic
solutions of the Bohr Hamiltonian. They also correspond to
limits of the interacting boson model [10]. An algebraic
description of the nature of the transition between these
limits has been developed in direct analogy with classical
phase transitions [11]. The Bohr Hamiltonian has recently
received renewed attention due to the suggestion that sim-
ple analytic approximations can be made to describe the
critical point of the transitions between nuclear shapes
[12—-14]. These can then serve as new benchmarks against
which nuclear properties can be compared.

In this Letter, we apply similar approximations to obtain
an analytic solution of the collective pairing Hamiltonian
corresponding to the critical point of the transition from
a “normal” to a “‘superconducting’ nucleus. Nuclei with
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two identical particles added or removed from a closed-
shell configuration should be close to the normal limit,
where there is no static deformation of the pair field and the
fluctuations of the field give rise to a pairing vibrational
spectrum [15]. Pairing vibrational structures have been
observed around 2°Pb [16], although large anharmonic-
ities must be included in this interpretation. In nuclei with
many particles outside of the closed-shell configuration, a
static deformation of the pair field arises and rotational
behavior results. This corresponds to the superconducting
limit. The angular variable in the rotational motion is the
gauge angle ¢, which describes the orientation in gauge
space. This broken symmetry in gauge space results in a
pair-rotational band [17] comprising the sequence of
ground states of even-even nuclei, differing by pairs of
identical nucleons, and with many nucleons outside a
closed shell.

Here we would like to investigate the transition from
pair-vibrational to pair-rotational regimes. To do this, we
will find solutions to the collective pairing Hamiltonian

[5]:
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where « is the deformation of the pair field, 3 is an inertia
parameter, B is a mass parameter, M = A — A, (number of
particles A relative to a reference Ag), and V() is the
potential. In general, I and B are functions of the pair
deformation «. By choosing suitable potentials, we can
find analytical solutions of Eq. (1) in the different limits.
Consider the potential energy surface as a function of the
pair-field deformation parameter «, as schematically illus-
trated in Fig. 1. In the vibrational limit, the potential is
parabolic with a minimum at & = 0. The transition to the
rotational pairing regime gives rise to a deformed mini-
mum in the potential. At the critical point, these two
minima cross and the deformation of the pair field changes
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FIG. 1. Schematic of the potential energy surfaces u(a) as
functions of the deformation of the pair field « for the transition
from (a) spherical vibrations, through (b) the critical point (the
infinite-square-well approximation with an outer wall at @ = «,,
is shown with a dashed line), and to (c) deformed rotation.

from spherical to deformed. This picture is supported by
boson calculations of potential surfaces [18].

In the pair-rotational limit, we can approximate the
potential by assuming a static deformation of the pair field,
a = a . Under this assumption, the derivatives in Eq. (1)
tend to zero, implying that

E o (A=A, 2

and we find the expected parabolic dependence between
energy and particle number for pair rotations.

In the case in which the equilibrium deformation is zero
and fluctuations of the pair field are small, then B is a
constant and I = 4Ba? [5]. Equation (1) then becomes
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Introducing the reduced energy € = (2B/h*)E and reduced
potential u(a) = (2B/h*) V(a), Eq. (3) can be rewritten
as:
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For pair vibrations, the potential can be taken to be a
parabola with a minimum at zero pair deformation [see
Fig. 1(a)]. With u(a) = «@® and m = M/2, Eq. (4) can be
expressed as:
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Equation (5) has the same form as the radial equation of an
isotropic oscillator (see, for example, Ref. [19]) and can be
solved by using a trial wave function of the form:

Y= a"e " PW(a). (6)
Solving Eq. (5), we find that
E (A=A, (7

which is the expected linear dependence between energy
and particle number in the vibrational limit.

We now turn to finding an analytical solution for the
critical point of the transition from vibrational to rotational
pairing regimes. As pointed out by Iachello [12], the
situation in which a potential has a flat behavior as a
function of some coordinate appears typically when the
system undergoes a phase transition at a critical point. A
simple approximation to the critical-point potential [see
Fig. 1(b)] is an infinite-square well:

u(a) =0,

u(@) = o,

a=a,,
)

a>a,,.

This approximation to the potential at the critical point of
the pairing-phase transition is identical to the assumption
of infinite-square well potentials used in the critical-point
descriptions of nuclear shape transitions [12—-14]. Using
this potential in Eq. (4), we obtain a Bessel equation:
2 2
M+1‘3"[’+<1—M>¢/=0, ©)

9z2 7 0z 472

where z = ak with k = €'/2. The boundary condition

y(a,,) = 0 determines the eigenfunctions to be related to
Bessel functions of integer order such that:

Vem(z) = cemIyn(2), (10)

where ¢ 3, are constants of normalization. The associated
eigenvalues are given by:

X
=M (11)
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where x  is the &£th zero of the Bessel function Jy;,(2).

In this Letter, we will use the eigenvalues given by
Eq. (11) to find the spectrum of states for comparison to
experimental data. Transition matrix elements, related to
two-nucleon transfer probabilities [5], could also be deter-
mined, since

e |OWbean) = [ 0 e emdar, (12)

where O is the pair transfer operator. An extensive com-
parison of all data, including pair transfer probabilities,
will be the subject of a longer article.
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We now turn to finding the energy spectrum of the states
from the zeros of the related Bessel functions using
Eq. (11). Normalizing the energies of excited states to
that of the first excited state, we can form a reduced
spectrum of states defined as:

2 _ .2
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S
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(13)
The normalized excitation energies found in this way for
some states are given in Table I. In Fig. 2, it can be seen
that the energies for the £ = 1 sequence of states follow a
behavior which is between the linear dependence for a
pure harmonic vibrator [Eq. (7)] and the parabolic depen-
dence for a deformed rotor [Eq. (2)] as expected for this
description of the transition between the two limits. The
sequence of states with & = 1 corresponds empirically to
the sequence formed by the 0 ground states of neighbor-
ing even-even nuclei along an isotopic or isotonic chain.
States with £ > 1 correspond to excited 0" states formed
from pair excitations.

Before proceeding, it is worth commenting on the alge-
braic structure associated with the solutions of the pairing
Hamiltonian. Following Iachello [13], the square-well ap-
proximation of the critical point in a generalized phase
transition of the form U(n) < SO(n + 1), with n = 2,
has the E(n) dynamic symmetry, where E(n) is the
n-dimensional Euclidean group. For the pairing-phase
transition, n = 2 and the corresponding symmetry at the
critical point is E(2). The eigenfunctions of the critical-
point solution are Bessel functions of integer order and
form a basis for the representations of this group.

We will now compare our calculations with experiment
by using the known data on the mass excesses [20] (A)
along an isotopic sequence. Such a comparison for the Pb
isotopes is shown in Fig. 3. We define the empirical neutron
pairing energy E,;(A) as:

Epir = [£(A) — &(Ag)] — C(A — Ay), (14)

where g(A)-g(A4,) is the difference between the mass ex-
cess for a given isotope with mass number A and the mass
excess of the chosen reference nucleus with mass number
Ap. A linear term is subtracted and the constant C is chosen
to make Ep,; (A9 — 2) = Epyi(Ag + 2) [21]. The values of
E,ir in Fig. 3 are again normalized to the first excited state.

For Ay = 202 or 204, we find that the sequence follows
the parabolic dependence of the rotational pairing regime.

TABLE I. Excitation energies of the critical-point description.

E=1 £=2 £=3 E=4

M| =0 0.00 2.77 177 14.97
M| =2 1.00 4.88 10.98 19.30
M| =4 2.31 7.31 14.52 23.95
M| =6 3.92 10.06 18.39 28.93
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FIG. 2. Plots of normalized energies for the lowest sequence of
states of the rotor, vibrator, and critical-point descriptions.
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This indicates a large static deformation of the pair field
(associated with a superconducting phase). With Ay =
206, deviations from the rotational parabolic dependence
are seen. With Ay = 208, we find that the sequence is
closer to the vibrational (normal) phase. Empirically, the
transition to the rotational regime requires only a few pairs
outside of the closed-shell configuration. This result is
closely related to the fact that only a few nucleon pairs
contribute to the pairing gap [22].

The isotopes around 2°*Pb have been used as the text-
book example of pair vibrations in nuclei [21]. Devia-
tions from the pure vibrational spectrum were described
in terms of large anharmonicities. These deviations in the
energies are clearly seen in Fig. 3, and the sequence around

60.0
0 A,=202
0 A,=204
o
o A,=206
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FIG. 3. Plots of the empirical neutron pair energies for the
sequence formed by the 0T ground states of the Pb isotopes
using as a reference 2°2Pb (open circles), 2**Pb (open squares),
206pp (open diamonds), and 28 Pb (open triangles). For compari-
son are shown the expectations of the pure vibrator, pure
deformed rotor, and the critical-point description (solid lines).

032501-3



PRL 96, 032501 (2006)

PHYSICAL REVIEW LETTERS

week ending
27 JANUARY 2006

Ay = 208 lies much closer to the transitional description.
We have also examined the sequences of Ni and Sn iso-
topes using the doubly magic nuclei Ni and '*?Sn as
references. Again, the spectra of neutron pair energies lie
closer to the transitional description than to the vibrational
description. These observations suggest a general phe-
nomenon. In using the collective pairing Hamiltonian, a
square-well potential provides a simple analytic approach
that can naturally account for the observed anharmonicities
associated with the harmonic oscillator solution. The mea-
surement of properties of new doubly magic nuclei such as
1008n [23] and 7®Ni [24], and their even-even neighbors,
will be of great interest in testing this idea.

In the future, we should be able to apply many of the
modifications and ideas that have arisen as a consequence
of the introduction of the critical-point descriptions of
shape transitions to the description of the pairing-phase
transition. For instance, modifying the infinite-square-well
potential to a finite-square-well potential [25], varying the
stiffness of the wall of the potential [26], and changing the
softness of the deformation [27] are all important problems
open to analytical solution. An advantage of the collective
model is that the role of fluctuations of the pair gap are
naturally accounted for by the choice of potential. For
instance, by varying the softness, we can investigate the
extent to which these fluctuations might alter the nature of
the phase transition.

We could also expand the comparison with the experi-
mental data to include energies of excited states (corre-
sponding to £ > 1 in our description) and transfer strengths
between the different states. In the case of excited 0" states
in 2°Pb and 2%Pb, suggested as pair excitations, the en-
ergies lie close to the vibrational limit. It would be inter-
esting to see if the first-excited pairing band continues this
trend over a longer sequence of states.

To summarize, we have presented analytical solutions of
the collective pairing Hamiltonian [5] by using simple
approximations to the potential in the limits of harmonic
vibrations (zero deformation of the pair field correspond-
ing to normal behavior), deformed rotation (static defor-
mation of the pair field corresponding to superconducting
behavior), and at an intermediate transitional point. In the
latter situation, the potential is approximated as an infinite-
square well. The eigenvalues are expressed in terms of the
zeros of Bessel functions of integer order. Comparison to
the pairing bands based on the Pb isotopes suggests that
this description may provide a simple approach to explain-
ing the observed anharmonicities of the pairing vibrational
structure around 28Pb.

This work has been supported in part by the U.S. DOE
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