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Abstract. A global regularity result is proved for a class of minimizers of functionals of the
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1. Introduction. In this paper we address the problem of the regularity of
minimizers of scalar integral functionals of the form

/QL(x, w(z), Vu(z))de,  ued+Wy'(QR),

where (2 is an open bounded subset of R™ and ¢ is a given boundary datum. Stemming
from the fundamental De Giorgi-Moser—Nash theorem a huge literature furnishes
many results on the interior regularity. We cannot exhaustively review them here
and we refer to [23] for a wide and quite up-to-date reference on the subject. The
only fact that we want to underline is that in all these results, the function L(z,u,-)
is assumed to have controlled growth, both from below and from above, and to be
uniformly convex too.

The situation is quite different when we deal with the global regularity of the
minimizers. On one hand we cannot expect to obtain global regularity: in [9] an
example can be found of a harmonic function on the unit ball B, coinciding with a
Lipschitz function on 9B, that is not Lipschitz on B. This shows that even in the case
of the Dirichlet functional, depending just on Vu, having good growth at infinity, and
satisfying the uniform convexity assumption, we cannot expect to improve the locally
Lipschitz continuity of the minimizer. On the other hand, in some special cases, a
different approach that one can say is inspired by works by Hilbert and Haar [17, 14]
gives a different perspective of the problem. First we want to recall a very well known
result originally due to Stampacchia (we refer to [13] for a presentation of the proof).
Consider the functional

(1.1) /QL(VU(CE)) dx,
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where L is a strictly convex function. If ¢ satisfies the so-called Bounded Slope Condi-
tion (BSC) of rank K (see section 4 below), then there exists a Lipschitz function with
the same rank of ¢ that is a minimizer in the class of Lipschitz functions coinciding
with ¢ on 9. Under the same assumptions, Cellina has recently proved in [6] that if
(1.1) admits a minimum in ¢ 4+ W,"' (Q), then this is Lipschitz of rank K.

We want to sketch in a few words the proof of this result. We recall that the
boundary datum ¢ satisfies the BSC if for every point v on the boundary of €2 there
exist two affine functions coinciding in v and such that ¢(v’) is between them for
every v/ € 9. One of the main tools for the proof is the Comparison Principle
between minimizers satisfying different boundary conditions, i.e., assume that v and
w are minimizers of (1.1), respectively, in ¢ + Wol"l(Q) and in @ + Wol’l(Q), with
¢(z) < () for every z in 99, then v < w a.e. in Q. Since any affine function is
a minimizer of (1.1) among the functions with the same affine boundary condition,
whenever ¢ satisfies the BSC of rank K, the Comparison Principle allows us to box up
the minimizer on ¢ + WO1 l(Q) between two Lipschitz functions, having again rank K
and coinciding on 0€2. A Haar-Rado type theorem for Sobolev functions (see [22] for a
precise statement) says that the slope of the minimizer is maximum at the boundary,
closing the argument.

We underline the fact that in this approach no role is played by either growth
properties or uniform convexity of L.

At this point the question of whether we can apply the same method to more
general functionals naturally arises. An example (see [11]) of a functional with p — ¢
growth and (x, Vu)-dependence, whose minimizer has an isolated singularity, leads us
not to expect, in the general case, regularity results as strong as those cited above.
Moreover, there are other obstructions to the use of the Hilbert—Haar approach. First,
the Comparison Principle may fail if we drop the strict convexity assumption on L;
see [7] for an example. It has been proved in [7, 4, 8] that it holds, even in this case, for
restricted classes of minimizers. This led to proofs of various results on this subject.
(See [2, 5, 20, 21, 19] for results concerning the functional (1.1) and [8] for a special
case with u-dependence too.) A second remark is that in the case of a function L
explicitly depending also on x or u, the affine functions are no longer minimizers of the
functional, so that the BSC does not immediately give a “barrier” for the minimizers.
A theorem by Miranda [24] ensures that the class of functions satisfying the BSC is
quite large: if © is uniformly convex and 9 is C1'!, then any C'! function satisfies
it.

In this paper we consider the functional

(1.2) Z(u) = /Qh(Vu(x)) + g(z,u(x)) dz, ueE P+ Wol’l(Q),

where h is a convex function and g is Lipschitz of constant « w.r.t. the second variable.
On one hand, in this case, one can expect better regularity results than those of
the general case. For example, in the vectorial case, this structure implies better
estimates on the Hausdorff dimension of the singular set (see [18] and [12]). On the
other hand, for scalar functionals of type (1.2), a Hilbert—Haar approach has already
been succesfully used. Stampacchia [25] proved the existence of a minimum in the
class of Lipschitz functions under the assumptions that the BSC holds. More recently
Bousquet and Clarke under a one-side version of the BSC, but always assuming the
uniform convexity of h, proved in [1] the local Lipschitz continuity and some continuity
properties up to the boundary for bounded minimizers. In [2, 3] these results are
generalized to the case of more general boundary conditions.
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In the present paper, we are interested in weakening the uniform convexity as-
sumption. In particular, the hypotheses we make on h allow us to consider functionals
obtained via relaxation of nonconvex ones. The first result we prove is a Comparison
Principle between any minimizer of the functional Z and the functions

(s QT
(1.3) Wiq(x) = :l:ah (:l:a - )—i—c

introduced by Cellina in [8]. Then we show that under additional assumptions on
h, the validity of the BSC implies that the functions (1.3) provide good barriers for
the minimizers of Z. Suitable hypotheses on g ((G2) in section 4 below) are needed
to apply the Haar-Rado theorem [22], which allows us to conclude that there exist
minimizers inheriting the global Lipschitz regularity of the barriers.

We want to explain the difficulties of the proof. To show that the functions (1.3)
are suitable to construct barriers we have to proceed in the following way. For any
fixed point v on the boundary of €2 we consider the affine function involved in the
BSC from below at the point . Assume that it is a -  + b. We have to find zo € R™
and ¢ € R such that the set Q. = {x € R" : wo(x) —a -z — b < 0} contains Q and
0Qz,.c N OQ contains . This is essentially a geometric requirement on the two sets
Qz,,c and Q: the normal cone to €2, . at v has to be contained in the normal cone to
Q) at the same point and also suitable conditions on the principal curvatures of both
sets are needed. For these reasons of an essential technical nature, we restrict our
attention to the case of a uniformly convex set €2 and of a radially symmetric function
h(&) = f(|€]). To compute the curvatures of €2, . and to guarantee that the estimates
on them hold in a suitable neighborhood of 7, further assumptions on f, (F4), or (F5)
of section 4 are needed. These hypotheses do not imply the uniform convexity of h,
which is instead needed in previous regularity results obtained by barrier techniques
for functionals of the type (1.2).

In the last section of the paper we state some results that hold in some special
cases that, in our opinion, are interesting on their own. Moreover, we present some
examples and remarks with the aim of clarifying the role of the assumptions on the
function f. In particular, we underline that constant boundary data trivially satisfy
the BSC and that in this case we construct in a easier way the barriers. We can drop
assumptions (F4) and (F5) and we obtain the global Lipschitzianity of minimizers
(see Theorem 5.1 in section 4) whenever €2 is uniformly convex.

We also observe that a uniform convexity assumption implies condition (F4) and
that in this case a simpler construction of the barriers can be provided (see Theo-
rem 5.3). Moreover, in the smooth case (f of class C?), we can drop hypotheses (F4)
and (F5) and the only extra assumption we need to construct the barriers is a growth
condition at infinity (see assumption (F6) in Theorem 5.4).

To conclude, we also provide examples of functions satisfying assumptions (F1)—
(F3) and (F4) or (F5), obtained via convexification of nonconvex functions.

2. Preliminary results and a Comparison Principle. We consider an open
bounded domain  C R” and an integral functional on W1(Q) of the form

Z(u) :Z/QL(ZIJ,U(JJ),VU(JJ)) dx

for a function L:Q x R x R® — R with L(-,u,£) measurable for every (u,&) and
L(z,-,-) continuous for a.e. x € Q.
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DEFINITION 2.1. We say that a function u € WH1(Q) is a minimizer of the
functional T if T(u) < Z(v) for every v € u+ Wy (Q).

We recall that given a function h: R™ — R, its polar function h*: R™ — [—o0, +-00]
is defined by h*(§) = sup,epn{z - £ — h(x)} for every £ € R™ (see [10]).

We are interested in the particular case where the Lagrangian is in the form
L(z,u, &) := h(§) + g(z,u) for a lower bounded function h:R™ — R and a function
g: 2 x R — R satisfying the following hypotheses:

(C1) h is convex,

(C2) h is superlinear, that is, lim|,_ % = 400,

(C3) g is Lipschitz continuous in the second variable, with Lipschitz constant equal
to a, ie., |g(x,u1) — g(z,u2)| < alu; — usg| for every x € Q and uy,us € R.

Remark 2.2. We observe that the hypotheses on h guarantee that the effective
domain of its polar function hA* is R™. Indeed, let us assume by contradiction that
dom h* # R™. This implies the existence of £ € R™ with

sup{z-&— h(x)} = ¥ (x) = +o0.
TER™

Therefore, we can find a sequence (x)r C R™ such that h(xg) + k < zp - € < |zk][€].
Hence, limy |zx| = 400 and limy % < [¢|, which contradict the superlinearity
hypothesis (C2).

We define the functional I on W11(Q2) by

I(u) == /Q [h(Vu(x))+ g(x,u(x))} dz.

A standard application of the Direct Method of the Calculus of Variations ensures
the existence of a minimizer of I in ¢ + W' () for any ¢ € WH1(Q). It has been
shown in [20] that if h is superlinear, then the pointwise minimum and the pointwise
maximum of the minimizers of I are in ¢ 4+ W,"*(2) and are still minimizers of the
same functional. We recall here a special case of a Haar-Rado type theorem, which
has been proved in its general form in [22, Theorem 5.2].

THEOREM 2.3. Let h be convex and superlinear and g be measurable and convez in
the second variable. Assume moreover that there exists a positive constant K such that

Vo, y e R", Vu,v e R v >u+ Kly—z| = gf (y,v) > gf (z,u),

where g denotes the right derivative of g with respect to the second variable. If there
exist two Lipschitz continuous functions | =, 1T € ¢+ Wol’l(Q) of rank L on § such that

17 (z) <u(z) <I1(x) ae inQ,

where u € ¢+ WOM(Q) is the maximum or the minimum of the minimizers of I, then
|u(z) —u(y)| < Llx — y| for every Lebesgue point x and y.
We now define the integral functionals I, on W1(Q) by setting

Lia(u) = /Q {h(Vu(x))j:au(x)} dz,

where « is the positive constant appearing in (C3). A result by Cellina (see [8]) states
that under our hypotheses on Q and h, for every zg € R™ and ¢ € R the functions
wWia(z) : R — R defined by

o (T
(2.1) Wia(z) = :l:ah (:l:a - )—i—c
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are unique minimizers of I, in the sense that I1,(wia) < I1q(v) for every v € win+
WO1 1(Q). We remark that the hypotheses on h guarantee that wi, € Wlifo (R™).

Given u, v € WH1(Q), we write u < v on I if (u—v)* € W, (Q). Now we state
a comparison result between minimizers of I and minimizers of I, I_.

THEOREM 2.4. Let u be a minimizer of I and wy, w—_q be as in (2.1) for some
xo and c. Under hypotheses (C1)—(C3), if u > wq on I8, then u > wq a.e. in £, and
ifu<w_q on 09, then u < w_, a.e. in §2.

Proof. Let us define E := {x € Q : u(z) < wa(z)}, v := min{u,w,}, and
w := max{u,w, }. We argue by contradiction and assume that E has positive measure.
By assumption u > w, on 052, therefore v € w, + Wol"l(Q) and w € u + Wol’l(Q).
Since w, is the unique minimizer of I, we have

Io(we) = /Q\E [h(Vwa) —l—awa} dx—i—/E [h(Vwa) + awa] dx
<Iy(v) = /Q\E [h(Vwa) + awa] dx —I—/E [h(Vu) + au} dx;
therefore, we have
(2.2) /E [h(Vwa) —l—awa} dx < /E [h(Vu) + au} dx.
Analogously, since u is a minimizer of I, we get
I(u) = /Q y [h(Vu)—Fg(x,u)} dz + /E {h(Vu)—Fg(:c,u)} dz
< I(w)= /Q\E {h(Vu) +g(x,u)} dx +/E [h(Vwa) + g(x,wa)} dz;

hence it follows that

(2.3) /E [h(vu)+g(x,u)} dx g/

; [h(Vwa) + g(x,wa)} dzx.

Putting together (2.2) and (2.3), we obtain
/E [h(Vwa) + awy — h(Vu) — au
+ h(Vu) + g(x,u) — h(Vwy) — g(x,wa)} dx < 0;
ie.,
/E [g(x,wa) —g(z,u) — a(ws — u)] dx > 0,
and this is a contradiction with hypothesis (C3), which implies

—a(ws —u) < glr,wa) — gz, u) < alws —u)

for every x € E. In the same way we can prove that u < w_, on 02 implies u < w_
a.e. in Q. d
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3. Basic properties of a class of convex functions. We will focus now on
the particular case depending on the norm of the gradient, i.e., h(§) = f(|£|), where
f : R — R. Therefore, from now on we will posit the following hypotheses on the
function f: R — R:

(F1) f is a convex, even function, increasing in R™, such that f(0) = 0;

(F2) the effective domain of f, domf, is equal to R;

(F3) f is superlinear, i.e., lim; o % = +o00.
We recall that assumption (F1) implies that h*(§) = f*(|¢]), and we state some basic
and well-known facts on the function f that follow from the above assumptions. We
will use them in the next section. )

LeMMA 3.1. If (F1) and (F2) hold, then f* is superlinear, i.e., lim|¢ 4o f‘éf)
+00.

Proof. Assumption (F1) implies that f* is convex and even and f*(0) = 0.
Assumption (F2) means that for any ¢ > 0 there exists & > 0 such that ¢ € 9f*(¢).
Then, either f*(£) = +oo for any £ sufficiently large (and then f* is superlinear) or
lime 400 f*'(€) = +00. The conclusion follows. 0O

Remark 3.2. In Lemma 3.1 we used the simple fact that the superlinearity of an
even convex function with effective domain coinciding with R is equivalent to the fact
that its derivative goes to 400 as the variable goes to +00. We will use again this
property in the rest of the paper.

Remark 3.3. We also recall that, as in Remark 2.2, (F1) and (F3) imply that
domf* = R.

LEMMA 3.4. Let f: R — R be a convex function. Assume that there exist € > 0
and 0 < 71 < 72 such that

(3.1) F) 2 f(9) +&(t =)+ 5(t = 9)°

for every t,s € (t',7%) and & € Of(s). Then f* is CH([€Y,€7]), where &' =
supdf(rt), £ =inf Of(7?),

(32 -7 ad [FQ]< 1 aeinld€)

Proof. First we observe that 3.1 implies the strict convexity of f in (7!, 72) and
then that f* is C(¢1,€2), where ¢ € Of(7%), i = 1,2. Indeed let us suppose that
f* is not differentiable in & € (£1,£2), i.e., Df*(£) is not a singleton; this means that
there exist s # t in df*(£). From the monotonicity of df* we have that s,t € (71, 72).
Moreover £ € Of(s)NIf(t), i.e., f is affine in [s, ] and hence f is not strictly convex.
Assume now that f* ¢ C(R), so that there exists & € (£%,&2) such that f*' is not
continuous in &; since f*' is a monotone function, the left and right limits of f*' in
¢ exist and they do not coincide; therefore, 9f*(€), which is the convex envelope of
these limits, cannot be a singleton, which is in contradiction with the fact that f* is
differentiable in &. By assumption, for any ¢,s € (71, 7%), we have

F(t) = f(s) = &t =) 2 5(t = 5)°,
F(s) = f(8) = &ul(s — 1) = 5(t — ).
By adding term by term, we get
(& — &)t —5) = elt = ).
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Passing to the limit for t — 72 and s — 7!, dividing by 72 — 7!, we obtain the first
inequality in (3.2). Recalling that & € df(7) if and only if 7 € df*(&) = £*/(¢), we

get

76 - £(E)] < <l ~ &),

proving the claim. d
LEMMA 3.5. Let f:R — R be a convex function of class C? on (T,+o0). Let
t > « be such that f"(t) > 0; then

gy L
f (é.) - f/,(t)v
where & = f'(t). Moreover, if f" is strictly positive in (T, +o00), f*" is of class C? on
(f/(T), +00).
Proof. For every s,t > T we have
1) = F0) — /@) — 1) = T2 s 12 1 ofs — 12
f"(s)

F(t) = f(s) = F(s)(t = 8) = 5= (s = 1)* +o(s = 1)*.
By summing up the two equations and dividing by (s — t)? we get

F's) = 1'(0) _ f"(s) + ")) | ols =)

s—t 2 + (s — )2
As & = f'(t) if and only if t = f*'(&), we get
E-& [0 ols— 1)
F1 (&) — f(&s) 2 (s—1)?*

We now let s tend to ¢ and obtain in the limit 1/f*"(&;) = f”(t). The last statement
is straightforward. d

LEMMA 3.6. Let f: R — R be a convex function. Assume that there exist 7 > 0
such that Of (1) = [¢1, €2], where €2 > &Y. Then f*"(€) =0 a.e. in (€1, €?).

Proof. The assumption df(7) = [£},£2] holds if and only if 7 € f*(£Y), i = 1,2.
It follows that f* is affine in (¢!, £2), proving the claim. d

4. A regularity result. In this section we will consider the functional
T = [ 11Vu) + g(o. ) do

defined in ¢ + Wy"'(Q2). We will assume that the boundary datum is in a special
class: the one of the functions satisfying the BSC. We will show that if € is uniformly
convex, if suitable assumptions hold for f and g, then the results of section 3 and the
Comparison Principle of section 2 imply that all the minimizers of the functional are
bounded by two Lipschitz barriers that coincide with ¢ on the boundary of 2. Then
the Haar-Rado-type theorem (Theorem 2.3) will guarantee that the maximum and
the minimum of the minimizers are Lipschitz continuous.
We recall here the BSC introduced by Hartman and Stampacchia in [15].
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DEFINITION 4.1 (BSC). The function ¢ satisfies the BSC of rank M > 0 if for
every v € 0N there exist z, z,‘; € R™, and M € R such that

(4.1) V' €09 () +zy (Y =) < 6(v),
(4.2) VY €9 ¢(v) + 2 - (v =) = o(7),

and |z$| < M for every v € ON).
Remark 4.2. The BSC implies that ¢ is Lipschitz of rank M. Moreover it forces
Q to be convex unless ¢ is affine. Necessary and sufficient conditions to the BSC are
studied, respectively, in [16] and [24].
In this section we will use the following set of assumptions on f, g, and 2. We
assume that f satisfies either
(F4) for every k € N there exist e, > 0 and 7} > k, i = 1,2 such that
(1) f(t) > f(s)+&s(t—s)+L(t—s)? for every t,s € (7}, 77) and & € Of(s),
(ii) limg ex(8 —71) = A >0,
(i) Hmg— 400 opmys = 0,

or
(F5) for every k € N there exist 7, > k such that
(i) Of (1) = &4, &7,
(i) limgyio0 & — & =X > 0.
The function g is assumed to satisfy
(G1) g is Lipschitz continuous in the second variable, with Lipschitz constant equal
to a, Le., |g(x,u1) — g(z,u2)| < alur — ua| for every z € Q and uq,u2 € R;
(G2) g : R" x R — R is measurable and convex in the second variable. Denoting
by g;" the right derivative of g with respect to the second variable, we assume
that there exists a positive constant K such that

Vo, y ER" Vu,v €R v>u+ Kly—2z| = g/ (y,v) > g5 (z,u).

We consider an R-uniformly convex open bounded subset {2 of R™, where R-uniformly
convex means that for every v € 9Q there exists b, € R with [b,| =1 such that

1
(4.3) Rby- (v =) = s —

As we previously recalled, in our setting, the existence of a solution of the mini-
mum problem

min / [f(IVo]) + g(z,v)] da
vEP+W,y () Jo

follows by the Direct Method of the Calculus of Variations.

The following theorem states the existence of Lipschitz barriers that coincide with
the boundary datum on the boundary of Q.

THEOREM 4.3. Assume that f satisfies hypotheses (F1)—(F3) and either (F4) or
(F5). Let g satisfy assumption (G1). Let u be a minimizer of the functional

/Q [F(Vel) + g, 0)] de, v € b+ WER),

where § is an open bounded R-uniformly convex set and ¢ : Q2 — R satisfies the BSC
with rank M. Then there exist {7 0~ : Q — R, both Lipschitz of rank L = L(R, f, M),
such that

() =9(1) = €7 (7)  for every y € 90
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and

0 (x) <u(z) <€ (x)  for almost every x € Q.

Proof. Tt is sufficient to construct the function £~ the construction of T going
on exactly in the same way.

We fix a point v € €2, and we consider also the vector 2 involved in the definition
of the BSC at the point . The proof of the theorem will be achieved when we will
have shown that there exist z., ¢y such that the set

Qoyey = {x ceR": gf*(%lx—fvl) toy =2y (=) —9(y) < 0}

contains  and v € 9, ., NOQ. In fact, by this last property, we have immediately
that

Ly (@) 1 = 2 f* (S =) oy <27 - (0= 7) +6(1) < 6()

for any x € 9. The Comparison Principle (2.4) then implies that
liyey () <25 (2 =) + ¢(7) < u(z) a.e. on Q.
We get the result simply by defining

(@) = sup Lo, o (2).
yEOQ
We divide the proof into several steps.
Step 1. In this step we state some properties of the auxiliary domain defined as
follows: fix a € R™, b > 0 and let

Qb::{xER":gf*(%M)—a-x—b<0}.

Whenever we assume that (F1) and (F2) hold, Lemma 3.1 implies that €, is bounded
for every b and that for b > 0, 0 is contained in its interior. Moreover, by the continuity
of f* there exist x1p, 25 in the set 9 = {z € R" : Zf*(&[z]) —a-2 — b = 0}
such that 2 f*(L]zy ) < Zf*(L]z]) < 2 f*(L|zg,|) for every @ € 0 and such that

B(0,|z1]) C Q% C B(0, |72,]). Tt is immediate to see that

(4.4) lim |z1,] = +00.

b—+o00 !
Indeed, as in Remark 2.2, the superlinearity of f implies that dom f* = R; hence
~f*(alz[/n) — a - x is bounded on every bounded set. This implies that if b — +o0,
then |z| — +oo for x € IQy; in particular (4.4) holds true.

Step 2. In this step we fix v € 92 and 1 a unit vector in the normal cone to €2 in
7 and we aim to select a special domain 2, for a =z .

We first assume that (F'4) holds. Let & € N be such that k& > M > [27] be
fixed. Thanks to (4.4), we can choose b > 0 such that |zq1,| > k for every b > b.
According to assumption (i) of (F4), let ¢, > 0 and 7/ > k, i = 1,2, be such that
ft) > f(s)+&(t—s)+ L(t—s)? for every t,s € (7}, 77) and & € Of(s). We notice
that thanks to assumption (F3), we can also assume that & > &k and & > |2, 5| for
any & € 0f(s), s € [r},77]. By Lemma 3.4, the function f* is C™1(¢&},£2), where
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& €0f(r), i=1,2,and [f*"(£)| < L for ae. £ € (§},&7). In the case where (F5)

k

holds, we immediately obtain that f* is in C?(£1,£7) and f*” = 0in (£1,£7). In both

1 2
cases we choose now |{;| = % and we observe that

* « —
(4.5) f /(ﬁ|§k|) ::Tk27é>k>M>|z,y|,
«
(4.6) —|&k| > |55
n
We prove now that there exist x,, € R™ and b,, € R such that |z, | = |&],
(e’ .
(4.7) Ef*(ﬁKkD —zy cwy —by =0, e, x, €0,
and f*’(%|x,7|)|iﬁ — z, = An for some A # 0; i.e., the outward normal to 92, in xy

is parallel to 7.

First we observe that the estimate (4.5) guarantees the existence of a one-to-
one correspondence between S"~!' and f*'(£|¢[)S" ! — z. Therefore, for every
n € ™!, there exists a unique v, € S"~! such that f*'(£|&|)v, — 27 = Ay for a
suitable A > 0. Hence, let us define b, by

by o= 25 (Tlel) = =5 - vl

We consider now €, = {z € R" : Zf*(¢|z|) — 27 - @ — b,;<0}; we have that

vylék] € 89y, by definition of b, and 9, is C' in a neighborhood of vy|&|. Then
the outward normal to 0€%, in v,[&| is parallel to

@ 1% @
7 (Smlied) 248 - 2 = (Sl - 25 =

This proves that v,|¢x| is the point x, we were looking for.

By the implicit function theorem we also infer that there exists a neighborhood
of the point z,, in which 09, = {x € R" : f*($|2|) — 25 -z — b, = 0} is at least C"1.

We notice that |15, | > k, because b, > b by (4.6).

Step 3. We are interested in proving that for k sufficiently large, we can find a
ball of radius R contained in an that touches aan in x,. To reach this aim in this
step we compute the principal curvatures of 92, in the neighborhood of x,,.

We can estimate the principal curvatures of 9, in almost every point = € 9,
such that f,i < Sz < {,%. Each principal curvature is less than or equal to the greater
eigenvalue of the Hessian matrix of the implicit function ¢ defined by (4.7), and it
can be estimated by the norm of the matrix itself. This means to estimate

0ij0(Z)
(1+ [Vp(2)[?)3/2
for i,j = 1,...,n — 1, where we have assumed, without loss of generality, that the
n-component x, of the vector x is implicitly defined with respect to the first n — 1

components & 1= (21,Z2,...,Tp_1).

From now on, to simplify the notation, we drop the indices n and v and we denote
by F' the function F(z) = Z f*(%|x|) —z-x—b. It follows, again by the implicit function
theorem, that for X" '-a.e. & € R* !

(4.8)
&»jw _ —&jF(é)nF)? + 8mF8jF6nF + @nF&FanF — 8,mF8iF8jF
(1+[Ve[2)3/2 [VF[?
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with F" and its derivative computed in the point x = (Z,()). Hence, we obtain that
(4.8) is equal to

= (G2 (Sel) — 2 (Shel) 4 1eR)

{3 @z Gz ez

o ] [ )

7 (Cil) 2 -2
oo (e - GrE] @0% -
| Gl
G e ] [ ]
{COIEE)

with (21,...,2,-1) = & and z,, = ¥(Z). By computation, it follows that
i (2)

4.9 J

W) T vewree

<la

Jr (@)

In the case where (F4) holds we use Lemma 3.4 to estimate

o (1) 28] | (B1al) & -

for a suitable constant C. In the other case,

[af*“(%|x|)|z|2] 7 (Slel) & - »

Lemma 3.1 implies also that

|| || ||

f*"(%|x|)|z|2 N (f*l)g(%|x|)n . (f*')Q(%le)nlzl . f*l(%|x|)n|z|21

-3

-3
<C L

ek (1)

-3
= 0’

P (Sl )n+ (72 (Slal )nl2) +f*'(%lxl)n|2|2]

-3
=0.

lim
|| —+o00 Iarl

[ (@) -
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Therefore, under either assumption (iii) of (F4) or (i) of (F5), we can choose k such
that all the principal curvatures of 9, N{z € R" : & < 2|z < &} are bounded
by a constant Rik less than %. This implies that for k sufficiently large, the ball
B(z,, — Rn, R) contains z,, in its boundary and is “locally” included in €2, ; this means
that U,, N B(xz, — Rn, R) C U,, N, for a suitable neighborhood Uy, of z,,.

Step 4. Now, in the next three steps we want to show that for k sufficiently large,
the ball B(x, — Rn, R) is entirely contained in €, . In the present step and in the
next one, we suppose that 9, is globally C*!, and we want to compute the norm
of the points of 9}, in a suitable neighborhood of x,. First we recall that given a
function 3 : R"~! — R, such that 1(0) = 0, V¢(0) = 0, and ¢ € C»(B(0,4)), with
the absolute value of the curvature almost everywhere bounded by 1/Rj, > 0, an easy
computation shows that

(4.10) [(¢)] < Rx — \/ R}, — 62

for |¢] < §. We can assume without loss of generality that the system of coordinates
x in R™ is such that the tangent plane p to B(0,|z,|) in x,, is {z = (z1,...,2,) €
R™ : x, = x,, }, so that |z,| = |z,,|. Now we fix the tangent plane 7 to 9, in x,.
We consider a new system of coordinates ((,t), ¢ € R""1, ¢t € R, such that the plane
7 is the set {(¢,t) : t = 0}, x,, corresponds to ({,t) = 0, and 9, is the graph of a
function ¢: A € R"~! — R for a suitable open set A. We denote by 7:R"™ — R" the
change of variables that brings back (¢, t) into . We have

(4.11) IT(¢,9(¢)) —T(¢,0)| < Ry — /R — 62 for every [(] <4,

by (4.10), using the curvature estimate of the previous step. Then, we have

(4.12) ‘(T((, 0)1,...,T(¢,0)n—1,xs,)

(T 001, T(E O, signaz, \/leg |2 = T(G07 ++- = T(C, 003, )

< ool = Jleal? =02 for ¢ <.

We also have

(4.13)  [T(6,0) = (T(C,0)1, -+, T(C, 0)n—1, 2y, )| < dsindy for |¢] <,

where 6, is the angle between the planes m and p. We observe that 0, is also the angle
between the normal directions to 7 and p, 1, and x,,/|x,|, respectively. We recall that
|z1p,| and |zap, | are the points of 0€, such that Zf*(L[zy,, [) < 2f*(Lz]) <
L (L, |) for every x € O, . The set Qp, contains €o(ay, B(0, [z1,,])) so that
the normal cone to ©o(x,, B(0,|x1y,])) contains the normal to €, in z, ie., the
angle 6, between n and - satisfies

[y]
(4.14) 0,= arccosn - T
|z
< arcsin sup inf Ty z .
(21,0 | <[] < 22,0, | VEBO, 210, 1) |2 = 9| []
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Thus we obtain

(4.15) IT(¢,0) = (T(¢, 0)1, - -, T(C, 0)n—1, @y, )|

. T — T
<9 sup inf L .
21,0y | <[] <[ 22,0, | VEBOJz10, ) [ = 9| 2]

Hence, we can conclude that

(4.16)
1T ) = |

< ‘T(c,w(cn — (TG 001 TG 0, sign g, Lo = T(C0)F + - = T(C, 002,

/ / . r—y
<Ry —\/RZ — 6%+ |z, — |xn|2—52+5< sup inf mm)

lz1,5, [<|z|<|z2,5,| yeB(0,]z1,0, 1)

Step 5. In this step we show that for fixed J, by choosing k large enough (in
particular £ > R), we can make the quantity in (4.16) as small as we want. In
particular, for 6 > 4R (where R is the constant appearing in (4.3)), we can choose k
such that the norm of the points of 9%, , T(¢,¥(¢)), with || < 6, is between |2, | — 3
and |z,| + 2 (where A is the constant appearing in assumption (ii) of (F4) and (F5)).

We denote by Ay the minimum between Ry and [z1,|. We recall that both are
greater than R. We fix § > 4R. We now want to prove that we can choose k such
that

(4.17) 0 sup inf oy T < A
21,0y | <|2| < 22,0, | VEBO:lz1,0, ) [ — 9| |a] 8
and
A
(4.18) 2|Ar — /A7 — 62| < 3

By the estimates in Step 3, we have limg_,, Ry = +00. Hence,
lim 2[Ay, — /A2 — 62| = 0.
k

On the other hand, we remark that

: r—y x |21,6[?
lIlf = 1-— T2
yeB(0,|z1u)) [T —y| || |z]

and \/1 — ‘ﬁ;‘lbzlz < \/1 — }i;ilz Therefore, if we prove that

(4.19) lim 720l =710l

0,
b——+o0 |x1,b|

we are done.
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For every t > 0 we identify % f*(%t)=: f(t). Then f is convex and satisfies
assumptions (F1) and (F2). By Lemma 3.1, recalling Remark 3.2, lim;_, o, f'(t) =
+oo. We can consider the inequality |x2p| — |216| < |y2.6] — |y1.6|, where

|25 g2l + 0= F'(Jzr]) (ly2pl = F(0) +
=125 [yl +b = (o) (yrol = F7H(0)) + b

fj(\fl,b|)f71(b)

Pz 1= |
F7iw) - fzie)+H=] ]

then |$1,b‘ S f/(‘ml,bl)

_ 2022 |f! F=1(b
lim M < lim |Z'y |~f (|«T1,b|)f (z -0
bodoo @1 oo [myp[[(f/ (lz]))? — |27 7]

f-,(|901,b\)f71(b)
f’([fl,b‘)"‘lz;l '
)

[z1,0]

so that |y = and |y = We have |21 > |y1,5| and

so that limp_, 4 is finite; then we obtain

Therefore, we can conclude by putting together estimates (4.16), (4.17), and (4.18)
that

(420)  |T(C ()] = ]| = |T(¢ (O] — o= (6 +€D)] < M4 for | <.

n
| 2«

Step 6. In this step we conclude the proof of the existence of the ball of radius R
contained in an and touching 8(2;,77 in x,.

We recall that in Steps 4 and 5, we assumed 0€2, to be globally C L1 We already
know that €, is C*! near ,, by hypothesis (F4)(i)/(F5)(i). Now, by choosing k
sufficiently large, we can make 0€2, actually C11) at least in the points T'(¢, (),
for |¢| < 4. Indeed, hypothesis (F4)(ii) (or (F5)(ii)) implies & — &} > \/2 for k large
enough (see (3.2)), and f* is CV1(£},&7). Hence, estimate (4.20) and a comparison
argument show that 9, is C! in its points T'(¢,9(C)) for [¢| < 6, since they lie
in the set {# € R™ : & < 2|z < &}. In particular, in the same points, 9, has
curvature less than 1/Ry, < 1/R.

Now we consider the distances of the points (T'(¢, ¥(¢))1, .- -, T(¢, ¥(())n-1, 2, )
from w, for || = 6. We can choose k sufficiently large such that the minimum of
these distances, ps, can be estimated from below by /2 > 2R. Indeed, we have

(4.21) ps = -|T(C70) —7(0,0)| — I7(¢,¥(©) = (¢, O) sin 6, | cos b,
i cos 0,
= |C| - % sin 977} cos 0,
> -5 — Rk_co— ‘:;’26_52 sin 977] cos 0,
7

= (5_0089,, - (R;.C —/R: — (52) sin 6,,,

where we recall that 6, is the angle between the vector n and the direction z,/|z,|.
Using estimate (4.14), we get

2
(4.22) ps > 5101tal _ (R—VEZ=32),/1- Tol® 0 g

|Z2,b, | |z25,2 = 2

for k sufficiently large, thanks to (4.19).
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We now choose k such that also [z1,| > 4R holds true. We recall that the
curvature of JQ, in its points T'(¢,(¢)) for [(| < d is less than 1/R. This property
together with estimate (4.22) implies that the convex envelope between B(0,|1,])
and the points T'((,%(¢)) for || < ¢ contains in its interior the ball B(z, — Rn, R).
Since an contains this convex envelope, we conclude that B(z, — Rn, R) is contained
in 2, and touches 9, in x,.

Step 7. In this step we conclude the proof. It is enough to define z, := v — z,
and ¢, := ¢(y) — 2 f*(£|z,|) and to consider the sets (2 and the function [, ..
defined at the beginning of the proof. In this way, using the fact that € is R-uniformly
convex, we have

Ty ,Cry

QCB(y—Rn,R)=vy—xy+B(xy, —Rn,R) Sy -2y + D, =

Indeed,

v =g+ D,
:{xeR” : gf*(%|x—7+x,,|)—z;~(x—7+xn)—bn<0}
={zer: 21 (Sl —a,]) + 6(0) = 27wy — by — 25 - (@ =) —6(3) <0}
—{rer: 2y (Sl —a,)) + o, =27 - (e —7) —0(7) <0},

since
n «
2o Ty + b, =— *(—x )
vy n n af TL| 77|

It is immediate to see that v € 0, . N OLQ. a

We are now ready to state the main result.

THEOREM 4.4. Under the same assumption of Theorem 4.3, and the additional
assumption (G2), the mazimum and the minimum of the minimizers of the functional

/Q [F(IV]) + g(z,0)] dz v e ¢+ Wyt (Q)

are Lipschitz continuous of rank L = L(R, f, M).
Proof. The result is immediate by applying Theorem 2.3 with the barriers con-
structed in Theorem 4.3. d

5. Special cases and examples. In this section we discuss some special cases
and examples. In the first theorem the assumption that the boundary datum is con-
stant allows us to drop the hypothesis (F4)/(F5) so that we are able to consider any
function which is just convex and satisfies (F1)—(F3). Then, we state a geometrical
assumption on the epigraph of f ensuring that whenever we have a Lipschitz mini-
mizer all the others share the same regularity property. The special cases where f is
uniformly convex at infinity or where f is C? are stated. At the end of the section
we discuss assumptions (F4) and (F5) both providing examples of functions satisfying
them and discussing their validity for C?-functions having at least polynomial growth.

The first special case is the one in which we assume that the boundary datum
is a constant function. We state the following theorem because we think that it is
interesting in itself. Thanks to the fact that here we assume ¢ to be constant we can
drop all the “technical” assumptions on f. Above all we underline that assumptions
(F4) and (F5) are no longer needed, but not even (F2) has to be assumed.
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THEOREM 5.1. Assume that f satisfies hypotheses (F1) and (F3). Let g satisfy

assumptions (G1) and (G2). Let u be the maximum or the minimum of the minimizers
of the functional

[ 19+ st e e oW,

where Q is an open bounded R-uniformly convex set and the boundary datum ¢ is a
constant function. Then u is Lipschitz continuous of rank L = L(R, f, M).

Proof. Since ¢ is constant, we can choose in (4.1) and (4.2) 25 = 2z = 0 for
every v € d9Q. In particular, the radial symmetry of f* implies that (2, is a ball.
The conclusion immediately follows. O

The next theorem is in the same flavor of some results in [20, 21], where an extra
geometrical assumption on the faces of the epigraph of f allows us to pass from the
regularity of one minimizer to the regularity of all minimizers.

THEOREM 5.2. Assume that f and g are convex functions and that the projections
on R of the faces of the epigraph of f are bounded by a positive constant K. Then, if
there exists a minimizer of the functional

(5.1) /Q (Vo)) + gz, 0)] do v € o+ W (@),

which is Lipschitz continuous of rank L, every minimizer of (5.1) is Lipschitz contin-
uwous of rank L + K.

Proof. We follow closely the argument in [20]. Let w and v be two minimizers
and let A be the subset of 2, where |Vu(x)| and |Vo(z)| belong to the projection of
the same face of epi(f). If |2\ A| > 0, the convexity of f and g implies

[ gmven - 5etol) e e + oce)
< /Q\A [%f(Wu(x)D + %f(Wv(x)D + ég(w,u(x)) + %g(:r,v(x))] dz

+ [ |3H05@D + LE0Vo + joou(o) + gote. o) ao

=3 09u@D + oo @] do+ 5 [ (770D + ot 00e)] da
1

) /Q [F(IVu(@)]) + gz, u(x))] da,

which is a contradiction with the fact that u is a minimizer. Therefore, |Vu(z)| and
|[Vou(z)| belong to the projection of the same face of the epigraph of f for a.e. x € Q.
This implies that if there exists a Lipschitz continuous minimizer u of rank L, u — v
is a function in W,"' (), with V(u — v) bounded in L by L + K. Hence, v is also
Lipschitz continuous of rank L + K. d

A very natural question concerns the possibility to construct the barriers in the
case where f is uniformly convex. We observe that if f is e-uniformly convex, hypoth-
esis (F4) is automatically satisfied, with e = € for every k and 7}, := 2k +1+2(i — 1),
for instance. Therefore the existence of the barriers in this case can be obtained as
a corollary of Theorem 4.3; nevertheless a simplified proof of this result can also be
provided, as explained below.
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THEOREM 5.3. Assume that f is e-uniformly convex on [T, +00), for T,e > 0,
and satisfies hypotheses (F1)—(F3). Let g satisfy assumptions (G1) and (G2). Let u
be any minimizer of the functional

/Q (Vo) + g, 0)] de v e 6+ W),

where ) is an open bounded R-uniformly convez set and ¢ : 0 — R satisfies the BSC
with rank M. Then w is Lipschitz continuous of rank L = L(R, f, M).

Proof. As in the proof of Theorem 4.4 it is sufficient to construct the lower and
upper barriers £~ (z) and ¢ (z). With the same argument used in Theorem 4.3, fixed
v € 012, it is enough to show the existence of z., c, such that the set

OPPRES {a: e R™: gf*(%h:—xﬂ) +oy =2y (=) —¢(y) < O}

contains 2 and v € 9Q,_ . N O

To this end, we observe that since f is e-uniformly convex in [T, +00), we have
f* e CH([supdf(T), +00)), thanks to Lemma 3.4. Therefore, given b > 0 sufficiently
large, we are able to estimate the principal curvatures of the set 9, = {x € R"
f*(Jz|) = 25 -« = b} in each point. We recall that |z1 ;| := min{|z| : x € 0} and
that lim,_, o |14| = +00. Since f*” < 1/ein (sup df(T), +oc) and f* is superlinear,
we can find Mp such that

(5.2) { : l(f*’)B(%lwl)nJr(f*’)z(%lwl)nlzw+f*’(%lxl)nlzyl21

2]
« (& )i_ -
(e i

+ af*”(%|x|)|z7|2} -

for every « with |z| > Mpg. In particular (5.2) holds true for every x € 0€);, whenever
b > 0 satisfies

-3

L
R

(53) |5C17b| > Mpg.

Thanks to computations in (4.9), inequality (5.2) gives an estimate of the principal
curvatures of the whole 9€2y.

Once we have fixed b with property (5.3), we can easily find « € 9, such that
the outward normal to 92 in x is parallel to a fixed normal 7 to €2 in ~.

The estimate on the curvatures guarantees that the ball B(x— Rn, R) is contained
in €, and touches 08, in x. Therefore, we can conclude the construction of the
barriers as in Step 7 of the proof of the previous theorem. As in Theorem 4.4, we
deduce the Lipschitz regularity of the maximum and the minimum of the minimizers of
our functional. Since f is strictly convex on [T, 400), the assumptions of Theorem 5.2
are automatically satisfied. Therefore, we obtain that every minimizer is Lipschitz
continuous. O

Another case of some interest by itself is, in our opinion, the one where f is of
class C2.
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THEOREM 5.4. Let f be a function of class C? on (T, +00), for T > 0, satisfying
hypotheses (F1)—(F3), and moreover
. " 3 _
(F6) ltlinﬁgoff (t)t° = +o0.
Let g satisfy assumption (G1) and (G2). Let u be any minimizer of the functional

[ 9+ st e e o W@,

where ) is an open bounded R-uniformly convex set and ¢ : 2 — R satisfies the BSC
with rank M. Then w is Lipschitz continuous of rank L = L(R, f, M).

Proof. As in the proof of previous theorems it is sufficient to construct the barriers.
To do this, once we have fixed v € 052, we need to find x,, ¢, such that the set

OPPRES {a: eR™: gf*(%h:—xﬂ) +oy =z (=) —¢(y) < O}

contains  and v € 98, . N O0Q. By assumption (F6), there exists 77 > T' such
that f”(t) > 0 for every t > T'. Thanks to Lemma 3.5, f* is of class C? too on
(f'(T"),400), and we have

1

fr (f):fT(t)’

whenever £ = f/(t). Therefore, for every b sufficiently large, 99 = {x € R"
f*(|#]) = 27 -z = b} is of class C* and we are able to estimate its principal curvatures.
Moreover, we have

n{ —12
af " (Sal ) |27 2

' (Slal) o - =

||
-3
1 _9 x _
(54) = am Z’Y | . tm — Z’Y
for t := f*'(alz|/n). Thanks to hypothesis (F6), equality (5.4) gives
-3
| im " (2lal) ez 7 (1) & - 5| =0
(5.5) i o (el |7 (Slel) - 25| =0

Hence, due to the superlinearity of f*, we can find as before Mg > 0 such that (5.2)
holds true whenever || > Mp, and we can conclude the construction of the barriers
as in the proof of the previous theorem. Also in this case, since f is definitely strictly
convex thanks to assumption (F6), the hypotheses of Theorem 5.2 are fulfilled and
we get the Lipschitz continuity of every minimizer. O

In the general case, where f satisfies assumptions (F4)/(F5), we can deduce the
following corollary using Theorem 5.2.

COROLLARY 5.5. Let us assume that f and g satisfy assumptions (F1), (F3),
(G1), and (G2). Assume moreover that the projections on R™ of the faces of the
epigraph of f are bounded by a positive constant K. Assume that one of the following
hypothesis holds true:

(a) ¢ is constant,

(b) f satisfies assumptions (F2) and (F4),

(¢c) f satisfies assumptions (F2) and (F5).
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Then every minimizer of the functional
(5.6) / [F(IVo]) + g(z,v)] de v e+ WyH(Q)
Q

is Lipschitz continuous of rank L + K.

Proof. The result immediately follows from Theorems 4.4 and 5.2. O

Remark 5.6. A wide class of elementary functions satisfy either the assumptions
of Theorem 5.3 or those of Theorem 5.4. In fact, for example, the functions f(t) = |¢[?
and f(t) = [t|Plogt are uniformly convex in [T,+4o00) for every p > 2 and satisfy
assumption (F6) for every 1 < p < 2. Functions with exponential growth such us
f(t) =€’ or f(t) = e are uniformly convex.

In the following examples, we want to show that the more general assumptions
(F4)/(F5) involved in Theorems 4.3 and 4.4 allow us to consider functions which are
not uniformly convex nor C?; in particular we can also consider functionals obtained
via convexification of non convex ones.

Ezxample 5.7. Given A > 0, let us consider the function f:[0, +00) — R defined
by

f(0):=0,
f(x):=f(k)+ XNk +1)(z — k) whenever z € [k, k+1], k € N.

We extend f to an even function on R. It is easy to see that f has superlinear growth
and is convex. Moreover, df(k) = [k, (k + 1)A]. Therefore, it is enough to choose
T := k to obtain (F5).

Example 5.8. Let us observe that a convex superlinear function f which is e-
uniformly convex, with ¢ > 0, on a countable sequence of open intervals with fixed
length in [0, +00) and affine on each connected component of the complement of the
union of those intervals satisfies (F4).

Ezample 5.9. Consider the function f(t) = hi*(|t]), where

B Sp 1fs€[k—2kp;—2’k+2k”%2]’k€N’
hi(s) = { +o00 otherwise,

for p > 2. It is easy to check that f is neither C? nor uniformly convex but satisfies
assumptions (F1)-(F4).
Ezample 5.10. Consider the function f(t) = h5*(|t|), where
_ et ifselk—gx, k+ 5%, k€N,
ha(s) = {—l—oo otherwise.

Also in this case it is easy to check that f is neither C? nor uniformly convex but
satisfies assumptions (F1)—(F4).

We want now to stress the fact that some of the properties required in assumption
(F4) are very close to those satisfied by a quite large class of function. The next remark
is devoted to this aim.

Remark 5.11. Let f be a even convex function of class C? such that there exist
a > 0, b € R such that f(t) > alt|” + b for p > 2. We want to show that f satisfies
assumptions (F4)(i) and (iii) so that in this case the only effective assumption is
(F4)(ii). The fact that f(t) > alt|P 4+ b implies that for every k € N there exists a
nonnegligible set Ay, where f”(t) > %p(p—1)[¢t[°~2. The continuity of f” implies that
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Ay is an open set, and hence there exists at least an interval [}, 77] C Ay, where
f(t) > e = &p(p — 1)|7¢|P~2. It follows immediately that assumption (F4)(iii) is
satisfied too.

The case where 1 < p < 2 can be handled in a similar but more technical way.
For this reason we just sketch it. As in the proof of Theorem 5.4, we can remark that
in order to have the principal curvatures of the boundary of the set € sufficiently
small, it is enough to have a slightly weaker condition than (F4)(iii); what we actually
need in this case is that

1;151352101) P OF X Use e () = Fo00,

where x4 denotes the characteristic function of the set |J;—,[r}, 77]A. It is easy
to verify that this condition is valid in our case. Therefore, making just the ex-
tra assumption (F4)(ii), we can reproduce the argument for the construction of the
barriers.

The next example emphasizes the existence of convex functions satisfying neither
(F4) nor (F5).

Ezample 5.12. Let us consider the Cantor—Vitali function ¢: [0,1] — R, and let
us fix p > 1. We define h: R — R by setting

_ J9(@) if = € [0,1],
he) = {[(n +1)? —nPlg(z —n) + h(n) ifz € (n,n+1]

for every « € R. Then we set f(y) := [} h(z) da for every y € [0, +00) and we extend
f to an even function on R. The convexity of f is straightforward from the continuity
and the monotonicity of its derivative. It is also immediate to see that f has at least
p-growth at infinity; in fact, for any z € (n,n + 1], f(z) > f(n) = $nP. Moreover
/" = h' = 0 almost everywhere in R. Hence, f is nowhere uniformly convex and does
not satisfy (F5) because f’ is continuous.

Acknowledgment. The authors wish to thank the referees for interesting com-
ments on the first version of the paper.
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