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COTILTING MODULES ARE PURE-INJECTIVE

S. BAZZONI

(Communicated by Martin Lorenz)

Abstract. We prove that a cotilting module over an arbitrary ring is pure-
injective.

Tilting (and cotilting) modules were first defined in the case of finite-dimensional
algebras by Brenner and Butler [5] and by Happel and Ringel [19]. Generalizations
over arbitrary rings have been considered by many authors: Colby and Fuller [7],
Colpi [8] and Miyashita [23]. In [10] Colpi and Trlifaj defined the notion of tilting
modules in the case of infinitely generated modules and in [1] Angeleri, Tonolo
and Trlifaj proved that tilting and cotilting classes provide for special preenvelopes
and precovers generalizing the analogous results proved by Auslander, Reiten and
Smalø [2, 3] about left and right approximations.

The definitions of tilting and cotilting infinitely generated modules involve the
notions of torsion and cotorsion theories. While the first one is a classical notion and
widely investigated, the second one, introduced by Salce [24] in the case of abelian
groups, was ignored for 20 years, until, very recently, its importance was noted by
Göbel and Shelah [16, 15] in connection with the problem of finding non-trivial
splitter groups. Moreover, it turned out to be a useful tool in proving the Flat
Cover Conjecture [4]. In fact, Enochs’s proof of this conjecture makes use of the
notion of cotorsion theory together with the very powerful result proved by Eklof
and Trlifaj [12], stating that cotorsion theories cogenerated by a set of modules
are complete, i.e., they provide for special preenvelopes and special precovers (see
Section 3 for definitions).

The definition of a cotilting module valid over an arbitrary ring R states that
an R-module U is a cotilting if ⊥U = CogenU , where ⊥U = {M ∈ R- Mod |
Ext1

R(M,U) = 0} and CogenU is the class of R-modules cogenerated by U , namely
the class of modules which are embeddable in a direct product of copies of U .
Another way of putting this is to say that U is cotilting if the cotorsion-free class
of the cotorsion theory generated by U coincides with CogenU (see Section 1).
In [13] Eklof and Trlifaj proved that a cotorsion theory generated by a class of
pure-injective modules is complete and, as noted above, a cotilting torsion-free
class provides for preenvelopes and precovers. Thus the question raised by Trlifaj
of whether a cotilting module is pure-injective is particularly interesting. In this
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note we answer the question affirmatively, namely we prove that if U is a cotilting
module over any ring R, then U is a pure-injective module.

1. Preliminaries

R will denote an associative ring with identity and R- Mod the class of left R-
modules. Recall that a torsion theory is a pair (T ,F) of classes of modules which
are mutually orthogonal with respect to the HomR functor, i.e., such that

T = {T ∈ R- Mod | HomR(T, F ) = 0 for all F ∈ F},
F = {F ∈ R- Mod | HomR(T, F ) = 0 for all T ∈ T }.

T is called a torsion class and its objects are called torsion modules; F is called
a torsion-free class and its objects are called torsion-free modules. They can both
be characterized in terms of closure properties: T is a torsion class if and only
if it is closed under epimorphic images, direct sums and extensions; while F is a
torsion-free class if and only if it is closed under submodules, direct products and
extensions. Given a classM of modules, the torsion theory generated by M is the
smallest torsion theory for which the objects of M are torsion. Dually, the torsion
theory cogenerated byM is the smallest torsion theory for which the objects ofM
are torsion-free. For more details, see [25, Ch. VI].

Considering the functor Ext1
R instead of the functor HomR, Salce in [24] intro-

duced the notion of a cotorsion theory.
A cotorsion theory is a pair (A,B) of classes of modules over a ring R which are

mutually orthogonal with respect to the Ext1
R functor, i.e., such that

A = ⊥B = {A ∈ R- Mod | Ext1
R(A,B) = 0 for all B ∈ B},

B = A⊥ = {B ∈ R- Mod | Ext1
R(A,B) = 0 for all A ∈ A}.

A is called the cotorsion-free class, while B is called the cotorsion class. Given a
classM of modules, the pairs

GM = (⊥M, (⊥M)⊥) and CM = (⊥(M⊥),M⊥)

are cotorsion theories, called the cotorsion theories generated and cogenerated by
M, respectively.

For every R-module M , ProdM will denote the class of modules isomorphic to
summands of direct products of copies of M and CogenM will denote the class of
the R-modules cogenerated by M , namely the class of modules which are embed-
dable in a product of copies of M . It is evident that an R-module N ∈ CogenM if
and only if, for every 0 6= x ∈ N , there is a morphism f ∈ HomR(N,M) such that
f(x) 6= 0.

Definition 1. If R is any ring, an R-module U is said to be cotilting if ⊥U =
CogenU .

If U is a cotilting module, then ⊥U = CogenU is the torsion-free class of the
torsion theory cogenerated by U ; moreover it is the cotorsion-free class of the cotor-
sion theory generated by U . A torsion-free class F is called a cotilting torsion-free
class if F = ⊥U for some cotilting module U .

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



COTILTING MODULES ARE PURE-INJECTIVE 3667

The above definition of a cotilting module generalizes the classical notion. In
fact, as proved in [1] and [9], an R-module U is cotilting if and only if the following
three conditions hold:

1. i.d.U ≤ 1;
2. Ext1

R(Uλ, U) = 0 for every cardinal λ;
3. there exists an exact sequence

0→ U1 → U0 → E → 0,

where E is an injective cogenerator of R- Mod and U0, U1 ∈ ProdU .
Moreover, U is cotilting if and only if U satisfies 1, 2 and

3′. for any R module M , HomR(M,U) = 0 and Ext1
R(M,U) = 0 imply M = 0.

Definition 2. If R is any ring, an R-module U is said to be partial cotilting if U
satisfies 1 and 2 above, i.e., if i.d.U ≤ 1 and CogenU ⊆ ⊥U .

Note that for any R-module M , i.d.M ≤ 1 if and only if ⊥M is closed under
submodules; moreover if i.d.M ≤ 1, then ⊥M is a torsion-free class if and only if
it is closed under direct products. In [9], a module U is said to be partial cotilting
if CogenU ⊆ ⊥U and ⊥U is a torsion-free class: this notion is then stronger than
the one given by Definition 2.

The notion of pure-injectivity will play a central role in our discussion. We
refer to Theorem 7.1 in [18] for a complete description of the various equivalent
conditions satisfied by pure-injective modules.

2. Cotilting modules and pure-injectivity

The characterization of pure-injectivity that will be particularly useful for our
purposes is condition (vi) in [18, Theorem 7.1]. We state it explicitly.

Lemma 2.1. An R-module M is pure-injective if and only if, for every cardinal γ,
every homomorphism f : M (γ) →M extends to a homomorphism g : Mγ →M .

Thus, in particular, we obtain:

Corollary 2.2. Let M be an R-module such that Ext1
R(Mγ ,M) = 0, for every

cardinal γ. Then M is pure-injective if and only if Ext1
R( Mγ

M(γ) ,M) = 0, for every
cardinal γ.

Proof. Consider the exact sequence

0→M (γ) →Mγ → Mγ

M (γ)
→ 0.

Applying the contravariant functor HomR(−,M), we obtain the exact sequence

HomR(Mγ ,M)→ HomR(M (γ),M)→ Ext1
R(

Mγ

M (γ)
,M)→ 0.

By the preceding lemma we get the conclusion. �
If X is a set, we say that a family A of subsets of X is almost disjoint if the

intersection of any two distinct elements of A is finite. We now need some cardinal
arguments. The following fact is well known in the literature and it has many
different proofs. The one we prefer is the following.

Lemma 2.3. Let λ be any infinite cardinal. Then there is a family of λℵ0 countable
almost disjoint subsets of λ.
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Proof. Consider the tree T of the finite sequences of elements of λ, i.e., T = {t : n→
λ | n ∈ ω}. Clearly T =

⋃
n∈ω λ

n, hence |T | = λ. For every function f : ω → λ,
consider the subset Af of T defined by Af = {f �n: n ∈ ω}. Af is nothing else
than an ω-branch of T . Clearly, if f, g are two different functions in λω , Af ∩ Ag
is finite. Thus {Af}f∈λℵ0 is a family of λℵ0 countable almost disjoint subsets of T .
Considering a bijection of λ to T , we have the desired conclusion. �

The following result is also well known (see for instance [17, Lemma 3.1]).

Lemma 2.4. For any cardinal ν there is a cardinal λ ≥ ν such that λℵ0 = 2λ.

Using the preceding results and a cardinal argument similar to the one used by
Hunter in [20], we can prove the following.

Proposition 2.5. Let U be an R-module such that ⊥U is closed under direct prod-
ucts and submodules. Then Ext1

R( Mℵ0

M(ℵ0) , U) = 0, for any R-module M such that
Ext1

R(M,U) = 0.

Proof. Let X = Mℵ0

M(ℵ0) . Consider an infinite cardinal λ and let {Aβ}β∈λℵ0 be a
family of λℵ0 countable almost disjoint subsets of λ. View MAβ as embedded in
Mλ and let ηβ : MAβ → Mλ

M(λ) be the restriction to MAβ of the canonical projection

of Mλ onto Mλ

M(λ) ; then Ker ηβ = M (Aβ) and Im ηβ ∼= X . Since the sets {Aβ} are

pairwise almost disjoint, the sum
∑
β Im ηβ in Mλ

M(λ) is a direct sum.
In fact, assume

∑n
i=1 ηβi(xβi) = 0, for some xβi ∈ MAβi (i = 1, . . . , n). Let

y =
∑n

i=1 xβi ; then y ∈M (λ). Let F be the support of y and G =
⋃
i6=j(Aβi ∩Aβj );

then F ∪ G is finite. Fix an index i ∈ {1, . . . , n}; for every α ∈ Aβi \ (G ∪ F ), the
α-component y(α) of y is 0, hence xβi(α) = 0 too, since α /∈ Aβj , for every j 6= i.
Thus xβi ∈M (λ); hence ηβi(xβi) = 0 for every i.

Let V be the submodule of Mλ such that V
M(λ)

∼=
⊕

β∈λℵ0 Im ηβ ∼= X(λℵ0). By
Lemma 2.4, we can choose λ such that λ ≥ |HomR(M,U)| and λℵ0 = 2λ. Since
⊥U is closed under products and submodules, we have that Ext1

R(V, U) = 0. The
exact sequence

0→M (λ) → V → X(λℵ0 ) → 0

induces the exact sequence

HomR(M (λ), U)→ Ext1
R(X(λℵ0), U)→ 0.

The cardinality of the first term is |HomR(M,U)|λ which coincides with 2λ by
the assumption λ ≥ |HomR(M,U)|. The term Ext1

R(X(λℵ0 ), U) is isomorphic to∏
λℵ0 Ext1

R(X,U). Thus, if Ext1
R(X,U) is non-zero, the cardinality of the second

term in the above sequence is at least 2λ
ℵ0 = 22λ , contradicting the existence of an

epimorphism. �

Corollary 2.6. Let R be any ring and U a partial cotilting R-module. Then
Ext1

R( Uℵ0

U(ℵ0) , U) = 0. In particular, if U is cotilting, then Uℵ0

U(ℵ0) ∈ CogenU .

Proof. Let M = U in the proof of the preceding proposition. Then the proof is
valid under the hypothesis that U is partial cotilting. The last statement follows
immediately from the definition of a cotilting module. �
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The following result is valid in all generality. It will be a key step in proving the
main theorem.

Lemma 2.7. Let M , U be R-modules. If Mℵ0

M(ℵ0) ∈ CogenU , then Mγ

M(γ) ∈ CogenU ,
for any cardinal γ.

Proof. We show that for every 0 6= x ∈ Mγ

M(γ) there is a map f ∈ HomR( Mγ

M(γ) , U)
such that f(x) 6= 0. We can write x = (yα)α∈γ +M (γ), where y = (yα)α∈γ ∈Mγ is
an element with infinite support. Choose a subset A of the support of y such that
|A| = ℵ0 and consider the projection πA : Mγ →MA, πA((zα)α∈γ) = (zα)α∈A. Let
ρ denote the canonical epimorphism ρ : MA → MA

M(A) . The kernel of the composition
ρ ◦ πA contains M (γ), thus ρ ◦ πA factors through a map g : Mγ

M(γ) → MA

M(A) . Clearly
g(x) = (yα)α∈A+M (A), thus g(x) 6= 0, since A was an infinite subset of the support
of y. By the assumption Mℵ0

M(ℵ0) ∈ CogenU we can find a morphism h : Mℵ0

M(ℵ0) → U

such that h(g(x)) 6= 0; hence h ◦ g is the wanted map f . �
We are now in a position to prove our main result.

Theorem 2.8. Let U be a partial cotilting R-module such that ⊥U is closed under
direct products. Then U is pure-injective. In particular, if U is cotilting, then U is
pure-injective.

Proof. By [9, Theorem 2.11] a module satisfying our hypotheses is a direct summand
of a cotilting module. Thus we may assume that U is cotilting. By Corollary 2.2,
U is pure-injective if and only if Uγ

U(γ) ∈ ⊥U , for every cardinal γ, i.e., if and only if
Uγ

U(γ) ∈ CogenU . By Lemma 2.7 it is enough to consider the case γ = ω. Thus the
conclusion follows by Corollary 2.6. �

3. Applications

In [14], Enochs introduced the notions of X -precover and of X -cover, for any
class X of modules and in [26] the notion of a special X -precover was defined. They
generalize the analogous definitions of right and left approximations considered by
Auslander, Reiten and Smalø [2, 3]. We now recall the definitions.

Definition 3. Let X be a class of modules, M an R-module and X ∈ X . A homo-
morphism φ ∈ HomR(X,M), is called an X -precover of M if for every homomor-
phism φ′ ∈ HomR(X ′,M) with X ′ ∈ X there exists a homomorphism f : X ′ → X
such that φ′ = φf . An X -precover, φ ∈ HomR(X,M), is called an X -cover of M
if for every endomorphism f of X such that φ = φf , f is an automorphism of X .
An X -precover φ of A is said to be special if φ is surjective and Kerφ ∈ X⊥.

The notions of X -preenvelope, special X -preenvelope and X -envelope are defined
dually.

The class X is said to be a precover class (cover class, preenvelope class, en-
velope class) if every R-module admits an X -precover (X -cover, X -preenvelope,
X -envelope).

If (A,B) is a cotorsion theory, then every R-module admits a special A-precover
if and only if every R-module admits a special B-preenvelope (see [24, Corollary
2.4]). The cotorsion theory (A,B) is said to be complete if every R-module admits
a special A-precover, while it is said to be perfect if A is a cover class and B is an
envelope class. In [12, Theorem 10] it is shown that a cotorsion theory cogenerated
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by a set of modules is complete; moreover, as a consequence of [13, Corollary 10] it
follows that the cotorsion theory generated by a class of pure-injective modules is
perfect. Thus, as a corollary of Theorem 2.8, we obtain that if U is a cotilting R-
module, then the cotorsion theory generated by U is perfect; in particular CogenU
is a cover class. We could get the same conclusion by using a result proved in [1].
In fact, we can state the following.

Proposition 3.1. Let F be a class of modules closed under products and submod-
ules. The following conditions are equivalent:

1. F is a cotilting torsion-free class;
2. every module has a special F-precover;
3. F is a cover class containing all projective modules and closed under ex-

tensions.

Proof. The equivalence 1⇔ 2 is proved in [1, Theorem 2.5].
1 ⇒ 3. Assume F is a cotilting torsion-free class; then by Theorem 2.8, F is

closed under direct limits. In fact, let U be a cotilting module such that F = ⊥U
and let {Ni}i∈I be a direct system of modules in F . The exact sequence

0→ B →
⊕
i

Ni → lim
→
Ni → 0

is pure exact. We have Ext1
R(
⊕

iNi, U) = 0, since Ni ∈ F . Thus, Ext1
R(lim
→
Ni, U)

= 0, since U is pure-injective. By [26, Theorem 2.2.8] and by the implication 1⇒ 2,
F is a cover class. Clearly F contains the projective modules and is closed under
extensions.

3 ⇒ 2. By the hypotheses and by [26, Lemma 2.1], any F -cover is a special
F -precover. �

Remark 1. In [22] it is proved that a cotilting module is pure-injective if and only
if ⊥U is closed under direct limits. The necessity is obtained arguing in the same
way as in the proof of the preceding proposition. For the other implication an
alternative easy proof could be given by noting that Uγ

U(γ) is isomorphic to the
direct limit lim

→
Uγ

UF where F vary among the finite subsets of γ. Thus, Uγ

U(γ) ∈ ⊥U ,
since it is a direct limit of products of copies of U and the conclusion follows by
Corollary 2.2.

Theorem 2.8 can also be applied to obtain other interesting properties of the
class ⊥U , for U a cotilting R-module. Recall that a class X of R-modules is said
to be definable if there exists a family of coherent functors {Fi}i∈I such that an
R-module M is in X if and only if Fi(M) = 0 for every i ∈ I. In [11] it is proved
that a class X is definable if and only if X is closed under direct limits, pure
submodules and direct products. If U is a cotilting R-module, then ⊥U is clearly
a torsion-free class and, as a consequence of Theorem 2.8, we obtain that it is also
closed under direct limits; so it is a definable class. Moreover, in [6] it is shown that
the equivalence classes of pure-injective cotilting modules form a set, thus now we
have that this result holds without the assumption of pure-injectivity. The next
proposition summarizes the above observations.

Proposition 3.2. Let U be a cotilting module over a associative ring R. Then ⊥U
is a definable class and the equivalence classes of R-cotilting modules form a set.
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1. L. Angeleri Hügel, A. Tonolo, J. Trlifaj, Tilting preenvelopes and cotilting precovers, Algebr.
Represent. Theory 4 (2001), 155–170. MR 2002e:16010

2. M. Auslander, I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86
(1991), 111–152. MR 92e:16009

3. M. Auslander, S. Smalø, Preprojective modules over Artin algebras, J. Algebra 66 (1980),
61–122. MR 83a:16039

4. L. Bican, R. El Bashir and E. Enochs, All modules have flat covers, Bull. London Math. Soc.
33, no. 4 (2001), 385–390. MR 2002e:16002

5. S. Brenner, M. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection func-
tors, in Proc. ICRA III LNM 832, Springer (1980), 103–169. MR 83e:16031

6. A. B. Buan, H. Krause, Ø. Solberg, On the lattice of cotilting modules, AMA Algebra Montp.
Announc., 1 (2002), 6pp.

7. R. R. Colby, K. R. Fuller, Tilting, cotilting and serially tilted rings, Comm. Algebra 18(5)
(1990), 1585–1615. MR 91h:16011

8. R. Colpi, Tilting modules and *-modules, Comm. Algebra 21 (1993), 1095–1102. MR
94d:16009

9. R. Colpi, A. Tonolo, J. Trlifaj, Partial cotilting modules and the lattices induced by them,
Comm. Algebra 25(10) (1997), 3225–3237. MR 98i:16003

10. R. Colpi, J. Trlifaj, Tilting modules and tilting torsion theories, J. Algebra 178 (1995), 492–
510. MR 97e:16003

11. W. W. Crawley-Boevey, Infinite-dimensional modules in the representation theory of finite-
dimensional algebras, Algebras and modules, I (Trondheim, 1996), 29–54. MR 99m:16016

12. P. C. Eklof and J. Trlifaj, How to make Ext vanish, Bull. London Math. Soc. 33 (2001), 41–51.
MR 2001i:16015

13. P. C. Eklof, J. Trlifaj, Covers induced by Ext, J. Algebra 231 (2000), 640–651. MR
2001f:16021

14. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981),
33–38. MR 83a:16031
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