The Group of Autoprojectivities of the Finite Coxeter Groups

Mauro Costantini
Dipartimento di matematica pura ed applicata, Università di Padova, via Belzoni 7, 35131 Padova, Italy
E-mail: costantini@math.unipd.it
Communicated by Walter Feit

Received June 8, 2000

INTRODUCTION

Let G be a group. We denote by $P(G)$ the group autoprojectives of G, that is, the group of automorphisms of the subgroup lattice $l(G)$ of G. In [1] we studied the group $P(W)$ for a finite irreducible Coxeter group W. The purpose of the present paper is to relax the irreducibility condition, that is, to give a description of the autoprojectivities of W for any finite Coxeter group W.

In [1] we showed that the natural homomorphism Aut $W \rightarrow P(W)$ is injective and, after identifying Aut W with its image $P A(W)$ in $P(W)$, that the group $P(W)$ is a product of two permutable subgroups, $P(W)=$ R Aut W, with $R \cap$ Aut $W=1$.

The present paper is divided into three sections. In Section 1 we give the notion of exceptional prime for a finite Coxeter group W (cf. Definition 1.4) and show that if W has no exceptional primes then $R=\{1\}$ (Proposition 1.7). In Section 2 we obtain our main result: if W is a finite Coxeter group, then every autoprojectivity of W is induced by a (unique) automorphism if and only if W has no exceptional primes (Theorem 2.16). We therefore obtain the complete list of the finite Coxeter groups for which $P(W)=$ Aut W :
(1) W cyclic of order 2 ,
(2) W dihedral of order $2 n$, with $n=2,4,6$, or 12 ,
(3) W irreducible of rank at least 3 ,
(4) W reducible with no exceptional primes.

Finally we give the list of the finite Coxeter groups which are strongly lattice determined:
(a) W dihedral of order $2 n$, with $n=2,4,6$, or 12 ,
(b) W irreducible of rank at least 3,
(c) W reducible with no exceptional primes.

In Section 3 we determine the structure of the group R in presence of exceptional primes.

Our notation is standard, relying essentially on [1, 5]. If $X \leq Y \leq G$, [Y / X] denotes the relative subgroup interval. If $X \unlhd Y$, we identify $[Y / X]$ and $l(Y / X) . p$ always denotes a prime number. R_{δ} is the ring $\mathbb{Z} / p^{\delta} \mathbb{Z}$. $\mathscr{U}(A)$ is the group of units of the ring A. Sym X denotes the group of permutations on a set $X ; S_{k}$ is the symmetric group on k objects.
$\operatorname{PR}(X)$ is the group of automorphisms of the partially ordered set of cosets $S(X)$ of the group X.
All groups are assumed to be finite.

1. COXETER GROUPS

Let W be a (finite) Coxeter group with given Coxeter generating set S (for the definitions cf. [1,5]). The pair (W, S) is called a Coxeter system. To (W, S) there is associated the Coxeter graph, and (W, S) is irreducible if the Coxeter graph is connected, reducible otherwise. In general let S_{1}, \ldots, S_{t} be the subsets of S corresponding to the connected components of the Coxeter graph. Then W is the direct product of the parabolic subgroups $W_{S_{i}}$ and each Coxeter system ($W_{S_{i}}, S_{i}$) is irreducible. The $W_{S_{i}}$'s are the irreducible components of W.

We fix a Coxeter group W, with Coxeter generating set S, and consider W as a finite reflection group by means of the geometric representation of W. We get the root system Φ, and a fixed simple system $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, so that each $s_{i} \in S$ is the reflection relative to the vector α_{i}. By 1.1 in [1], the natural homomorphism Aut $W \rightarrow P(W)$ is injective. This allows us to identify Aut W with its image $P A(W)$ in $P(W)$ to obtain Aut $W \leq I(W) \leq$ $P(W)$, where $I(W)$ denotes the group of index-preserving autoprojectivities of W. We introduced the group

$$
R_{S}(W)=\left\{\varphi \in I(W) \mid\langle s\rangle^{\varphi}=\langle s\rangle \text { for every } s \in S\right\}
$$

and proved that

$$
I(W)=R_{S}(W) \text { Aut } W, \quad R_{S}(W) \cap \text { Aut } W=\{1\} .
$$

The complement $R_{S}(W)$ of Aut W in $I(W)$ depends on the chosen Coxeter generating set. However, we shall always keep S fixed and write $R(W)$ for $R_{S}(W)$.

We recall some results from [1]. Every autoprojectivity of W is indexpreserving if and only if W is not dihedral of order $2 p, p$ an odd prime (Proposition 1.9). In particular we get

$$
\begin{equation*}
P(W)=I(W)=R(W) \text { Aut } W \tag{1.1}
\end{equation*}
$$

if W is reducible. We shall call $R(W)$ the group of exceptional autoprojectivities of W.

$$
\begin{equation*}
\text { Let } W \text { be irreducible. Then } R(W) \neq\{1\} \text { if and only if } W \text { is } \tag{1.2}
\end{equation*}
$$ dihedral of order $2 n$, with $n \neq 2,4,3,6$, or 12 (Theorem 4.6).

From now on we assume W is reducible. Then $S=S_{1} \cup \cdots \cup S_{t}, t \geq 2$, $W=W_{1} \times \cdots \times W_{t}$, where the $W_{i}:=W_{S_{i}}$ are the irreducible components of W. Let γ be in $R(W)$ and let i be in $\{1, \ldots, t\}$. Then γ fixes W_{i} and it induces the autoprojectivity γ_{i} of W_{i} which, by definition, lies in $R\left(W_{i}\right)$ (which by our convention is $R_{S_{i}}\left(W_{i}\right)$). We put

$$
\pi: R(W) \rightarrow R\left(W_{1}\right) \times \cdots \times R\left(W_{t}\right), \quad \gamma \mapsto\left(\gamma_{1}, \ldots, \gamma_{t}\right) .
$$

Proposition 1.1. π is injective.

Proof. Assume $\gamma \in \operatorname{ker} \pi$. Let Φ_{i} be the set of roots of W_{i}. In particular we get $\left\langle s_{\alpha}\right\rangle^{\gamma_{i}}=\left\langle s_{\alpha}\right\rangle$ for every $\alpha \in \Phi_{i}$. But then we have $\left\langle s_{\alpha}\right\rangle^{\gamma}=\left\langle s_{\alpha}\right\rangle$ for every $\alpha \in \phi$ since $\Phi=\Phi_{1} \cup \cdots \cup \Phi_{t}$. Hence $\gamma=1$ by 1.5 in [1]. 】

By 1.1 and (1.2) we are left to study the case when at least one of the W_{i} 's is dihedral. For this purpose, we recall the structure of the group of index-preserving autoprojectivities of dihedral groups [1, Sect. 3] and give an alternative way to describe this group as a permutation group.

Let $D_{2 n}$ be the dihedral group of order $2 n, D_{2 n}=\langle\sigma, \rho\rangle$, with ρ of order n. We consider the Coxeter generating set $\{\sigma, \sigma \rho\}$. Let k be in \mathbb{Z}, $k \geq 2$. We put

$$
T_{k}=\left\{\delta \in S_{k} \mid L \in S(\mathbb{Z} / k \mathbb{Z}) \quad \Leftrightarrow \quad L^{\delta} \in S(\mathbb{Z} / k \mathbb{Z})\right\} .
$$

Therefore T_{k} is isomorphic to the group $P R(\mathbb{Z} / k \mathbb{Z})$. There is a monomorphism $\Delta_{n}: T_{n} \rightarrow I\left(D_{2 n}\right)$ such that for $c \in T_{n}, c \Delta_{n}$ is the unique autoprojectivity of $D_{2 n}$ such that $\left\langle\sigma \rho^{a}\right\rangle^{c \Delta_{n}}=\left\langle\sigma \rho^{a c}\right\rangle$ for every $a \in \mathbb{Z} / n \mathbb{Z} . \Delta_{n}$ is an isomorphism if $n \neq 2$ [1, 3.4]. If $n=p_{1}^{m_{1}} \cdots p_{r}^{m_{r}}$ for distinct primes
p_{1}, \ldots, p_{r}, then $T_{n} \cong T_{p_{1}^{m_{1}}} \times \cdots \times T_{p_{r}^{m_{r}}}$, and each $T_{p^{m}}$ is a permutational wreath product. We put

$$
\Gamma_{k}=\left\{\delta \in T_{k} \mid 0 \delta=0,1 \delta=1\right\} .
$$

Then restricting Δ_{k} to Γ_{k} gives rise to an isomorphism from Γ_{n} to $R\left(D_{2 n}\right)$. This last isomorphism holds also for $n=2$.
From the above discussion we get

$$
\begin{equation*}
\Gamma_{n}=1 \quad \Leftrightarrow \quad n=2,4,3,6, \text { or } 12 \tag{1.3}
\end{equation*}
$$

Remark 1.1. For each $i=1, \ldots, t$, let $\mathscr{D}_{i}=\left\{H_{i, 0}, \ldots, H_{i, p_{i}^{m_{i}-1}}\right\}$ be the set of dihedral subgroups of W of order $2 n / p_{i}^{m_{i}}$. We choose the notation so that $H_{i, k}=\left\langle\rho^{p_{i}^{m_{i}}}, \sigma \rho^{k}\right\rangle$. If φ is in $I\left(D_{2 n}\right)$, then φ induces a permutation on each set \mathscr{D}_{i}. The homomorphism of $I\left(D_{2 n}\right)$ into $S_{p_{1}^{m_{1}}} \times \cdots \times S_{p_{i}^{m_{r}}}$ we get is clearly injective. Let $I_{i}\left(D_{2 n}\right)$ be the subgroup of elements in $I\left(D_{2 n}\right)$ fixing every dihedral subgroup of order $2 n / p_{j}^{m_{j}}, j \neq i$. Then $I_{i}\left(D_{2 n}\right)$ is isomorphic to the group of permutations of \mathscr{D}_{i} induced by $I\left(D_{2 n}\right)$, and this group is precisely $T_{p_{i}^{m_{i}}}$. In particular $I\left(D_{2 n}\right)=I_{1}\left(D_{2 n}\right) \times \cdots \times I_{t}\left(D_{2 n}\right)$. If we denote by $R_{i}\left(D_{2 n}\right)$ the subgroup $\left\{\gamma \in I_{i}\left(D_{2 n}\right) \mid H_{i, 0}^{\gamma}=H_{i, 0}, H_{i, 1}^{\gamma}=\right.$ $\left.H_{i, 1}\right\}$, we get $R\left(D_{2 n}\right)=R_{1}\left(D_{2 n}\right) \times \cdots \times R_{r}\left(D_{2 n}\right)$, with $R_{i}\left(D_{2 n}\right) \stackrel{ }{\cong} \Gamma_{p_{i}^{m_{i}}}$.

Dually, for each i let $K_{i}=\left\langle\rho^{n / p_{i}^{m_{i}}}, \sigma\right\rangle$. Suppose η lies in $I_{i}\left(D_{2 n}\right)$. Then η fixes K_{i}, and it induces the autoprojectivity $\tilde{\eta}$ of it. Since for each involution $\sigma \rho^{a}$ in K_{i} there exists a unique j such that $H_{i, j} \cap K_{i}=\left\langle\sigma \rho^{a}\right\rangle$ and, for each $k, H_{i, k} \cap K_{i}=\left\langle\sigma \rho^{b}\right\rangle$ for some b, the permutation of \mathscr{D}_{i} induced by η is completely determined by $\tilde{\eta}$, and vice versa. Therefore the $\operatorname{map} I_{1}\left(D_{2 n}\right) \times \cdots \times I_{t}\left(D_{2 n}\right) \rightarrow I\left(K_{1}\right) \times \cdots \times I\left(K_{t}\right)$ is an isomorphism. For each i let $R\left(K_{i}\right)$ be the group of exceptional autoprojectivities of K_{i} with respect to the Coxeter system $\left\{\sigma, \sigma \rho^{b}\right\}$ where $H_{i, 1} \cap K_{i}=\left\langle\sigma \rho^{b}\right\rangle$. Then $R\left(D_{2 n}\right) \rightarrow R\left(K_{1}\right) \times \cdots \times R\left(K_{t}\right)$ is an isomorphism and $R\left(K_{i}\right) \cong \Gamma_{p_{i}^{m_{i}}}$.

Proposition 1.2. Let $n=p^{\alpha} m,(p, m)=1$ and let γ be in $R\left(D_{2 n}\right)$. If $p^{\alpha} \leq 4$, then γ induces the identity on $\left\langle\sigma, \rho^{m}\right\rangle$.

Proof. It is equivalent to prove that $\Gamma_{p^{\alpha}}=1$. This comes from (1.3).
To continue the study of the reducible case in presence of dihedral components, we give some definitions.

Definition 1.3. Let X be a finite group, and let p be a prime. We define $v_{p}(X)$ in the following way. If p is odd, $p^{v_{p}(X)}$ is the p-exponent of X. If $p=2$ then $2^{v_{2}(X)}$ is the 2-exponent of X if X has elements of order 4. Otherwise $v_{2}(X)$ is 1 if X contains the Klein four group, and is 0 in the remaining case.

Definition 1.4. Let W be a finite Coxeter group. Suppose W has dihedral components and write $W=D_{2 n_{1}} \times \cdots \times D_{2 n_{r}} \times Z$, where Z has
no dihedral components. Let p be a prime, and let $p^{\alpha(p)}$ be the maximal power of p dividing at least one of the n_{k} 's. We say that p is exceptional if the following conditions hold:
(i) $p^{\alpha(p)} \geq 5$;
(ii) there exists a unique i such that $p^{\alpha(p)}$ divides $i=i(p)$, and Z has no element of order $p^{\alpha(p)}$.

Our aim is to show that $R(W)=1$ if and only if W has no exceptional primes. We shall use the following result by Schmidt concerning projectivities of products of dihedral groups.

Lemma 1.5. Let A, B be isomorphic dihedral groups. Then every projectivity of $A \times B$ onto a group C is induced by a unique isomorphism.

Proof. See [6, Lemma 3]. 【
Suppose for the moment $W=D_{2 n} \times G, G$ any finite Coxeter group.
Lemma 1.6. Let $n=p^{\alpha} m,(p, m)=1$, and let γ be in $R\left(D_{2 n} \times G\right)$. If G has elements of order p^{α}, then γ induces the identity on $\left\langle\sigma, \rho^{m}\right\rangle$.

Proof. Let $A=D_{2 n}=\langle\sigma, \rho\rangle$. If $p^{\alpha} \leq 4$ we are done by 1.2. So assume $p^{\alpha} \geq 5$. Let g be an element of order p^{α} in G, and let τ an involution in G such that $\tau g \tau=g^{-1}$. Let $B_{0}=\left\langle\sigma, \rho^{p^{\alpha}}\right\rangle, B_{1}=\left\langle\sigma \rho, \rho^{p^{\alpha}}\right\rangle$, and $A_{0}=\left\langle\sigma, \rho^{m}\right\rangle$. By 1.5 applied to $A_{0} \times\langle\tau, g\rangle$, there exists an automorphism of A_{0} inducing γ on A_{0}. But A_{0} is generated by two involutions fixed by this automorphism, namely the one in $A_{0} \cap B_{0}$ and the one in $A_{0} \cap B_{1}$, and we are done.

Proposition 1.7. Let W be reducible. If W has no exceptional primes, then every autoprojectivity of W is induced by an automorphism.

Proof. If W has no dihedral component we know that $R(W)=1$. So assume $W=D_{2 n_{1}} \times \cdots \times D_{2 n_{r}} \times Z$, where Z has no dihedral components. Let $\eta \in R(W)$. We show that η is the identity on each $D_{2 n_{i}}$. Let us fix i, and denote by γ the restriction of η to $D_{2 n_{i}}$. Write $W=D_{2 n_{i}} \times G$. Let q be a prime divisor of n_{i}, and let q^{α} be the maximal power of q dividing n_{i}. It is enough to show that γ fixes every dihedral subgroup of order $2 n_{i} / q^{\alpha}$ of $D_{2 n_{r}}$. If $q^{\alpha} \leq 4$ we are done by 1.2 . So assume $q^{\alpha} \geq 5$. Then $q^{\alpha(q)} \geq 5$, so that there exists an element of order q^{α} in G, since W has no exceptional prime. We conclude by 1.6.

2. THE MAIN RESULT

In this section we shall show that if W has exceptional primes, then $R(W)$ is not trivial. We introduce some notation.

Definition 2.1. Let p be a prime α, β non-negative integers such that $\alpha \geq \beta$. We denote by $\Theta_{p, \alpha, \beta}$ the group of exceptional autoprojectivities of $D_{2 p^{\alpha}}$ which can be extended to exceptional autoprojectivities of $D_{2 p^{\alpha}} \times$ $D_{2 p^{\beta}}$.

By abuse of notation we consider dihedral also the cyclic group of order 2. We observe that, by 1.1 and Schmidt's result, the restriction map $R\left(D_{2 p^{\alpha}} \times D_{2 p^{\beta}}\right) \rightarrow \Theta_{p, \alpha, \beta}$ is an isomorphism and $\Theta_{p, \alpha, \alpha}=1$.

We now assume $W=D_{2 n_{1}} \times \cdots \times D_{2 n_{r}} \times Z$, where Z has no dihedral component, W with exceptional primes p_{1}, \ldots, p_{h}. For each $i=1, \ldots, r$, let $D_{2 n_{i}}=\left\langle\sigma_{i}, \rho_{i}\right\rangle$. Let p be an exceptional prime, and let $i=i(p)$. We put $M_{p}:=\left\langle\sigma_{i}, \rho_{i}^{n_{i} / p^{\alpha(p)}}\right\rangle$. We denote by μ_{p} the restriction map $R(W) \rightarrow$ $R\left(M_{p}\right)$, and we put

$$
\mu: R(W) \rightarrow R\left(M_{p_{1}}\right) \times \cdots \times R\left(M_{p_{h}}\right), \quad \gamma \mapsto\left(\gamma \mu_{p_{1}}, \ldots, \gamma \mu_{p_{h}}\right) .
$$

It is clear that μ is injective. We shall determine its image.
Definition 2.2. With the previous notation we put $\beta(p)=$ $v_{p}\left(W / D_{2 n_{i(p)}}\right)$.

Note that if p is an exceptional prime, then $\beta(p)<\alpha(p)$.
Proposition 2.3. For every exceptional prime p we have $\operatorname{Im} \mu_{p} \leq$ $\Theta_{p, \alpha(p), \beta(p)}$.

Proof. Let $i=i(p), \alpha=\alpha(p), \beta=\beta(p)$, and write $W=D_{2 n_{i}} \times G$. It is enough to show that there exists a dihedral subgroup D of G of order $2 p^{\beta}$ fixed by every $\gamma \in R(W)$. For then, given $\gamma \in R(W), \gamma$ induces an element of $R\left(M_{p} \times D\right)$, so that $\gamma \mu_{p} \in \Theta_{p, \alpha, \beta}$.

Suppose p is odd, or $p=2$ with $\beta \geq 2$. Let X be an irreducible component of G containing an element ρ of order p^{β}. We can choose an involution $\tau \in X$ such that $\tau \rho \tau=\rho^{-1}$ and such that each $\gamma \in R(W)$ induces the identity on $\langle\tau, \rho\rangle$. We take $D=\langle\tau, \rho\rangle$.

Finally suppose $p=2$. If $\beta=0$. Then we take $D=\langle\tau\rangle$, where τ is a Coxeter generator of W not in $D_{2 n_{i}}$. If $\beta=1$ there are two commuting involutions τ, τ^{\prime} in G such that $\left\langle\tau, \tau^{\prime}\right\rangle^{\gamma}=\left\langle\tau, \tau^{\prime}\right\rangle$ for every $\gamma \in R(W)$. In fact, if G has at least two irreducible components we take τ a simple reflection in one component and τ^{\prime} a simple reflection in another. If G is irreducible, then it contains by hypothesis the Klein group V. If G is not dihedral then any copy of V in G can be taken for D. If G is dihedral, it has order $4 m$ with m odd. If $G=\langle\tau, \rho\rangle$, with ρ of order $2 m$ and Coxeter generators $\tau, \tau \rho$, we can take $\tau^{\prime}=\rho^{m}$.

In particular we get

$$
\begin{equation*}
\operatorname{Im} \mu \leq \Theta_{p_{1}, \alpha\left(p_{1}\right), \beta\left(p_{1}\right)} \times \cdots \times \Theta_{p_{h}, \alpha\left(p_{h}\right), \beta\left(p_{h}\right)} . \tag{2.1}
\end{equation*}
$$

We shall prove that in fact equality holds. We first determine some properties of $\Theta_{p, \alpha, \beta}$.

Let $\gamma \in \Theta_{p, \alpha, \beta}$. For simplicity we write $D_{2 p^{\alpha}}=A=\langle\sigma, \varphi\rangle, D_{2 p^{\beta}}=B$ $=\langle\tau, \rho\rangle$. We still denote by γ the unique element of $R(A \times B)$ inducing γ on A, and the element of $\Gamma_{p^{\alpha}}$ such that $\left\langle\sigma \varphi^{a}\right\rangle^{\gamma}=\left\langle\sigma \varphi^{a \gamma}\right\rangle$ for every $a \in R_{\alpha}$.

Lemma 2.4. Let X be a dihedral group generated by the involutions x, y. If ψ is an index-preserving projectivity of X onto a group \bar{X}, and $\langle x\rangle^{\psi}=\langle\bar{x}\rangle$, $\langle y\rangle^{\psi}=\langle\bar{y}\rangle$, then $\langle x y\rangle^{\psi}=\langle\bar{x} \bar{y}\rangle$.

Proof. See [6, 7.7.1].
Proposition 2.5. Let γ be in $\Theta_{p, \alpha, \beta}$. Then we have

$$
\left\langle\sigma \varphi^{a} \tau \rho^{b}\right\rangle^{\gamma}=\left\langle\sigma \varphi^{a \gamma} \tau \rho^{b}\right\rangle \quad \text { and } \quad\left\langle\varphi^{a} \rho^{b}\right\rangle^{\gamma}=\left\langle\varphi^{a \gamma} \gamma^{b}\right\rangle
$$

for every $a \in R_{\alpha}, b \in R_{\beta}$.
Proof. By 1.5γ induces the identity on B. From $\left\langle\sigma \varphi^{a}\right\rangle^{\gamma}=\left\langle\sigma \varphi^{a \gamma}\right\rangle$, $\left\langle\tau \rho^{b}\right\rangle=\left\langle\tau \rho^{b}\right\rangle$, and 2.4, it follows that $\left\langle\sigma \varphi^{a} \tau \rho^{b}\right\rangle^{\gamma}=\left\langle\sigma \varphi^{a \gamma} \tau \rho^{b}\right\rangle$. Moreover $\left\langle\sigma \tau, \varphi^{a} \rho^{b}\right\rangle^{\gamma}=\left\langle\sigma \tau, \sigma \varphi^{a} \tau \rho^{b}\right\rangle^{\gamma}=\left\langle\sigma \tau, \sigma \varphi^{a \gamma} \tau \rho^{b}\right\rangle=\left\langle\sigma \tau, \varphi^{a \gamma} \rho^{b}\right\rangle$, so that $\left\langle\varphi^{a} \rho^{b}\right\rangle=\left\langle\varphi^{a \gamma} \rho^{b}\right\rangle$.
In the next proposition we establish a crucial property of the group $\Theta_{p, \alpha, \beta}$.

Proposition 2.6. Let $\gamma \in \Theta_{p, \alpha, \beta}, a, b \in R_{\alpha}$. If $a \equiv b \quad p^{t} R_{\alpha}$ for some $t \leq \alpha-\beta$, then

$$
(b-a) \gamma \equiv b \gamma-a \gamma \quad p^{t+\beta} R_{\alpha} .
$$

Proof. Let $X=\left\langle\sigma \varphi^{a} \tau, \varphi^{b-a} \rho\right\rangle$. By 2.4, $\sigma \varphi^{a \gamma} \tau, \varphi^{(b-a) \gamma} \rho$ and $\sigma \varphi^{b \gamma} \tau \rho$ lie in X^{γ}. Hence $\varphi^{(b-a) \gamma+a \gamma-b \gamma}=\sigma \varphi^{b \gamma} \tau \rho \sigma \varphi^{a \gamma} \tau \varphi^{(b-a) \gamma}$ lies in $X^{\gamma} \cap\langle\varphi\rangle=$ $(X \cap\langle\varphi\rangle)^{\gamma}=X \cap\langle\varphi\rangle=\left\langle\left(\varphi^{(b-a)} \rho\right)^{p^{\beta}}\right\rangle$. We get $(b-a) \gamma \equiv b \gamma-$ $a \gamma \quad p^{t+\beta} R_{\alpha}$.

Definition 2.7. Assume $\alpha \geq \beta \geq 0$. We say that an element $\sigma \in S_{p^{\alpha}}$ satisfies (*) if

$$
(b-a) \sigma \equiv b \sigma-a \sigma \quad p^{t+\beta} R_{\alpha}
$$

whenever $b \equiv a \quad p^{t} R_{\alpha}$ for some $t \leq \alpha-\beta$.

For every prime p and every pair of non-negative integers (α, β) with $\alpha \geq \beta$ we introduce the group

$$
\begin{equation*}
\Gamma_{p, \alpha, \beta}=\left\{\varepsilon \in \Gamma_{p^{\alpha}} \mid \varepsilon \text { satisfies }(*)\right\} . \tag{2.2}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
\Gamma_{p^{\alpha}}=\Gamma_{p, \alpha, 0} \geq \Gamma_{p, \alpha, 1} \geq \cdots \geq \Gamma_{p, \alpha, \alpha}=1 . \tag{2.3}
\end{equation*}
$$

In the special case $p=2$ we have
Proposition 2.8. $\Gamma_{2, \alpha, 1}=\Gamma_{2, \alpha, 0}$.
Proof. Let $\gamma \in \Gamma_{2^{\alpha}}$. Let $a, b \in R_{\alpha}$ be such that $a \equiv b \quad 2^{t} R_{\alpha}$ for some $t \leq \alpha-1$, but $a \neq b \quad 2^{t+1} R_{\alpha}$. Since γ is an automorphism of $S\left(R_{\alpha}\right)$ fixing every subgroup, there exist odd integers k, k^{\prime} such that $(b-a) \gamma=$ $k 2^{t}$ and $b \gamma=a \gamma+k^{\prime} 2^{t}$. Then $(b-a) \gamma \equiv b \gamma-a \gamma \quad 2^{t+1} R_{\alpha}$.

From 2.4 we get $\Theta_{p, \alpha, \beta} \leq \Gamma_{p, \alpha, \beta}^{\Delta_{p},}$. Our aim is to prove that equality holds. This will be a corollary of a more general result. Suppose $D=$ $D_{2 p^{\alpha} m}=\langle\sigma, \varphi\rangle$ with $\alpha \geq 1,(p, m)=1$, and let $A=\left\langle\sigma, \varphi^{m}\right\rangle$. Then for every $\varepsilon \in \Gamma_{p^{\alpha}}$ there exists a unique element $\gamma_{\varepsilon} \in R(D)$ fixing the dihedral subgroups of order $2 p^{\alpha}$ of D and inducing ε on A. We call γ_{ε} the element of $\Gamma_{p^{\alpha_{m}}}$ induced by ε.

Lemma 2.9. Let $\varepsilon \in \Gamma_{p, \alpha, \beta}$, and let γ_{ε} be the element of $\Gamma_{p^{a} m}$ induced by ε. Then we have

$$
(b-a) \gamma_{\varepsilon} \equiv b \gamma_{\varepsilon}-a \gamma_{\varepsilon} \quad p^{t+\beta} m \mathbb{Z} / p^{\alpha} m \mathbb{Z}
$$

if $a \equiv b \quad p^{t} \mathbb{Z} / p^{\alpha} m \mathbb{Z}$ for some $t \leq \beta-\alpha$.
Proof. Straightforward.
The next proposition is the key step in our construction.
Proposition 2.10. Let $W=D \times G$, where $D=D_{2 p^{\alpha} m}, \alpha \geq 1,(p, m)$ $=1$, and G is a Coxeter group with $v_{p}(G)=\beta<\alpha$. Let $\varepsilon \in \Gamma_{p, \alpha, \beta}$. Then γ_{ε} can be uniquely extended to an element of $R(W)$ inducing the identity on G.

Proof. We write $\gamma=\gamma_{\varepsilon}, D=\langle\sigma, \varphi\rangle$. We define a bijection $\omega: W \rightarrow W$ by

$$
\left(\varphi^{a} g\right) \omega=\varphi^{a \gamma} g, \quad\left(\sigma \varphi^{a} g\right) \omega=\sigma \varphi^{a \gamma} g
$$

for every $a \in \mathbb{Z} / p^{\alpha} m \mathbb{Z}, g \in G$.
We prove that ω induces an autoprojectivity of W. Let $X \leq W$. We have to show that $X^{\omega} \leq W$. Now $1=\varphi^{0}=\varphi^{0 \gamma}$ is in X^{ω}. To conclude we have to consider various cases. We first prove a lemma.

Lemma 2.11. Let $d \in p^{t} \mathbb{Z} \backslash p^{t+1} \mathbb{Z}$ for some $t<\alpha-\beta$. If $\varphi^{d} g$ is in X for some $g \in G$, then $\varphi^{m p^{p+\beta}}$ lies in X unless $p=2$ and $\beta=0$. In this case $\varphi^{m 2^{2+1}}$ lies in X.

Proof. It is clear that there exists a p-element $x \in G$ such that $\varphi^{m p^{t}} x_{x}$ lies $\operatorname{in}^{t+\beta} X$. If p is odd, or if $p=2$ and $\beta \geq 1$, then $v_{p}(G)=\beta$ means that $\varphi^{m p^{t+\beta}}$ is in X. Finally suppose $p=2$ and $\beta=0$. Then $\varphi^{m 2^{i+1}}=\left(\varphi^{m 2^{t}} x\right)^{2}$ is in X.

We can now complete the proof of 2.10. Let x, y be in X^{ω}. We prove that $x^{-1} y \in X^{\omega}$. We have to consider four cases.

$$
\left(a_{1}\right)(x, y)=\left(\varphi^{a \gamma} g, \varphi^{b \gamma} g^{\prime}\right) .
$$

We show there exists an element c such that $\varphi^{c} g^{-1} g^{\prime} \in X$ and $c \gamma=b \gamma-$ $a \gamma$. Let $\left\langle\varphi^{b-a}\right\rangle=\left\langle\varphi^{m^{\prime} p^{t}}\right\rangle$, with $m^{\prime} \mid m$. If $t \geq \alpha-\beta$ we get $(b-a) \gamma=$ $b \gamma-a \gamma$ and we can take $c=b-a$. Now assume $t<\alpha-\beta$, and let $b \gamma-a \gamma=(b-a) \gamma+s m p^{t+\beta}$. Suppose p is odd, or $p=2$ and $\beta \geq 1$. Let s^{\prime} be such that $\left(b-a+s^{\prime} m p^{t+\beta}\right) \gamma=(b-a) \gamma+m s p^{t+\beta}$, and let $c=b$ $-a+s^{\prime} m p^{t+\beta}$. Then $c \gamma=b \gamma-a \gamma$, and $\varphi^{c} g^{-1} g^{\prime}=\varphi^{b-a} g^{-1} g^{\prime} \varphi^{s^{\prime} m p^{t+\beta}}$ $\in X$ by 2.11.

If $p=2$ and $\beta=0$, then $\varepsilon \in \Gamma_{2, \alpha, 1}$ by 2.8 , so that $b \gamma-a \gamma=(b-a) \gamma$ $+s m 2^{t+1}$ for some s. Let s^{\prime} be such that $\left(b-a+s^{\prime} m 2^{t+1}\right) \gamma=(b-a) \gamma$ $+m s 2^{t+1}$, and let $c=b-a+s^{\prime} m 2^{t+1}$. Then $c \gamma=b \gamma-a \gamma$, and $\varphi^{c} g^{-1} g^{\prime}=\varphi^{b-a} g^{-1} g^{\prime} \varphi^{s^{\prime} m 2^{t+1}} \in X$ by 2.11 and we are done.

$$
\left(\mathrm{a}_{2}\right)(x, y)=\left(\sigma \varphi^{a \gamma} g, \varphi^{b \gamma} g^{\prime}\right) .
$$

We show there exists an element c such that $\sigma \varphi^{c} g^{-1} g^{\prime} \in X$ and $c \gamma=a \gamma$ $+b \gamma$. Let $\left\langle\varphi^{b}\right\rangle=\left\langle\varphi^{m^{\prime} p^{\prime}}\right\rangle$, with $m^{\prime} \mid m$. If $t \geq \alpha-\beta$ we can take $c=a$ $+b$. Now assume $t<\alpha-\beta$. Let s be such that $a \gamma+b \gamma=(a+b) \gamma+$ $s m p^{t+\beta}$. Then we conclude as in case $\left(\mathrm{a}_{1}\right)$.

The remaining two cases are dealt with in a similar way. Note that the same procedure applies to ε^{-1}, so that we have proved that ω induces an autoprojectivity, that we still call ω, of W. It is clear from the definition that ω induces the identity on G and that it lies in $R(W)$. Uniqueness follows from the fact that any exceptional autoprojectivity of W is determined by its action on D and G.
Definition 2.12. With the previous notation, we denote by ι_{p} the monomorphism $\Gamma_{p, \alpha, \beta} \rightarrow R(W)$ sending an element ε of $\Gamma_{p, \alpha, \beta}$ to the unique element of $R(W)$ inducing γ_{ε} on D and the identity on G.

Proposition 2.13. $\quad \Theta_{p, \alpha, \beta} \cong \Gamma_{p, \alpha, \beta}$.
Proof. We already know that $\Theta_{p, \alpha, \beta} \leq \Gamma_{p, \alpha, \beta}^{\Delta_{p, \beta}}$. On the other hand, if we take $W=D_{2 p^{\alpha}} \times D_{2 p^{\beta}}$, then given $\varepsilon \in \Gamma_{p, \alpha, \beta}$ we get $\varepsilon \Delta_{p^{\alpha}}=\varepsilon \iota_{p} \mu_{p} \in$ $\Theta_{p, \alpha, \beta}$. Hence $\Theta_{p, \alpha, \beta}=\Gamma_{p, \alpha, \beta}^{\Delta_{p},}$.

We can finally prove
Theorem 2.14. Let W be a finite reduced Coxeter group with exceptional primes p_{1}, \ldots, p_{h}. Then $R(W)$ is isomorphic to $\Gamma_{p_{1}, \alpha\left(p_{1}\right), \beta\left(p_{1}\right)} \times \cdots \times$ $\Gamma_{p_{h}, \alpha\left(p_{h}\right), \beta\left(p_{h}\right)}$.

Proof. We only have to prove that $\operatorname{Im} \mu=\Gamma_{p_{1}, \alpha\left(p_{1}\right), \beta\left(p_{1}\right)} \times \cdots \times$ $\Gamma_{p_{h}, \alpha\left(p_{h}\right), \beta\left(p_{h}\right)}$. It is enough to prove the following: let p be an exceptional prime of W, and let ε be in $\Gamma_{p, \alpha(p), \beta(p)}$. Then there exists $\gamma \in R(W)$ such that $\gamma \mu_{p}=\varepsilon$ and $\gamma \mu_{q}=1$ for every exceptional prime q different from p. We conclude by taking $\gamma=\varepsilon \iota_{p}$.

Theorem 2.10 gives a complete description of the group of exceptional autoprojectivities of W in terms of the groups $\Gamma_{p, \alpha(p), \beta(p)}$, whose structure we shall determine in the next section. Here we just prove that if p is exceptional, then $\Gamma_{p, \alpha(p), \beta(p)} \neq 1$.

We fix a prime p and integers $\alpha>\beta>0$. For every $s \in\{1, \ldots, \alpha-\beta\}$, $d \in \mathscr{U}\left(R_{\alpha-s}\right)$ such that $d \equiv 1 \quad p^{\beta-1} R_{\alpha-s}$, we define $\sigma_{p^{s}, d}$ in the following way. Let $b \in R_{\alpha}$, and write $b=b_{0}+b_{s} p^{s}$, where b_{0} is in $\left\{0,1, \ldots, p^{s}\right.$ $-1\}$. We put $b \sigma_{p^{s}, d}=b_{0}+d b_{s} p^{s}$.
Proposition 2.15. $\quad \sigma_{p^{s}, d}$ lies in $\Gamma_{p, \alpha, \beta}$ and it fixes a for every $0 \leq a<p^{s}$.
Proof. We write σ for $\sigma_{p^{s}, d}$. The fact that σ is bijective and $a \sigma=a$ for every $0 \leq a<p^{s}$ is clear. We have to prove that σ maps cosets to cosets and it satisfies (*). Let $a, b \in R_{\alpha}, b-a=k p^{t}$. Write $a=a_{0}+$ $a_{s} p^{s}, b=b_{0}+b_{s} p^{s}, b-a=c_{0}+c_{s} p^{s}$ with $a_{0}, b_{0}, c_{0} \in\left\{0, \ldots, p^{s}-1\right\}$. If $t \geq s$, then $a_{0}=b_{0}$ so that $(b-a) \sigma=b \sigma-a \sigma$ and we are done.

Now assume $t<s$. Then $b \sigma-a \sigma-(b-a) \sigma=\left(b_{0}-a_{0}-c_{0}\right)+d\left(b_{s}\right.$ $\left.-a_{s}-c_{s}\right) p^{s}=(d-1)\left(b_{s}-a_{s}-c_{s}\right) p^{s}$. But $d-1=h p^{\beta-1}$ for some h, so $b \sigma-a \sigma-(b-a) \sigma=h\left(b_{s}-a_{s}-c_{s}\right) p^{s+\beta-1}$. Hence $b \sigma-a \sigma \equiv$ $(b-a) \sigma p^{t+\beta} R_{\alpha}$, since $s+\beta-1 \geq t+\beta$. It is also clear that $b \sigma \in$ $a \sigma+p^{t} R_{\alpha}$.

For every $\gamma \geq \beta>0$ we put

$$
C_{p, \gamma, \beta}=\left\{c \in \mathscr{U}\left(R_{\gamma}\right) \mid c \equiv 1 \quad p^{\beta-1} R_{\gamma}\right\} .
$$

If $\beta=1, C_{p, \gamma, \beta} \cong \mathscr{U}\left(R_{\gamma}\right)$. If $\beta \geq 2, C_{p, \gamma, \beta}$ has order $p^{\gamma-\beta+1}$. It is cyclic if p is odd. If $p=2$ then $C_{2, \gamma, 2}=\mathscr{U}\left(R_{\gamma}\right)$. If $\beta \geq 3$ then $C_{2, \gamma, \beta}$ is cyclic by [7, 5.7.12].

For every $s \in\{1, \ldots, \alpha-\beta\}$ we put

$$
\begin{equation*}
K_{p^{s}}=\left\{\sigma_{p^{s}, d} \mid d \in C_{p, \alpha-s, \beta}\right\} . \tag{2.4}
\end{equation*}
$$

By 2.15 it follows that

$$
\begin{equation*}
K_{p^{s}} \text { is a subgroup of } \Gamma_{p, \alpha, \beta} \text { isomorphic to } C_{p, \alpha-s, \beta} . \tag{2.5}
\end{equation*}
$$

We are in the position to prove
TheOrem 2.16. Let W be a finite reducible Coxeter group. Then $R(W)=1$ if and only if W has no exceptional prime.

Proof. By 1.7, we only have to prove that if W has exceptional primes, then $R(W) \neq 1$. By 2.14 it is enough to show that if p is an exceptional prime of W, then $\Gamma_{p, \alpha(p), \beta(p)} \neq 1$. Let p be an exceptional prime of W, and let $\alpha=\alpha(p)$. We show that $\Gamma_{p, \alpha, \alpha-1} \neq 1$. Suppose first $\alpha \geq 3$. Then $\Gamma_{p, \alpha, \alpha-1} \geq C_{p, \alpha-1, \alpha-1} \cong \mathbb{Z} / p \mathbb{Z}$. If $\alpha=2$, then $p \geq 3$, since $p^{\alpha} \geq 5$. Hence $\Gamma_{p, 2,1} \geq C_{p, 1,1} \cong \mathscr{U}(\mathbb{Z} / p \mathbb{Z}) \neq 1$. If $\alpha=1$, then $p \geq 5$. Hence $\Gamma_{p, 1,0}$ $=\Gamma_{p} \neq 1$ by (1.3), and we are done.

From the results obtained in [1] in the irreducible case, we get
Theorem 2.17. Let W be a finite Coxeter group. Then $P(W)=$ Aut W if and only if W is in the following list:
(1) W cyclic of order 2 ,
(2) W dihedral of order $2 n$, with $n=2,4,6$, or 12 ,
(3) W irreducible of rank at least 3 ,
(4) W reducible with no exceptional primes.

We recall that a group G is said to be strongly lattice determined if every projectivity of G onto a group \bar{G} is induced by an isomorphism. Taking into account the results of Uzawa [8] and [1, 4.8], we get

Theorem 2.18. Let W be a finite Coxeter group. Then W is strongly lattice determined if and only if W is in the following list:
(a) W dihedral of order $2 n$, with $n=2,4,6$, or 12 ,
(b) W irreducible of rank at least 3,
(c) W reducible with no exceptional primes.

3. THE STRUCTURE OF $R(W)$

In this section we take a closer look at the group $R(W)$ in presence of exceptional primes. By 2.14 this amounts to determine the structure of $\Gamma_{p, \alpha, \beta}$. Since for $\beta=0, \Gamma_{p, \alpha, \beta}=\Gamma_{p^{\alpha}}$ is the stabilizer of 0 and 1 in $T_{p^{\alpha}}$ which is a permutational wreath product, in our discussion we assume $\beta>0$.

This kind of problem is somehow similar to a problem studied in [2, 3] in order to determine the group of autoprojectivities of periodic modular groups. In that context we introduced the group (in [3, Sect. 2] called S),
$S_{p, \alpha, \beta}=\left\{\gamma \in \operatorname{Sym} R_{\alpha} \mid i \gamma \equiv i \quad p^{\beta} R_{\alpha}\right.$ for every $i \in R_{\alpha}$ and $b \gamma-a \gamma \equiv b-a \quad p^{t+\beta} R_{\alpha}$ if $b \equiv a \quad p^{t} R_{\alpha}$ for some $\left.t \leq \alpha-\beta\right\}$,
where $\alpha>\beta \geq 1$.
We start the investigation of $\Gamma_{p, \alpha, \beta}$. We fix the prime p, and integers α, β such that $\alpha>\beta \geq 1$. We put

$$
\begin{gather*}
A=D_{2 p^{\alpha}}=\langle\sigma, \varphi\rangle, \quad B=D_{2 p^{\beta}}=\langle\tau, \rho\rangle \tag{3.1}\\
W=A \times B
\end{gather*}
$$

We know that $R(W) \cong \Theta_{p, \alpha, \beta} \cong \Gamma_{p, \alpha, \beta}$. As usual, we identify these groups.
Suppose $\gamma \in P(W)$. Then γ induces the autoprojectivity $\bar{\gamma}$ of $\bar{W}=$ $W /\left\langle\varphi^{p^{\beta}}\right\rangle$. It is clear that if γ lies in $R(W)$, then $\bar{\gamma}$ lies in $R\left(W /\left\langle\varphi^{\beta}\right\rangle\right)$, so that $\bar{\gamma}=1$. Hence $\left\langle\sigma \varphi^{i}\right\rangle^{\gamma} \leq\left\langle\sigma \varphi^{i}, \epsilon^{p^{\beta}}\right\rangle$; that is,

$$
\begin{equation*}
i \gamma \equiv i \quad p^{\beta} R_{\alpha} \quad \text { for every } \gamma \in \Gamma_{p, \alpha, \beta} \text { and every } i \in R_{\alpha} \tag{3.2}
\end{equation*}
$$

For our discussion it is convenient to introduce the subgroup

$$
\begin{align*}
& K_{p, \alpha, \beta}=\left\{\gamma \in T_{p^{\alpha}} \mid \gamma \operatorname{satisfies}(*)\right. \\
& \left.\quad \text { and } i \sigma \equiv i \quad p^{\beta} R_{\alpha} \text { for every } i \in R_{\alpha}\right\} \tag{3.3}
\end{align*}
$$

Hence $\Gamma_{p, \alpha, \beta}$ is the stabilizer of 1 in $K_{p, \alpha, \beta}$. Note that $0 \gamma=0$ for every $\gamma \in K_{p, \alpha, \beta}$, and $K_{p, \beta, \beta}=1$. In fact $K_{p, \alpha, \beta}$ corresponds to the subgroup

$$
K(W)=\left\{\gamma \in P(W) \mid A^{\gamma}=A, B^{\gamma}=B, \bar{\gamma}=1 \text { and }\langle\sigma\rangle^{\gamma}=\langle\sigma\rangle\right\}
$$

Lemma 3.1. Suppose σ in $\operatorname{Sym} R_{\alpha}$ satisfies (*) and $i \sigma \equiv i \quad p^{\beta} R_{\alpha}$ for every $i \in R_{\alpha}$. Then
(a) if $a_{1}, \ldots, a_{r} \in p^{t} R_{\alpha}$ for some $t \leq \alpha-\beta$, then $\left(a_{1}+\cdots+a_{r}\right) \sigma \equiv$ $a_{1} \sigma+\cdots+a_{r} \sigma \quad p^{\beta+t} R_{\alpha} ;$
(b) $p^{s} \sigma \equiv p^{s} \quad p^{\beta+s-1} R_{\alpha}$ for every $s=1, \ldots, \alpha-\beta+1$;
(c) if a, b in R_{α} are such that $a \equiv b \quad p^{\alpha-\beta+1} R_{\alpha}$, then $b \sigma-a \sigma=$ $b-a$.

Proof. (a) Follows by induction and the fact that $a \in p^{t} R_{a} \Rightarrow(-a) \sigma$ $\equiv-a \sigma \quad p^{\beta+t} R_{\alpha}$.
(b) True for $s=1$. Assume the result for $s<\alpha-\beta+1$. Then $\left(p^{s}\right) \sigma \equiv p^{s} \quad p^{\beta+s-1} R_{\alpha}$. But $\left(p^{s+1}\right) \sigma \equiv p\left(p^{s} \sigma\right) \quad p^{\beta+s} R_{\alpha}$ by a), so that $\left(p^{s+1}\right) \sigma \equiv p^{s+1} \sigma \quad p^{\beta+s} R_{\alpha}$.
(c) By (b) we have $p^{\alpha-\beta+1} \sigma=p^{\alpha-\beta+1}$, and by induction we get $\left(k p^{\alpha-\beta+1}\right) \sigma=k p^{\alpha-\beta+1}$ for every k. Since $a \equiv b \quad p^{\alpha-\beta} R_{\alpha}$ we get $b \sigma-$ $a \sigma=(b-a) \sigma$. But $b-a=k p^{\alpha-\beta+1}$, so that $(b-a) \sigma=b-a$.

Lemma 3.2. Suppose σ in $\operatorname{Sym} R_{\alpha}$ satisfies (*) and $i \sigma \equiv i \quad p^{\beta} R_{\alpha}$ for every $i \in R_{\alpha}$. Then σ lies in $\operatorname{PR}\left(R_{\alpha}\right)$.

Proof. We have to prove that σ maps cosets to cosets. Since σ is invertible, it is enough to show that $(x+H) \sigma \subseteq x \sigma+H$ for every coset $x+H$ of R_{α}. By 3.1 we have $\left(k p^{t}\right) \sigma \equiv k p^{t} \quad p^{t} R_{\alpha}$ for every $0 \leq t \leq \alpha$ and every k, since $\beta \geq 1$. Hence ($p^{t} R_{\alpha}$) $\sigma \subseteq p^{t} R_{\alpha}$.

Now let $a, b \in R_{\alpha}, b-a=k p^{t}$. If $t \geq p^{\alpha-\beta+1}$ we get $b \sigma-a \sigma=b-a$ by 3.1(c) so that $b \sigma=a \sigma+k p^{t} \in a \sigma+p^{t} R_{\alpha}$, and $\left(a+p^{t} R_{\alpha}\right) \sigma \subseteq a \sigma+$ $p^{t} R_{\alpha}$. If $t \leq \alpha-\beta$, then $b \sigma-a \sigma \equiv\left(k p^{t}\right)_{\sigma} p^{t+\beta} R_{\alpha}$. But $\left(k p^{t}\right) \sigma \equiv k p^{t}$ $p^{t} R_{\alpha}$, so that $b \sigma-a \sigma \equiv k p^{t} \quad p^{t} R_{\alpha}$. Hence $b \sigma \in a \sigma+p^{t} R_{\alpha}$, and we are done.

We begin by considering the case $\alpha=\beta+1$.

Proposition 3.3. We have

$$
K_{p, \beta+1, \beta} \cong\left\{\begin{array}{l}
P Q \triangleright P, P \text { an elementary abelian group of order } p^{p-1}, \\
Q=\langle\alpha\rangle, \alpha \text { a power automorphism of order } p-1 \text { of } P, \\
\quad \text { if } \beta=1 \\
\text { P an elementary abelian group of order } p^{p}, \\
\text { if } \beta \geq 2 .
\end{array}\right.
$$

Proof. Let $\gamma \in K_{p, \beta+1, \beta}$. Then γ acts trivially on the set of the dihedral subgroups $A_{0}=\left\langle\sigma, \varphi^{p}\right\rangle, \ldots, A_{p-1}=\left\langle\sigma \varphi^{p-1}, \varphi^{p}\right\rangle$ of order $2 p^{\beta}$ of A, and it induces an automorphism ($\alpha_{i}, 1$) on each product $A_{i} \times B$. Therefore, for each $i \in\{0, \ldots, p-1\}$ there exist a unique $d_{i} \in R_{1}$ and a unique $c_{i} \in \mathscr{U}\left(R_{\beta}\right)$ such that $(i+k p) \gamma=i+d_{i} p^{\beta}+c_{i} k p$ for every $k \in \mathbb{Z}$. Since γ fixes 0 , we have $d_{0}=0$. Moreover, since φ^{p} lies in each A_{i}, we must have $c_{i}=c_{j}$ for every i, j. Call c this common value: since $p \gamma \equiv p$ $p^{\beta} R_{\alpha}$, we get $c \equiv 1 \quad p^{\beta-1} R_{\alpha}$.

On the other hand, given $d_{0}, \ldots, d_{p-1} \in R_{1}$ such that $d_{0}=0$, and $c \in \mathscr{U}\left(R_{p^{\beta}}\right), c \equiv 1 \quad p^{\beta-1} R_{\alpha}$, it is clear that the map given by

$$
(i+k p) \gamma=i+d_{i} p^{\beta}+c k p
$$

for every $i \in\{0, \ldots, p-1\}, k \in \mathbb{Z}$, is in $K_{p, \beta+1, \beta}$. The structure of $K_{p, \beta+1, \beta}$ follows easily.

Corollary 3.4. We have

$$
\Gamma_{p, s+1, s} \cong\left\{\begin{array}{l}
P Q \triangleright P, P \text { an elementary abelian group of order } p^{p-2}, \\
Q=\langle\alpha\rangle, \alpha \text { a power automorphism of order } p-1 \text { of } P, \\
\quad \text { if } s=1 \\
\text { P an elementary abelian group of order } p^{p-1}, \\
\text { if } s \geq 2
\end{array}\right.
$$

Proof. In the proof of 3.3, if $\gamma \in K_{p, s+1, s}$ corresponds to $\left(d_{0}, \ldots, d_{p-1}, c\right)$, then $\gamma \in \Gamma_{p, s+1, s} \Leftrightarrow d_{0}=d_{1}=0$.

To deal with the general case, we introduce certain elements of $K_{p, \alpha, \beta}$. In Section 2 we defined $\sigma_{p^{s}, d}$ for every $s \in\{1, \ldots, \alpha-\beta\}, d \in C_{p, \alpha-s, \beta}$ and the groups $K_{p^{s}}$. Now we consider, with a minor change of notation, the permutations $\sigma_{\xi, z, t}$ introduced in [3]. We recall their definition.
Definition 3.5. For $\xi \in R_{\alpha}, t$ such that $0 \leq t<\alpha-\beta, z \in p^{t} R_{\alpha-\beta}$, set

$$
i \sigma_{\xi, z, t}= \begin{cases}i & \text { if } i \notin \xi+p^{t+1} R_{\alpha} \\ i+p^{\beta} z & \text { if } i \in \xi+p^{t+1} R_{\alpha}\end{cases}
$$

for every $i \in R_{\alpha}$.
As already observed in [3], $\quad \sigma_{\xi, z, t} \in \operatorname{PR}\left(R_{\alpha}\right)$ and $\sigma_{\xi, z, t} \sigma_{\xi, z^{\prime}, t}=$ $\sigma_{\xi, z+z^{\prime}, t}, \sigma_{\xi, z, t}^{-1}=\sigma_{\xi,-z, t}$.

Proposition 3.6. Assume ξ and t are such that $\xi \notin p^{t+1} R_{\alpha}$. Then $\sigma_{\xi, z, t}$ lies in $K_{p, \alpha, \beta}$.

Proof. Clearly $i \sigma_{\xi, z, t} \equiv i \quad p^{\beta+t} R_{\alpha}$. Let $0 \leq f \leq \alpha-\beta$, and let $i, j \in$ R_{α} be such that $j \equiv \stackrel{i}{i} \quad p^{f} R_{\alpha}$.
$\left(\mathrm{a}_{1}\right) \quad f \leq t$. Here $(j-i) \sigma_{\xi, z, t} \equiv(j-i), j \sigma_{\xi, z, t} \equiv j, \quad i \sigma_{\xi, z, t} \equiv i$ $p^{\beta+t} R_{\alpha}$, so that $(j-i) \sigma_{\xi, z, t} \equiv j \sigma_{\xi, z, t}-i \sigma_{\xi, z, t} \quad p^{\beta+f} R_{\alpha}$,
(a_{2}) $t+1 \leq f$. Here $j \in \xi+p^{t+1} R_{\alpha}$ if and only if $i \in \xi+p^{t+1} R_{\alpha} ;$ hence $j \sigma_{\xi, z, t}-i \sigma_{\xi, z, t}=j-i$. Moreover, $(j-i) \sigma_{\xi, z, t}=j-i$, since $(\xi+$ $\left.p^{t+1} R_{\alpha}\right) \cap p^{f} R_{\alpha}=\varnothing$.

We introduce the subsets $I=\{0,1, \ldots, p-1\}$ and $J=\left\{1, \ldots, p^{\alpha-\beta}\right\}$ of R_{α}. Moreover, we put $J^{*}=J \backslash\left\{p, p^{2}, \ldots, p^{\alpha-\beta}\right\}$. Given $a \in J$, we put $v(a)=c$ if $p^{c} \leq j<p^{c+1}$.

Definition 3.7. For $\xi \in J^{*}$ and $z \in p^{v(\xi)} R_{\alpha-\beta}$ we put $\sigma_{\xi, z}:=\sigma_{\xi, z, v(\xi)}$ and $K_{\xi}=\left\{\sigma_{\xi, z} \mid z \in p^{v(\xi)} R_{\alpha}\right\}$.

Therefore $K_{\xi}=\Delta_{\xi}$ as defined in [3, Sect. 2]: it is generated by $\sigma_{\xi, p^{v(\xi)}}$ and has order $p^{\alpha-\beta-v(\xi)}$.

We remark that for i, j in J we have, by $[3,(12)]$ and the definition of $K_{p^{s}}$,

$$
\begin{equation*}
i K_{j}=i \quad \text { if } i<j \tag{3.4}
\end{equation*}
$$

Following [3], we call elementary transformations the permutations of the form $\sigma_{\xi, z}, \xi \in J^{*}$, or $\sigma_{p^{s}, c}$.

In the study of $K_{p, \alpha, \beta}$ we note that
(3.5) if for a $\sigma \in K_{p, \alpha, \beta}$ we have $x \sigma=x$ for every $x \in J$, then $\sigma=1$.

In fact, by 3.1(a), we have $\left(k p^{\alpha-\beta}\right) \sigma=k p^{\alpha-\beta}$ for every k. Let $a \in R_{\alpha} \backslash$ $p^{\alpha-\beta} R_{\alpha}$. There exists a unique $x \in J \backslash\left\{p^{\alpha-\beta}\right\}$ such that $a=x+k p^{\alpha-\beta}$. Then $a \sigma=x \sigma+\left(k p^{\alpha-\beta}\right) \sigma=x+k p^{\alpha-\beta}=a$.

Theorem 3.8. Let $\left\{\sigma_{i, c_{i}}\right)_{i \in J}$ and $\left\{\sigma_{i, c_{i}}\right\}_{i \in J}$ be two families of elementary transformations, and assume $\prod_{i \in J} \sigma_{i, c_{i}}=\Pi_{i \in J} \sigma_{i, c_{i}}$, where i describes J in decreasing order. Then $c_{i}=c_{i}^{\prime}$ for every $i \in J$. In particular

$$
\left|\prod_{i \in J} K_{i}\right|= \begin{cases}(p-1)^{\alpha-1} p^{p+p^{2}+\cdots+p^{\alpha-1}-(\alpha-1)} & \text { if } \beta=1 \\ p^{p+p^{2}+\cdots+p^{\alpha-\beta}} & \text { if } \beta \geq 2 .\end{cases}
$$

Proof. By (3.4)we have $1+c_{1} p^{\beta}=1 \sigma_{1, c_{1}}=1 \sigma_{1, c_{1}^{\prime}}=1+c_{1}^{\prime} p^{\beta}$. Hence $c_{1}=c_{1}^{\prime}$. Suppose $c_{i}=c_{i}^{\prime}$ for $1 \leq k<i$. Then $\Pi_{p^{\alpha-\beta} \geq j \geq i} \sigma_{j, c_{j}}=$ $\Pi_{p^{\alpha-\beta} \geq j \geq i} \sigma_{j, c_{j}^{\prime},}$, so that $i \sigma_{i, c_{i}}=i \sigma_{i, c_{i}^{\prime}}$
(a_{1}) If $i \in J^{*}$, then $i \sigma_{i, c_{i}}=i+c_{i} p^{\beta}$ and $i \sigma_{i, c_{i}^{\prime}}=i+c_{i}^{\prime} p^{\beta}$, so that $c_{i}=c_{i}^{\prime}$.
(a_{2}) If $i=p^{s}$ for some $1 \leq s \leq \alpha-\beta$, then $p^{s} \sigma_{p^{s}, c_{p}^{s}}=c_{p^{s}} p^{s}$ and $p^{s} \sigma_{p^{s}, c_{p}^{\prime} s}=c_{p^{s}}^{\prime} p^{s}$, and again $c_{p^{s}}=c_{p^{s}}^{\prime}$.

The result about the order follows, taking into account the orders

$$
\left|K_{i}\right|=p^{\alpha-\beta-v(i)} \quad \text { if } i \in J^{*}, \quad\left|K_{p^{s}}\right|= \begin{cases}(p-1) p^{\alpha-s-1} & \text { if } \beta=1 \\ p^{\alpha-s-\beta+1} & \text { if } \beta \geq 2 .\end{cases}
$$

We now consider the problem of extending autoprojectivities. Suppose $\alpha>\alpha^{\prime} \geq 1$, and let $\gamma \in P(A)$. Then γ induces the autoprojectivity $\bar{\gamma}$ on $\bar{A}=A /\left\langle\varphi^{p^{\alpha^{\alpha}}}\right\rangle$. The Coxeter systems we are considering are the following: $\{\sigma, \sigma \varphi\}$ for A as usual, $\{\bar{\sigma}, \overline{\sigma \varphi}\}$ for \bar{A}. We obtain the map $\pi_{\alpha^{\prime}}^{\alpha}: I\left(D_{2 p^{\alpha}}\right) \rightarrow$ $I\left(D_{2 p^{\alpha^{\alpha}}}\right)$. In terms of permutations, we get the map $r_{\alpha^{\prime}}^{\alpha}: T_{p^{\alpha}} \rightarrow T_{p^{\alpha^{\prime}}}, \gamma \mapsto \bar{\gamma}$
defined in the following way. Let $\gamma \in T_{p^{\alpha}}$, and $i \in R_{\alpha^{\prime}}$. Choose $j \in R_{\alpha}$ such that $j \rho_{\alpha^{\prime}}^{\alpha}=i$, where $\rho_{\alpha^{\prime}}^{\alpha}: R_{\alpha} \rightarrow R_{\alpha^{\prime}}$ is the canonical epimorphism. Then $i \bar{\gamma}=j \gamma \rho_{\alpha^{\prime}}^{\alpha}$. An easy graph theoretical consideration show that $\rho_{\alpha^{\prime}}^{\alpha}$ is surjective. If we denote by j_{δ} the inverse of the isomorphism $\Delta_{p^{\delta}}: T_{p^{\delta}} \rightarrow$ $I\left(D_{2 p^{\delta}}\right)$ we get the commuting diagram

$$
\begin{array}{cc}
I\left(D_{2 p^{\alpha}}\right) & \xrightarrow{\pi_{\alpha^{\alpha}}^{\alpha}} I\left(D_{2 p^{\alpha^{\prime}}}\right) \\
j_{\alpha} \downarrow & \\
T_{p^{\alpha}} \xrightarrow[\rho_{\alpha^{\prime}}^{*}]{\longrightarrow} & \downarrow_{p^{\alpha^{\prime}}}^{j_{\alpha^{\prime}}}
\end{array}
$$

Moreover, if $\alpha>\alpha^{\prime} \geq \beta$, then

$$
\gamma \in K_{p, \alpha, \beta} \Rightarrow \bar{\gamma} \in K_{p, \alpha^{\prime}, \beta} \quad \text { and } \quad \gamma \in \Gamma_{p, \alpha, \beta} \Rightarrow \bar{\gamma} \in \Gamma_{p, \alpha^{\prime}, \beta} .
$$

Our aim is to show that also the restrictions $\varphi_{\alpha^{\prime}}^{\alpha}: K_{p, \alpha, \beta} \rightarrow K_{p, \alpha^{\prime}, \beta}$ and $\varphi_{\alpha^{\alpha}}^{\alpha}: \Gamma_{p, \alpha, \beta} \rightarrow \Gamma_{p, \alpha^{\prime}, \beta}$ are surjective. Note that

$$
\operatorname{ker} \varphi_{\alpha^{\prime}}^{\alpha}=\left\{\gamma \in T_{p^{\alpha}} \mid i \gamma \equiv i \quad p^{\alpha^{\prime}} R_{\alpha} \quad \text { for all } i \in R_{\alpha}\right\} .
$$

An element i of the local ring R_{α} can be uniquely represented in its p-adic expansion $i=i_{0}+i_{1} p+\cdots i_{\alpha-1} p^{\alpha-1}$, where $i_{k} \in I$. Let $\pi: R_{\alpha} \rightarrow$ $R_{\alpha-1}$ be the canonical epimorphism. Then, modulo the obvious identifications, we have

$$
\begin{equation*}
i \pi=i_{0}+i_{1} p+\cdots+i_{\alpha-2} p^{\alpha-2} \tag{3.6}
\end{equation*}
$$

while $\nu: i_{0}+i_{1} p+\cdots+i_{\alpha-2} p^{\alpha-2} \mapsto i_{0}+i_{1} p+\cdots+i_{\alpha-2} p^{\alpha-2}$ defines an injection of $R_{\alpha-1}$ into R_{α} such that $i \pi \nu=i_{0}+i_{1} p+\cdots+i_{\alpha-2} p^{\alpha-2}$ and $x_{1} \nu+\cdots+x_{r} \nu \equiv 0 \quad p^{t} R_{\alpha}$ if $x_{1}, \ldots, x_{r} \in R_{\alpha-1}$ are such that x_{1} $+\cdots+x_{r} \equiv 0 \quad p^{t} R_{\alpha-1}$ for some $0 \leq t \leq \alpha-1$.

Extension Lemma 3.9. Let $\alpha>\alpha^{\prime}>\beta$ be positive integers. If σ lies in $K_{p, \alpha^{\prime}, \beta}$ then there exists $a \tilde{\sigma}$ in $K_{p, \alpha, \beta}$ such that $\tilde{\sigma} \pi=\pi \sigma$, similarly for $\Gamma_{p, \alpha, \beta}$.

Proof. It is enough to deal with the case $\alpha-\alpha^{\prime}=1$. Let $i \in R_{\alpha}$, and let $i=i_{0}+\cdots+i_{\alpha-1} p^{\alpha-1}$ be its p-adic expansion. Define

$$
i \tilde{\sigma}=\left(i_{0}+\cdots+i_{\alpha-\beta-1} p^{\alpha-\beta-1}\right) \pi \sigma \nu+i_{\alpha-\beta} p^{\alpha-\beta}+\cdots+i_{\alpha-1} p^{\alpha-1} .
$$

Clearly $\tilde{\sigma}$ lies in $\operatorname{Sym} R_{\alpha}$. For $j:=i_{0}+\cdots+i_{\alpha-\beta-1} p^{\alpha-\beta-1}$ we have $j \equiv i$ $p^{\alpha-\beta} R_{\alpha}$, so that

$$
\begin{equation*}
i \pi \sigma-j \pi \sigma=(i \pi-j \pi) \sigma=i \pi-j \pi \tag{3.7}
\end{equation*}
$$

by 3.1(c). It follows from (3.7) that $i \tilde{\sigma} \pi=(j \pi \sigma \nu+i-j) \pi=j \pi \sigma+i \pi-$ $j \pi=j \pi \sigma+i \pi \sigma-j \pi \sigma=i \pi \sigma$. Hence

$$
\begin{equation*}
\tilde{\sigma} \pi=\pi \sigma \tag{3.8}
\end{equation*}
$$

In particular for $i \in R_{\alpha}$ we have $i \tilde{\sigma} \pi=i \pi \sigma \equiv i \pi \quad p^{\beta} R_{\alpha-1}$ so that $i \tilde{\sigma} \equiv i \quad p^{\beta} R_{\alpha}$. Since $i \equiv i \pi \nu \quad p^{\alpha-1} R_{\alpha}$, we obtain

$$
\begin{equation*}
i \tilde{\sigma} \equiv i \tilde{\sigma} \pi \nu=i \pi \sigma \nu \quad p^{\alpha-1} R_{\alpha} . \tag{3.9}
\end{equation*}
$$

Now suppose $b \equiv a \quad p^{f} R_{\alpha}, 0 \leq f \leq \alpha-\beta$.
(a_{1}) $f=\alpha-\beta$. By definition we get $b \tilde{\sigma}-a \tilde{\sigma}=b-a$. On the other hand, $b-a \in p^{\alpha-\beta} R_{a} \Rightarrow(b-a) \sigma=b-a$, and we are done.
$\left(\mathrm{a}_{2}\right) \quad f<\alpha-\beta$. Then $(b \pi-a \pi) \sigma \equiv b \pi \sigma-a \pi \sigma \quad p^{\beta+f} R_{\alpha-1} \quad$ implies

$$
(b \pi-a \pi) \sigma \nu \equiv b \pi \sigma \nu-a \pi \sigma \nu \quad p^{\beta+f} R_{\alpha}
$$

Hence

$$
b \tilde{\sigma}-a \tilde{\sigma} \equiv b \pi \sigma \nu-a \pi \sigma \nu \equiv(b \pi-a \pi) \sigma \nu \equiv(b-a) \tilde{\sigma} \quad p^{\beta+f} R_{\alpha}
$$

since $\beta+f \leq \alpha-1$. It is clear that if $\sigma \in \Gamma_{p, \alpha-1, s}$, then $1 \tilde{\sigma}=1 \pi \sigma \nu=$ $1 \pi \nu=1$, and $\tilde{\sigma} \in \Gamma_{p, \alpha, s}$.

In terms of the group W this means that for every $\alpha>\alpha^{\prime}>\beta$, the natural map $R(W) \rightarrow R\left(W /\left\langle\varphi^{p^{\alpha^{\prime}}}\right\rangle\right)$ is an epimorphism.

Proposition 3.10. Suppose $\alpha>\beta$. Then $\operatorname{ker} \varphi_{\alpha-1}^{\alpha} \cap K_{p, \alpha, \beta}$ is an elementary abelian group of order $p^{p^{\alpha-\beta}}$ if $\beta \geq 2$, while $\operatorname{ker} \varphi_{\alpha-1}^{\alpha, \alpha, \beta} \cap K_{p, \alpha, \beta}=$ $P Q \triangleright P, P$ is an elementary abelian group of order $p^{p^{\alpha-\beta}-1}, Q=\langle\alpha\rangle$, and α is a power automorphism of order $p-1$ of P if $\beta=1$.

Proof. Argue as in the proof of 3.3, using (3.5).
Proposition 3.11. We have

$$
\left|K_{p, \alpha, \beta}\right|= \begin{cases}(p-1)^{\alpha-1} p^{p+p^{2}+\cdots+p^{\alpha-1}-(\alpha-1)} & \text { if } \beta=1 \\ p^{p+p^{2}+\cdots+p^{\alpha-\beta}} & \text { if } \beta \geq 2\end{cases}
$$

Proof. This follows from 3.9, 3.10, and induction.
We are now in the position to prove that $K_{p, \alpha, \beta}$ is the product of the subgroups K_{i}.

Theorem 3.12. Assume $\alpha>\beta \geq 1$. Then we have

$$
K_{p, \alpha, \beta}=\prod_{i \in J} K_{i}
$$

i in increasing or decreasing order.
Proof. It is enough to show that $\left|\prod_{i \in J} K_{i}\right|=\left|K_{p, \alpha, \beta}\right|$. This follows from 3.8 and 3.11.

Remark 3.1. (a) Given $\sigma \in K_{p, \alpha, \beta}$, there is a recurrent procedure to get the factorization of σ in elementary transformations: c_{1} is determined by the relation $1 \sigma=1+c_{1} p^{s}$ and, knowing $c_{1}, \ldots, c_{i-1}, c_{i}$ is given as follows. Set $\sigma^{\prime}=\sigma\left(\sigma_{i-1, c_{i-1}} \cdots \sigma_{1, c_{1}}\right)^{-1}$, and note that σ^{\prime} fixes k for $1 \leq k<i$:
(a_{1}) $\quad i \in J^{*}$. Then $c_{i} \in R_{\alpha-\beta}$ is determined by $i \sigma^{\prime}=i+c_{i} p^{\beta}$.
$\left(\mathrm{a}_{2}\right) \quad i=p^{s}$ for some $1 \leq s \leq \alpha-\beta$. Then $c_{p^{s}} \in C_{\alpha-s, \beta}$ is determined by $p^{s} \sigma^{\prime}=c_{p^{s}} p^{s}$.
(b) Assume $\beta \geq 2$. Then the p-group $K_{p, \alpha, \beta}$ has a basis (for a definition see [4]).

Corollary 3.13. Let $j \in J$. Then the pointwise stabilizer of the set $\{1, \ldots, j\}$ in $K_{p, \alpha, \beta}$ is the product $\prod_{i \in J, i>j} K_{i}$, where the i's are in decreasing order. In particular $\Gamma_{p, \alpha, \beta}=\prod_{i \in J, i>1} K_{i}$ and

$$
\left|\Gamma_{p, \alpha, \beta}\right|= \begin{cases}(p-1)^{\alpha-1} p^{p+p^{2}+\cdots+p^{\alpha-1}-2(\alpha-1)} & \text { if } \beta=1 \\ p^{p+p^{2}+\cdots+p^{\alpha-\beta}-(\alpha-\beta)} & \text { if } \beta \geq 2\end{cases}
$$

Proof. Let F denote the pointwise stabilizer. Then for $i \in J, i>j$, $K_{i} \leq F$. On the other hand, if $\sigma \in F$, and $\sigma=\prod_{i \in J} \sigma_{i, c_{i}}$ is the decomposition of σ in decreasing order, then, starting with $i=1$, we get $c_{i}=0$ if $i \leq j, i \in J^{*}, c_{i}=1$ if $i \leq j, i \notin J^{*}$.

Let $\gamma \in K(W)$ be a p-element with $i \gamma \equiv i \quad p^{t} R_{\alpha}$ for all $i \in R_{\alpha}$. This is equivalent to $\left\langle\sigma \varphi^{i}, \varphi^{p^{t}}\right\rangle^{\gamma}=\left\langle\sigma \varphi^{i}, \varphi^{p^{t}}\right\rangle$; that is, $\gamma \mid\left[W /\left\langle\varphi^{p^{t}}\right\rangle\right]=1$. Then γ fixes every coset $i+p^{t} R_{\alpha}$. Since the orbits of the p-group $\langle\gamma\rangle$ on the set of cosets $i+p^{t+1} R_{\alpha}$ are of length 1 or p, γ^{p} fixes every such coset; that is,
if $\gamma \in K(W)$ is a p-element then $\gamma \mid\left[W /\left\langle\varphi^{p^{t}}\right\rangle\right]=1$ implies

$$
\begin{equation*}
\gamma^{p} \mid\left[W /\left\langle\varphi^{p^{t+1}}\right\rangle\right]=1 \tag{3.10}
\end{equation*}
$$

In particular we get $|\gamma| \leq p^{\alpha-\beta}$. Since $\left|\sigma_{1,1,0}\right|=p^{\alpha-\beta}$, we have
the p-exponent of $K(W)$ is $p^{\alpha-\beta}$.
Theorem 3.14. Suppose $\beta \geq 2$, and let $\gamma \in K(W)$. Then, unless $p=2$, $\beta=2$ and $\alpha \geq 4$, we have for $\beta \leq t<\alpha-1$

$$
|\gamma|=p^{\alpha-t} \quad \Leftrightarrow \quad \gamma \mid\left[W /\left\langle\varphi^{p^{t}}\right\rangle\right]=1 \quad \text { and } \quad \gamma \mid\left[W /\left\langle\varphi^{p^{t+1}}\right\rangle\right] \neq 1 .
$$

Proof. We know that $\gamma\left|\left[W /\left\langle\varphi^{p^{t}}\right\rangle\right]=1 \Rightarrow\right| \gamma \mid \leq p^{\alpha-t}$. It is enough to show that if $|\gamma|=p$ then $\gamma \mid\left[W /\left\langle\varphi^{p^{\alpha-1}}\right\rangle\right]=1$; that is, $i \gamma \equiv i \quad p^{\alpha-1} R_{\alpha}$ for every $i \in R_{\alpha}$. We prove this by induction on $r=\alpha-\beta$. If $r=1$, then the conclusion follows from 3.3. So assume $r>1$. Set $\chi=\gamma \mid\left[W /\left\langle\varphi^{p^{\alpha-1}}\right\rangle\right]$ and, for a contradiction, assume $|\chi|=p$. Hence here exists $i \in R_{\alpha}$ such that $i \gamma \not \equiv i p^{\alpha-1} R_{\alpha}$. By induction on $\left.r, \chi \mid W /\left\langle\varphi^{p^{\alpha-2}}\right\rangle\right]=1$, so that $i \gamma \equiv i \quad p^{\alpha-2} R_{\alpha}, i \gamma=i+k p^{\alpha-2}$ say. Let c be such that $p^{\alpha-2} \gamma=c p^{\alpha-2}$. It follows that

$$
\begin{equation*}
i=i \gamma^{p}=i+k\left(1+c+\cdots+c^{p-1}\right) p^{\alpha-2} \tag{3.12}
\end{equation*}
$$

being $\varphi^{p}=1$. If $\beta \geq 3$, we get $c=1$ by 3.1 , so that $k \in p R_{\alpha}$, and $i \gamma \equiv i$ $p^{\alpha-1} R_{\alpha}$, a contradiction. So we are left with $\beta=2$. Then $c \equiv 1 \quad p R_{2}$ and $p \neq 2$. Then $1+c+\cdots+c^{p-1}=p$, so that again $k \in p R_{\alpha}$, a contradiction.

In 3.14 the case $p=2, \beta=2$, and $\alpha \geq 4$ cannot be omitted, as the following example shows. Let $p=2, \alpha=4$, and $\beta=2$. Then $\sigma=$ $(2,6)(3,7)(4,12)(5,13)(10,14)(11,15)$ lies in $K_{2,4,2}$ has order 2 and σ | $\left[W /\left\langle\varphi^{8}\right\rangle\right] \neq 1$.

Proposition 3.15. Assume $\alpha>\alpha^{\prime}>\beta \geq 2$. Then, unless $p=2, \beta=2$, and $\alpha>\alpha^{\prime}+1$, we have

$$
\begin{aligned}
\operatorname{ker} \varphi_{\alpha^{\prime}}^{\alpha} \cap K_{p, \alpha, \beta} & =\prod_{i \in J} \Omega_{\alpha-\alpha^{\prime}}\left(K_{i}\right), \\
\operatorname{ker} \varphi_{\alpha^{\prime}}^{\alpha} \cap \Gamma_{p, \alpha, \beta} & =\prod_{i \in J \backslash\{1\}} \Omega_{\alpha-\alpha^{\prime}}\left(K_{i}\right),
\end{aligned}
$$

i in decreasing or increasing order.
Proof. The result follows from 3.10 if $\alpha=\alpha^{\prime}+1$. So assume $\alpha>\alpha^{\prime}$ +1 . It is clear that for each $i \in J^{*}$ we have $K_{i} \cap \operatorname{ker} \varphi_{\alpha^{\prime}}^{\alpha}=\Omega_{\alpha-\alpha^{\prime}}\left(K_{i}\right)$. On the other hand, if $s \in\{1, \ldots, \alpha-\beta\}$ and $c \in C_{p, \alpha-s, \beta}$ then $c=1+$ $m p^{\beta-1}$, and $\sigma_{p^{s}, c} \in \operatorname{ker} \varphi_{\alpha^{\prime}}^{\alpha}$, if and only if $m p^{\beta-1} p^{s} \in p^{\alpha^{\prime}} R_{\alpha}$. If $\alpha^{\prime} \leq s+$ $\beta-1$ then $K_{p^{s},} \leq \operatorname{ker} \varphi_{\alpha^{\prime}}^{\alpha}$. So assume $s+\beta \leq \alpha^{\prime}$. Then we get $\mid K_{p^{s}} \cap$ $\operatorname{ker} \varphi_{\alpha^{\prime}}^{\alpha} \mid=p^{\alpha-\alpha^{\prime}}$, so that, if we exclude the case $p=2$ and $\beta=2, K_{p^{s}} \cap$ $\operatorname{ker} \varphi_{\alpha^{\prime}}^{\alpha}=\Omega_{\alpha-\alpha^{\prime}}\left(K_{p^{s}}\right)$.

Now assume $\gamma \in \operatorname{ker} \varphi_{\alpha^{\prime}}^{\alpha}$, and write $\gamma=\prod_{i \in J} \gamma_{i}, \gamma_{i} \in K_{i}$ for every $i \in J$. Applying the procedure of Remark 3.1(a), we can prove that each γ_{i} lies in $K_{i} \cap \operatorname{ker} \varphi_{\alpha^{\prime}}^{\alpha}$, and we are done.

Corollary 3.16. Assume $\beta \geq 2$. Then, unless $p=2, \beta=2$, and $\alpha \geq 4$, we have for every $t=1, \ldots, \alpha-\beta$

$$
\Omega_{t}\left(K_{p, \alpha, \beta}\right)=\prod_{i \in J} \Omega_{t}\left(K_{i}\right),
$$

i in increasing or decreasing order.
Proof. By 3.14, we have $K_{p, \alpha, \beta} \cap \operatorname{ker} \varphi_{\alpha-t}^{\alpha}=\Omega_{t}\left(K_{p, \alpha, \beta}\right)$. Then we conclude by 3.15.
For $s=1, \ldots, \alpha-\beta$ we consider the quotient $\bar{W}_{s}=\left\langle\sigma, \varphi^{p^{s}}\right\rangle \times$ $B /\left\langle\varphi^{p^{s+\beta}}\right\rangle$. If γ lies in $K_{p, \alpha, \beta}$, then γ induces the autoprojectivity $\gamma_{s \gamma}$ of \bar{W}_{s} which, by 1.5 , is induced by an automorphism ($\alpha_{s}, 1$). Since $\langle\sigma\rangle^{\gamma}=$ $\langle\sigma\rangle, \alpha_{s}$ is of the form $\bar{\sigma} \mapsto \bar{\sigma}, \overline{\varphi^{p^{3}}} \mapsto d_{s} \overline{\varphi^{p^{3}}}$, for a unique $d_{s} \in \mathscr{U}\left(R_{\beta}\right)$. It is clear that if $p^{s} \gamma=c_{s} p^{s}$, with $c_{s} \in C_{p, \alpha-s, \beta}$, then d_{s} is the image of c_{s} under the projection $R_{\alpha-s} \rightarrow R_{\beta}$. In particular d_{s} lies in $C_{p, \beta, \beta}$.

We have therefore defined an epimorphism $\Sigma: K_{p, \alpha, \beta} \rightarrow\left(C_{p, \beta, \beta}\right)^{\alpha-\beta}$. We denote by $F_{p, \alpha, \beta}$ the kernel of Σ. Then

$$
\begin{equation*}
F_{p, \alpha, \beta}=\left\{\gamma \in K_{p, \alpha, \beta} \mid p^{s} \gamma \equiv p^{s} p^{s+\beta} \quad \text { for all } s=1, \ldots, \alpha-\beta\right\} . \tag{3.13}
\end{equation*}
$$

In particular, $F_{p, \alpha, \beta} \leq S_{p, \alpha, \beta}$ and in fact, by the structure of $S_{p, \alpha, \beta}$, $F_{p, \alpha, \beta}$ is the stabilizer of 0 in $S_{p, \alpha, \beta}$.
If $\beta=1$, by 3.11 it follows that $F_{p, \alpha, \beta}$ is a p-Sylow subgroup of $K_{p, \alpha, \beta}$, and in this case $K_{p, \alpha, \beta}$ splits over ${ }_{p, \alpha, \beta}$.

Proposition 3.17. Let q be the integer such that $q \beta<\alpha \leq(q+1) \beta$. Then the derived length of $F_{p, \alpha, \beta}\left(K_{p, \alpha, \beta}\right)$ is $q(\leq q+1)$.
Proof. In [3, (8)] we introduced the group $S_{1}=\left\{\sigma\left|1+p R_{\alpha}\right| \sigma \in\right.$ $\left.S_{p, \alpha, \beta}\right\}$ and showed that $d l\left(S_{p, \alpha, \beta}\right)=d l\left(S_{1}\right)=q[3,3.9]$. Since $S_{1} \rightarrow$ $F_{p, \alpha, \beta} \leq S_{p, \alpha, \beta}$ we get $\operatorname{dl}\left(F_{p, \alpha, \beta}\right)=q$. Since $K_{p, \alpha, \beta} / F_{p, \alpha, \beta}$ is abelian, we conclude.

Lemma 3.18. Assume either $p \neq 2$ or $\beta \geq 2$. Then $K_{p, \alpha, \beta}$ is abelian if and only if $\alpha+1 \leq 2 \beta$.

Proof. Let $E_{p, \alpha, \beta}=\left\{\sigma \in K_{p, \alpha, \beta} \mid p^{\alpha-\beta} \sigma=p^{\alpha-\beta}\right\}$. Then $K_{p, \alpha, \beta}=$ $E_{p, \alpha, \beta} \rtimes K_{p^{\alpha-\beta}}$. Assume $\alpha \leq 2 \beta$. Let $\sigma, \tau \in E_{p, \alpha, \beta}$ and $i \in R_{\alpha}$. We get $i \sigma=i+h p^{\alpha-\beta}, i \tau=i+k p^{\alpha-\beta}$ for some $h, k \in \mathbb{Z}$. Then $i \sigma \tau=(i+$ $\left.h p^{\alpha-\beta}\right) \tau=i \tau+h\left(p^{\alpha-\beta} \tau\right)=i+k p^{\alpha-\beta}+h p^{\alpha-\beta}, i \tau \sigma=\left(i+k p^{\alpha-\beta}\right) \tau=i \tau$ $+k\left(p^{\alpha-\beta} \tau\right)=i+h p^{\alpha-\beta}+k p^{\alpha-\beta}$. Therefore $E_{p, \alpha, \beta}$ is abelian.

Now suppose $\alpha+1 \leq 2 \beta$, and let $\sigma \in E_{p, \alpha, \beta}, \tau \in K_{p^{\alpha-\beta}}$. To show that $[\sigma, \tau]=1$ it is enough to show that $i \sigma \tau=i \tau \sigma$ for every $i \in J$. If $i=p^{\alpha-\beta}$, then $p^{\alpha-\beta} \sigma \tau=p^{\alpha-\beta} \tau=c p^{\alpha-\beta}=\left(c p^{\alpha-\beta}\right) \sigma=p^{\alpha-\beta} \tau \sigma$ for some c and we are done. Now assume $i<p^{\alpha-\beta}$. Then $i \tau=i, i \sigma=i+\delta_{i} p^{\beta}$. But $\beta \geq$ $\alpha-\beta+1$, so that $\left(i+\delta_{i} p^{\beta}\right) \tau=i \tau+\delta_{i} p^{\beta}=i+\delta_{i} p^{\beta}$. Hence $i \sigma \tau=$ $\left(i+\delta_{i} p^{\beta}\right) \tau=i+\delta_{i} p^{\beta}=i \sigma=i \tau \sigma$.

On the other hand, if $\alpha \geq 2 \beta$, we may choose $\sigma=\sigma_{1}^{p^{\alpha-2 \beta}}, \tau$ any non-trivial element of $K_{p^{\alpha-\beta}}$. Then $1 \sigma \tau=1+d p^{\alpha-\beta} \neq 1+p^{\alpha-\beta}=1 \tau \sigma$.

We finally determine the derived length of $K_{p, \alpha, \beta}$. We note that if $p=2$ and $\beta=1$, then $K_{2, \alpha, 1}=F_{2, \alpha, 1}$, since $C_{2,1,1}=1$. So, by 3.17, we are left to prove

Theorem 3.19. Let q be the integer such that $q \beta \leq \alpha<(q+1) \beta$. Then, unless $p=2$ and $\beta=1$, the derived length of $K_{p, \alpha, \beta}$ is q.

Proof. It is enough to show that $d l\left(K_{p,(q+1) \beta-1, \beta}\right)=d l\left(K_{p, q \beta, \beta}\right)=q$. We first prove that $d l\left(K_{p,(q+1) \beta-1, \beta}\right)=q$. By 3.18 this is true for $q=1$. Now assume the result for $q-1 \geq 1$. We consider the kernel M of the surjection $\pi: K_{p,(q+1) \beta-1, \beta} \rightarrow K_{p, q \beta-1, \beta}$. Then $d l\left(K_{p,(q+1) \beta-1, \beta} / M\right)=q$ - 1. On the other hand $\operatorname{dl}\left(K_{p,(q+1) \beta-1, \beta} / F_{p,(q+1) \beta-1, \beta}\right)=1$, so that $d l\left(K_{p,(q+1) \beta-1, \beta} / M \cap F_{p,(q+1) \beta-1, \beta}\right)=q-1$. Since by [3, 3.2] $M \cap$ $F_{p,(q+1) \beta-1, \beta}$ is abelian, we are done. We finally deal with $K_{p,(q+1) \beta, \beta}$. By 3.17 we have $q \leq \operatorname{dl}\left(K_{p,(q+1) \beta, \beta}\right) \leq q+1$. To conclude we may use the procedure used in [3, 3.9] to prove that $d l\left(S_{p,(q+1) \beta, \beta}\right)=q$. Here we take $\sigma_{i}=\sigma_{\eta_{i}, c_{i}}$, where $\eta_{i}=1+\sum_{k=1, \ldots, i} p^{k s}, c_{i}=p^{i \beta}$ for $i=0, \ldots, q-1$. Note that the coset of action (see the definition in [3]) of σ_{i} is $X_{i}:=\eta_{i}+$ $p^{i s+1} R_{(q+1) \beta}$. Let $\sigma=\sigma_{p, c} \in K_{p}$. Then we have $\left[\sigma_{i}, \sigma\right]\left|X_{i}=\sigma_{i}^{c-1}\right| X_{i}$. If $\beta \geq 2$ we may take $c=1+p^{\beta^{p-1}}$, so that $\sigma_{i}^{c-1} \neq 1$. If $\beta=1$, then again there exists c such that $\sigma_{i}^{c-1} \neq 1$ since $p \neq 2$. We have therefore proved that there are elements $f_{0}, \ldots, f_{q-1} \in K_{p,(q+1) \beta, \beta}^{\prime}$ such that $f_{i} \mid X_{i}=$ $\sigma_{i}^{c-1} \mid X_{i} \neq 1$. Then we proceed as in the proof of 3.9 in [3] to get $K_{p,(q+1) \beta, \beta}^{(q)} \neq 1$, and we are done.

REFERENCES

1. M. Costantini, The group of autoprojectivities of the finite irreducible Coxeter groups, J. Algebra 180 (1996), 877-888.
2. M. Costantini, C. H. Holmes, and G. Zacher, A representation theorem for the group of autoprojectivities of an abelian p-group of finite exponent, Ann. Mat. Pura Appl. 175 (1998), 119-140.
3. M. Costantini and G. Zacher, On the group of autoprojectivities of periodic modular groups, J. Group Theory 1 (1998), 369-394.
4. J. Dixon, M. du Sautoy, A. Mann, and D. Segal, "Analytic Pro-p-Groups," Cambridge Univ. Press, Cambridge, UK, 1991.
5. J. E. Humphreys, "Reflection Groups and Coxeter Groups," Cambridge Univ. Press, Cambridge, UK, 1992.
6. R. Schmidt, Untergruppenverbände direkter Produkte von Gruppen, Arch. Math. 30 (1978), 229-235.
7. W. R. Scott, "Group Theory," Dover, New York, 1987.
8. T. Uzawa, Finite Coxeter groups and their subgroup lattice, J. Algebra 101 (1986), 82-94.
