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INTRODUCTION

Let G be a group. We denote by P(G) the group autoprojectives of G,
that is, the group of automorphisms of the subgroup lattice /(G) of G. In
[1] we studied the group P(W) for a finite irreducible Coxeter group W.
The purpose of the present paper is to relax the irreducibility condition,
that is, to give a description of the autoprojectivities of W for any finite
Coxeter group W.

In [1] we showed that the natural homomorphism Aut W — P(W) is
injective and, after identifying Aut W with its image PA(W) in P(W), that
the group P(W) is a product of two permutable subgroups, P(W) =
R AutW, with RN AutW = 1.

The present paper is divided into three sections. In Section 1 we give the
notion of exceptional prime for a finite Coxeter group W (cf. Definition
1.4) and show that if W has no exceptional primes then R = {1} (Proposi-
tion 1.7). In Section 2 we obtain our main result: if W is a finite Coxeter
group, then every autoprojectivity of W is induced by a (unique) automor-
phism if and only if W has no exceptional primes (Theorem 2.16). We
therefore obtain the complete list of the finite Coxeter groups for which
P(W) = AutW:

(1) W cyclic of order 2,

(2) W dihedral of order 2n, with n = 2, 4, 6, or 12,
(3) W irreducible of rank at least 3,

(4) W reducible with no exceptional primes.
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Finally we give the list of the finite Coxeter groups which are strongly
lattice determined:

(a) W dihedral of order 2n, with n = 2, 4, 6, or 12,
(b) W irreducible of rank at least 3,
(¢c) W reducible with no exceptional primes.

In Section 3 we determine the structure of the group R in presence of
exceptional primes.

Our notation is standard, relying essentially on [1, 5]. If X <Y < G,
[Y/X] denotes the relative subgroup interval. If X <Y, we identify [Y/X]
and I(Y/X). p always denotes a prime number. R; is the ring Z/p°Z.
%(A) is the group of units of the ring A. Sym X denotes the group of
permutations on a set X; S, is the symmetric group on k objects.

PR(X) is the group of automorphisms of the partially ordered set of
cosets S(X) of the group X.

All groups are assumed to be finite.

1. COXETER GROUPS

Let W be a (finite) Coxeter group with given Coxeter generating set S
(for the definitions cf. [1, 5]). The pair (W, S) is called a Coxeter system.
To (W, S) there is associated the Coxeter graph, and (W, S) is irreducible if
the Coxeter graph is connected, reducible otherwise. In general let S,..., S,
be the subsets of S corresponding to the connected components of the
Coxeter graph. Then W is the direct product of the parabolic subgroups
W and each Coxeter system (Wj,S,) is irreducible. The W’s are the
irreducible components of W.

We fix a Coxeter group W, with Coxeter generating set S, and consider
W as a finite reflection group by means of the geometric representation of
W. We get the root system &, and a fixed simple system {«;,..., a,}, so
that each s; € S is the reflection relative to the vector «;. By 1.1 in [1], the
natural homomorphism Aut W — P(W) is injective. This allows us to
identify Aut W with its image PA(W) in P(W) to obtain Aut W < (W) <
P(W), where I(W) denotes the group of index-preserving autoprojectivi-
ties of W. We introduced the group

Ry(W) ={eI(W)|{s)? = (s) forevery s € S}
and proved that

I(W) =Ry(W)AutW,  Rg(W) N AutW = {1}.
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The complement Rg(W) of AutW in I(W) depends on the chosen
Coxeter generating set. However, we shall always keep S fixed and write
R(W) for Rg(W).

We recall some results from [1]. Every autoprojectivity of W is index-
preserving if and only if W is not dihedral of order 2p, p an odd prime
(Proposition 1.9). In particular we get

(1.1) P(W) =I(W) = R(W) Aut W

if W is reducible. We shall call R(W) the group of exceptional autoprojec-
tivities of W.

12 Let W be irreducible. Then R(W') # {1} if and only if W is
(12) dihedral of order 2n, with n # 2, 4, 3, 6, or 12 (Theorem 4.6).

From now on we assume W is reducible. Then § =S, U ---US,, t > 2,
W =W, X -+ X W, where the W, == Wy _are the irreducible components
of W. Let y be in R(W) and let i be in {1,...,t}. Then vy fixes W, and it
induces the autoprojectivity y; of W. which, by definition, lies in R(W,)

(which by our convention is Rg(W,)). We put
m: R(W) - R(W,) X - X R(W,), Y= (Yoo os V)

ProOPOSITION 1.1. 71 is injective.

Proof. Assume vy € ker 7. Let ®; be the set of roots of W,. In particu-
lar we get {(s,>" = (s, for every a € ®,. But then we have {s,)” = {s,)
for every a € ¢ since & = &, U --- U ®,. Hence y=1by 1.51in [1]. 1

By 1.1 and (1.2) we are left to study the case when at least one of the
W;s is dihedral. For this purpose, we recall the structure of the group of
index-preserving autoprojectivities of dihedral groups [1, Sect. 3] and give
an alternative way to describe this group as a permutation group.

Let D,, be the dihedral group of order 2n, D,, = {o, p), with p of
order n. We consider the Coxeter generating set {o, op}. Let k be in Z,
k > 2. We put

T,={8€S,|ILecS(Z/kZ) e L’ S(z/kz)}.

Therefore T, is isomorphic to the group PR(Z /kZ). There is a monomor-
phism A,: 7, — I(D,,) such that for ¢ € T, cA, is the unique autopro-
jectivity of D,, such that (op®)**" = (ap®) for every a € Z/nZ. A, is
an isomorphism if n # 2 [1, 3.4]. If n = p{" --- p for distinct primes
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Pis---> D, then T, = Tp?’l X eee X Tp;n,, and each T, is a permutational
wreath product. We put

I,={8€T,1056=0,156=1}.

Then restricting A, to T, gives rise to an isomorphism from T, to R(D,,).
This last isomorphism holds also for n = 2.
From the above discussion we get

(1.3) [=1 o n=243,6o0rl2

Remark 1.1. For each i =1,...,t,let 9, ={H,,,..., i .} be the
set of dihedral subgroups of W of order 2n/piti. We choose the notation
so that H; , = { p?"", op*). If ¢ is in I(D,,), then ¢ induces a permuta-
tion on each set Z;,. The homomorphism of I(D,,) into S,m X === X S,
we get is clearly injective. Let I(D,,) be the subgroup of elements in
I(D,,) fixing every dihedral subgroup of order 2n /p/", j # i. Then I(D,,)
is isomorphic to the group of permutations of &, induced by I(DZn), and
this group is precisely 7. In particular I(D,,) = I,(D,,) X -+ X I(D,,).
If we denote by R, (Dz,,) the subgroup {ye1(D,,) | H,=H,, H =

H; }, we get R(D,,) = R(D,,) X -+ X R(D,,), with R, (Dzn) =T,m

Dually, for each i let K, = <p"/p' o). Suppose n lies in I(Dzn)
Then 7 fixes Kl, and it 1nduces the autoprojectivity 7 of it. Since for each
involution op® in K; there exists a unique j such that H, ; N K; = (ap®)
and, for each k, H, , N K; = (op®) for some b, the permutatlon of 7.
induced by 7 is completely determined by 7, and vice versa. Therefore the
map [(D,,) X === X I(D,,) = I(K,) X -+ X I(K,) is an isomorphism. For
each i let R(K;) be the group of exceptional autoprojectivities of K, with
respect to the Coxeter system {o, op”} where H; N K; = {op”). Then
R(D,,) - R(K,) X -+ X R(K,) is an isomorphism and R(K;) =T

PROPOSITION 1.2. Let n = p®m, (p,m) = 1 and let y be in R(D,,). If
P« < 4, then vy induces the identity on (o, p™).

Proof. Tt is equivalent to prove that I',. = 1. This comes from (1.3). 1l

To continue the study of the reducible case in presence of dihedral
components, we give some definitions.

DerFINITION 1.3. Let X be a finite group, and let p be a prime. We
define v,(X) in the following way. If p is odd, p"»*) is the p-exponent of
X.If p = 2 then 2"2®) is the 2-exponent of X if X has elements of order
4. Otherwise v,(X) is 1 if X contains the Klein four group, and is 0 in the
remaining case.

DerFINITION 1.4. Let W be a finite Coxeter group. Suppose W has
dihedral components and write W = D,, X - X D,, X Z, where Z has
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no dihedral components. Let p be a prime, and let p*”) be the maximal
power of p dividing at least one of the n,’s. We say that p is exceptional if
the following conditions hold:

(i) pa(p) > 5;

(i) there exists a unique i such that p*”) divides i = i(p), and Z
has no element of order p*(»).

Our aim is to show that R(W) = 1 if and only if W has no exceptional
primes. We shall use the following result by Schmidt concerning projectivi-
ties of products of dihedral groups.

LEmMA 1.5. Let A, B be isomorphic dihedral groups. Then every projec-
tivity of A X B onto a group C is induced by a unique isomorphism.

Proof. See [6, Lemma 3]. |
Suppose for the moment W = D,, X G, G any finite Coxeter group.

LEMMA 1.6. Letn = p®m, (p,m) =1, and let y be in R(D,, X G). If
G has elements of order p®, then v induces the identity on {o, p™).

Proof. Let A=D,,=(o,p). If p*<4 we are done by 1.2. So
assume p® > 5. Let g be an element of order p® in G, and let 7 an
involution in G such that 7gr = g~ '. Let B, = (o, p”"), B, = {ap, p*"),
and A4, = (o, p™). By 1.5 applied to A4, X {7, g), there exists an auto-
morphism of A, inducing y on A4,. But A, is generated by two involu-
tions fixed by this automorphism, namely the one in 4, N B, and the one
in 4, N B, and we are done. |

PrROPOSITION 1.7. Let W be reducible. If W has no exceptional primes,
then every autoprojectivity of W is induced by an automorphism.

Proof. If W has no dihedral component we know that R(W) = 1. So
assume W =D,, X - X D,, X Z, where Z has no dihedral components.
Let 7 € R(W). We show that 7 is the identity on each D,, . Let us fix i,
and denote by y the restriction of n to D,, . Write W = D,, X G. Let ¢q
be a prime divisor of n;, and let ¢ be the maximal power of g dividing 7;.
It is enough to show that vy fixes every dihedral subgroup of order 2n,/q“
of D,,.If ¢ < 4 we are done by 1.2. So assume ¢* > 5. Then ¢*? > 5,
so that there exists an element of order g in G, since W has no
exceptional prime. We conclude by 1.6. ||

2. THE MAIN RESULT

In this section we shall show that if W has exceptional primes, then
R(W) is not trivial. We introduce some notation.
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DErINITION 2.1.  Let p be a prime «, 8 non-negative integers such that
a > (. We denote by ©, , , the group of exceptional autoprojectivities of
D, ,. which can be extended to exceptional autoprojectivities of D, X
D, s.

p

By abuse of notation we consider dihedral also the cyclic group of order
2. We observe that, by 1.1 and Schmidt’s result, the restriction map
R(D,,« X D,,6) > O, , 5 is an isomorphism and ©, , , = 1.

We now assume W = D,, X - X D,, X Z, where Z has no dihedral
component, W with exceptional primes p;,..., Py For each i =1,...,r,
let Dz,1 (o, p;- Let p be an exceptional prime, and let i = i( p) We
put M, = <0-1 , pl/?""y. We denote by w, the restriction map R(W) —
R(M, ) and we put

p: R(W) > R(M, ) X+ XR(M, ), Y (Ve s Yy, -

It is clear that w is injective. We shall determine its image.

DEFINITION 2.2. With the previous notation we put B(p) =
Up(W/Dzn,“,))-

Note that if p is an exceptional prime, then B(p) < a(p).

PROPOSITION 2.3.  For every exceptional prime p we have Im pu, <

®p» a(p), B(p)

Proof. Let i =1i(p), a = a(p), B=B(p), and write W =D,, X G. It
is enough to show that there exists a dihedral subgroup D of G of order
2p# fixed by every y € R(W). For then, given y € R(W), y induces an
element of R(M,, X D), so that yu, € 9,

Suppose p is odd or p=2 Wlth B > 2 Let X be an irreducible
component of G containing an element p of order p#. We can choose an
involution 7 € X such that 7pr = p~! and such that each y & R(W)
induces the identity on {7, p). We take D = {7, p).

Finally suppose p = 2. If 8 = 0. Then we take D = {7), where 7 is a
Coxeter generator of W notin D,,. If B =1 there are two commuting
involutions 7, 7’ in G such that {7, Ty = (t,7') for every y € R(W). In
fact, if G has at least two irreducible components we take = a simple
reflection in one component and 7' a simple reflection in another. If G is
irreducible, then it contains by hypothesis the Klein group V. If G is not
dihedral then any copy of V' in G can be taken for D. If G is dihedral, it
has order 4m with m odd. If G = {7, p), with p of order 2m and Coxeter
generators 7, Tp, we can take 7' = p™.
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In particular we get

(2.1) Im p < ®p1,a(p1),ﬁ(m) X X ®p1,,a(pz,)»3(ph)'

We shall prove that in fact equality holds. We first determine some
properties of 0, , 4.

Let y € ©, , 4. For simplicity we write D,,. =4 = {0, ¢), D,,s = B
= {7, p). We still denote by y the unique element of R(A4 X B) inducing
y on A, and the element of I',. such that (op®)Y = (ap®) for every
a€R,.

LEMMA 2.4.  Let X be a dihedral group generated by the involutions x, y.
If ¢ is an index-preserving projectivity of X onto a group X, and {x)" = (%),
(y)" =y, then ()" = ().

Proof. Seel6,7.7.1]. 1

PROPOSITION 2.5. Let y be in ©

b« p- Then we have

<0.€Danb>Y — <O_¢ay7_pb> and <¢apb>7= <€Day,yb>

for everya € R, b € Ry.

Proof. By 1.5 v induces the identity on B. From {o¢“)” = {o¢"),
(p®) = {p?), and 2.4, it follows that {o@rp®)? = (oe®rp’). Moreover
Cor, )Y = (ot, opmp®)? = (o1, 001p®) = {oT, ¢“P°), so that
(ot = (o). 1

In the next proposition we establish a crucial property of the group
0

P> a,B*
PROPOSITION 2.6. Let y € 0O

a0 ER,.Ifa=b p'R, for some
t < a— B, then

(b—a)y=by—ay p'*FR,.

Proof. Let X = (oo, * ). By 2.4, o1, ¢*~% and o¢’’rp lie
in X?. Hence @@ 97T =b = 5obrpopre® =97 lies in X7 N (@) =
(X N {e)? =X N {p) = L p)"). We get (b —a)y=by-
ay p"PrR,. 1

DEFINITION 2.7.  Assume « > 8 > 0. We say that an element o € S«
satisfies () if

(b—a)o=bo—ac p'* PR,

whenever b =a p'R,, for some ¢t < a — B.
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For every prime p and every pair of non-negative integers (a, 8) with
a > B we introduce the group

(2.2) r

praB {8 € I« | & satisfies (*)}

It is clear that

(2.3) Fpu=rp’a,021ﬂ ’12 te Zr =1.

In the special case p = 2 we have
ProposiTION 2.8. T, , | =1} , 0.

Proof. Let y € T,a. Let a,b € R, be such that a =b 2'R,, for some
t<a—1,but a#b 2'"'R,. Since y is an automorphism of S(R,)
fixing every subgroup, there exist odd integers k, k' such that (b — a)y =
k2" and by =ay + k'2". Then (b —a)y=by —ay 2'"'R_. 1

From 2.4 we get O, , ;< 1"A “ 5. Our aim is to prove that equality
holds. This will be a corollary of a more general result. Suppose D =
Dy e = {0,y with a > 1,(p,m) =1, and let A = (o, ). Then for
every & € I« there exists a unique element vy, € R(D) fixing the dihedral
subgroups of order 2p® of D and inducing ¢ on A. We call vy, the
element of I',«, induced by &.

m

LEMMA 2.9. Let e €T, , g, and let vy, be the element of T, induced

by &. Then we have
(b—a)y,=by,—ay, p'""PmZ/pmZ

ifa=b p'Z/p*mZ for somet < B — a.

Proof.  Straightforward. |

The next proposition is the key step in our construction.

PROPOSITION 2.10. Let W =D X G, where D = D, ,a,,, a > 1, (p,m)
=1, and G is a Coxeter group with v,(G) = B < a. Let e € T}, , 5. Then v,

can be uniquely extended to an element of R(W) inducing the ldentlty on G.

Proof. Wewrite y = vy, D = (o, ¢). We define a bijection w: W - W
by

(¢g)w =9, (0¢'g)w=0¢"g
for every a € Z/p°*mZ, g € G.

We prove that o induces an autoprojectivity of W. Let X < W. We
have to show that X < W. Now 1 = ¢ = ¢ is in X“. To conclude we
have to consider various cases. We first prove a lemma.
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LEMMA 2.11. Let d Ep’Z \p'"1Z for somet < a— B. If ¢igisin X
for some g € G, then ©™?""’ lies in X unless p =2 and B = 0. In this case
e lies in X.

Proof. 1Tt is clear that there exists a p-element x € G such that ¢"?x
lies i in X.If pis odd, or if p =2 and B > 1, then v,(G) = p means that
©"?"" is in X. Finally suppose p = 2 and B = 0. Then "2 = (em¥x)?
isin X. |

We can now complete the proof of 2.10. Let x, y be in X“. We prove
that x~'y € X“. We have to consider four cases.

@) (x,y) = (g, p®7g").

We show there exists an element ¢ such that ¢°g~'g’ € X and ¢y = by —
ay. Let {@"" ) = {""P"), with m' |m. If t > a — B we get (b — a)y =
by — ay and we can take ¢ =b —a. Now assume ¢ < o — B, and let
by —ay = (b — a)y + smp'*P. Suppose p is odd, or p = 2 and B > 1. Let
s’ be such that (b —a + s'mp' )y =(b — a)y + msp’*ﬁ, and let ¢ = b
—a +s'mp'*B. Then ¢y =by—ay, and ‘g 'g' = ¢ g g @ mr""’
€ X by 2.11.

If p=2and B=0,then ¢ €I, , | by 2.8, so that by —ay = (b — a)y
+ sm2'*! for some s. Let s’ be such that (b —a + s'm2'* D)y = (b — a)y
+ ms2' L and let ¢c=b—a+s'm2'*'. Then cy= by — ay, and

—1,1 s'm2'*!

og g’ =t g g € X by 2.11 and we are done.

(a,) (x,y) = (gp“’g, ¢"g").
We show there exists an element ¢ such that o¢pg~'g’ € X and cy = ay
+ by. Let (o) = (""", with m' | m. If t > a — B we can take ¢ = a
+ b. Now assume ¢ < o — 8. Let s be such that ay + by = (a + b)y +
smp'* . Then we conclude as in case (a,).

The remaining two cases are dealt with in a similar way. Note that the
same procedure applies to &', so that we have proved that  induces an
autoprojectivity, that we still callw, of W. It is clear from the definition
that o induces the identity on G and that it lies in R(W). Uniqueness
follows from the fact that any exceptional autoprojectivity of W is deter-
mined by its action on D and G.

DerFINITION 2.12. With the previous notation, we denote by ¢, the
monomorphism I, , ; = R(W) sending an element & of I, , ; to the
unique element of R(W) inducing vy, on D and the identity on G.

ProposiTION 2.13. O, , =T,

Proof. We already know that ®p wp < I‘A " g- On the other hand, if we
take W=D, . XszBa then given ¢ € F @B we get eA .= s, €

(€] Hence ® = T A |

p,a, B* p.a, B p.a,B*
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We can finally prove

THEOREM 2.14. Let W be a finite reduced Coxeter group with exceptional

primes py,...,p,. Then R(W) is isomorphic to L, atp iy X0 X
th,a(ph),ﬁ(ph)‘

Proof. We only have to prove that Imu =T, ) g, X = X
l"ph a(py), B(py- 1t 18 enough to prove the following: let p be an exceptlonal
prime of W, and let & be in T, ) g, Then there exists y € R(W) such
that yu, = ¢ and yu, = 1 for every exceptional prime g different from p.
We conclude by taking y=-¢et,. |

Theorem 2.10 gives a complete description of the group of exceptional
autoprojectivities of W in terms of the groups I, P B(pY whose structure
we shall determine in the next section. Here we just prove that if p is
exceptional, then I, () 5, # 1.

We fix a prime p and integers a > 8 > 0. Forevery s € {1,..., a — B},
de #(R, ) such that d =1 pP 'R, ,, we define o, , in the follow-
ing way. Let b € R, and write b = b, + b, p®, where b, is in {0, 1,..., p°
— 1}. We put ba,s , = b, + db,p°.

PROPOSITION 2.15. 0, , liesin T, , 5 and it fixes a for every 0 < a < p°.

Proof. We write o for g,; ;. The fact that o is bijective and ao =a
for every 0 < a < p?® is clear. We have to prove that o maps cosets to
cosets and it satisfies (#). Let a, b € R, b —a = kp'. Write a = a, +
a,p’, b=>b, +b,p’, b —a=cy,+c,p* with ay,by,c, €1{0,...,p* — 1}
If t > s, then a, = b, so that (b — a)o = bo — ao and we are done.

Now assume ¢ < s. Then bo —ao — (b — a)o = (b, — a, — ¢,) + d(b,
—a,—c)p*=(d—1Xb, —a, —c)p’. But d — 1 = hpP~! for some h,
so bo—aoc—(b—ao=hb, —a, —c)p* P! Hence bo —ac =
(b —a)op'*PR,, since s+ B—1>¢t+ B. It is also clear that bo €
ac+p'R,. 1

For every v > 8 > 0 we put

c

p.v,B

={ce#(R,)lc=1 pF IR}

IfB=1C, ,=%R).IfB>2C,, ;hasorder p? "' It is cyclic if
pisodd. If p=2then C, , ,=#(R,).If B> 3 then C,, ; is cyclic by
[7,5.7.12].

For every s € {1,..., a — B} we put

(2.4) K, ={o:,1deC, 4}
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By 2.15 it follows that

(2.5) K s is a subgroup of I, , 5 isomorphicto C, ,_ 4.

We are in the position to prove

THEOREM 2.16.  Let W be a finite reducible Coxeter group. Then R(W) = 1
if and only if W has no exceptional prime.

Proof. By 1.7, we only have to prove that if W has exceptional primes,
then R(W) # 1. By 2.14 it is enough to show that if p is an exceptional
prime of W, then I, ,,, 5,y # 1. Let p be an exceptional prime of W,
and let « = a(p). We show that I, , ,_; # 1. Suppose first « > 3. Then
L wa12Cy ot a1 =Z/pL. it a =2, then p=>3, since p®=5.

Hence I', 1>C11_?/(2/172)3&1Ifa—lthenp>5HenceI‘10
=T, ¢1by 1. 3) and we are done. |

From the results obtained in [1] in the irreducible case, we get

THEOREM 2.17.  Let W be a finite Coxeter group. Then P(W) = Aut W if
and only if W is in the following list:
(1) W cyclic of order 2,
(2) W dihedral of order 2n, with n = 2, 4, 6, or 12,
(3) W irreducible of rank at least 3,
(4) W reducible with no exceptional primes.
We recall that a group G is said to be strongly lattice determined if every

projectivity of G onto a group G is induced by an isomorphism. Taking
into account the results of Uzawa [8] and [1, 4.8], we get

THEOREM 2.18.  Let W be a finite Coxeter group. Then W is strongly lattice
determined if and only if W is in the following list:

(a) W dihedral of order 2n, with n = 2,4, 6, or 12,
(b) W irreducible of rank at least 3,
(¢c) W reducible with no exceptional primes.

3. THE STRUCTURE OF R(W)

In this section we take a closer look at the group R(W) in presence of
exceptional primes. By 2.14 this amounts to determine the structure of
L, o - Since for g =0, I, . 5 =T . is the stabilizer of 0 and 1 in 7«
which is a permutational wreath product, in our discussion we assume

B> 0.
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This kind of problem is somehow similar to a problem studied in [2, 3] in
order to determine the group of autoprojectivities of periodic modular
groups. In that context we introduced the group (in [3, Sect. 2] called §),

S, wp={yeSymR,liy=i pPR, foreveryie€ R, and

by—ay=b—-a p"PR, ifb=a p'R, forsometSa—B},

where a > 8> 1.
We start the investigation of I’

.« p- We fix the prime p, and integers «a,
B such that a > B8 > 1. We put

A=D2pa=<o-a¢>>7 B=D2p3=<77p>7

31
(31 W=A4XB.

We know that R(IW) =0, , s =T, , 5. Asusual, we identify these groups.

Suppose y € P(W). Then y induces the autoprojectivity y of W =
W/(gop Y. It is clear that if vy lies in R(W) then 7y lies in R(W/{¢*)), so
that 3 = 1. Hence {o¢')” < {(o¢', €” ?y; that is,

(32) iy=i pPR, foreveryyel, , andeveryi€R,
For our discussion it is convenient to introduce the subgroup

K, o p={v €T,y satisfies (),

p,a,

(33)

and ic=i pPR, foreveryi e Ra}.

Hence I, , 5 is the stabilizer of 1 in K, , 5. Note that Oy = 0 for every
€K, ,p and K, g ;=1 In fact K, , , corresponds to the subgroup

K(W)={yeP(W)|A4”"=A4,B"=B,y=1land(c)" = (o)}

LEMMA 3.1. Suppose o in Sym R, satisfies (%) and ioc =i pPR, for
every i € R,,. Then

(a) ifa,...,a €p'R, forsomet < a— B, then (a, + -+ +a,)o =

1 r p i, 1 r
a0+ - +a,0c pPY'R,;

b) po=p° pPTTIR, foreverys=1,...,a— B+ 1;

(©) ifa, bin R, are such that a=b p* PR, then bo — ac =
b —a.

Proof. (a) Follows by induction and the fact that a € p'R, = (—a)o
= —aoc pP"'R,.
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(b) True for s = 1. Assume the result for s < @ — 8+ 1. Then
(pHo=p* pPT IR, . But (p* Do =p(pa) pPR, by a), so that
(ps+l)UEps+l(T pB+sRa'

(c) By (b) we have p* P*lg=p* A*1 and by induction we get
(kp=B*Na = kp*~P*! for every k. Since a =b p* PR, we get bo —
ac=(b—a)o.But b —a=kp* P! sothat (b —a)a=b —a. |

LEMMA 3.2. Suppose o in Sym R, satisfies () and ic =i pPR, for
every i € R,,. Then o lies in PR(R).

Proof. We have to prove that o maps cosets to cosets. Since o is
invertible, it is enough to show that (x + H)o Cxo + H for every coset
x + H of R,. By 3.1 we have (kp')o = kp' p'R, for every 0 <t < a and
every k, since 8 > 1. Hence (p'R,)o Cp'R,,.

Nowlet a,b €R,, b —a=kp' Ift > p* P*! weget bo —aoc=b —a
by 3.1(c) so that bo = ao + kp' € ac + p'R,,, and (a + p'R, o Caoc +
p'R,. If t <a— B, then bo —ao = (kp')o p'*PR,. But (kp")o = kp'
p'R,, so that bo — ao = kp' p'R,. Hence bo € ao + p'R,,, and we are
done. 1

We begin by considering the case a = 8 + 1.

PRrROPOSITION 3.3. We have

PQ > P, P an elementary abelian group of order p? !,
0 = {a), a a power automorphism of order p — 1 of P,

p.B+1,p = fp=1
P an elementary abelian group of order p?,

if B=2.

Proof. Let y€ K, g,y - Then vy acts trivially on the set of the
dihedral subgroups A, = (o, ¢*),..., 4, | = (op?™ !, @P) of order 2p P
of A, and it induces an automorphism («;, 1) on each product A4; X B.
Therefore, for each i € {0,..., p — 1} there exist a unique d; € R, and a
unique ¢; € #(R,) such that (i + kp)y =i +d;p® + c;kp forevery k € Z.
Since vy fixes 0, we have d, = 0. Moreover, since ¢” lies in each A4;, we
must have ¢; = ¢; for every i, j. Call ¢ this common value: since py =p
pPR, ,wegetc=1 pP 'R,

On the other hand, given do,...,dp_1 € R, such that d, =0, and
c€#(R,s),c=1 pP 'R, itis clear that the map given by

(i+kp)7=i+dipﬁ+ckp

for every i €{0,...,p— 1}, ke Z, is in K, g1 - The structure of

K, 5.1 p follows easily. 1
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COROLLARY 3.4. We have

PQ > P, P an elementary abelian group of order p?~?,
0 = {a), a a power automorphism of orderp — 1 of P,

1—‘p,erl,sE ifS=1
P an elementary abelian group of order p? ~!,
ifs =2

Proof. In the proof of 33, if ye K, ,,, corresponds to
(dy,...,d,_,¢0), then y €T od,=d, =0.

p,s+1,s

To deal with the general case, we introduce certain elements of K, , 4.
In Section 2 we defined o, , for every s €{l,...,a =B}, d€C, ,_, 4
and the groups K .. Now we consider, with a minor change of notation,
the permutations O .4 introduced in [3]. We recall their definition.

DEFINITION 3.5. For ¢ €R,, t such that 0 <t <a— B, zE€p'R,_,
set

_ i iti¢ e+ ptR,
io, ,, =
&t i+pPz ifieé+p't'R,

for every i € R,,.

As already observed in [3], o, ,, € PR(R,) and o, ,0;, , =
-17 _
Ot 242,000, 2,0 = O, —7,1+
PROPOSITION 3.6.  Assume & and t are such that ¢ & p'*'R,. Then G ..
liesinK, , g

Proof. Clearly io, ., =i pP*"'R,. Let 0 <f<a— B, andlet i, e
R, be such that j =i p/R,.

(al) fS t. Here (] - i)o-f,z,t = (] - i)’ jq-g,z,t Ej’ ia’g,z,z =1
pP'R,, so that (j — i)a'g,z,t =J0 .0~ 10 2, pPR,.

(@) t+1<f Hereje ¢+p™'R, ifand only if i € £ + p'*'R,;
hence jo; ., —io, ., =j — i. Moreover, (j — o, ,, =] — i, since (& +
pTRY)NPR, =0. |

We introduce the subsets I ={0,1,...,p — 1} and J ={1,..., p* P} of
R,,. Moreover, we put J* =J\{p, p%,...,p* P}. Given a € J, we put
v(a) =cif p¢ <j<ptl

DEFINITION 3.7. For ¢ € J*and z € p*“R, , we put oy . = 0y . ;)
and K, = {0, , |z € p"©R,}.
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Therefore K, = A, as defined in [3, Sect. 2]: it is generated by T, prce)
and has order p“ B- l(f)
We remark that for i, j in J we have, by [3, (12)] and the definition
of K .
)4 b

(3.4) iK, =i ifi<j.

Following [3], we call elementary transformations the permutations of the
form o ,, £ €J%, 01 0,5 .
In the study of K, , 5 we note that

(3.5) ifforaceK, , z wehave xo=x for every x € J, then o = 1.

In fact, by 3.1(a), we have (kp® #)o = kp“~# for every k. Let a € R\
p“ PR, There exists a unique x € J\ {p* #} such that a = x + kp*#
Then aoc =xo0 + (kp* Plo=x+ kp* P =a

THEOREM 3.8. Let {0; .);c; and {0, .}, ; be two families of elementary
transformations, and assume Il,c; 0. =1l,c; 0., where i describes J in
decreasing order. Then c; = c; for every i € J. In particular

(p— 1) Tprrrtr i i g =

prrpir et if B> 2.

[k,

ieJ

Proof. By (3.4) we have 1 + clp =1lo,, =10, =1+c pf Hence
¢; = cj. Suppose ¢; =c; for 1 < k z. Then Il,e-6.;.; 0. =

. . 15 €j
I,es 2,0 50 that io; = l(rm.;.

(a,) If i €J* then io;, =i+ c;pP and io; , =i+ c;pP, so that
¢; = Ci
(a,) If z—p for some 1 <’s < a— B, then p, . . =c,p* and

PO, o, = C,pp’, and again ¢, = ¢

The result about the order follows, taking into account the orders

(p—Dpt ifp=1

K, Ot iegr, Kl =
Kl = Ky peiTBt if B> 2.

We now consider the problem of extending autoprojectivities. Suppose
a>a’' > 1, and let y € P(A4). Then v induces the autoprojectivity y on
A=A/ < ©”" ). The Coxeter systems we are considering are the following:
{0, o¢} for A as usual, {7, o¢} for A. We obtain the map =%: I(D, e «) =
I(D,,«). In terms of permutations, we get the map r;: T« = T,o', ¥y > ¥
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defined in the following way. Let y € T, and i € R,.. Choose j € R,
such that jpg =i, where pS: R, = R, is the canonical epimorphism.
Then iy = jyps. An easy graph theoretical consideration show that pg is
surjective. If we denote by j; the inverse of the isomorphism A s: 75 —
I(D,,s) we get the commuting diagram

I(D,,) =5 K(D,,.)

i [
T « T .
p pe P
Moreover, if « > a’ > B, then

YEKp,a,B=>7EKp,a',B and VEFP,Q,B:E’EFI;,M,B-

Our aim is to show that also the restrictions ¢g: K

p,
@i T,y 0 p = T, p are surjective. Note that

wp ™ Kp,a,,ﬁ and

kergf ={yeT.liy=i p“R, forallieR,).

An element i of the local ring R, can be uniquely represented in its
p-adic expansion i =i, +i;p + - i,_,p* ', where i, €I Let m: R, -
R, _, be the canonical epimorphism. Then, modulo the obvious identifica-
tions, we have

(3.6) im=i,+i,p+ - +i,_,p*?,

2o +ip+ e +i, ,p*? defines

a—2

while v: iy +i;p+ - +i,_,p
an injection of R, ; into R, such that imv =i, +i,p + - +i,_,p
and x,v+ - +x,v=0 p'R, if x,...,x, €R,_, are such that x,
+ - 4x,=0 p'‘R, ,forsome0 <?t<a-—1.

EXTENSION LEMMA 3.9. Let o > ' > B be positive integers. If o lies in

K, . p then there exists a ¢ in K, , g such that ¢m = wo, similarly for

psa, B*
Proof. 1t is enough to deal with the case a« — a’ = 1. Let i € R, and
let i =i, + - +i,_,p* ! be its p-adic expansion. Define

i6=(ig+ = Fiy g p* P )mov iy gp* P A iy p

1

Clearly ¢ lies in Sym R ,. For j =i, + - +ia_B_]p“_B_ we have j =1

p“ PR, so that

(3.7) iTo — jmo = (i — jm)o = im — jm
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by 3.1(c). It follows from (3.7) that iod7 = (jmov + i — j)w = jmo + i7m —
jm = jmwo + iwo — jwmo = iwo. Hence

(3.8) om= 70 .

In particular for i € R, we have iGm =imo=im pPR,_, so that

ic=i pPR,. Sincei=imv p* 'R,, we obtain

(3.9) ic=iomv=imov p* 'R

@

Now suppose b =a p/R,,0<f<a—pB.

(a;) f= a— B. By definition we get bd —ad =b —a. On the
other hand, b —a € p* PR, = (b — a)o = b — a, and we are done.

(a,) f<a—B. Then (bw — am)o = bmwo — awoc pP*/R, | im-

plies
(bm — am)ov = bmwov — amov pP/R,.
Hence
b — ad = bwov — awov = (bm —am)ov= (b —a)é pP''R,

since B+ f < «a— 1.1t is clear that if o € T then 10 = lwov =

p,a—1,5°
lmv=1,and 6T, , . 1

In terms of the group W this means that for every a > a' > B, the
natural map R(W) — R(W/{@”")) is an epimorphism.

ProrosiTioN 3.10. Suppose « > B. Then ker ¢ 1 N K, , g is an ele-

mentary abelian group of order p?* " if B > 2, while ker (pa 1 NK, 5=

PQ 1> P, P is an elementary abelian group of order p?“ *~', Q0 = (a), and o
is a power automorphism of order p — 1 of P if B = 1.
Proof.  Argue as in the proof of 3.3, using (3.5). |

ProrosITION 3.11. We have

(p =) prerie e g

IK | =
PP prrete et if B> 2.

Proof. This follows from 3.9, 3.10, and induction. [

We are now in the position to prove that K, , 5 is the product of the
subgroups K.
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THEOREM 3.12.  Assume «a > B = 1. Then we have

Kp,a,B = l_IKi,

ieJ

i in increasing or decreasing order.

Proof. Tt is enough to show that [[1,.; K,| = |Kp,a,3|- This follows
from 3.8 and 3.11. |

Remark 3.1. (a) Given o € K, , 4, there is a recurrent procedure to
get the factorization of ¢ in elementary transformations: ¢, is determined
by the relation 10 =1 + ¢, p® and, knowing c,,...,c,_4, ¢; is given as

L
follows. Set o' = o(o;_ - oy,.)"", and note that o' fixes k for
1<k<i

(a;) i€J* Then c; €R,_, is determined by io' =i + ¢;p”.

1,¢;

(a,) i=p*forsomel <s<a—pB. Thenc, €C,_; z is deter-
mined by p'o’ = c,:p°.
(b) Assume B> 2. Then the p-group K
definition see [4]).

.« p has a basis (for a

COROLLARY 3.13. Let j €J. Then the pointwise stabilizer of the set

{1,....j}in K, , g is the product I1,. ; ;. ; K;, where the i’s are in decreas-
ing order. In particular U, , 5 =11,c;,;., K; and

o [ (et prte e i p=
poa, Bl T pp+p2+~~~+p“75*(a*l3) 1fB22

Proof. Let F denote the pointwise stabilizer. Then for i € J, i > j,
K; < F. On the other hand, if o € F, and o = I, 0; . is the decompo-
sition of ¢ in decreasing order, then, starting with i = 1, we get ¢, = 0 if
i<jiel*c=1ifi<ji&J* 1

Let y € K(W) be a p-element with iy =i p‘R, for all i € R,. This is
equivalent to {o¢’, o? )? = (o¢’, ?'); that is, y | [W/{¢@” )] = 1. Then
v fixes every coset i + p’R,,. Since the orbits of the p-group {y) on the
set of cosets i + p'*'R,, are of length 1 or p, y” fixes every such coset;
that is,

(3.10) if y€ K(W)is a p-element then vy | [W/(go”'}] = 1 implies

v [w/Cer™H] = 1.
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In particular we get |y| < p*~*. Since o | | = p*#, we have
(3.11) the p-exponent of K(W) is p*~~.

THEOREM 3.14.  Suppose B = 2, and let v € K(W). Then, unless p = 2,
B=2and a =4, we have for B <t < a—1

yl=p= = I/ =1 and yI[W/Cer™] # 1.

Proof. 'We know that vy | [W/((pp >] =1=]vy|<p*" Itis enough to
show that if |y| = p then y | [W/{@?" ')] = 1; thatis,iy=i p* 'R, for
every i € R,. We prove this by inductionon r = a — . If r = 1, then the
conclusion follows from 3.3. So assume r > 1. Set y = | [W/ (@P” M
and, for a contradiction, assume | x| = p. Hence here exists i € R, such
that iy#i p* 'R,. By 1nduct1on on r, x| W/{e?" ) =1, so that
iy=i p* 2R, iy=1i+ kp® ? say. Let c be such that p* %y = ¢p* % It
follows that

(312) =iy’ =i+ k(l +c+ - +Cp_1)p0‘_2’

being ¢? = 1. If B> 3, we get ¢ = 1 by 3.1, so that kK € pR_, and iy =i
p* 'R, a contradiction. So we are left with 8 = 2. Then ¢ =1 pR, and
p#2 Then 1+ ¢+ - +c” ! =p, so that again k € pR,,, a contradic-
tion. |

o’

In 3.14 the case p =2, B =2, and «a > 4 cannot be omitted, as the
following example shows. Let p=2, a=4, and B=2. Then o=
(2,6)(3,7)(4,12)(5,13)(10, 14)(11, 15) lies in K,,, has order 2 and o |
W/ {e*)] # 1.

PROPOSITION 3.15.  Assume o > a' > B = 2. Then, unlessp = 2, B = 2,
and a > o' + 1, we have

ker (PL?, pr,a,B = nQa—a’(Ki)’

iel

IT Q.. (K),

ie\{1}

ker ¢ N Fp,a,ﬁ

i in decreasing or increasing order.

Proof. The result follows from 3.10 if « = o’ + 1. So assume a>a’
+ 1. It is clear that for each i € J* we have K, N ker ¢ o (K)).
On the other hand, if s €{l,...,a = B}land c€C, , | B then c=1+

mpP~!, and o, Ekerqoa,ifandonlylfmpﬁ 1p°€p dfa' <s+
B—1 then K < ker ¢. So assume s + 8 < a’. Then we get IK N
ker 92| = , so that, if we exclude the case p =2 and 8 = 2, K N

ker 92 = (K ).
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Now assume vy € ker ¢, and write y=1II,.,v, v, € K, for every
i € J. Applying the procedure of Remark 3.1(a), we can prove that each v,
lies in K; N ker ¢, and we are done. |

COROLLARY 3.16.  Assume B = 2. Then, unlessp = 2, B = 2, and o > 4,
we have foreveryt =1,...,a — B

Qt(Kp,oz,ﬁ) = H]Qt(Ki)’

i in increasing or decreasing order.

Proof. By 3.14, we have K, , s N ker ¢, = Q(K, , ;). Then we con-
clude by 3.15. 1

For s=1,...,a — B we consider the quotient W = {0, ") X
B/{ o?" "y, If v hes in K, , 4, then y induces the autoprojectivity y, of
W, which, by 1.5, is induced by _an automorphism (e, 1). Since (o )” =
(o), a, is of the form & — 7, " d gopx for a unique d, € ?/(RB). It
is clear that if p'y = ¢;p*, with ¢, € C, ,_; 4, then d| is the image of c;
under the projection R,_ = R,. In particular d lies in Cp 8.

We have therefore defined an epimorphism 2 K, . (C )P
We denote by F, , ; the kernel of 3. Then

(3.13) F, , 5= {yeraBIpy p* p*tP forall s =1,. a—,B}.

In particular, F, , ; <S, ., and in fact, by the structure of S, , 4,
F, . p is the stablhzer of 0 1n Sy ap
If B =1, by 3.11 it follows that «, p 18 @ p-Sylow subgroup of K

p,a, B’
and in this case K, , 5 splits over F o, B

PROPOSITION 3.17. Let q be the integer such that g8 < a < (q + 1B.
Then the derived length of F, , , (K, , ) is q(<q + 1.

Proof. In [3, (8)] we introduced the group S, ={o|1+pR, o€
S, « p} and showed that dI(S, , ;) =dI(S)) =q [3, 3.9] Since §, =
F,up<S,.pzwegetd(F,,k 5)=gq.Since K, , z/F, , ; is abelian, we
conclude. I

LEMMA 3.18.  Assume either p # 2 or B > 2. Then K, , 5 is abelian if
and only if « + 1 < 2.

Proof. Let E,,,={0c€K,, ,Ip*fo=p P} Then K, ,,=
EpaBNKpnﬁ Assumea<2,8 Let o, 7€E, .z and i € R,. We get

ic=i+hp* P ir=i+ kp* ? for some h, HEZ Then ior=( +
hp* B)yr=ir+ h(p* Pr)=i+kp* P + hp"‘*B, ito=( + kp* B)r=ir
+k(p*Pr) =i+ hp* P + kp°~P. Therefore E, , 4 is abelian.
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Now suppose « + 1 < 28, and let o € Ep o p» T E K,a-p. To show that
[o,7] = 1it is enough to show that ior = iro for every Telati =peh,
then p* Por=p* Pr=cp* P =(cp* P)o = p* Pro for some ¢ and we
are done. Now assume i < p® #. Then itr=1i, ic=i+ 8 p”. But 8>
a—B+1, so that (i + §;pP)r=ir+ 8pP =i+ 8pP. Hence ior=
i+ §pP)yr=i+8pP=ioc=iro.
On the other hand, if @ > 283, we may choose o = o{’aizﬁ, T any
non-trivial element of K,.s. Then lor=1+dp* F # 1+ p*~F = 170,

We finally determine the derived length of K, , ;. We note that if
=2and =1, then K, ,, =F, , y, since C,,; = 1. So, by 3.17, we
are left to prove

THEOREM 3.19. Let q be the integer such that g 8 < o < (g + 1)B. Then,
unless p = 2 and B = 1, the derived length of K, , 4 is q.

Proof. 1t is enough to show that di(K, 151 5) = dl(K, .5 5) =q
We first prove that dI(K, ,;1)s-1, ) = g- By 3.18 this is true for ¢ = 1.
Now assume the result for ¢ — 1 > 1. We consider the kernel M of the
surjection 7: K, ,+1p-1,5 > K, 451, 5- Then dl(K, . 1p_1 p/M) =
— 1. On the other hand dl(K (q+1p-1,8"Fpqrnp-1,8) =1, s0 that
dl(K, (ivp-1,8/MNF, ,inp-1, B) =g — 1. Since by [3, 32] Mn
F, 4+1p-1,p 1s abelian, We are done. We finally deal with K, . 1) - By
3.17 we have g < dl(Kp,(qH)B,B) <g+1. To conclude we may use the
procedure used in [3, 3.9] to prove that dl(S Y = gq. Here we take
o, =0, ., where ;,=1+%,_, :P*, ci=p forl—O..,q—l.
Note that the coset of action (see the definition in 3D of o; is X, == n; +
ps 1R(q+1)ﬁ Let o = € K,. Then we have [0}, 0] | X, = 0,7 | X,. If
B = 2 we may take ¢ = 1 +pﬁp1 so that o;°" ! £ 1.1f B = 1, then again
there exists ¢ such that o;°"! # 1 since p # 2. We have therefore proved
that there are elements fy,...,f,_1 €K} .1 such that f;|X; =

11X, # 1. Then we proceed as in the proof of 3.9 in [3] to get
Kzg,()qH)B,B #+ 1, and we are done. ||
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