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INTRODUCTION

Ž .Let G be a group. We denote by P G the group autoprojectives of G,
Ž .that is, the group of automorphisms of the subgroup lattice l G of G. In

� � Ž .1 we studied the group P W for a finite irreducible Coxeter group W.
The purpose of the present paper is to relax the irreducibility condition,
that is, to give a description of the autoprojectivities of W for any finite
Coxeter group W.

� � Ž .In 1 we showed that the natural homomorphism Aut W � P W is
Ž . Ž .injective and, after identifying Aut W with its image PA W in P W , that

Ž . Ž .the group P W is a product of two permutable subgroups, P W �
R Aut W, with R � Aut W � 1.

The present paper is divided into three sections. In Section 1 we give the
Žnotion of exceptional prime for a finite Coxeter group W cf. Definition

. � 4 Ž1.4 and show that if W has no exceptional primes then R � 1 Proposi-
.tion 1.7 . In Section 2 we obtain our main result: if W is a finite Coxeter

Ž .group, then every autoprojectivity of W is induced by a unique automor-
Ž .phism if and only if W has no exceptional primes Theorem 2.16 . We

therefore obtain the complete list of the finite Coxeter groups for which
Ž .P W � Aut W :

Ž .1 W cyclic of order 2,
Ž .2 W dihedral of order 2n, with n � 2, 4, 6, or 12,
Ž .3 W irreducible of rank at least 3,
Ž .4 W reducible with no exceptional primes.
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Finally we give the list of the finite Coxeter groups which are strongly
lattice determined:

Ž .a W dihedral of order 2n, with n � 2, 4, 6, or 12,
Ž .b W irreducible of rank at least 3,
Ž .c W reducible with no exceptional primes.

In Section 3 we determine the structure of the group R in presence of
exceptional primes.

� �Our notation is standard, relying essentially on 1, 5 . If X � Y � G,
� � � �Y�X denotes the relative subgroup interval. If X �Y, we identify Y�X�

Ž . �and l Y�X . p always denotes a prime number. R is the ring ��p �.�

Ž .UU A is the group of units of the ring A. Sym X denotes the group of
permutations on a set X ; S is the symmetric group on k objects.k

Ž .PR X is the group of automorphisms of the partially ordered set of
Ž .cosets S X of the group X.

All groups are assumed to be finite.

1. COXETER GROUPS

Ž .Let W be a finite Coxeter group with given Coxeter generating set S
Ž � �. Ž .for the definitions cf. 1, 5 . The pair W, S is called a Coxeter system.

Ž . Ž .To W, S there is associated the Coxeter graph, and W, S is irreducible if
the Coxeter graph is connected, reducible otherwise. In general let S , . . . , S1 t
be the subsets of S corresponding to the connected components of the
Coxeter graph. Then W is the direct product of the parabolic subgroups

Ž .W and each Coxeter system W , S is irreducible. The W ’s are theS S i Si i i

irreducible components of W.
We fix a Coxeter group W, with Coxeter generating set S, and consider

W as a finite reflection group by means of the geometric representation of
� 4W. We get the root system �, and a fixed simple system � , . . . , � , so1 n

� �that each s 	 S is the reflection relative to the vector � . By 1.1 in 1 , thei i
Ž .natural homomorphism Aut W � P W is injective. This allows us to

Ž . Ž . Ž .identify Aut W with its image PA W in P W to obtain Aut W � I W �
Ž . Ž .P W , where I W denotes the group of index-preserving autoprojectivi-

ties of W. We introduced the group

² :� ² :R W � � 	 I W 
 s � s for every s 	 S� 4Ž . Ž .S

and proved that

� 4I W � R W Aut W , R W � Aut W � 1 .Ž . Ž . Ž .S S



AUTOPROJECTIVITIES OF COXETER GROUPS 87

Ž . Ž .The complement R W of Aut W in I W depends on the chosenS
Coxeter generating set. However, we shall always keep S fixed and write
Ž . Ž .R W for R W .S

� �We recall some results from 1 . Every autoprojectivity of W is index-
preserving if and only if W is not dihedral of order 2 p, p an odd prime
Ž .Proposition 1.9 . In particular we get

1.1 P W � I W � R W Aut WŽ . Ž . Ž . Ž .

Ž .if W is reducible. We shall call R W the group of exceptional autoprojec-
ti�ities of W.

� 4Let W be irreducible. Then R W � 1 if and only if W isŽ .1.2Ž . dihedral of order 2n , with n � 2, 4, 3, 6, or 12 Theorem 4.6 .Ž .

From now on we assume W is reducible. Then S � S � ��� � S , t � 2,1 t
W � W � ��� � W , where the W � W are the irreducible components1 t i Si

Ž . � 4of W. Let � be in R W and let i be in 1, . . . , t . Then � fixes W and iti
Ž .induces the autoprojectivity � of W which, by definition, lies in R Wi i i

Ž Ž ..which by our convention is R W . We putS ii

	 : R W � R W � ��� � R W , � � � , . . . , � .Ž . Ž . Ž . Ž .1 t 1 t

PROPOSITION 1.1. 	 is injecti�e.

Proof. Assume � 	 ker 	 . Let � be the set of roots of W . In particu-i i
² :� i ² : ² :� ² :lar we get s � s for every � 	 � . But then we have s � s� � i � �

� �for every � 	 
 since � � � � ��� � � . Hence � � 1 by 1.5 in 1 .1 t

Ž .By 1.1 and 1.2 we are left to study the case when at least one of the
W ’s is dihedral. For this purpose, we recall the structure of the group ofi

� �index-preserving autoprojectivities of dihedral groups 1, Sect. 3 and give
an alternative way to describe this group as a permutation group.

² :Let D be the dihedral group of order 2n, D � � , � , with � of2 n 2 n
� 4order n. We consider the Coxeter generating set � , �� . Let k be in �,

k � 2. We put

T � � 	 S 
 L 	 S ��k� � L� 	 S ��k� .Ž . Ž .� 4k k

Ž .Therefore T is isomorphic to the group PR ��k� . There is a monomor-k
Ž .phism 
 : T � I D such that for c 	 T , c
 is the unique autopro-n n 2 n n n

² a:c
 n ² ac:jectivity of D such that �� � �� for every a 	 ��n�. 
 is2 n n
� � m1 m ran isomorphism if n � 2 1, 3.4 . If n � p ��� p for distinct primes1 r
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p , . . . , p , then T 
 T m � ��� � T m , and each T m is a permutational1 r1 r n p p p1 r

wreath product. We put

� 4� � � 	 T 
 0� � 0, 1� � 1 .k k

Ž .Then restricting 
 to � gives rise to an isomorphism from � to R D .k k n 2 n
This last isomorphism holds also for n � 2.

From the above discussion we get

1.3 � � 1 � n � 2, 4, 3, 6, or 12.Ž . n

� 4mRemark 1.1. For each i � 1, . . . , t, let DD � H , . . . , H be theii i, 0 i, p �1i

set of dihedral subgroups of W of order 2n�pm i. We choose the notationi
² pi

m i k: Ž .so that H � � , �� . If � is in I D , then � induces a permuta-i, k 2 n
Ž . m mtion on each set DD . The homomorphism of I D into S � ��� � S1 ri 2 n p p1 r

Ž .we get is clearly injective. Let I D be the subgroup of elements ini 2 n
Ž . m j Ž .I D fixing every dihedral subgroup of order 2n�p , j � i. Then I D2 n j i 2 n

Ž .is isomorphic to the group of permutations of DD induced by I D , andi 2 n
Ž . Ž . Ž .mthis group is precisely T . In particular I D � I D � ��� � I D .ip 2 n 1 2 n t 2 ni

Ž . � Ž . � �If we denote by R D the subgroup � 	 I D 
 H � H , H �i 2 n i 2 n i, 0 i, 0 i, 1
4 Ž . Ž . Ž . Ž . mH , we get R D � R D � ��� � R D , with R D 
 � .ii, 1 2 n 1 2 n r 2 n i 2 n pi

² n � pi
m i : Ž .Dually, for each i let K � � , � . Suppose � lies in I D .i i 2 n

Then � fixes K , and it induces the autoprojectivity � of it. Since for each˜i
a ² a:involution �� in K there exists a unique j such that H � K � ��i i, j i

² b:and, for each k, H � K � �� for some b, the permutation of DDi, k i i
induced by � is completely determined by �, and vice versa. Therefore the˜

Ž . Ž . Ž . Ž .map I D � ��� � I D � I K � ��� � I K is an isomorphism. For1 2 n t 2 n 1 t
Ž .each i let R K be the group of exceptional autoprojectivities of K withi i

� b4 ² b:respect to the Coxeter system � , �� where H � K � �� . Theni, 1 i
Ž . Ž . Ž . Ž . mR D � R K � ��� � R K is an isomorphism and R K 
 � .i2 n 1 t i p i

� Ž . Ž .PROPOSITION 1.2. Let n � p m, p, m � 1 and let � be in R D . If2 n
� ² m:p � 4, then � induces the identity on � , � .

Ž .�Proof. It is equivalent to prove that � � 1. This comes from 1.3 .p

To continue the study of the reducible case in presence of dihedral
components, we give some definitions.

DEFINITION 1.3. Let X be a finite group, and let p be a prime. We
Ž . � pŽ X .define � X in the following way. If p is odd, p is the p-exponent ofp

X. If p � 2 then 2� 2Ž X . is the 2-exponent of X if X has elements of order
Ž .4. Otherwise � X is 1 if X contains the Klein four group, and is 0 in the2

remaining case.

DEFINITION 1.4. Let W be a finite Coxeter group. Suppose W has
dihedral components and write W � D � ��� � D � Z, where Z has2 n 2 n1 r
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no dihedral components. Let p be a prime, and let p� Ž p. be the maximal
power of p dividing at least one of the n ’s. We say that p is exceptional ifk
the following conditions hold:

Ž . � Ž p.i p � 5;
Ž . � Ž p. Ž .ii there exists a unique i such that p divides i � i p , and Z

has no element of order p� Ž p..

Ž .Our aim is to show that R W � 1 if and only if W has no exceptional
primes. We shall use the following result by Schmidt concerning projectivi-
ties of products of dihedral groups.

LEMMA 1.5. Let A, B be isomorphic dihedral groups. Then e�ery projec-
ti�ity of A � B onto a group C is induced by a unique isomorphism.

� �Proof. See 6, Lemma 3 .

Suppose for the moment W � D � G, G any finite Coxeter group.2 n

� Ž . Ž .LEMMA 1.6. Let n � p m, p, m � 1, and let � be in R D � G . If2 n
� ² m:G has elements of order p , then � induces the identity on � , � .

² : �Proof. Let A � D � � , � . If p � 4 we are done by 1.2. So2 n
assume p� � 5. Let g be an element of order p� in G, and let � an

�1 ² p �: ² p �:involution in G such that � g� � g . Let B � � , � , B � ��, � ,0 1
² m: ² :and A � � , � . By 1.5 applied to A � � , g , there exists an auto-0 0

morphism of A inducing � on A . But A is generated by two involu-0 0 0
tions fixed by this automorphism, namely the one in A � B and the one0 0
in A � B , and we are done.0 1

PROPOSITION 1.7. Let W be reducible. If W has no exceptional primes,
then e�ery autoprojecti�ity of W is induced by an automorphism.

Ž .Proof. If W has no dihedral component we know that R W � 1. So
assume W � D � ��� � D � Z, where Z has no dihedral components.2 n 2 n1 r

Ž .Let � 	 R W . We show that � is the identity on each D . Let us fix i,2 ni

and denote by � the restriction of � to D . Write W � D � G. Let q2 n 2 ni i

be a prime divisor of n , and let q � be the maximal power of q dividing n .i i
It is enough to show that � fixes every dihedral subgroup of order 2n �q �

i
of D . If q � � 4 we are done by 1.2. So assume q � � 5. Then q � Žq. � 5,2 nr

so that there exists an element of order q � in G, since W has no
exceptional prime. We conclude by 1.6.

2. THE MAIN RESULT

In this section we shall show that if W has exceptional primes, then
Ž .R W is not trivial. We introduce some notation.



MAURO COSTANTINI90

DEFINITION 2.1. Let p be a prime � , � non-negative integers such that
� � �. We denote by � the group of exceptional autoprojectivities ofp, � , �

D � which can be extended to exceptional autoprojectivities of D � �2 p 2 p
D � .2 p

By abuse of notation we consider dihedral also the cyclic group of order
2. We observe that, by 1.1 and Schmidt’s result, the restriction map
Ž .� �R D � D � � is an isomorphism and � � 1.2 p 2 p p, � , � p, � , �

We now assume W � D � ��� � D � Z, where Z has no dihedral2 n 2 n1 r

component, W with exceptional primes p , . . . , p . For each i � 1, . . . , r,1 h
² : Ž .let D � � , � . Let p be an exceptional prime, and let i � i p . We2 n i ii
² ni � p � Ž p.: Ž .put M � � , � . We denote by � the restriction map R W �p i i p

Ž .R M , and we putp

� : R W � R M � ��� � R M , � � �� , . . . , �� .Ž . Ž .Ž . Ž .p p p p1 h 1 h

It is clear that � is injective. We shall determine its image.

Ž .DEFINITION 2.2. With the previous notation we put � p �
Ž .� W�D .p 2 niŽ p.

Ž . Ž .Note that if p is an exceptional prime, then � p � � p .

PROPOSITION 2.3. For e�ery exceptional prime p we ha�e Im � �p
� .p, � Ž p., � Ž p.

Ž . Ž . Ž .Proof. Let i � i p , � � � p , � � � p , and write W � D � G. It2 ni

is enough to show that there exists a dihedral subgroup D of G of order
� Ž . Ž .2 p fixed by every � 	 R W . For then, given � 	 R W , � induces an

Ž .element of R M � D , so that �� 	 � .p p p, � , �

Suppose p is odd, or p � 2 with � � 2. Let X be an irreducible
component of G containing an element � of order p �. We can choose an

�1 Ž .involution � 	 X such that ��� � � and such that each � 	 R W
² : ² :induces the identity on � , � . We take D � � , � .

² :Finally suppose p � 2. If � � 0. Then we take D � � , where � is a
Coxeter generator of W not in D . If � � 1 there are two commuting2 ni

² :� ² : Ž .involutions � , � � in G such that � , � � � � , � � for every � 	 R W . In
fact, if G has at least two irreducible components we take � a simple
reflection in one component and � � a simple reflection in another. If G is
irreducible, then it contains by hypothesis the Klein group V. If G is not
dihedral then any copy of V in G can be taken for D. If G is dihedral, it

² :has order 4m with m odd. If G � � , � , with � of order 2m and Coxeter
mgenerators � , ��, we can take � � � � .
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In particular we get

2.1 Im � � � � ��� � � .Ž . p , � Ž p . , � Ž p . p , � Ž p . , � Ž p .1 1 1 h h h

We shall prove that in fact equality holds. We first determine some
properties of � .p, � , �

² :� �Let � 	 � . For simplicity we write D � A � � , � , D � Bp, � , � 2 p 2 p
² : Ž .� � , � . We still denote by � the unique element of R A � B inducing

² a:� ² a� :�� on A, and the element of � such that �� � �� for everyp
a 	 R .�

LEMMA 2.4. Let X be a dihedral group generated by the in�olutions x, y.
�² : ² :If � is an index-preser�ing projecti�ity of X onto a group X, and x � x ,

� �² : ² : ² : ² :y � y , then xy � xy .

� �Proof. See 6, 7.7.1 .

PROPOSITION 2.5. Let � be in � . Then we ha�ep, � , �

² a b:� ² a� b: ² a b:� ² a� b:�� �� � �� �� and � � � � �

for e�ery a 	 R , b 	 R .� �

² a:� ² a� :Proof. By 1.5 � induces the identity on B. From �� � �� ,
² b: ² b: ² a b:� ² a� b:�� � �� , and 2.4, it follows that �� �� � �� �� . Moreover
² a b:� ² a b:� ² a� b: ² a� b:�� , � � � �� , �� �� � �� , �� �� � �� , � � , so that

a b a� b² : ² :� � � � � .

In the next proposition we establish a crucial property of the group
� .p, � ,�

PROPOSITION 2.6. Let � 	 � , a, b 	 R . If a � b ptR for somep, � , � � �

t � � � � , then

b � a � � b� � a� pt��R .Ž . �

² a b�a : a� Žb�a.� b�Proof. Let X � �� � , � � . By 2.4, �� � , � � and �� �� lie
� Žb�a.��a��b� b� a� Žb�a.� � ² :in X . Hence � � �� ���� �� lies in X � � �

Ž ² :.� ² : ²Ž Žb�a. . p �: Ž .X � � � X � � � � � . We get b � a � � b� �
t��a� p R .�

DEFINITION 2.7. Assume � � � � 0. We say that an element � 	 S �p
Ž .satisfies � if

b � a � � b� � a� pt��RŽ . �

whenever b � a ptR for some t � � � �.�
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Ž .For every prime p and every pair of non-negative integers � , � with
� � � we introduce the group

2.2 � � � 	 � � 
 � satisfies � .Ž . Ž .� 4p , � , � p

It is clear that

2.3 � � � � � � � ��� � � � 1.Ž . p p , � , 0 p , � , 1 p , � , �

In the special case p � 2 we have

PROPOSITION 2.8. � � � .2, � , 1 2, � , 0

Proof. Let � 	 � �. Let a, b 	 R be such that a � b 2 tR for some2 � �
t�1 Ž .t � � � 1, but a � b 2 R . Since � is an automorphism of S R� �

Ž .fixing every subgroup, there exist odd integers k, k� such that b � a � �
t t t�1Ž .k2 and b� � a� � k�2 . Then b � a � � b� � a� 2 R .�

From 2.4 we get � � �
 p � . Our aim is to prove that equalityp, � , � p, � , �

holds. This will be a corollary of a more general result. Suppose D �
² : Ž . ² m:�D � � , � with � � 1, p, m � 1, and let A � � , � . Then for2 p m

Ž .�every � 	 � there exists a unique element � 	 R D fixing the dihedralp �

subgroups of order 2 p� of D and inducing � on A. We call � the�

element of � � induced by � .p m

LEMMA 2.9. Let � 	 � , and let � be the element of � a inducedp, � , � � p m
by � . Then we ha�e

b � a � � b� � a� pt�� m��p�m�Ž . � � �

if a � b pt��p�m� for some t � � � � .

Proof. Straightforward.

The next proposition is the key step in our construction.

Ž .�PROPOSITION 2.10. Let W � D � G, where D � D , � � 1, p, m2 p m
Ž .� 1, and G is a Coxeter group with � G � � � � . Let � 	 � . Then �p p, � , � �

Ž .can be uniquely extended to an element of R W inducing the identity on G.

² :Proof. We write � � � , D � � , � . We define a bijection � : W � W�

by

� ag � � � a� g , �� ag � � �� a� gŽ . Ž .

for every a 	 ��p�m�, g 	 G.

We prove that � induces an autoprojectivity of W. Let X � W. We
have to show that X � � W. Now 1 � � 0 � � 0� is in X �. To conclude we
have to consider various cases. We first prove a lemma.
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LEMMA 2.11. Let d 	 pt� � pt�1� for some t � � � �. If � dg is in X
for some g 	 G, then � m p t� �

lies in X unless p � 2 and � � 0. In this case
� m2 t� 1

lies in X.

Proof. It is clear that there exists a p-element x 	 G such that � m p t
x

Ž .lies in X. If p is odd, or if p � 2 and � � 1, then � G � � means thatp
m p t� � m2 t� 1 Ž m2 t .2� is in X. Finally suppose p � 2 and � � 0. Then � � � x

is in X.

We can now complete the proof of 2.10. Let x, y be in X �. We prove
that x�1 y 	 X �. We have to consider four cases.

Ž . Ž . Ž a� b� .a x, y � � g, � g � .1
We show there exists an element c such that � cg�1 g � 	 X and c� � b� �

² b�a: ² m� p t: Ž .a� . Let � � � , with m� 
 m. If t � � � � we get b � a � �
b� � a� and we can take c � b � a. Now assume t � � � � , and let

Ž . t��b� � a� � b � a � � smp . Suppose p is odd, or p � 2 and � � 1. Let
Ž t�� . Ž . t��s� be such that b � a � s�mp � � b � a � � msp , and let c � b

� a � s�mpt��. Then c� � b� � a� , and � cg�1 g � � � b�ag�1 g �� s�m p t� �

	 X by 2.11.
Ž .If p � 2 and � � 0, then � 	 � by 2.8, so that b� � a� � b � a �2, � , 1

t�1 Ž t�1. Ž .� sm2 for some s. Let s� be such that b � a � s�m2 � � b � a �
� ms2 t�1, and let c � b � a � s�m2 t�1. Then c� � b� � a� , and
� cg�1 g � � � b�ag�1 g �� s�m2 t� 1 	 X by 2.11 and we are done.

Ž . Ž . Ž a� b� .a x, y � �� g, � g � .2
We show there exists an element c such that �� cg�1 g � 	 X and c� � a�

² b: ² m� p t:� b� . Let � � � , with m� 
 m. If t � � � � we can take c � a
Ž .� b. Now assume t � � � �. Let s be such that a� � b� � a � b � �

t�� Ž .smp . Then we conclude as in case a .1
The remaining two cases are dealt with in a similar way. Note that the

same procedure applies to ��1, so that we have proved that � induces an
autoprojectivity, that we still call �, of W. It is clear from the definition

Ž .that � induces the identity on G and that it lies in R W . Uniqueness
follows from the fact that any exceptional autoprojectivity of W is deter-
mined by its action on D and G.

DEFINITION 2.12. With the previous notation, we denote by � thep
Ž .monomorphism � � R W sending an element � of � to thep, � , � p, � , �

Ž .unique element of R W inducing � on D and the identity on G.�

PROPOSITION 2.13. � 
 � .p, � , � p, � , �

Proof. We already know that � � �
 p � . On the other hand, if wep, � , � p, � , �

take W � D � � D � , then given � 	 � we get �
 � � �� � 	2 p 2 p p, � , � p p p

 �p� . Hence � � � .p, � , � p, � , � p, � , �
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We can finally prove

THEOREM 2.14. Let W be a finite reduced Coxeter group with exceptional
Ž .primes p , . . . , p . Then R W is isomorphic to � � ��� �1 h p , � Ž p ., � Ž p .1 1 1

� .p , � Ž p ., � Ž p .h h h

Proof. We only have to prove that Im � � � � ��� �p , � Ž p ., � Ž p .1 1 1

� . It is enough to prove the following: let p be an exceptionalp , � Ž p ., � Ž p .h h h
Ž .prime of W, and let � be in � . Then there exists � 	 R W suchp, � Ž p., � Ž p.

that �� � � and �� � 1 for every exceptional prime q different from p.p q
We conclude by taking � � �� .p

Theorem 2.10 gives a complete description of the group of exceptional
autoprojectivities of W in terms of the groups � , whose structurep, � Ž p., � Ž p.
we shall determine in the next section. Here we just prove that if p is
exceptional, then � � 1.p, � Ž p., � Ž p.

� 4We fix a prime p and integers � � � � 0. For every s 	 1, . . . , � � � ,
Ž . ��1

sd 	 UU R such that d � 1 p R , we define � in the follow-��s ��s p , d
s � sing way. Let b 	 R , and write b � b � b p , where b is in 0, 1, . . . , p� 0 s 0

4 s
s� 1 . We put b� � b � db p .p , d 0 s

PROPOSITION 2.15. � s lies in � and it fixes a for e�ery 0 � a � ps.p , d p, � , �

Proof. We write � for � s . The fact that � is bijective and a� � ap , d
for every 0 � a � ps is clear. We have to prove that � maps cosets to

Ž . tcosets and it satisfies � . Let a, b 	 R , b � a � kp . Write a � a �� 0
s s s � s 4a p , b � b � b p , b � a � c � c p with a , b , c 	 0, . . . , p � 1 .s 0 s 0 s 0 0 0

Ž .If t � s, then a � b so that b � a � � b� � a� and we are done.0 0
Ž . Ž . ŽNow assume t � s. Then b� � a� � b � a � � b � a � c � d b0 0 0 s

. s Ž .Ž . s ��1� a � c p � d � 1 b � a � c p . But d � 1 � hp for some h,s s s s s
Ž . Ž . s���1so b� � a� � b � a � � h b � a � c p . Hence b� � a� �s s s

Ž . t��b � a � p R , since s � � � 1 � t � �. It is also clear that b� 	�
ta� � p R .�

For every � � � � 0 we put

C � c 	 UU R 
 c � 1 p ��1R .Ž .� 4p , � , � � �

Ž . ����1If � � 1, C 
 UU R . If � � 2, C has order p . It is cyclic ifp, � , � � p, � , �

Ž .p is odd. If p � 2 then C � UU R . If � � 3 then C is cyclic by2, � , 2 � 2, � , �

� �7, 5.7.12 .
� 4For every s 	 1, . . . , � � � we put

2.4 K s � � s 
 d 	 C .� 4Ž . p p , d p , ��s , �
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By 2.15 it follows that

2.5 K s is a subgroup of � isomorphic to C .Ž . p p , � , � p , ��s , �

We are in the position to prove

Ž .THEOREM 2.16. Let W be a finite reducible Coxeter group. Then R W � 1
if and only if W has no exceptional prime.

Proof. By 1.7, we only have to prove that if W has exceptional primes,
Ž .then R W � 1. By 2.14 it is enough to show that if p is an exceptional

prime of W, then � � 1. Let p be an exceptional prime of W,p, � Ž p., � Ž p.
Ž .and let � � � p . We show that � � 1. Suppose first � � 3. Thenp, � , ��1

� � C 
 ��p�. If � � 2, then p � 3, since p� � 5.p, � , ��1 p, ��1, ��1
Ž .Hence � � C 
 UU ��p� � 1. If � � 1, then p � 5. Hence �p, 2, 1 p, 1, 1 p, 1, 0

Ž .� � � 1 by 1.3 , and we are done.p

� �From the results obtained in 1 in the irreducible case, we get

Ž .THEOREM 2.17. Let W be a finite Coxeter group. Then P W � Aut W if
and only if W is in the following list:

Ž .1 W cyclic of order 2,
Ž .2 W dihedral of order 2n, with n � 2, 4, 6, or 12,
Ž .3 W irreducible of rank at least 3,
Ž .4 W reducible with no exceptional primes.

We recall that a group G is said to be strongly lattice determined if every
projectivity of G onto a group G is induced by an isomorphism. Taking

� � � �into account the results of Uzawa 8 and 1, 4.8 , we get

THEOREM 2.18. Let W be a finite Coxeter group. Then W is strongly lattice
determined if and only if W is in the following list:

Ž .a W dihedral of order 2n, with n � 2, 4, 6, or 12,
Ž .b W irreducible of rank at least 3,
Ž .c W reducible with no exceptional primes.

Ž .3. THE STRUCTURE OF R W

Ž .In this section we take a closer look at the group R W in presence of
exceptional primes. By 2.14 this amounts to determine the structure of
� . Since for � � 0, � � � � is the stabilizer of 0 and 1 in T �p, � , � p, � , � p p
which is a permutational wreath product, in our discussion we assume
� � 0.
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� �This kind of problem is somehow similar to a problem studied in 2, 3 in
order to determine the group of autoprojectivities of periodic modular

Ž � � .groups. In that context we introduced the group in 3, Sect. 2 called S ,

S � � 	 Sym R 
 i� � i p �R for every i 	 R and�p , � , � � � �

b� � a� � b � a pt��R if b � a ptR for some t � � � � ,4� �

where � � � � 1.
We start the investigation of � . We fix the prime p, and integers � ,p, � , �

� such that � � � � 1. We put

² : ² :� �A � D � � , � , B � D � � , � ,2 p 2 p3.1Ž .
W � A � B.

Ž .We know that R W 
 � 
 � . As usual, we identify these groups.p, � , � p, � , �

Ž .Suppose � 	 P W . Then � induces the autoprojectivity � of W �
�p �² : Ž . Ž ² :.W� � . It is clear that if � lies in R W , then � lies in R W� � , so

��i i p² : ² :that � � 1. Hence �� � �� , � ; that is,

3.2 i� � i p �R for every � 	 � and every i 	 R .Ž . � p , � , � �

For our discussion it is convenient to introduce the subgroup

K � � 	 T � 
 � satisfies � ,Ž .�p , � , � p

and i� � i p �R for every i 	 R .4� �

3.3Ž .

Hence � is the stabilizer of 1 in K . Note that 0� � 0 for everyp, � , � p, � , �

� 	 K , and K � 1. In fact K corresponds to the subgroupp, � , � p, � , � p, � , �

�� � ² : ² :K W � � 	 P W 
 A � A , B � B , � � 1 and � � � .� 4Ž . Ž .

Ž . �LEMMA 3.1. Suppose � in Sym R satisfies � and i� � i p R for� �

e�ery i 	 R . Then�

Ž . t Ž .a if a , . . . , a 	 p R for some t � � � � , then a � ��� �a � �1 r � 1 r
a � � ��� �a � p ��tR ;1 r �

Ž . s s ��s�1b p � � p p R for e�ery s � 1, . . . , � � � � 1;�

Ž . ����1c if a, b in R are such that a � b p R , then b� � a� �� �

b � a.

Ž . t Ž .Proof. a Follows by induction and the fact that a 	 p R � �a �a
� �a� p ��tR .�
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Ž .b True for s � 1. Assume the result for s � � � � � 1. Then
Ž s. s ��s�1 Ž s�1. Ž s . ��s .p � � p p R . But p � � p p � p R by a , so that� �

Ž s�1. s�1 ��sp � � p � p R .�

Ž . Ž . ����1 ����1c By b we have p � � p , and by induction we get
Ž ����1. ����1 ���kp � � kp for every k. Since a � b p R we get b� ��

����1Ž . Ž .a� � b � a � . But b � a � kp , so that b � a � � b � a.

Ž . �LEMMA 3.2. Suppose � in Sym R satisfies � and i� � i p R for� �

Ž .e�ery i 	 R . Then � lies in PR R .� �

Proof. We have to prove that � maps cosets to cosets. Since � is
Ž .invertible, it is enough to show that x � H � � x� � H for every coset

Ž t. t tx � H of R . By 3.1 we have kp � � kp p R for every 0 � t � � and� �

Ž t . tevery k, since � � 1. Hence p R � � p R .� �

Now let a, b 	 R , b � a � kpt. If t � p����1 we get b� � a� � b � a�

Ž . t t Ž t .by 3.1 c so that b� � a� � kp 	 a� � p R , and a � p R � � a� �� �
t Ž t. t�� Ž t. tp R . If t � � � � , then b� � a� � kp � p R . But kp � � kp� �

ptR , so that b� � a� � kpt ptR . Hence b� 	 a� � ptR , and we are� � �

done.

We begin by considering the case � � � � 1.

PROPOSITION 3.3. We ha�e

� p�1PQ � P , P an elementary abelian group of order p ,
² :Q � � , � a power automorphism of order p � 1 of P ,�K 
 if � � 1p , ��1, �

pP an elementary abelian group of order p ,� if � � 2.

Proof. Let � 	 K . Then � acts trivially on the set of thep, ��1, �

² p: ² p�1 p: �dihedral subgroups A � � , � , . . . , A � �� , � of order 2 p0 p�1
Ž .of A, and it induces an automorphism � , 1 on each product A � B.i i

� 4Therefore, for each i 	 0, . . . , p � 1 there exist a unique d 	 R and ai 1
Ž . Ž . �unique c 	 UU R such that i � kp � � i � d p � c kp for every k 	 �.i � i i

Since � fixes 0, we have d � 0. Moreover, since � p lies in each A , we0 i
must have c � c for every i, j. Call c this common value: since p� � pi j
p �R , we get c � 1 p ��1R .� �

On the other hand, given d , . . . , d 	 R such that d � 0, and0 p�1 1 0
Ž . ��1

�c 	 UU R , c � 1 p R , it is clear that the map given byp �

i � kp � � i � d p � � ckpŽ . i

� 4for every i 	 0, . . . , p � 1 , k 	 �, is in K . The structure ofp, ��1, �

K follows easily.p, ��1, �
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COROLLARY 3.4. We ha�e

� p�2PQ � P , P an elementary abelian group of order p ,
² :Q � � , � a power automorphism of order p � 1 of P ,� if s � 1� 
p , s�1, s

p�1P an elementary abelian group of order p ,� if s � 2

Proof. In the proof of 3.3, if � 	 K corresponds top , s�1, s
Ž .d , . . . , d , c , then � 	 � � d � d � 0.0 p�1 p, s�1, s 0 1

To deal with the general case, we introduce certain elements of K .p, � , �

� 4sIn Section 2 we defined � for every s 	 1, . . . , � � � , d 	 Cp , d p, ��s, �

and the groups K s. Now we consider, with a minor change of notation,p
� �the permutations � introduced in 3 . We recall their definition.� , z, t

DEFINITION 3.5. For � 	 R , t such that 0 � t � � � � , z 	 ptR ,� ���

set

i if i � � � pt�1R�i� �� , z , t � t�1½ i � p z if i 	 � � p R�

for every i 	 R .�

� � Ž .As already observed in 3 , � 	 PR R and � � �� , z, t � � , z, t � , z �, t
� , ��1 � � .� , z�z �, t � , z, t � , �z, t

PROPOSITION 3.6. Assume � and t are such that � � pt�1R . Then �� � , z, t
lies in K .p, � , �

Proof. Clearly i� � i p ��tR . Let 0 � f � � � � , and let i, j 	� , z, t �

R be such that j � i p fR .� �

Ž . Ž . Ž .a f � t. Here j � i � � j � i , j� � j, i� � i1 � , z, t � , z, t � , z, t
��t Ž . ��fp R , so that j � i � � j� � i� p R .� � , z, t � , z, t � , z, t �

Ž . t�1 t�1a t � 1 � f. Here j 	 � � p R if and only if i 	 � � p R ;2 � �

Ž . Žhence j� � i� � j � i. Moreover, j � i � � j � i, since � �� , z, t � , z, t � , z, t
t�1 f.p R � p R � �.� �

� 4 � ��� 4We introduce the subsets I � 0, 1, . . . , p � 1 and J � 1, . . . , p of
� 2 ��� 4R . Moreover, we put J* � J � p, p , . . . , p . Given a 	 J, we put�

Ž . c c�1� a � c if p � j � p .

DEFINITION 3.7. For � 	 J* and z 	 p� Ž � .R we put � � ���� � , z � , z, � Ž � .
� � Ž � . 4and K � � 
 z 	 p R .� � , z �
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� � � Ž � .Therefore K � 
 as defined in 3, Sect. 2 : it is generated by �� � � , p
and has order p����� Ž � ..

� Ž .�We remark that for i, j in J we have, by 3, 12 and the definition
of K s,p

3.4 iK � i if i � j.Ž . j

� �Following 3 , we call elementary transformations the permutations of the
form � , � 	 J*, or � s .� , z p , c

In the study of K we note thatp, � , �

3.5 if for a � 	 K we have x� � x for every x 	 J , then � � 1.Ž . p , � , �

Ž . Ž ��� . ���In fact, by 3.1 a , we have kp � � kp for every k. Let a 	 R ��
��� � ��� 4 ���p R . There exists a unique x 	 J � p such that a � x � kp .�

Ž ��� . ���Then a� � x� � kp � � x � kp � a.

� . � 4�THEOREM 3.8. Let � and � be two families of elementaryi, c i	 J i, c i	 Ji i

transformations, and assume Ł � � Ł � � , where i describes J ini	 J i, c i	 J i, ci i

decreasing order. Then c � c� for e�ery i 	 J. In particulari i

��1 2 ��1p�p � � � � �p �Ž��1.p � 1 p if � � 1Ž .
K �Ł i 2 ���p�p � � � � �p½i	J p if � � 2.

Ž . � � �
�Proof. By 3.4 we have 1 � c p � 1� � 1� � 1 � c p . Hence1 1, c 1, c 11 1

c � c� . Suppose c � c� for 1 � k � i. Then Ł ��� � �1 1 i i p � j� i j, c j

Ł ��� � � , so that i� � i� � .p � j� i j, c i, c i, cj i i

Ž . � � �
�a If i 	 J*, then i� � i � c p and i� � i � c p , so that1 i, c i i, c ii i

c � c�.i i

Ž . s s s
s s sa If i � p for some 1 � s � � � � , then p � � c p and2 p , c pp

p s� s � � c�
s p s, and again c s � c�

s.p , c p p psp

The result about the order follows, taking into account the orders

p � 1 p��s�1 if � � 1Ž .
����� Ž i.� � � �sK � p if i 	 J*, K �i p ��s���1½ p if � � 2.

We now consider the problem of extending autoprojectivities. Suppose
Ž .� � � � � 1, and let � 	 P A . Then � induces the autoprojectivity � on

� �p² :A � A� � . The Coxeter systems we are considering are the following:
�� 4 � 4 Ž .�� , �� for A as usual, � , �� for A. We obtain the map 	 : I D �� � 2 p

�Ž .� � � � �I D . In terms of permutations, we get the map r : T � T , � � �2 p � � p p
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defined in the following way. Let � 	 T � , and i 	 R . Choose j 	 Rp � � �

such that j � � � i, where � � : R � R is the canonical epimorphism.� � � � � � �
� �Then i� � j�� . An easy graph theoretical consideration show that � is� � � �

surjective. If we denote by j the inverse of the isomorphism 
 � : T � �� p p
Ž .�I D we get the commuting diagram2 p

	 �
� � �Ž . Ž .� � �I D I D2 p 2 p

� �j j� � �

�
� � �T Tp p��� �

Moreover, if � � � � � � , then

� 	 K � � 	 K and � 	 � � � 	 � .p , � , � p , � � , � p , � , � p , � � , �

Our aim is to show that also the restrictions � � : K � K and� � p, � , � p, � �, �

� � : � � � are surjective. Note that� � p, � , � p, � �, �

ker � � � � 	 T � 
 i� � i p� �R for all i 	 R .� 4� � p � �

An element i of the local ring R can be uniquely represented in its�

p-adic expansion i � i � i p � ��� i p��1, where i 	 I. Let 	 : R �0 1 ��1 k �

R be the canonical epimorphism. Then, modulo the obvious identifica-��1
tions, we have

3.6 i	 � i � i p � ��� �i p��2 ,Ž . 0 1 ��2

while � : i � i p � ��� �i p��2 � i � i p � ��� �i p��2 defines0 1 ��2 0 1 ��2
an injection of R into R such that i	� � i � i p � ��� �i p��2

��1 � 0 1 ��2
and x � � ��� �x � � 0 ptR if x , . . . , x 	 R are such that x1 r � 1 r ��1 1
� ��� �x � 0 ptR for some 0 � t � � � 1.r ��1

EXTENSION LEMMA 3.9. Let � � � � � � be positi�e integers. If � lies in
K then there exists a � in K such that �	 � 	� , similarly for˜ ˜p, � �, � p, � , �

� .p, � , �

Proof. It is enough to deal with the case � � � � � 1. Let i 	 R , and�

let i � i � ��� �i p��1 be its p-adic expansion. Define0 ��1

i� � i � ��� �i p����1 	�� � i p��� � ��� �i p��1.˜ Ž .0 ����1 ��� ��1

Clearly � lies in Sym R . For j � i � ��� �i p����1 we have j � i˜ � 0 ����1
p���R , so that�

3.7 i	� � j	� � i	 � j	 � � i	 � j	Ž . Ž .
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Ž . Ž . Ž .by 3.1 c . It follows from 3.7 that i�	 � j	�� � i � j 	 � j	� � i	 �˜
j	 � j	� � i	� � j	� � i	� . Hence

3.8 �	 � 	� .Ž . ˜

In particular for i 	 R we have i�	 � i	� � i	 p �R so that˜� ��1
i� � i p �R . Since i � i	� p��1R , we obtain˜ � �

3.9 i� � i�	� � i	�� p��1R .Ž . ˜ ˜ �

Now suppose b � a p fR , 0 � f � � � �.�

Ž .a f � � � �. By definition we get b� � a� � b � a. On the˜ ˜1
��� Ž .other hand, b � a 	 p R � b � a � � b � a, and we are done.a

Ž . Ž . ��fa f � � � �. Then b	 � a	 � � b	� � a	� p R im-2 ��1
plies

b	 � a	 �� � b	�� � a	�� p ��fR .Ž . �

Hence

b� � a� � b	�� � a	�� � b	 � a	 �� � b � a � p ��fRŽ . Ž .˜ ˜ ˜ �

since � � f � � � 1. It is clear that if � 	 � , then 1� � 1	�� �˜p, ��1, s
1	� � 1, and � 	 � .˜ p, � , s

In terms of the group W this means that for every � � � � � � , the
Ž . Ž ² p � �:.natural map R W � R W� � is an epimorphism.

PROPOSITION 3.10. Suppose � � �. Then ker � � � K is an ele-��1 p, � , �

mentary abelian group of order p p ���

if � � 2, while ker � � � K ���1 p, � , �
p ����1 ² :PQ � P, P is an elementary abelian group of order p , Q � � , and �

is a power automorphism of order p � 1 of P if � � 1.

Ž .Proof. Argue as in the proof of 3.3, using 3.5 .

PROPOSITION 3.11. We ha�e

��1 2 ��1p�p � � � � �p �Ž��1.p � 1 p if � � 1Ž .
� �K �p , � , � 2 ���p�p � � � � �p½ p if � � 2.

Proof. This follows from 3.9, 3.10, and induction.

We are now in the position to prove that K is the product of thep, � , �

subgroups K .i
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THEOREM 3.12. Assume � � � � 1. Then we ha�e

K � K ,Łp , � , � i
i	J

i in increasing or decreasing order.

� � � �Proof. It is enough to show that Ł K � K . This followsi	 J i p, � , �

from 3.8 and 3.11.

Ž .Remark 3.1. a Given � 	 K , there is a recurrent procedure top, � , �

get the factorization of � in elementary transformations: c is determined1
by the relation 1� � 1 � c ps and, knowing c , . . . , c , c is given as1 1 i�1 i

Ž .�1follows. Set � � � � � ��� � , and note that � � fixes k fori�1, c 1, ci�1 1

1 � k � i:
Ž . �a i 	 J*. Then c 	 R is determined by i� � � i � c p .1 i ��� i

Ž . s
sa i � p for some 1 � s � � � �. Then c 	 C is deter-2 p ��s, �

mined by ps� � � c s p s.p

Ž . Žb Assume � � 2. Then the p-group K has a basis for ap, � , �

� �.definition see 4 .

COROLLARY 3.13. Let j 	 J. Then the pointwise stabilizer of the set
� 41, . . . , j in K is the product Ł K , where the i’s are in decreas-p, � , � i	 J , i� j i
ing order. In particular � � Ł K andp, � , � i	 J , i�1 i

��1 2 ��1p�p � � � � �p �2Ž��1.p � 1 p if � � 1Ž .
� �� �p , � , � 2 ���p�p � � � � �p �Ž��� .½ p if � � 2.

Proof. Let F denote the pointwise stabilizer. Then for i 	 J, i � j,
K � F. On the other hand, if � 	 F, and � � Ł � is the decompo-i i	 J i, ci

sition of � in decreasing order, then, starting with i � 1, we get c � 0 ifi
i � j, i 	 J*, c � 1 if i � j, i � J*.i

Ž . tLet � 	 K W be a p-element with i� � i p R for all i 	 R . This is� �

² i p t:� ² i p t: � ² p t:�equivalent to �� , � � �� , � ; that is, � 
 W� � � 1. Then
t ² :� fixes every coset i � p R . Since the orbits of the p-group � on the�

set of cosets i � pt�1R are of length 1 or p, � p fixes every such coset;�

that is,

tp² :3.10 if � 	 K W is a p-element then � 
 W� � � 1 impliesŽ . Ž .
t� 1p p² :� 
 W� � � 1.
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� � ��� � � ���In particular we get � � p . Since � � p , we have1, 1, 0

3.11 the p-exponent of K W is p��� .Ž . Ž .
Ž .THEOREM 3.14. Suppose � � 2, and let � 	 K W . Then, unless p � 2,

� � 2 and � � 4, we ha�e for � � t � � � 1
t t�1��t p p� � ² : ² :� � p � � 
 W� � � 1 and � 
 W� � � 1.

� ² p t:� � ��tProof. We know that � 
 W� � � 1 �
 � � p . It is enough to
� � � ² p ��1:� ��1show that if � � p then � 
 W� � � 1; that is, i� � i p R for�

every i 	 R . We prove this by induction on r � � � �. If r � 1, then the�

� ² p ��1:�conclusion follows from 3.3. So assume r � 1. Set � � � 
 W� �
� �and, for a contradiction, assume � � p. Hence here exists i 	 R such�

��1 ² p ��2:�that i� � i p R . By induction on r, � 
 W� � � 1, so that�

i� � i p��2R , i� � i � kp��2 say. Let c be such that p��2� � cp��2. It�

follows that

3.12 i � i� p � i � k 1 � c � ��� �c p�1 p��2 ,Ž . Ž .

being � p � 1. If � � 3, we get c � 1 by 3.1, so that k 	 pR , and i� � i�

p��1R , a contradiction. So we are left with � � 2. Then c � 1 pR and� 2
p � 2. Then 1 � c � ��� �c p�1 � p, so that again k 	 pR , a contradic-�

tion.

In 3.14 the case p � 2, � � 2, and � � 4 cannot be omitted, as the
following example shows. Let p � 2, � � 4, and � � 2. Then � �
Ž .Ž .Ž .Ž .Ž .Ž .2, 6 3, 7 4, 12 5, 13 10, 14 11, 15 lies in K has order 2 and � 
2, 4, 2
� ² 8:�W� � � 1.

PROPOSITION 3.15. Assume � � � � � � � 2. Then, unless p � 2, � � 2,
and � � � � � 1, we ha�e

ker � � � K � � K ,Ž .Ł� � p , � , � ��� � i
i	J

ker � � � � � � K ,Ž .Ł� � p , � , � ��� � i
� 4i	J� 1

i in decreasing or increasing order.

Proof. The result follows from 3.10 if � � � � � 1. So assume � � � �
� Ž .� 1. It is clear that for each i 	 J* we have K � ker � � � K .i � � ��� � i

� 4On the other hand, if s 	 1, . . . , � � � and c 	 C then c � 1 �p, ��s, �

mp ��1, and � s 	 ker � � , if and only if mp ��1ps 	 p� �R . If � � � s �p , c � � �
� �s s� � 1 then K � ker � . So assume s � � � � �. Then we get K �p � � p

� � ��� �
sker � � p , so that, if we exclude the case p � 2 and � � 2, K �� � p

� Ž .sker � � � K .� � ��� � p
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Now assume � 	 ker � � , and write � � Ł � , � 	 K for every� � i	 J i i i
Ž .i 	 J. Applying the procedure of Remark 3.1 a , we can prove that each � i

�lies in K � ker � , and we are done.i � �

COROLLARY 3.16. Assume � � 2. Then, unless p � 2, � � 2, and � � 4,
we ha�e for e�ery t � 1, . . . , � � �

� K � � K ,Ž .Ž . Łt p , � , � t i
i	J

i in increasing or decreasing order.
� Ž .Proof. By 3.14, we have K � ker � � � K . Then we con-p, � , � ��t t p, � , �

clude by 3.15.
sp² :For s � 1, . . . , � � � we consider the quotient W � � , � �s

² p s� �:B� � . If � lies in K , then � induces the autoprojectivity � ofp, � , � s
�Ž . ² :W which, by 1.5, is induced by an automorphism � , 1 . Since � �s s

s sp p² : Ž .� , � is of the form � � � , � � d � , for a unique d 	 UU R . Its s s �

is clear that if ps� � c ps, with c 	 C , then d is the image of cs s p, ��s, � s s
under the projection R � R . In particular d lies in C .��s � s p, � , �

Ž .���We have therefore defined an epimorphism �: K � C .p, � , � p, � , �

We denote by F the kernel of �. Thenp, � , �

3.13 F � � 	 K 
 ps� � ps ps�� for all s � 1, . . . , � � � .Ž . � 4p , � , � p , � , �

In particular, F � S and in fact, by the structure of S ,p, � , � p, � , � p, � , �

F is the stabilizer of 0 in S .p, � , � p, � , �

If � � 1, by 3.11 it follows that F is a p-Sylow subgroup of K ,p, � , � p, � , �

and in this case K splits over F .p, � , � p, � , �

Ž .PROPOSITION 3.17. Let q be the integer such that q � � � � q � 1 �.
Ž . Ž .Then the deri�ed length of F K is q � q � 1 .p, � , � p, � , �

� Ž .� �Proof. In 3, 8 we introduced the group S � � 
 1 � pR 
 � 	1 �

4 Ž . Ž . � �S and showed that dl S � dl S � q 3, 3.9 . Since S �p, � , � p, � , � 1 1
Ž .F � S we get dl F � q. Since K �F is abelian, wep, � , � p, � , � p, � , � p, � , � p, � , �

conclude.

LEMMA 3.18. Assume either p � 2 or � � 2. Then K is abelian ifp, � , �

and only if � � 1 � 2�.

� ��� ��� 4Proof. Let E � � 	 K 
 p � � p . Then K �p, � , � p, � , � p, � , �

E 	 K ��� . Assume � � 2�. Let � , � 	 E and i 	 R . We getp, � , � p p, � , � �
��� ��� Ži� � i � hp , i� � i � kp for some h, k 	 �. Then i�� � i �

��� . Ž ��� . ��� ��� Ž ��� .hp � � i� � h p � � i � kp � hp , i�� � i � kp � � i�
Ž ��� . ��� ���� k p � � i � hp � kp . Therefore E is abelian.p, � , �
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Now suppose � � 1 � 2� , and let � 	 E , � 	 K ��� . To show thatp, � , � p
� � ���� , � � 1 it is enough to show that i�� � i�� for every i 	 J. If i � p ,

��� ��� ��� Ž ��� . ���then p �� � p � � cp � cp � � p �� for some c and we
are done. Now assume i � p���. Then i� � i, i� � i � � p �. But � �i

Ž � . � �� � � � 1, so that i � � p � � i� � � p � i � � p . Hence i�� �i i i
Ž � . �i � � p � � i � � p � i� � i�� .i i

On the other hand, if � � 2� , we may choose � � � p ��2 �

, � any1
non-trivial element of K ��� . Then 1�� � 1 � dp��� � 1 � p��� � 1�� .p

We finally determine the derived length of K . We note that ifp, � , �

p � 2 and � � 1, then K � F , since C � 1. So, by 3.17, we2, � , 1 2, � , 1 2, 1, 1
are left to prove

Ž .THEOREM 3.19. Let q be the integer such that q � � � � q � 1 �. Then,
unless p � 2 and � � 1, the deri�ed length of K is q.p, � , �

Ž . Ž .Proof. It is enough to show that dl K � dl K � q.p, Žq�1.��1, � p, q � , �

Ž .We first prove that dl K � q. By 3.18 this is true for q � 1.p, Žq�1.��1, �

Now assume the result for q � 1 � 1. We consider the kernel M of the
Ž .surjection 	 : K � K . Then dl K �M � qp, Žq�1.��1, � p, q ��1, � p, Žq�1.��1, �

Ž .� 1. On the other hand dl K �F � 1, so thatp, Žq�1.��1, � p, Žq�1.��1, �

Ž . � �dl K �M � F � q � 1. Since by 3, 3.2 M �p, Žq�1.��1, � p, Žq�1.��1, �

F is abelian, we are done. We finally deal with K . Byp, Žq�1.��1, � p, Žq�1.� , �

Ž .3.17 we have q � dl K � q � 1. To conclude we may use thep, Žq�1.� , �

� � Ž .procedure used in 3, 3.9 to prove that dl S � q. Here we takep, Žq�1.� , �

� � � , where � � 1 � Ý pk s, c � pi� for i � 0, . . . , q � 1.i � , c i k�1, . . . , i ii i
Ž � �.Note that the coset of action see the definition in 3 of � is X � � �i i i

i s�1 � � c�1p R . Let � � � 	 K . Then we have � , � 
 X � � 
 X . IfŽq�1.� p, c p i i i i
� � 2 we may take c � 1 � p ��1, so that � c�1 � 1. If � � 1, then againi
there exists c such that � c�1 � 1 since p � 2. We have therefore provedi
that there are elements f , . . . , f 	 K � such that f 
 X �0 q�1 p, Žq�1.� , � i i

c�1 � �� 
 X � 1. Then we proceed as in the proof of 3.9 in 3 to geti i
Žq.K � 1, and we are done.p, Žq�1.� , �
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