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Abstract. We show that the set of stationary weak solutions for a class of infinite dimen-
sional stochastic differential equations coincides with the set of shift invariant, space-time
Gibbs fields for a certain potential. The key step consists in proving the Gibbs variational
principle for space-time Gibbs fields.

1. Introduction

Let � = C(R,R)Z
d

be the configuration space, and F be the canonical σ -field in
it. For ω ∈ � we write ω = (ωi(t))i∈Zd ,t∈R. Suppose we are given the following
infinite-dimensional stochastic differential equation (s.d.e.)

dXi(t) =
(
− 1

2
ϕ′(Xi(t))+ b(θi,tX)

)
dt + dBi(t) , i ∈ Z

d , t ∈ R (1.1)

where

• ϕ is a suitable self potential, to be chosen in a class that will be defined later (see
Section 4);

• b : C((−∞, 0],R)Z
d → R is a measurable bounded local function, say b(ω) =

b(ω�0), where ω�0 is the restriction of ω to a finite subset �0 ⊂ Z
d of space-

coordinates, containing the origin;
• θi,t is the space-time translation on � given by (θi,tω)j (s) = ωi+j (t + s);
• (Bi)i∈Zd is a sequence of independent real valued Brownian motions.
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Such systems restricted to a finite time-interval (say [0, 1]), with b(ω) = b(ω(0))
(Markovian drift), and when b is the gradient of a smooth Hamilton function (see
Section 6), were described as lattice Gibbs states on C([0, 1],R)Z

d
first by Deuschel

in [6, 7] and later in [2].
Our aim is to deal with possibly non-Markovian and non-gradient systems in

an infinite time-interval by using the concept of space-time Gibbs state introduced
in [19]: we describe weak solutions of (1.1) as space-time Gibbs states on �, and
we give a variational characterization of them.

To be more precise, let Q ∈ Ps(�) be a space-time invariant probability mea-
sure on (�,F), and b be a given function as above. Moreover we denote by P the
reference measure in Ps(�), law of the stationary solution of equation (1.1) with
b ≡ 0. - The assumptions that will be given (see Section 4) on ϕ will guarantee
existence and uniqueness of such measure, as well as good ergodic properties -.
Under the integrability condition

H(Q) < +∞,

where H denotes the specific entropy of Q with respect to P (see Section 4), our
main result is the equivalence of the following assertions:

[A] Q is a stationary weak solution of the s.d.e. (1.1).
[B] Q is a space-time invariant Gibbs state for a specification which is built on an

Hamiltonian functional H , that is explicitely given in terms of b. As customary
in Equilibrium Statistical Models, this specification if defined as a perturbation
of a reference specification, which in this model consists of stochastic bridges
derived from P .

[C] Q minimizes the free energy Hb, difference of the specific entropy and the
specific energy, defined on Ps(�) by

Hb(Q′) = H(Q′)− EQ′
( ∫ 1

0
b(θ0,tω)dω0(t)

)

+1

2
EQ′

(
b2(ω)− b(ω)ϕ′(ω0(0))

)
(1.2)

Assertion [C] can be stated in the following way:

0 = Hb(Q) = inf
Q′∈Ps (�)

H(Q′)<+∞

[
H(Q′)− EQ′

( ∫ 1

0
b(θ0,tω)dω0(t)

)

+1

2
EQ′

(
b2(ω)− b(ω)ϕ′(ω0(0))

)]
. (1.3)

If we consider the specific energy, i.e. the second part of Hb, we see that it includes
a stochastic integral. Hamiltonians of this form appeared in Mathematical Physics
in the context of diamagnetic current [17].

Gibbs fields on R
Z
d

have been considered by several authors from the variation-
al principle point of view (see e.g. Föllmer [8], Lebowitz and Presutti [16], Künsch
[15]), the difficulty coming from unboundedness of the spin space. On the other
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hand, Gibbs fields on the trajectory space C(R,R) were introduced in the context
of Euclidean quantum field theory as quasi-invariant measures (see Courrège and
Renouard [1], Royer and Yor [26] and references therein). The variational approach
of such Gibbs fields was first considered by Roelly and Zessin [24] for the law of
a Brownian diffusion with values in the torus. More recently Osada and Spohn
[21] used D-L-R approach for constructing a class of Gibbsian non Markovian real
valued stochastic processes. One of the difficulties in dealing with Gibbs fields on
path spaces, comes from the fact that disjoint time regions are not independent
under the reference measure. In this paper, following the notions introduced by
Minlos, Roelly and Zessin in [19], we deal with Gibbs fields on C(R,R)Z

d
, that

is parametrized by space and time Z
d × R, so that both difficulties above have

to be overcome. In particular, the dependence of a stochastic bridge on boundary
conditions becomes essential, and methods from stochastic analysis play a key role.

We finally make some comments on the usefulness of the results proved in this
paper. First of all we have not assumed Markovianity of the system, i.e. b(ω) =
b(ω(0)). Moreover, even in the Markovian case, not having assumed any smooth-
ness on the drift b, it is not known whether the s.d.e. (1.1) admits any (weak or
strong) solution, or whether among the solutions there is one that is time stationary.
Our results suggest two approaches to the existence of stationary solutions.

• Stationary solutions may be constructed as space-time Gibbs states, e.g. via clus-
ter expansion. Results concerning space-time cluster expansion for some models
can be found e.g. in [19] and [20]. Our results guarantee that states constructed
in that way are indeed weak stationary solutions of the s.d.e.. Indeed, we show
in [5] that a stationary solution of (1.1) can be constructed by cluster expansion,
provided ‖b‖∞ is sufficiently small, but with no Markovianity or regularity
conditions.

• Stationary solutions may be obtained by exploiting the variational principle, i.e.
by showing that the free energy Hb attains the value 0. This is the case if Hb

is the (good) rate function for a Large Deviation Principle. This would require
some refinements of the results in [3, 4] concerning space-time large deviations.

The paper is organized in the following sections.

1. Introduction.
2. Gibbs specifications and space-time Gibbs states.
3. Infinite-dimensional diffusions are Gibbs states.
4. Weak variational principle.
5. The minima of the free energy are diffusions.
6. The case of Markovian gradient systems.

2. Gibbs specifications and space-time Gibbs states

First of all we introduce our one dimensional reference process, which is the time-
stationary solution of the scalar differential equation

dx(t) = −1

2
ϕ′(x(t))dt + dw(t) (2.1)
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where w is a real valued Brownian motion and the self potential ϕ is a C2(R,R)

function satisfying the following properties :

lim
|x|→+∞

ϕ(x) = +∞, and ∃C0 ∈ R such that ϕ̃ =: ϕ′′ − 1

2
(ϕ′)2 ≤ C0 (2.2)

e−ϕ ∈ L1(R). (2.3)

Property (2.2) guarantees that, for any given initial condition, a unique non-ex-
ploding strong solution of (2.1) exists (see Theorem 2.2.19 in [25]). Property (2.3)
insures that the measure e−ϕdx, which is invariant, is normalizable. We let W
denote the law on C(R,R) of the stationary solution of (2.1), and let µ(dx) =
e−ϕ(x)dx/

∫
e−ϕ(y)dy denote the unique invariant Probability measure associated

to (2.1).
Let � = C(R,R)Z

d
be the canonical configuration space, and F be the canon-

ical σ -field. With P(�) we denote the space of probability measures on �, and
Ps(�) is the subset of P(�) containing the probabilities that are invariant for the
space-time shift maps (θi,t )i∈Zd , t∈R.

In what follows we let P be the law of the reference non-interacting infinite
system, i.e.

P = ⊗ZdW ∈ Ps(�).

The main object of this paper is an infinite-dimensional diffusion that is obtained
by perturbing through an interaction a system of infinitely many independent par-
ticles each evolving with dynamics given by (2.1): we fix a finite subset �0 ⊂ Z

d ,
and assume we are given a measurable bounded �0-local function b(ω) = b(ω�0)

on C((−∞, 0],R)�0 , where this path space is provided with the topology of uni-
form convergence on compact subsets of R

−, and the corresponding Borel σ -field.
We consider the associated stochastic differential system

dXi(t) =
(
− 1

2
ϕ′(Xi(t))+ b(θi,tX)

)
dt + dBi(t) , i ∈ Z

d , t ∈ R
+. (2.4)

Remark that in time-stationary situation, we can also consider the above system for
time t ∈ R. We need different filtrations on the space-time structure. Let V be the
set of space-time volumes V having the form V = � × I where � ⊂ Z

d finite,
and I =]a1, a2[ is a bounded open interval. For a space-volume � ⊂ Z

d we define
its enlargement �+ by

�+ = {i ∈ Z
d : (�0 + i) ∩� �= ∅}.

Letting �++ = (�+)+, we define the boundary

∂� = �++ \�.

For a time-volume I =]a1, a2[⊂ R we define its enlargement I+ by

I+ =]−∞, a2].
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For V = �× I ∈ V the forward σ -field FV is defined by

FV = σ {ωi(t) : i ∈ �++, t ∈ I+},
the backward σ -field F̂V by

F̂V = σ {ωi(t) : (i, t) �∈ V }
and the boundary σ -field ∂FV by

∂FV = FV ∩ F̂V .

We need now a reference specification, denoted by %0. It is a kernel based on
P , and determined by

%0
V (A) = P(A|F̂V ) P − a.s. (2.5)

for all V ∈ V , and A ∈ FV . It is easy to see that, for V = �×]a1, a2[, %0
V is given

by

%0
V (ω, dω

′) = ⊗i∈∂�δω(i)(dω′i ) ⊗ ⊗i∈�Wa2,ωi (a2)
a1,ωi (a1)

(dω′i ) (2.6)

where W
a2,y
a1,x is the law of the stochastic bridge obtained by conditioning W to be

x at time a1 and y at time a2. That %0 is a space-time specification in the Gibbsian
sense has been proved in [19], Example 2, Section 1.4.2.

We now introduce the interaction between the spins through a potential ( =
((V )V∈V which is defined on a subset �′ ⊂ � as follows:


(�×I ≡ 0 if � ∃i ∈ Z
d : � = i +�0

((i+�0)×I (ω) = −
∫
I

b(θi,tω)dωi(t)

+ 1
2

∫
I

[
b(θi,tω)(b(θi,tω)− ϕ′(ωi(t)))

]
dt otherwise

= − ∫
I

b(θi,tω)dB̃i(t)+ 1
2

∫
I

b2(θi,tω)dt

(2.7)

where

B̃i(t) = ωi(t)+ 1

2

∫ t

a1

ϕ′(ωi(s))ds, t ∈]a1, a2[.

Note that this potential is not defined a priori on the whole �, but only for ω ∈ �′
for which the stochastic integral

∫
I

b(θi,tω)dωi(t) makes sense.
Note also that B̃i(a1 + .)− B̃i(a1)’s are independent Brownian motions under

P .
The associated Hamiltonian is defined for V = �× I by

HV (ω) =
∑

�′∩��=∅
(�′×I (ω)

= −
∑
i∈�+

[∫
I

b(θi,tω)dB̃i(t)− 1

2

∫
I

b2(θi,tω)dt

]
, ω ∈ �′. (2.8)
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We observe that ( and H are space-time translation invariant, and that HV is
FV -measurable. Moreover ( has finite range equal to the diameter of �0.

By means of %0, the reference specification, and H , the space-time Hamilto-
nian defined in (2.8), we define for V ∈ V , ω ∈ � the specification %H

V (ω, .) as
the following probability measure on �′

%H
V (ω, dω′) =

{
1

ZH
V (ω)

exp(−HV (ω
′))%0

V (ω, dω
′) if 0 < ZH

V (ω) < +∞
0 otherwise,

where

ZH
V (ω) =

∫
�′

exp(−HV (ω
′))%0

V (ω, dω
′)

is the (∂FV -measurable) normalization factor.

Remark 1. 1. Note that ((i+�0)×I ∈ L2(P ), and therefore is finite P -almost
surely. We make the convention that it is always chosen in such a way that it
does not assume the value −∞.

2. The fundamental property

EP [exp(−HV )] = 1 ∀V ∈ V (2.9)

holds. It follows from the fact that, for each � ⊂ Z
d finite and a1 ∈ R the pro-

cess (exp(−H�×]a1,a2[))a2>a1 is a P -martingale for the filtration
(F�×]a1,a2[)a2>a1 .

3. The fact that %H is a specification comes from a general result of Preston [22].

Definition 1. A probability measure Q on � is said to be a space-time Gibbs state
with specification %H if there exists a subset �′ ⊂ � such that Q(�′) = 1, H is
well defined on �′ and, for all V ∈ V and A ∈ FV ∩�′

Q(A|F̂V ) = %H
V (A) Q− a.s.

The set of space-time Gibbs states for %H will be denoted by either G(%H ) or
G(H,%0).
Moreover we let Gs(%

H ) denote the set of space-time invariant Gibbs states, i.e.

Gs(%
H ) = G(%H ) ∩ Ps(�).

3. Infinite-dimensional diffusions are Gibbs states

We recall that a weak solution of the s.d.e. (2.4) is a probability measure Q on �

such that the scalar processes(
Xi(·)−

∫ ·

0

(
− 1

2
ϕ′(Xi(s))+ b(θi,sX)

)
ds

)
i∈Zd

are Q-independent Brownian motions, where X is the canonical process.
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Proposition 1. Let Q ∈ Ps(�) be a weak solution of the s.d.e. (2.4). Then Q ∈
Gs(%

H ) where the Hamiltonian H is defined in (2.8).

Proposition 1 is a direct consequence of the following two lemmas.

Lemma 1. Let Q1,Q2 be two mutually absolutely continuous probability mea-
sures on a measurable space (�,F ′), and let F be a sub-σ -field of F ′. We denote
by Q1

F (resp. Q2
F ) the regular version of Q1(· |F) (resp. Q2(· |F)). Then, Q1-a.s.,

Q1
F and Q2

F are mutually absolutely continuous and, denoting M = dQ1/dQ2,
we have

dQ1
F

dQ2
F
= MQ2

F (M−1).

Proof. Let f and g be respectively F ′-measurable and F-measurable bounded
functions. By definition of conditional expectation

Q2(fg) = Q2(gQ2
F (f )).

On the other hand

Q2(fg) = Q1(Mfg) = Q1(gQ1
F (Mf ))

= Q2(M−1gQ1
F (Mf )) = Q2(gQ2

F (M−1)Q1
F (Mf ))

and the conclusion follows.

Lemma 2. LetQ be a weak solution of (2.4) and let I =]a1, a2[. Define theσ -fields

GV = G�×I = σ {ωi(t) : (t ≤ a1, i ∈ Z
d) or (t ≤ a2, i �∈ �)}

and

BV = σ {ωi(t) : (i, t) ∈ �× Ī }.
If QGV

and PGV
are the regular versions of Q(· |GV ) and P(· |GV ), then

dQGV

dPGV

|BV
= 1

CV (ω)
exp

(
−

∑
i∈�+

(
−
∫
I

b(θi,tω)dB̃i(t)+ 1

2

∫
I

b2(θi,tω)dt

))
.

The normalization factor C�×I (ω) is measurable with respect to the σ -field

σ {ωi(t) : (t ≤ a1, i ∈ �++) or (t < a2, i ∈ ∂�)},
thus, in particular, CV (ω) is ∂FV -measurable.

Proof. Given the weak solution Q of (2.4), define the measure R on � by

dR

dQ
= exp

( ∑
i∈�+

(
−
∫
I

b(θi,tω)dB̃i(t)+ 1

2

∫
I

b2(θi,tω)dt

))
.

By Girsanov Theorem it follows that R is a probability measure : it is the weak
solution of a similar equation to (2.4) but where the coordinates inside of �+ are
simply independent diffusions evolving like (2.1). Then RGV

|BV
= PGV

|BV
. The

conclusion follows by applying Lemma 1.
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Proof of Proposition 1. Observe that

F̂V = GV ∨ G′V
where GV is defined in Lemma 2, and

G′V = σ {ωi(a2) : i ∈ �}.

By combining Lemma 2 with Lemma 1 the conclusion follows.

Remark 2. In the literature there are strong regularity conditions on a Markovian
drift to ensure existence (and uniqueness) of strong solutions to equation (2.4) (cf.
e.g. [27], theorem 4.1). One advantage of our Gibbsian approach to infinite-di-
mensional diffusions, is that Gibbs fields can be constructed through perturbation
methods (e.g. cluster expansion) without Markovianity and such regularity condi-
tions ([5]).

4. Weak variational principle

In this section we prove one direction of the space-time Gibbs variational principle,
which is a partial converse of Proposition 1.

To simplify the notations, we introduce

Bn := BVn = B�n×]0,n[

where �n = [0, n− 1]d ∩ Z
d . We consider also

B− = σ {ωi(t) : (t ≤ 0, i ∈ Z
d) or (0 < t ≤ 1 and i < 0)}.

Here "<" denotes the lexicographic order in Z
d .

For µ, ν probability measures on some measurable space (E, E), we denote by
h(µ|ν) their relative entropy. Moreover hG(µ|ν) is the relative entropy between
their restriction µ|G and ν|G to a given sub-σ -field G of E . As before, we denote
by µG the regular version of the conditional probability of µ w.r.t. G.

We now give supplementary conditions on the self-potential ϕ, to ensure that
the reference process x(t) solution of (2.1) is sufficiently ergodic.

Assumption A. The self potential ϕ satisfies either one of the following condi-
tions:

A1.

0 < lim inf
|x|→+∞

ϕ′′(x) ≤ lim sup
|x|→+∞

ϕ′′(x) < +∞ (4.1)

A2. Property (2.2) and

0 < lim inf
|x|→+∞

ϕ′′(x) and
∫ ∞ 1

ϕ′(x)
dx < +∞. (4.2)
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The assumption lim inf |x|→+∞ ϕ′′(x) > 0 implies that the measure e−ϕ(x)dx
has tails not bigger than Gaussian. The remaining parts of either Assumption A1
or Assumption A2 imply the following bounds on the transition density

qt (x, y) = pt (x, y)

e−ϕ(x)/
∫
e−ϕ(y)dy

with respect to the invariant probability measure µ(dx) for the diffusion (2.1),
where pt (x, y) is the transition density from y to x with respect to the Lebesgue
measure.

Lemma 3. a. Under Assumption A1 there is a constant A > 0 such that for all
t ≥ 1 and x, y ∈ R,

e−A(x
2+y2+1) ≤ qt (x, y) ≤ eA(x

2+y2+1). (4.3)

b. Under Assumption A2 the stronger uniform bounds

e−A ≤ qt (x, y) ≤ eA

hold for all t ≥ 1 and x, y ∈ R.

The proof of Lemma 3 will be given in the appendix.

A typical example of a potential satisfying A1 is a quadratic potential smoothly
perturbed on a compact subset of R ; a typical example of a potential satisfying A2
is

ϕ(x) = |x|s+2, for some s > 0.

For Q ∈ Ps(�) we define

H(Q) = Q(hB1(QB−|Wω0(0))) (4.4)

where Wx is the law of the solution of (2.1) with value x ∈ R at time 0 (note that
Wω0(0) = PB−|B1 ). Furthermore, if ν is the law of X0(0) under Q ∈ Ps(�), then
the condition H(Q) < +∞ implies that

Q|B1 � Wν

where Wν(dω) = Wx(dω) ⊗ ν(dx) is the law of the solution of (2.1) with initial
distribution ν. This fact guarantees that every coordinate is a semimartingale under
Q, and then that the stochastic integral under Q makes sense :

Hb(Q) =




H(Q)− EQ

( ∫ 1
0 b(θ0,tω)dω0(t)

)
+ 1

2EQ

(
b2(ω)− b(ω)ϕ′(ω0(0))

)
if H(Q) < +∞

+∞ otherwise.

(4.5)
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We now prepare the proof of the variational principle. Let Q ∈ Gs(%
H ) satisfy

H(Q) < +∞. Instead of %H we also consider the specification %H̃ , built on %0

and the following modified Hamiltonian

H̃V (ω) = −
∑
i∈�

(∫ a2−1

a1+1
b(θi,tω)dωi(t)

−1

2

∫ a2−1

a1+1

(
b(θi,tω)(b(θi,tω)− ϕ′(ωi(t)))

)
dt

)
(4.6)

for V ∈ V , V = �×]a1, a2[ with a1 ≤ a2 − 2. We let ZH̃
V (ξ) denote the corre-

sponding normalization

ZH̃
V (ξ) =

∫
�

exp(−H̃V (ω))%
0(ξ, dω). (4.7)

We also introduce the following sequence of probability measures on (�,F), de-
fined for n ≥ 2,

%H̃
n,Q(dωVn, dξV c

n
) = %H̃

Vn
(ξ, dω)Q(dξ). (4.8)

The reason for using the modified Hamiltonian H̃V is that it is simpler to get esti-
mates for ZH̃

V than for ZH
V . Indeed, in computing ZH̃

V one needs only the restriction
of %0

V to the time interval [a1 + 1, a2 − 1], and this restriction is very regular with
respect to P .

In a first step we prove

Proposition 2. If Q ∈ Ps(�) is such that H(Q) < +∞, then

lim
n→∞

1

|Vn|hBn
(Q|%H̃

n,Q) = Hb(Q) (4.9)

where |Vn| = nd+1 is the volume of the space-time region Vn.

As a second step we show

Proposition 3. If Q ∈ Gs(%
H ) is such that H(Q) < +∞, then

lim
n→∞

1

|Vn|hBn
(Q|%H̃

n,Q) = 0. (4.10)

Thus we obtain, as the main result of this section, one direction of the Gibbs
variational principle.

Theorem 1. If Q ∈ Gs(%
H ) is such that H(Q) < +∞, then Hb(Q) = 0.

Remark 3. We make here some considerations of the finite entropy condition H(Q)

< +∞.

1. First of all, it implies that under Q the canonical process is a semi-martingale,
and then, the Hamiltonian H is well defined Q-a.s. without any difficulty.
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2. Föllmer et al. introduced in [10], Definition 2.1, a locally finite entropy condi-
tion which can be stated as follows. Let B̂− denote the σ -field

B̂− = σ {ωi(t) : (t ≤ 0; i ∈ Z
d) or (0 < t ≤ 1 and i �= 0)}.

Q satisfies the locally finite entropy condition if

Ĥ(Q) := Q[hB1(QB̂−|Wω0(0))] < +∞.

Since B− ⊂ B̂−, Jensen’s inequality yields

Ĥ(Q) ≤ H(Q).

Therefore our finite entropy condition implies the locally finite entropy condi-
tion of Föllmer.

3. Suppose that the drift b is Markovian (b(ω) = b(ω(0))) and of gradient type,
i.e. there is a local C2-function ψ such that the drift b is given by

b(x) = ∂

∂x0

∑
i∈Zd

ψ(θix) (4.11)

where θixj = xi+j is the space shift on R
Z
d

(as customary, the sum in (4.11)
is formal, but its derivative is well defined). For this class of systems, that will
be referred to as gradient systems, the condition H(Q) < +∞ holds true for
all Q ∈ Gs(%

H ). This and other aspects of gradient systems will be the subject
of Section 6.

Before giving the proof of Proposition 2, let us recall an important inequality
satisfied by the relative entropy, which will be used at several places in the proof.

Lemma 4. For every pair of probability measures (µ, ν) on a measurable space
(E, E), and for every measurable function f such that f− ∈ L1(ν),

log
∫
E

ef dµ ≥
∫
E

f dν − hE (ν|µ). (4.12)

Proof. When f is bounded above, this is the usual entropy inequality. To obtain
it for f− ∈ L1(ν), it is enough to construct bounded approximations and the
inequality remains true for the limit.

In the proof of Proposition 2 we need two technical facts. The first is the rep-
resentation of the functional H(Q) given by

H(Q) = lim
n→∞

1

|Vn|hBn
(Q|P). (4.13)

which holds for Q ∈ Ps(�) such that H(Q) < +∞. This is a version of McMillan
Theorem. It can be proved as in Dai Pra [4], Proposition 4.1, and goes back to the
work of Robinson and Ruelle [23]. The second technical fact we need is stated and
proved in the following simple but key Lemma.
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Lemma 5. Under Assumption A, if Q ∈ Ps(�) is such that H(Q) < +∞, then

lim
n→+∞

1

|Vn|hB�n×{0,n}(Q|P) = 0.

Proof. We first note that

log
dQ

dP

∣∣∣B�n×{0,n}

= log
dQB�n×{0}
dPB�n×{0}

∣∣∣B�n×{n}
+ log

dQ

dP

∣∣∣B�n×{0}

= log
dQB�n×{0}

dP

∣∣∣B�n×{n}
+ log

dP

dPB�n×{0}

∣∣∣B�n×{n}
+ log

dQ

dP

∣∣∣B�n×{0}
. (4.14)

Using the time stationarity of Q and Lemma 4 applied to µ = Q

∣∣∣B�n×{0}
,

ν = Q

∣∣∣B�n×{n}
and f = log

dQB�n×{0}
dP

∣∣∣B�n×{n}
we have

EQ

[
log

dQB�n×{0}
dP

∣∣∣B�n×{n}

]
≤ EQ

[
log

dQ

dP

∣∣∣B�n×{0}

]
= hB�n×{0}(Q|P). (4.15)

Moreover ∣∣∣∣∣log
dP

dPB�n×{0}

∣∣∣B�n×{n}
(ω)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
i∈�n

log qn(ωi(n), ωi(0))

∣∣∣∣∣∣
where qt (x, y) has been defined in Lemma 3.

Now, under Assumption A2, | log qn| is uniformly bounded so that, easily

lim
n→+∞

1

|Vn|EQ

[
log

dP

dPB�n×{0}

∣∣∣B�n×{n}

]
= 0. (4.16)

On the other hand, under Assumption A1, thanks to Lemma 3, there is a positive
constant A, independent on n, such that

| log qn(x, y)| ≤ A(1+ x2 + y2). (4.17)

Thus, by space-time shift invariance of Q∣∣∣∣∣EQ

[
log

dP

dPB�n×{0}

∣∣∣B�n×{n}

]∣∣∣∣∣ ≤ nd
(

2EQ[ω2
0(0)]+ 1

)
.

Thus (4.16) is established under Assumption A1 if we show thatEQ[ω2
0(0)] < +∞.

To see this we use Lemma 4. For every ε > 0

EQ[ω2
0(0)] ≤ ε−1

[
logEP

(
eεω

2
0(0)

)
+ hB{0}×{0}(Q|P)

]
(4.18)
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that is finite for ε sufficiently small, since P |B{0}×{0} has Gaussian tails. Thus (4.16)
is established under Assumption A1 too.

By (4.14), (4.15) and (4.16) we get

hB�n×{0,n}(Q|P) ≤ 2hB�n×{0}(Q|P)+ o(|Vn|). (4.19)

The fact that

hB�n×{0}(Q|P) = o(|Vn|) (4.20)

is almost obvious. For instance, one can take in (4.13) the space-time volume
Vn = �n × [0,

√
n] and obtain

H(Q) = lim
n→∞

1

nd+
1
2

hB�n×[0,
√
n]
(Q|P)

which yields

hB�n×{0}(Q|P) ≤ hB�n×[0,
√
n]
(Q|P) = o(nd+1).

By (4.19) and (4.20) the conclusion follows.

Proof of Proposition 2. Taking into account the definition of Hb and (4.13), all we
have to show is

lim
n→∞

1

|Vn|EQ


log

d%H̃
n,Q

dP

∣∣∣Bn


 = EQ

( ∫ 1

0
b(θ0,tω)dB̃0(t)

−1

2

∫ 1

0
b2(θ0,tω)dt

)
. (4.21)

Note that

log
d%H̃

n,Q

dP

∣∣∣Bn

= log
d%H̃

Vn
(ωV c

n
, ·)

d%0
Vn
(ωV c

n
, ·)

∣∣∣Bn

+ log
dQ

dP
|B�n×{0,n} .

By Lemma 5, (4.21) is established if we can show that

lim
n→+∞

1

|Vn|EQ


log

d%H̃
Vn
(ωV c

n
, ·)

d%0
Vn
(ωV c

n
, ·)

∣∣∣Bn




= EQ

( ∫ 1

0
b(θ0,tω)dB̃0(t)− 1

2

∫ 1

0
b2(θ0,tω)dt

)
. (4.22)

To see this, observe that

EQ


log

d%H̃
Vn
(ωV c

n
, ·)

d%0
Vn
(ωV c

n
, ·)

∣∣∣Bn


 = −EQ

[
logZH̃

Vn
(ωV c

n
)
]
− EQ(H̃Vn(ω)). (4.23)
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Identity (4.22) now follows if we show that

− lim
n→+∞

1

|Vn|EQ(H̃Vn(ω)) = EQ

( ∫ 1

0
b(θ0,tω)dB̃0(t)− 1

2

∫ 1

0
b2(θ0,tω)dt

)
(4.24)

and

lim
n→+∞

1

|Vn|EQ

[
logZH̃

Vn
(ωV c

n
)
]
= 0. (4.25)

Equality (4.24) follows readily by shift invariance of Q and the definition of H̃Vn ,
provided

∫ 1

0
b(θ0,tω)dB̃0(t) ∈ L1(Q). (4.26)

To prove (4.26) we argue as follows. Due to the finite entropy condition, the canon-
ical process under Q has a semi-martingale decomposition as follows: there exists
a Q-square integrable random variable β, measurable w.r.t. σ {ω(t) : t ≤ 0}, such
that

(
Mi(t) := B̃i(t)−

∫ t

0
β(θi,sω)ds

)
i∈Zd

(4.27)

are Q-independent Brownian motions. This fact can be proved by using Theorem
2.4 in [10] or [2] p.166, specialized to the translation invariant case. Indeed (see
Remark 3), our entropy condition is stronger than the local entropy conditions
appearing in [10].

Therefore∫ 1

0
b(θ0,tω)dB̃0(t) =

∫ 1

0
b(θ0,tω)β(θ0,tω)dt +

∫ 1

0
b(θ0,tω)dM0(t)

that easily implies (4.26) and thus (4.24).
We are left to show (4.25). First observe that (4.12)

logZH̃
Vn
(ωV c

n
) = log

∫
e−H̃Vn d%0

Vn
(ωV c

n
, ·)

= log
∫

e−H̃Vn

(
d%0

Vn
(ωV c

n
, ·)

dP

∣∣∣B�n×[1,n−1]

)
dP

∣∣∣B�n×[1,n−1]
. (4.28)

Moreover

d%0
Vn
(ωV c

n
, ·)

dP

∣∣∣B�n×[1,n−1]
(ωVn) =

∏
i∈�n

q1(ωi(1), ωi(0))q1(ωi(n), ωi(n− 1))

qn(ωi(n), ωi(0))
.

(4.29)
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Under Assumption A2, each term of the r.h.s. of (4.29) is uniformly bounded, that
immediately implies (4.25) after having observed that, by Girsanov formula,∫

e−H̃Vn dP = 1.

Under Assumption A1, we use the bound (4.17) on the transition density qt (x, y),
and we get

d%0
Vn
(ωV c

n
, ·)

dP

∣∣∣B�n×[1,n−1]

≥ exp


−A′ ∑

i∈�n

(
ω2
i (0)+ ω2

i (1)+ ω2
i (n− 1)+ ω2

i (n)+ 1
) .

Thus, letting dQ
ωVc

n
n = e

−H̃Vn (ωV c
n
·)
dP |B�n×[1,n−1] , by Jensen’s inequality

logZH̃
Vn
(ωV c

n
)

≥ log
∫

exp


−A′ ∑

i∈�n

(
ω2
i (0)+ ω2

i (1)+ ω2
i (n− 1)+ ω2

i (n)+ 1
) dQ

ωVc
n

n

≥ −A′
∑
i∈�n

{
E
Q

ω
V c
n

n

[ω2
i (1)+ ω2

i (n− 1)]+ 1+ ω2
i (0)+ ω2

i (n)
}
. (4.30)

Thus, the inequality

lim inf
n

1

|Vn|EQ[logZH̃
Vn
(ωV c

n
)] ≥ 0

follows if we show that

sup
n

sup
i∈�n

sup
ωV c

n

E
Q

ω
V c
n

n

[ω2
i (n− 1)] < +∞. (4.31)

To see (4.31), observe that, under Q
ωVc

n
n , the canonical process satisfies the s.d.e.,

for t ∈ [1, n− 1]

dωi(t) = [−cωi(t)+ b(θi,tω)]dt + dNi(t)

where (ωi(1))i∈�n are i.i.d. and distributed according to the invariant measure of

(2.1), and (Ni)i∈�n are independent Brownian motions under Q
ωVc

n
n . Boundedness

of b(·) and an elementary application of Ito’s rule yield (4.31).
We are now left to show

lim sup
n

1

|Vn|EQ[logZH̃
Vn
(ωV c

n
)] ≤ 0 (4.32)
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under Assumption A1. We first claim that

(
logZH̃

Vn

)− ∈ L1(Q). (4.33)

This follows easily from (4.30), (4.31) and the fact that, as shown above,EQ(ω
2
0(0))

< +∞ for Q satisfying H(Q) < +∞. By (4.33), we are allowed to use Lemma 4
and obtain

EQ[logZH̃
Vn

] ≤ logEP (Z
H̃
Vn
)+ hB�n×{0,n}(Q|P).

Using this inequality together with Lemma 5 and the fact that EP (Z
H̃
Vn
) = 1, (4.32)

follows.

Proof of Proposition 3. Let Q ∈ Gs(%
H ) satisfy H(Q) < +∞. The following

argument goes back to Preston [22], Lemma 7.7. First note the identity

dQ

d%H̃
n,Q

∣∣∣Bn

(ωVn, ξV c
n
) = %H

Vn
(ξ, dω)

%H̃
Vn
(ξ, dω)

∣∣∣Bn

. (4.34)

This follows from definition of %H̃
n,Q and the Gibbs property of Q. Therefore

log
dQ

d%H̃
n,Q

∣∣∣Bn

(ωVn, ξV c
n
)

=
∑
i∈�+n

( ∫ n

0
b(θi,tω)dB̃i(t)− 1

2

∫ n

0
b2(θi,tω)dt

)

−
∑
i∈�n

( ∫ n−1

1
b(θi,tω)dB̃i(t)− 1

2

∫ n−1

1
b2(θi,tω)dt

)

− logZH
Vn
(ξV c

n
)+ logZH̃

Vn
(ξV c

n
). (4.35)

We now discuss separately the behavior of each term in (4.35). As in Proposition 2

lim
n→∞

1

|Vn|EQ[logZH̃
Vn
(ξV c

n
)] = 0 (4.36)

We observe also that the semimartingale argument used in Proposition 2 to prove
(4.26), applies here as well to show that the integral with respect to Q of the differ-
ence of the first two terms in (4.35) multiplied by 1/|Vn| goes to zero. The proof is
therefore completed if we can show that

lim inf
n→∞

1

|Vn|EQ(logZH
Vn
(ξV c

n
)) ≥ 0. (4.37)
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Using (4.12) we obtain

logZH
Vn
(ξV c

n
)

= log
∫

%0
Vn
(ξ, dω)e−HVn(ω)

≥ −
∫

%H̃
Vn
(ξ, dω)HVn(ω)−

∫
%H̃

Vn
(ξ, dω) log

%H̃
Vn
(ξ, dω)

%0
Vn
(ξ, dω)

=
∫

%H̃
Vn
(ξ, dω)

[ ∑
i∈�+n

( ∫ n

0
b(θi,tω)dB̃i(t)− 1

2

∫ n

0
b2(θi,tω)dt

)

−
∑
i∈�n

( ∫ n−1

1
b(θi,tω)dB̃i(t)− 1

2

∫ n−1

1
b2(θi,tω)dt

)]
+ logZH̃

Vn
(ξV c

n
)

=
∫

%H̃
Vn
(ξ, dω)

[ ∑
i∈�+n \�n

( ∫ n

0
b(θi,tω)dB̃i(t)− 1

2

∫ n

0
b2(θi,tω)dt

)

+
∑
i∈�n

( ∫
[0,1]∪[n−1,n]

b(θi,tω)dB̃i(t)− 1

2

∫
[0,1]∪[n−1,n]

b2(θi,tω)dt
)]

+ logZH̃
Vn
(ξV c

n
).

The proof is complete if we can find a constant C > 0 such that, for i ∈ �+n \�n

|
∫

Q(dξ)%H̃
Vn
(ξ, dω)

∫ n

0
b(θi,tω)dB̃i(t)| ≤ Cn (4.38)

and, for i ∈ �n,∣∣∣ ∫ Q(dξ)%H̃
Vn
(ξ, dω)

[ ∫
[0,1]

b(θi,tω)dB̃i(t)+
∫

[n−1,n]
b(θi,tω)dB̃i(t)

]∣∣∣ ≤ C.

(4.39)

The proof of (4.38) follows easily after having observed that B̃i(t)−
∫ t

0 β(θs,iξ )ds

is a Brownian motion under Q, with β as in Proposition 2.
The proof of (4.39) is slightly harder, since we have to find a semimartingale

representation of B̃i(t) under %H̃
Vn

. Consider first the part of (4.39) with integral on

the time interval [0, 1]. By definition of %H̃
Vn

, in [0, 1] the law of B̃i(t) under %H̃
Vn

coincides with the law of the solution of (2.1) conditioned to hold ξi(0) at time 0
and ξi(n) at time n. It is well known [12] that the drift of such process is given by

−1

2
ϕ′(x)+ d

dx
logpn−t (ξi(n), x),

where, as above, pt (·, ·) is the transition density of the solution of (2.1). Thus,
defining

λn,ξ (t, x) = d

dx
logpn−t (ξi(n), x),
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the process

B̃i(t)−
∫ t

0
λn,ξ (s, ωi(s))ds,

for 0 ≤ t ≤ 1 is a Brownian motion under %H̃
Vn

. Therefore

|
∫

%H̃
Vn
(ξ, dω)

∫
[0,1]∪[n−1,n]

b(θi,tω)dB̃i(t)|

= |
∫

%H̃
Vn
(ξ, dω)

∫
[0,1]∪[n−1,n]

b(θi,tω)λn,ξ (t, ωi(t))dt |

≤
√

2‖b‖∞
[ ∫

%H̃
Vn
(ξ, dω)

∫
[0,1]∪[n−1,n]

λ2
n,ξ (t, ωi(t))dt

]1/2
. (4.40)

Now note that, by Girsanov Theorem, the quantity

1

2

∫
%H̃

Vn
(ξ, dω)

∫ 1

0
λ2
n,ξ (t, ωi(t))dt

equals the relative entropy of the restriction to the time interval [0, 1] of the Stochas-
tic Bridge Wn,ξi (n)

0,ξi (0)
and the measure W0,ξi (0). By using elementary properties of the

relative entropy, the relative entropy above is equal to the relative entropy between
the projections at time 1 of Wn,ξi (n)

0,ξi (0)
and W0,ξi (0), that are given respectively by

p1(x, ξi(0))pn−1(ξi(n), x)

pn(ξi(n), ξi(0))
dx = q1(x, ξi(0))qn−1(ξi(n), x)

qn(ξi(n), ξi(0))
µ(dx) (4.41)

and

p1(x, ξi(0))dx = q1(x, ξi(0))µ(dx). (4.42)

By using the same arguments in the proof of Proposition 2, based on the bounds
for qt (x, y), (4.39) follows easily.

5. The minima of the free energy are diffusions

This section is devoted to the proof of the following result.

Theorem 2. Let Q ∈ Ps(�) be such that Hb(Q) = 0. Then Q is a weak solution
of the s.d.e. (2.4).

We begin with some technical lemmas. In what follows we let

Gn = σ {ωi(t) : (t ≤ 0) or (t ≤ 1, i ∈ �n)}
Gn = σ {ωi(t) : (t ≤ 0) or (t ≤ 1, i �∈ �n)}
G− = σ {ωi(t) : t ≤ 0, i ∈ Z

d}.
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Lemma 6. Suppose H(Q) <∞. Then

H(Q) = lim
n→∞

1

nd
EQ{hGn

(QG−|PG−)}.
The proof of Lemma 6 is standard, and is essentially equal to the proof of (4.13).

From Lemma 6, by the same argument as in Lemma 5.5 of [4], we get the following
result.

Lemma 7. Suppose Hb(Q) = 0. Then

H(Q) = lim
n→∞

1

nd
EQ

(
hGn

(QGn |PGn)
)
.

Lemma 8. Suppose Hb(Q) = 0, and let β be the G−-measurable random variable
such that, for all i ∈ Z

d

Mt(i) = B̃i(t)−
∫ t

0
β(θi,sω)ds (5.1)

are independent Brownian motions under Q (see (4.27)). Then

H(Q) ≥ 1

2
EQ(β

2). (5.2)

Proof. We sketch the proof of (5.2), although it is analogous to Lemma 5.7 in [4].
Define

znt = exp


∑
i∈�n

(∫ t

0
β(θi,sω)dB̃s(i)− 1

2

∫ t

0
β2(θi,sω)ds

) .

By Girsanov Theorem, znt is a PG− -local martingale. So let τk be an increasing
sequence of stopping times, τk → 1, such that for all k the process znt∧τk is a
martingale. We can therefore define the random probability measure Pn,k

ω by

dP n,k
ω = zn1∧τk dPG− .

Since PG− = PGn on Gn we have

EQ{hGn
(QGn |PGn)} = EQ{hGn

(QGn |Pn,k
ω )} + EQ{log zn1∧τk } ≥ EQ{log zn1∧τk }

= 1

2

∑
i∈�n

EQ

∫ τk

0
β2(θi,sω)ds

and the conclusion follows by letting k→∞ and using the Monotone Convergence
Theorem.

Proof of Theorem 2. Using (5.1), it is enough to show that β(ω) = b(ω) Q-a.s..
Note that

EQ{
∫ 1

0
b(θ0,tω)dB̃0(t)− 1

2
b2(ω)} = EQ{β(ω)b(ω)− 1

2
b2(ω)}.

Thus, by (5.2)

0 = Hb(Q) ≥ 1

2
EQ{(β(ω)− b(ω))2},

and the conclusion follows.
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6. The case of Markovian gradient systems

Some of the results in the previous sections can be strengthen in the case of gradient
systems. We recall that a system on R

Z
d

is said to be gradient if b(ω) = b(ω(0)),
where

b(x) = ∂

∂x0

∑
j∈Zd

ψ(θj x)

for a local C2 function ψ . We also assume that the first and second derivatives of
ψ are bounded.

It is not restrictive to assume ψ(x) = ψ(xL), where L is a symmetric fi-
nite subset of Z

d around the origin. Thus b is �0-local where we can choose
�0 = {i ∈ Z

d : (i + L) ∩ L �= ∅}, that is also symmetric around the origin. By
symmetry, it follows that {0}+ = �0.

Lemma 9. If the system is gradient then H(Q) < +∞ for every Q ∈ Gs(%
H ).

Proof. Consider the Hamiltonian

H{0}×]0,2[(ω) = −
∑
i∈�0

[ ∫ 2

0
b(θi,tω)dB̃i(t)− 1

2

∫ 2

0
b2(θi,tω)dt

]
.

Following a decoupling technique used in [6], for i ∈ �0 we define

b̃i (x) = ∂

∂xi

∑
j∈Zd

ψ(θj x).

We claim that, for all i ∈ �0, the difference b̃i (x)− b(θi(x)) is independent of x0.
To see this, noting that if j �∈ L then ψ(θjx) does not depend on x0, it is enough
to show that

∂

∂x0

( ∂

∂xi

∑
j∈Zd

ψ(θj x) − b(θix)
)
= 0 (6.1)

for every i ∈ �0. Indeed

∂

∂x0

( ∂

∂xi

∑
j∈Zd

ψ(θj x) − b(θix)
)

= ∂

∂x0

∑
j∈Zd

(
∂ψ

∂xi−j

)
(θj x)− ∂

∂x0

∑
j∈Zd

(
∂ψ

∂x−j

)
(θi+j x)

=
∑
j∈Zd

(
∂2ψ

∂x−j ∂xi−j

)
(θj x)−

∑
j∈Zd

(
∂2ψ

∂x−i−j ∂x−j

)
(θi+j x) ≡ 0.
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Having established (6.1), we have two equivalent forms for the local specification
%H
{0}×]0,2[:

%H
{0}×]0,2[(ω, dω

′) = 1

ZH
{0}×]0,2[(ω)

exp[−H{0}×]0,2[(ω
′)]%0

{0}×]0,2[(ω, dω
′)

= 1

Z̃H
{0}×]0,2[(ω)

exp
{ ∑
i∈�0

[ ∫ 2

0
b̃i (ω

′(t))(dω′i (t)

+1

2
ϕ′(ω′i (t))dt)−

1

2

∫ 2

0
b2(ω′i (t))dt

]}
%0
{0}×]0,2[(ω, dω

′). (6.2)

Letting k(x) =∑
j∈Zd ψ(θj x), we note that k(x) = k(x�0) and b̃i = ∂

∂xi
k(x) for

i ∈ �0. Therefore, by Ito’s rule,

∑
i∈�0

∫ 2

0
b̃i (ω

′)(dω′i (t)+
1

2
ϕ′(ω′i (t))dt) = k(ω′(2))− k(ω′(0))

−1

2

∑
i∈�0

∫ 2

0

∂2

∂x2
i

k(ω′(t))dt. (6.3)

Identities (6.2), (6.3) and the uniform boudedness of ψ imply that

∣∣∣ log
%H
{0}×]0,2[(ω, dω

′)

%0
{0}×]0,2[(ω, dω

′)

∣∣∣ ≤ C0 (6.4)

for some constant C0 > 0 independent of both ω and ω′.
Consider now Q ∈ Gs(%

H ). Recalling that B− ⊂ F̂{0}×]0,2[, we have

∣∣∣ log
dQB−
dWω0(0)

∣∣∣B1
(ω)

∣∣∣ ≤ ∣∣∣ log
dQF̂{0}×]0,2[

dW
2,ω0(2)
0,ω0(0)

∣∣∣B1
(ω)

∣∣∣+ ∣∣∣ log
dW

2,ω0(2)
0,ω0(0)

dWω0(0)

∣∣∣B1
(ω)

∣∣∣

≤
∣∣∣ log

d%H
{0}×]0,2[

d%0
{0}×]0,2[

(ω)

∣∣∣+ ∣∣∣ log
dW

2,ω0(2)
0,ω0(0)

dWω0(0)

∣∣∣B1
(ω)

∣∣∣. (6.5)

By (6.4), the first summand in (6.5) is uniformly bounded. Under Assumption
A2, also the second summand in (6.5) is uniformly bounded, so that clearly

H(Q) = EQ(hB1(QB−|Wω0(0))) = EQ(log
dQB−
dWω0(0)

∣∣∣B1
)

is finite.
Under Assumption A1, it is enough to show that

EQ

(∣∣∣ log
dW

2,ω0(2)
0,ω0(0)

dWω0(0)

∣∣∣B1

∣∣∣
)
< +∞.
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But, by the estimate (4.17), we have

∣∣∣ log
dW

2,ω0(2)
0,ω0(0)

dWω0(0)

∣∣∣B1

∣∣∣ ≤ A′(ω2
0(0)+ ω2

0(1)+ ω2
0(2)+ 1). (6.6)

The fact that the r.h.s. of (6.6) is in L1(Q) is shown in (4.18).

With the given potential ψ we can define, for � ⊂ Z
d finite, the Hamiltonian

h�(x) = −2
∑

i:(i+�0)∩��=∅
ψ(θix) (h{0}(x) = −2k(x))

and the local specifications on R
Z
d

%h
�(x, dx

′) = 1

Zh
�(x)

exp[−h�(x′)]⊗i∈� λ(dxi)⊗⊗i �∈�δxi (dx
′
i ) (6.7)

where λ(dx) = e−ϕ(x)dx . We let G(%h) denote the set of Gibbs measures for
the specifications in (6.7), and Gs(%

h) the subset of those that are invariant for the
space-shifts (θi)i∈Zd .

Proposition 4. For Q ∈ Ps(�), we let Q0 denote its one-time marginal, i.e.

Q0(E) = Q({ω : ω(0) ∈ E}),

where E is a Borel subset of R
Z
d
.

Then the map Q→ Q0 is a bijection between Gs(%
H ) and Gs(%

h).

Proof. Let S be the set of stationary weak solutions of equation (2.4). It is shown in
[9], Theorem 3.10, that the stationary measures for (2.4) that are also invariant for
the space shifts (θi)i∈Zd are exactly the elements of Gs(%

h). This can be rephrased
by saying that the map Q → Q0 is a bijection between S ∩ Ps(�) and Gs(%

h).
On the other hand, by Proposition 1, Theorems 1, 2 and Lemma 9 we have that
S ∩ Ps(�) = Gs(%

H ).

In particular, if the potential ψ is bounded with an L∞-norm small enough,
together with the norm of its first and second derivatives, then the Gibbs measures
are small perturbations of a free field, and by [18] Theorem 1 page 105, Gs(%

h)

contains exactly one element (which furthermore admits a cluster expansion). So
Gs(%

H ) is also reduced to a unique space-time Gibbs measure.

Acknowledgements. S.R. thanks the Dipartimento di Matematica, Politecnico di Milano, for
the very kind hospitality.
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7. Appendix. Proof of Lemma 3

We begin by proving part a. of Lemma 3. We first associate to the potential ϕ(x)
the function

ϕ̃(x) = ϕ′′(x)− 1

2
ϕ′(x)2.

An elementary integration argument shows that, under Assumption A1 there are
constants A1, A2 > 0 and B1, B2 ∈ R such that, for all x ∈ R,

−A1x
2 + B1 ≤ ϕ̃(x) ≤ −A2x

2 + B2. (7.1)

Note that, if we consider the quadratic potential ϕ∗(x) = 1
2ax

2, a > 0, we obtain

ϕ̃∗(x) = a − 1

2
a2x2. (7.2)

Thus, by (7.1) and (7.2), we get that there are quadratic potentials ϕ−(x) = 1
2a
−x2,

ϕ+(x) = 1
2a
+x2 and a constant C > 0 such that

∀x ∈ R, ϕ̃−(x)− C ≤ ϕ̃(x) ≤ ϕ̃+(x)+ C. (7.3)

Upper bounds forqt (x, y). The key idea for obtaining the desired bounds onqt (x, y)
is to use the following representation (see [28], Theorem 7.5.13):

qt (x, y) = e
1
2ϕ(x)+ 1

2ϕ(y)γt (x − y)E
t,x
0,y

[
exp

(∫ t

0

1

4
ϕ̃(ωs)ds

)] ∫
e−ϕ(z)dz,

(7.4)

where

γt (ξ) = 1√
2πt

e−
ξ2

2t ,

and E
t,x
0,y is the expectation with respect to the Brownian Bridge with endpoints

(0, y) and (t, x). By the upper bound in (7.3) and (7.4) we obtain

qt (x, y) ≤ Ke
1
2ϕ(x)− 1

2ϕ
+(x)e

1
2ϕ(y)− 1

2ϕ
+(y)eCtq+t (x, y), (7.5)

where K is a positive constant and

q+t (x, y) =
1√

1− e−a+t
exp

[
− 1

2σ 2
t

[m2
t x

2 +m2
t y

2 − 2mtxy]

]
,

with

mt = e−
a+
2 t , σ 2

t =
1

a+
(

1− e−a
+t
)
,
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is the transition density associated with the quadratic potential ϕ+. It is easily seen
that

q+t (x, y) ≤
1√

1− e−a+t
exp

[
mt

σ 2
t

xy

]
≤ 1√

1− e−a+t
exp

[
mt

2σ 2
t

(x2 + y2)

]
.

Since mt → 0 as t →+∞, there is a T > 0 such that

e−
1
2ϕ
+(x) exp

[
mT

2σ 2
T

x2

]
≤ e−

1
4ϕ
+(x).

Plugging this in (7.5), we obtain

qT (x, y) ≤ Meg(x)eg(y) (7.6)

for a suitable M > 0 and

g(x) = 1

2
ϕ(x)− 1

4
ϕ+(x). (7.7)

In what follows we denote by µ the probability measure e−ϕ(x)∫
e−ϕ(y)dy dx. By abuse of

notation, we let

µ(x) = e−ϕ(x)∫
e−ϕ(y)dy

.

By Assumption A1, µ has Gaussian tails. It follows ([28], Corollary 7.5.38) that
the semigroup

Ttf (x) =
∫

f (ξ)pt (ξ, x)dξ

is contractive in L2(µ), i.e. there is α > 0 (the spectral Gap) such that for all
f ∈ L2(µ)

‖Ttf −
∫

f dµ‖L2(µ) ≤ e−αt‖f −
∫

f dµ‖L2(µ).

As a consequence, for f ∈ L2(µ)∣∣∣∣EW(f (xt )f (x0))−
( ∫

f dµ
)2
∣∣∣∣ ≤ e−2αt‖f ‖2

L2(µ)
. (7.8)

Now, using the fact that, for g defined in (7.7), eg ∈ L2(µ), for t > 3T we have

qt (x, y) =
∫

qT (x, z)pt−2T (z, w)qT (w, y)µ(w)dzdw

≤ M2eg(x)+g(y)
∫

eg(z)eg(w)pt−2T (z, w)dzdw

≤ M2eg(x)+g(y)‖eg‖2
L2(µ)

(1+ e−2αT ).
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Since the last bound is uniform for t > 2T and g(x) has at most quadratic growth,
the upper bound in (4.3) follows easily.
Lower bounds for qt (x, y). We proceed as in the upper bound. By (7.5) it is easily
seen that for a given T > 0 there exist M,a > 0 such that

qT (x, y) ≥ Me−a(x
2+y2).

We now proceed as in the upper bound, with g(x) = −ax2.

We now prove part b. of Lemma 3 and work under Assumption A2. Define

qt ∗ qs(w, z) =
∫

qt (w, y)qs(y, z)µ(y)dy.

Then, for any a ∈ [0, t
2 ]

sup
w,z∈R

|qt (w, z)− 1| = sup
w,z∈R

|qa ∗ (qt−2a − 1) ∗ qa(w, z)|

≤ sup
z∈R

∫
sup
w∈R

qa ∗ |qt−2a − 1|(w, y)qa(y, z)µ(y)dy.

By Theorem 1.4 in [14] the semigroup Tt , under Assumption A2, is ultracontrac-
tive, i.e. it maps L2(µ) into L∞(µ); so there exists C1(a) > 0 such that

sup
w∈R

qa ∗ |qt−2a − 1|(w, y) ≤ C1(a)‖(qt−2a − 1)(·, y)‖L2(µ).

So

sup
w,z∈R

|qt (w, z)− 1| ≤ C1(a) sup
z∈R

∫
qa(y, z)‖(qt−2a − 1)(·, y)‖L2(µ)µ(dy)

≤ C2
1 (a)‖y → ‖(qt−2a − 1)(·, y)‖L2(µ)‖L2(µ).

Now, is it known that ultracontractivity implies L2-contractivity. Thus, denoting
again by α the spectral gap,

‖(qt−2a − 1)(·, y)‖L2(µ) = ‖qt−2a(·, y)−
∫

qt−2a(x, y)µ(dx)‖L2(µ)

≤ e−(t−3a)α‖qa(·, y)− 1‖L2(µ)

which implies

sup
w,z∈R

|qt (w, z)− 1| ≤ C2
1 (a)e

−(t−3a)α

√∫ ∫
(qa(x, y)− 1)2µ(dx)µ(dy)

which converges exponentially to zero as t tends to infinity. It allows to conclude
that

lim
t→+∞ sup

w,z∈R

|qt (w, z)− 1| = 0.
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26. Royer, G., Yor, M.: Représentation intégrale de certaines mesures quasi-invariantes sur
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