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Abstract

In this paper, we study the observability properties of nonlinear discrete time systems.
Two types of contributions are given. First, we present observability criteria in terms of
appropriate codistributions. For particular, but significant, classes of systems we provide
criteria that require only a finite number of computations. Then, we consider invertible
systems (which includes discrete-time models obtained by sampling of continuous-time
systems) and prove that the weaker notion of forward-backward observability is equivalent
to the stronger notion of (forward) observability.
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1 Introduction

This paper is a study on the observability of nonlinear discrete-time models. We only deal
with the single input single output systems, since the general case involves only notational
changes. More precisely, we consider systems of the form

Σ x(t + 1) = f(x(t), u(t)), t = 0, 1, 2, . . .
y(t) = h(x(t)). (1)

In (1), we assume that x(t) ∈ M, y(t) ∈ Y and u(t) ∈ U , with M and Y connected, second
countable, Hausdorff, differentiable manifolds, of dimensions n and 1, respectively. Moreover,
we assume that the control space U is an open interval of IR. A system is said to be of class
Ck, if the manifolds M and Y are of class Ck, and the functions f : M × U → M and
h : M → Y , are of class Ck. We will deal with the two cases k =∞ and k = ω.

This paper provides explicit criteria in terms of the functions f and h in (1) to decide if
a state x0 in the state space M is observable. This means that it is possible to distinguish
x0 from any other state (or possibly from any state in a neighborhood of x0) by apply-
ing a suitable control sequence u(1), u(2), ... and reading the corresponding output sequence
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h(x(0)), h(x(1)), .... Our approach is based on ideas from differential geometry. In particular,
we characterize the observability properties of systems (1) using a sequence of codistributions
generated by the output functions at different times.

The plan of the paper is as follows. In Section 2 we give the basic definitions concerning
the observability of discrete-time nonlinear systems. In Section 3 we define a sequence of
codistributions for the system (1) and using these codistributions we give a first general
observability criterion in Theorem 3.1. Then Theorem 3.5 provides two independent sufficient
conditions that guarantee that only a finite number of computations (in particular a number
equal to the dimension n of the system) is sufficient to check observability. The special
important case of invertible systems, namely systems of the form (1) with f(·, u) invertible
for every u, is considered in Section 4. An important example of these models are discrete-
time systems obtained from continuous-time systems after sampling. Stronger observability
criteria are derived for these systems in Theorems 4.5 and 4.6. For invertible models of the
form (1), we can define an inverse system which still has the form (1) but with f replaced by
f−1. We can ask the question of whether it is possible to distinguish two states by allowing
the system to alternatively assume the forward form (1) or the backward form ((1) with f
replaced by f−1). This question of forward-backward observability is formalized in Section 4
and it is proven in sub-Section 4.2 that, under regularity assumptions, the weaker notion of
forward-backward observability is equivalent to the stronger notion of forward observability.
Conclusions are given in Section 5.

The paper [9] contains a previous study on the observability of discrete time nonlinear
models, this paper deals with the case of systems without controls. In [8] differential geo-
metric concepts of invariant distributions and codistributions were introduced in the discrete
time setting. The classical paper [5] deals with questions of nonlinear observability in the
continuous-time context. For a general treatment of this case see the books [6] and [10].
Paper [3] uses a similar approach to give necessary and sufficient conditions to transform a
discrete-time nonlinear system into a state affine form. Related results can be found in [4].

Some results preliminary to the ones presented here were given in [1].

2 Basic Definitions

From now on, assume that a C∞ system Σ of type (1) is given. For each u ∈ U , we denote
by fu : M → M the map fu(x) := f(x, u). Next we give definitions of indistinguishability
and observability (This follows the classical definitions given in [10], [11]).

Definition 2.1 Two states x1, x2 ∈M are said to be indistinguishable, and we write x1Ix2,
if, for each j ≥ 0 and for each sequence of controls, {u1, ..., uj} ∈ U j , we have:

h(fuj ◦ · · · ◦ fu1(x1)) = h(fuj ◦ · · · ◦ fu1(x2)).

Definition 2.2 A state x0 ∈M is said to be observable if xIx0 ⇒ x = x0, ∀x ∈M .

Next we give two definitions of local observability.

Definition 2.3 A state x0 ∈ M is said to be locally weakly observable, if there exists a
neighborhood W of x0, such that, for each x1 ∈W , x0Ix1 implies x0 = x1.

Definition 2.4 A state x0 ∈ M is said to be locally strongly observable, if there exists a
neighborhood W of x0, such that, for each x1, x2 ∈W , x1Ix2 implies x1 = x2.
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Clearly, observability of a point x0 implies local weak observability of x0. However it does
not necessarily implies local strong observability. One simple example goes as follows: take
M = U = IR and f(x, u) = x, h(x) = x2, then x0 = 0 is observable but not locally strongly
observable. One can also construct examples of points that are locally strongly observable
but not observable. For example taking again M = U = IR, consider h(x) = f(x, u) = x2−x.
The origin is indistiguishable from the point x = 1 (they both give the output sequence
identically equal to zero). However every two points x1 and x2 in (−1

2 , 1
2) give a different

values for the output. This discussion can be summarized by saying that both observability
(obs.) and local strong observability (l.s.o.) imply local weak observability (l.w.o.) but they
are not related to each other, so we have the following diagram.

obs.→ l.w.o.← l.s.o. (2)

Local strong observability is a more ‘robust’ oservability notion than local weak observ-
ability. If, in a given situation, the state of the system is known to be close (but not necessarily
equal) to a nominal value, it is of interest to know whether by performing experiments on
the system and reading the outputs we can detect a difference in the initial state.

Definition 2.5 A system Σ is (locally weakly) (locally strongly) observable, if each state
x ∈M enjoys this property.

In the following, we say that xe is an equilibrium point, if there exists ue ∈ U such that
f(xe, ue) = xe. We say that a subset of M is generic if its complement is contained in a
proper analytic subset of M . Given a set L of C∞ functions, defined on M , we shall denote
by dL the codistribution spanned by all the differentials of these functions. By definition,
these are exact differentials.

3 Observability Criteria in terms of Codistributions

We first define some sets of functions which will be used to obtain observability criteria. We
let, for each k ≥ 1:

Θ1 = {h(·)}
Θk = {h(fuj ◦ · · · ◦ fu1(·)) | ∀ i = 1, · · · , j, ui ∈ U, and 1 ≤ j ≤ k − 1},

and Θ = ∪k≥1Θk. The following theorem states a first criterion where local observability
is related to the full dimensionality of the codistribution dΘ. For completeness we give its
proof, which can also be found in [1].

Theorem 3.1 Let Σ be a system for type (1) and fix a state x0 ∈M .

(a) If dim dΘ(x0) = n, then x0 is a locally strongly observable state for Σ.

(b) If Σ is locally weakly observable, then there exists an open set A, with A ⊂ M , such
that dim dΘ(x) = n for all x ∈ A. If, in addition, the system is analytic then A can be
chosen to be a generic subset of M .

Proof. (a) If dim dΘ(x0) = n, then there exist n functions in Θ, Hi(·) := h(fui
ji
◦ · · ·◦fui

1
(·)),

i = 1, ..., n, whose differentials are linearly independent at x0. By continuity, they remain
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independent in a neighborhood W ⊂M of x0. Therefore, Hi(·), i = 1, ..., n, define a smooth
mapping from M to Y n, which, restricted to W , is injective. Let x1, x2 ∈ W , if x1Ix2, in
particular, for all i = 1, ..., n, it must hold Hi(x1) = Hi(x2). By the injectivity of Hi(·)
i = 1, ..., n, it follows that x1 = x2. Thus x0 is a locally strongly observable state.

(b) We prove this part by the way of contradiction. Assume that Σ is locally weakly
observable, but it does not exist an open subset of M where dim dΘ(x) = n, which is
equivalent to saying that dim dΘ(x) < n for all x ∈ M . Let l = maxx∈M dim dΘ(x)(< n),
and choose x0 ∈ M , such that dim dΘ(x0) = l. By continuity and maximality of l, there
exists an open neighborhood W of x0, such that dim dΘ(x) = l, for all x ∈ W . Thus
there exist H1(·), ...,Hl(·), in Θ, whose differentials in W are linearly independent. It is
thus possible to take these functions, H1(·), ...,Hl(·), along with a set of complementary
independent functions, as partial coordinates in W . Since every function in Θ only depends
on the first l < n coordinates, points in W , which differ only in the last n − l coordinates,
cannot be distinguished. This contradicts the hypothesis of the local observability of the
system. Thus there must exists an open subset A in M , such that dimdΘ(x) = n for all
x ∈ A.

To prove the last sentence of the theorem it is enough to observe that if the system is
analytic then {x ∈M | dim dΘ(x) < n} is the set of zeros of an analytic function, namely an
analytic set. Thus, since M is connected, A is a generic subset of M .

The converse of statement (a) in Theorem 3.1 is false as the following example shows:

Example 3.2 Let M = IR2, U = IR,{
x1(t + 1) = ux3

2,
x2(t + 1) = x2.

and y(t) = x1(t).
It is easy to see that this model is observable and the origin is locally strong observable.

In fact, two different states can be distinguished at the first step if their x1 coordinates are
different or at the second step if their second coordinates are different (set u = 1). However,
dim dΘ(x1, x2) = 2 for all (x1, x2) .= (0, 0), while dim dΘ(0, 0) = 1

A stronger result about tests of local observability can be derived if we assume that dΘ
is constant dimensional in a neighborhood of x0. More precisely, on gets:

Proposition 3.3 Let Σ be a system for type (1) and fix a state x0 ∈M . Assume that there
exists a neighborhood W of x0 where dΘ is constant dimensional. Then the following are
equivalent:

i) x0 is locally strongly observable,

ii) x0 is locally weakly observable,

iii) dim dΘ(x0) = n.

Proof. The implications iii) → i) → ii) follow from part a) of Theorem 3.1 and (2). Now
assume that x0 is locally weakly oservable but dim dΘ(x0) = l < n. By the constant dimen-
sionality assumption for dΘ, dim dΘ(x) = l < n for every x in a neighborhood W of x0. As
in the proof of Theorem 3.1 choose l functions H1(·), ...,Hl(·) whose differentials are linearly
independent in W . Taking these functions along with a set of complementary independent
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functions as partial coordinates in W , since every function in Θ (the set of all possible out-
puts) only depends on the first l < n coordinates, states which differ only in the last n − l
coordinates cannot be distinguished. This contradicts the observability assumption.

Dealing with the whole set of functions Θ may be difficult in some cases because we
have to compute an infinite number of iterations of the map fu. Therefore, in the following
Theorem 3.5, we look for observability conditions expressed in terms of the codistribution
dΘn, where n is the dimension of the system (i.e. dim M = n where M is the state space).
Define

lk = max
x∈M

dim dΘk(x), and l = max
x∈M

dim dΘ(x).

Lemma 3.4 Let Σ be a model of type (1), assume that there exists a k̄ > 0 such that

lk̄ = lk̄+1. (3)

Moreover assume that at least one of the following two conditions is verified:
(a) Σ is an analytic system and, for each u ∈ U , the map fu is open;
(b) For each k ≥ 1, the dimension of dΘk(x) does not depend on x, i.e. dim dΘk(x) = lk

for all x ∈M.
Then

lk = lk̄, ∀ k ≥ k̄. (4)

Proof. We will prove that the assumption (3) along with either one of the conditions (a) and
(b) implies

lk̄+2 = lk̄ (5)

From (5), and using an induction argument, (4) follows. We will establish (5) by contra-
diction. Assume there exists x̄ ∈ M such that dim dΘk̄+2(x̄) > lk̄. Then, there exists a
function

H(·) = h
(
fuk̄+1

◦ . . . ◦ fu1

)
(·) ∈ Θk̄+2 \ Θk̄+1, (6)

such that dH(x̄) is linearly independent from dΘk̄+1(x̄). Let

H̃(·) = h
(
fuk̄+1

◦ . . . ◦ fu2

)
(·) ∈ Θk̄+1,

where the controls u2, ..., uk̄+2 are the same as in (6). Then, by continuity, there exists an
open neighborhood W of x̄ such that if x ∈W , then dH(x) is still linearly independent from
dΘk̄+1(x). Let V = fu1(W ).

Now, we prove that in both cases (a) and (b), there exists ỹ ∈ V and x̃ ∈ W such that
ỹ = fu1(x̃) and

dim dΘk̄(ỹ) = lk̄ = dim dΘk̄+1(ỹ). (7)

• If (a) holds then V is open since fu1 is an open map, thus ỹ ∈ V satisfying (7) exists
by analyticity. Then one chooses any x̃ ∈W such that ỹ = fu1(x̃).

• If (b) holds then we may choose x̃ = x̄ and ỹ = fu1(x̄).

Let H̃1, . . . , H̃lk̄ ∈ Θk̄ be such that dH̃1(ỹ), . . . , dH̃lk̄(ỹ) is a basis for dΘk̄(ỹ). Then for each
i = 1, . . . , lk̄, there exists ui

1, . . . , u
i
ji
∈ U , with ji ≤ k̄ − 1, such that

H̃i(·) = h
(
fui

ji
◦ . . . ◦ fui

1

)
(·) ∈ Θk̄. (8)
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From (7) we get that there exists α1, . . . ,αlk̄ ∈ IR, such that dH̃(ỹ) =
∑lk̄

i=1 αidH̃i(ỹ). On
the other hand, we have:

dH(x̃) = dH̃(ỹ) · ∂fu1

∂x
(x̃) =

lk̄∑
i=1

αidH̃i(ỹ) · ∂fu1

∂x
(x̃) =

lk̄∑
i=1

αidHi(x̃),

Where we have used the notation (see (8))

Hi(·) = h
(
fui

ji
◦ . . . ◦ fui

1
◦ fu1

)
(·) ∈ Θk̄+1.

Thus dH(x̃) is linearly dependent from dΘk̄+1(x̃), which gives the desired contradiction.

Assumption (a) of Lemma 3.4 holds for example when the map fu is an analytic diffeo-
morphism of the state space. This fact will be used later in Section 4.

The following theorem shows that, under appropriate assumptions, it is sufficient, in
testing observability, to check the dimension of dΘn (as opposed to the dimension of the
whole co-distribution dΘ as in Proposition 3.3). Thus we have an “a priori” bound (given
by the dimension of the state space) on the iterations of the maps fu we need to take into
account to test observability.

Theorem 3.5 Let Σ be a model of type (1), assume that we are in one of the following cases:
(a) Σ is an analytic system and, for each u ∈ U , the map fu is open;
(b) For each k ≥ 1, the dimension of dΘk(x) does not depend on x, i.e. dim dΘk(x) = lk

for all x ∈M.
Then the following statements are equivalent:

(i) There exists a generic set A1 ⊆M such that dim dΘn(x) = n for all x ∈ A1.

(ii) There exists a generic set A2 ⊆M such that all x ∈ A2 are locally strongly observable.

(iii) There exists a generic set A3 ⊆M such that all x ∈ A3 are locally weakly observable.

Proof. The fact that (ii) implies (iii) is obvious, while (i) ⇒ (ii) is given by part (a) of
Theorem 3.1. Thus we only need to prove that (iii) ⇒ (i). Assume (iii), and recall that we
have defined l = maxx∈M dim dΘ(x) and lk = maxx∈M dim dΘk(x). Notice that to obtain (i),
it is enough to show, both for cases (a) and (b), that ln = n. Clearly 0 ≤ l1 ≤ l2 ≤ . . . lk ≤
. . . ≤ l ≤ n.

First, notice that l1 > 0, in fact, if l1 = 0 then the output function h would be constant,
and so no point in M would be locally weakly observable. Moreover, we have that necessarily
l = n. In fact, let x0 be locally weakly observable and such that dim dΘ(x0) = l. Then, for
both cases (a) and (b), dim dΘ is constant in a neighborhood of x0, thus by Proposition 3.3,
we may conclude l = n.

Assume, by contradiction, that ln < n, then necessarily there exists k̄ < n such that
lk̄ = lk̄+1. Thus, by Lemma 3.4, we have that lk = lk̄ ∀ k ≥ k̄, which, in turn, implies
l = lk̄ < n. Thus, ln = n, as desired.

Remark 3.6
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• It is interesting to notice that the implications (i) ⇒ (ii) ⇒ (iii) hold pointwise, thus
we have:

A1 ⊆ A2 ⊆ A3,

where both inclusions may be proper. Notice that since the set of points locally (strongly
or weakly) observable is a superset of the set of points where dim d Θn(x) = n, the latter
condition at some point x implies local observability at x.

• We may rephrase the conclusion of the previous theorem as follows. Assume we have
given a model Σ which satisfies the assumptions of Theorem 3.5 then the following
statements are equivalent:

1. Σ is locally (strongly or weakly) unobservable;

2. dim dΘn(x) < n for all x ∈M .

Thus the maximal dimension of dΘn, ln, provides good information on observability. If
ln < n we can conclude that Σ is unobservable, on the other hand if ln = n then local
observability holds in a generic subset of M .

Remark 3.7 A class of models where assumption (b) of Theorem 3.5 holds is the one
in which M = IRn and whose both dynamics and output function are linear in x, i.e.
f(x, u) = g(u)x + d(u) and h(x) = CT x. For this class it is not difficult to show that all the
codistributions dΘk are constant dimensional and the notion of local and global observability
are equivalent.

4 Invertible Systems

In this section, we study a particular class of discrete-time models.

Definition 4.1 A system Σ of type (1) is said to be invertible, if for all u ∈ U , the map fu

is a diffeomorphism (we denote by f−1
u the inverse function of fu).

The invertibility assumption holds, for example, for discrete-time systems obtained by sam-
pling continuous-time dynamics for which the corresponding vector fields are complete. For
further motivations to the study of this class of models we refer to [7].

To an invertible model Σ described by (1), it is possible to associate an inverse system Σ−
as follows. Σ− will have the same state, control and output spaces as Σ, while its dynamics
will be described by

Σ− x(t + 1) = f−1(x(t), u(t)), t = 0, 1, 2, . . .
y(t) = h(x(t)).

Using this system it is possible to define backward indistinguishability and observability,
following the same lines as in Definitions 2.1-2.4 and 2.5. Moreover, these definitions extend to
forward-backward indistinguishability and observability in an obvious manner. For example,
we will say that x1 ∈ M is forward-backward indistinguishable from x2 ∈ M if for all k ≥ 0,
for all sequences u1, . . . , uk and ε1, . . . , εk, with uj ∈ U and εj = ±1 it holds:

h
(
f εk

uk
◦ . . . ◦f ε1

u1

)
(x1) = h

(
f εk

uk
◦ . . . ◦f ε1

u1

)
(x2).
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In general, the two notions of forward observability and forward-backward observability
are not equivalent (see Example 4.2 below). In Section 4.2, we will look for sufficient condi-
tions for these two notions to coincide. This is a question of fundamental interest and from a
practical point of view, it may be more convenient, in some cases, to check the weaker notion
of forward-backward observability rather than forward observability (see Example 4.12 in
Section 4.2).

Example 4.2 Let’s consider the following system: M = IR2, U = (−1, 1),{
x1(t + 1) = x1(t) + 1 + u

2g(x1) sin(x2),
x2(t + 1) = x2(t) + u.

and h(x1, x2) = x1, where

g(x) =
{ sin(πx)

πx x .= 0,
1 x = 0.

It is easy to verify that g(x) = 0 if and only if x ∈ ZZ\{0} and |g′(x)| ≤ 1. From the fact that
|g′(x)| ≤ 1 one gets that this model is locally invertible. However, it is not difficult to check
that, for each control u ∈ U , the map fu is one-to-one and onto, thus the model is invertible.

Consider the state x0 = (1, 0). Notice that, for any state of the type (n, a) with n ∈ IN,
n ≥ 1, and a ∈ IR, independently of the control u, we always reach the state (n + 1, a + u).
Thus, the state x0 is not weakly local forward observable, since in any neighborhood of x0

there is a state of the type x1 = (1, ε) which can not be distinguished from x0.
However, using the fact that g(0) .= 0, one get that x0 is locally strongly forward-backward

observable. In fact, let V be any open ball centered in x0 with radius less then 1 and take
any two points x̄1, x̄2 ∈ V . If the first coordinates of x̄1 and x̄2 are different then the two
states are, clearly, distinguishable. Assume that x̄1 = (a, b1) and x̄2 = (a, b2) with b1 .= b2.
Fix any control ū .= 0, and let:

f−1
ū (a, b1) = (α1, b1 − ū), f−1

ū (a, b2) = (α2, b2 − ū).

Then, since

α1 + 1 +
ū

2
g(α1) sin(b1 − ū) = a = α2 + 1 +

ū

2
g(α2) sin(b2 − ū), (9)

and sin(b1 − ū) .= sin(b2 − ū), we may conclude α1 .= α2, unless g(α1) = 0 (or g(α2) = 0).
This last situation cannot occur since it would imply α1 = a − 1 (or α2 = a − 1), and so
|α1| < 1 (or |α2| < 1), but the map g has no zeros with absolute value less then 1. Thus, x0

is locally strongly forward-backward observable

4.1 Observability criteria for invertible systems

This subsection is devoted to study how the forward observability criteria of the previous
section can be strengthened in the case of invertible systems.

The next lemma will be useful to prove sufficient conditions for constant dimensionality
of the distribution dΘ for an invertible system.

Lemma 4.3 Let Σ be an invertible system. Assume we are given two states x1, x2 ∈ M
and a sequence of control values u1, . . . , uk such that:

x2 = fuk◦ . . . ◦fu1(x1).

For each j ≥ 1, if dim dΘj(x2) = r, then dim dΘj+k(x1) ≥ r.
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Proof. Let g1, . . . , gr ∈ Θj such that dg1(x2), . . . , dgr(x2), form a basis for dΘj(x2). Consider
the functions g̃i = gi◦fuk◦ . . . ◦fu1 , i = 1, . . . , r. Then, for all i = 1, . . . , r, g̃i ∈ Θj+k.
Moreover

dg̃i(x1) = d (gi◦fuk◦ . . . ◦fu1) (x1) = dgi(x2)
∂

∂x
(fuk◦ . . . ◦fu1) (x1).

By the invertibility assumption of fuk◦ . . . ◦fu1 ,
∂
∂x (fuk◦ . . . ◦fu1) (x1) is nonsingular, and

therefore dg̃i(x1), for i = 1, . . . , r, are linearly independent.

Now we recall some definitions about controllability.

Definition 4.4 Let Σ be a system of type (1), then:

• x0 ∈ M is said to be forward accessible (resp. backward accessible) if there exists an
open set A ⊂ M such that, for each x ∈ A, it is possible to find a sequence of control
values u1, . . . , uk such that

x = fuk◦ . . . ◦fu1(x0)
(

resp. x = f−1
uk

◦ . . . ◦f−1
u1

(x0)
)
.

• x0 ∈ M is said to be transitive if there exists an open set A ⊂ M such that, for each
x ∈ A, it is possible to find a sequence of control values u1, . . . , uk and a sequence
ε1, . . . , εk, with εj = ±1, and such that

x = f εk
uk
◦ . . . ◦f ε1

u1
(x0).

Theorem 4.5 Consider an invertible analytic system Σ and let x̄ ∈M be a forward accessible
point. Then the dimension of dΘ is maximum at x̄, i.e. if l = maxx∈M dim dΘ(x), we have

dim dΘ(x̄) = l.

Thus, x̄ is locally strongly observable if and only if x̄ is locally weakly observable if and only
if dim dΘ(x̄) = n.

Proof. Since x̄ is forward accessible, there exists an open set A ⊆M such that each point in
A is reachable from x̄. By analyticity, there exists x̃ ∈ A such that dim dΘj(x̃) = l, for some
j ≥ 1. Since x̃ ∈ A, there exists a sequence of control values u1, . . . , uk such that:

x̃ = fuk◦ . . . ◦fu1(x̄).

From Lemma 4.3 we have:

dim dΘj+k(x̄) ≥ dim dΘj(x̃) = l,

which implies dim dΘ(x̄) = l, as desired.
The second statement follows from Proposition 3.3.

The next result shows that for invertible models which have a compact state space, it is
possible to give an a-priori bound on the number k such that dΘk has maximal dimension.

Theorem 4.6 Consider an invertible analytic system Σ. Assume that M is a compact man-
ifold and that any x ∈M is transitive. Then, there exists a k̄ ≥ 1 such that:

dim dΘk̄(x) = l, ∀x ∈M.
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Proof. It is known (see [2]) that for invertible models whose state space is compact, transi-
tivity implies that any x ∈ M is forward accessible. Thus, using Theorem 4.5, we have that
dim dΘ(x) = l for each x ∈ M . Let kx ≥ 1 be the minimum k such that dim dΘk(x) = l.
By continuity, for each x ∈M , there exists Ox neighborhood of x such that dim dΘkx(y) = l
for all y ∈ Ox. Then, the ∪x∈MOx is an open covering of M . By compactness there exists a
finite covering ∪p

i=1Oxi . Let:
k̄ = max

{
kx1 , . . . , kxp

}
,

then dim dΘk̄(x) = l for all x ∈M .

4.2 Relation between forward-backward observability and forward observ-
ability

We look now at the relation between the two notions of local (strong or weak) forward
observability and local (strong or weak) forward-backward observability. We will prove that,
for analytic invertible systems, these two notions are equivalent in a generic set, and, pointwise
for forward accessible points and for transitive equilibrium points.

Before stating and proving these results, we introduce some notations. We let:

Θ+
1 = Θ−

1 = Θ+,−
1 = {h},

and
Θ+

k = Θk,

Θ−
k = {h(f−1

uj
◦ · · · ◦ f−1

u1
(·)) | ui ∈ U, i = 1, · · · , j, and 1 ≤ j ≤ k − 1},

Θ+,−
k = {h(f εj

uj ◦ · · · ◦ f ε1
u1

(·)) | ui ∈ U, εi = ±1, i = 1, · · · , j, and 1 ≤ j ≤ k − 1}.
Moreover we let:

Θ+ = Θ, Θ− = ∪k≥1Θ−
k , Θ+,− = ∪k≥1Θ

+,−
k ,

and lαk = maxx∈M dim dΘα
k (x), lα = maxx∈M dim dΘα(x), where α = +,−, or +,−.

All of the previous results can be re-written with the + for Σ, with the − for Σ−, and
with +,− for the system where we allow both dynamics.

Theorem 4.7 Let Σ be an analytic invertible system. The following statements are equiva-
lent:

i) There exists a generic set A1 ⊆ M such that all x ∈ A1 are locally weakly forward
observable.

ii) There exists a generic set A2 ⊆ M such that all x ∈ A2 are locally strongly forward
observable.

iii) There exists a generic set A3 ⊆ M such that all x ∈ A3 are locally weakly forward-
backward observable.

iv) There exists a generic set A4 ⊆ M such that all x ∈ A4 are locally strongly forward-
backward observable.

10



Remark 4.8 Notice that, if we set: A = A1 ∩ A2 ∩ A3 ∩ A4, then clearly A ⊆ M is still a
generic set. Thus we made rephrase the statement of Theorem 4.7 by saying that, if Σ is an
analytic invertible system, then there exists a generic subset of the state space M in which
the four different notions of local observability are equivalent.

Proof. Since strong implies weak and forward observability implies forward-backward ob-
servability, we only need to prove that iii) implies ii). We will establish this implication by
contradiction.

Assume that almost every point is locally weakly forward-backward observable but not
strongly locally forward observable. Since Σ is analytic, this implies that no state in M is
strongly locally forward observable. Thus l+ < n. Fix any x̄ ∈M such that dim dΘ+(x̄) = l+.
Let H1, . . . ,Hl+ ∈ Θ+ be such that dH1(x̄), . . . , dHl+(x̄) is a basis for dΘ+(x̄). Choose any
set of complementary independent functions g1, . . . , gr (r = n− l+), and let:

Ã =
{

x ∈M

∣∣∣∣ dH1(x), . . . , dHl+(x)
dg1(x), . . . , dgr(x) are linear. indep.

}
.

Since x̄ ∈ Ã, by analyticity, Ã is an open and dense subset of M . Let

A =
{

x ∈M |x ∈ Ã and dim dΘ+,−
n (x) = n

}
.

Since Σ is analytic and locally weakly forward-backward observable from almost every point,
then dim dΘ+,−

n (x) = n for almost every x ∈ M , thus A is still an open and dense subset of
M . This follows from Theorem 3.5 for forward-backward observability, since the maps fu are
analytic and, being diffeomorphism, they are also open.
Fact. It is possible to define a sequence of states x̄i, for i = −n, . . . , n such that:{

x̄i ∈ A ∀ i
x̄i+1 = f0(x̄i) i = −n, . . . , n− 1.

(10)

To define these states one may proceed as follows. Let:{
A−n = A
Ai = f0 (Ai−1) ∩A

Then one may choose any x̄n ∈ An and let x̄i = f−1
0 (x̄i+1), i = n − 1, . . . ,−n. Clearly this

sequence of states satisfies both properties of equation (10).
Since A is open, by continuity, there exist V ⊂ U (the set of possible inputs) neighborhood

of 0 and, for each i = −n, . . . , n, Wi ⊂ A neighborhoods of x̄i, such that:

fv (Wi) ⊆Wi+1, ∀ v ∈ V, i = −n, . . . , n− 1. (11)

Since Wi ⊂ A, for each i = −n, . . . , n − 1, we may perform a local change of coordinates
on Wi using H1, . . . ,Hl+ and g1, . . . , gr as new coordinates. We write ĥ, f̂ , Ĥj , and ĝj for
h, f , Hj , and gj respectively, in the new coordinates. In particular, if we denote by z the
new coordinate, we may assume, without loss of generality, that zj = Ĥj , for j = 1, . . . , l+.
Notice that the same change of coordinates can be performed on every Wi.
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We claim that for (x, u) ∈Wi×V , the system Σ written in the new coordinates z = (z1, z2),
where z1 represents the block of the first l+ components, reads as:

z1(t + 1) = f̂ (z1(t), u(t)) ,

z2(t + 1) = f̂ (z1(t), z2(t), u(t)) ,

y(t) = ĥ (z1(t)) .

(12)

Since dh ∈ dΘ, clearly ĥ depends only on the first l+ coordinates, thus ĥ(z) = ĥ (z1(t)).
Moreover, since d (Hi(fu)) ∈ dΘ, we also have:

0 =
∂

∂zj
Ĥi(fu) =

∂

∂zj

(
f̂u

)
i
, ∀ j = l+ + 1, . . . , n, ∀ i = 1, . . . , l+.

Thus Σ, in the z-coordinates reads as in (12). For i = −n + 1, . . . , n, let

W̃i = { f(x, v) |x ∈Wi−1, v ∈ V } .

It is clear that we can choose subsets Ŵi ⊆ W̃i neighborhoods of x̄i, such that:

f−1
v (x) ∈Wi−1, ∀ v ∈ V, ∀x ∈ Ŵi.

Moreover, it holds that, by using the same coordinates z as before, the inverse system Σ−
for (x, v) ∈ Ŵi × V (i = −n + 1, . . . , n) reads as:

z1(t + 1) = f̂−1 (z1(t), u(t)) ,

z2(t + 1) = f̂−1 (z1(t), z2(t), u(t)) ,

y(t) = ĥ (z1(t)) .

(13)

By continuity, there exists δ0 > 0 and N0 ⊆ Ŵ0 neighborhood of x̄0 such that for all x0 ∈ N0,
for all 1 ≤ k ≤ n, for all ui ∈ U , with |ui| < δ0 (i = 1, . . . , k), and for all εi = ±1 (i = 1, . . . , k),
it holds that

xk = f εk
uk
◦ · · · ◦ f ε1

u1
(x0) ∈ Ŵε1+...+εk , (14)

with Ŵ−n = {f−1
v (x) |x ∈ Ŵ−n+1, v ∈ V }.

Since dim dΘ+,−
n (x̄0) = n, there exists a neighborhood N of x̄0 such that each x ∈ N is

forward-backward distinguishable from x̄0 with a sequence of input values of length at most
n.

Choose any x̃0 ∈ N ∩N0 such that in the z-coordinates the first l+ components of x̄0 and
of x̃0 are equal. Then there exists k ≤ n, u1, . . . , uk ∈ U , and ε1, . . . , εk ∈ {+1,−1}, such
that:

h
(
f εk

uk
◦ · · · ◦ f ε1

u1

)
(x̄0) .= h

(
f εk

uk
◦ · · · ◦ f ε1

u1

)
(x̃0)

By analyticity, there exists v1, . . . , vk ∈ U , with |vi| < δ0 for all i = 1, . . . , k, such that

h
(
f εk

vk
◦ · · · ◦ f ε1

v1

)
(x̄0) .= h

(
f εk

vk
◦ · · · ◦ f ε1

v1

)
(x̃0). (15)

On the other hand, since x̃0, x̄0 ∈ N0, |vi| < δ0 for all i = 1, . . . , k, and k ≤ n, from equation
(14) we have that:

f εi
vi
◦ · · · ◦ f ε1

v1
(x̃0) ∈ Ŵε1+...+εi ,

and
f εi

vi
◦ · · · ◦ f ε1

v1
(x̄0) ∈ Ŵε1+...+εi ,
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for all i = 1, . . . , k. Thus, by the triangular form of Σ and Σ− in Ŵi, i = −n, . . . , n, in
the z-coordinates, the first l+ components of x̃i and of x̄i remain equal. In particular, this
implies:

h(f εi
vi
◦ · · · ◦ f ε1

v1
(x̃0)) = h(f εi

vi
◦ · · · ◦ f ε1

v1
(x̄0)),

which contradicts equation (15).

From the previous Theorem, we can derive some pointwise versions of the equivalence
between the two notions of observability.

Theorem 4.9 Let Σ be an analytic invertible system, and x̄ ∈ M be a forward accessible
point. Then, x̄ is locally (strong or weak ) forward observable if and only if it is locally (strong
or weak) forward-backward observable.

Proof. Assume that x̄ is a local weak forward-backward observable point. Since Σ is analytic,
then we have that l+,− = n. Thus, using the proof of Theorem 4.7, it must hold that l+ = n.
Since x̄ is forward accessible, from Theorem 4.5 we know that dim dΘ+(x̄) = l+ = n, which
implies that x̄ is also locally strongly forward observable.

Being all the other implications obvious, the statement is proved.

In [2] it is proved that for analytic model the following two statements hold:

• if a state is an equilibrium point and it is transitive then it is also forward accessible,

• if the state space M is compact then forward accessibility and transitivity are equivalent.

From these facts and the Theorem 4.9, we get:

Corollary 4.10 Let Σ be an analytic invertible system, and x̄ ∈ M be a transitive equilib-
rium point. Then, x̄ is locally (strong or weak ) forward observable if and only if it is locally
(strong or weak) forward-backward observable.

Corollary 4.11 Let Σ be an analytic invertible system, and assume that M is a compact
manifold and that the model Σ is transitive. Then, the two notions of local (strong or
weak ) forward observability and locally (strong or weak) forward-backward observability are
equivalent.

The next example shows a system for which checking forward-backward observability
requires a much smaller number of operations then checking forward observability.

Example 4.12 Fix any positive integer N ≥ 2, and let g be an analytic function of one real
variable such that:

(a) g is periodic of period 4N ,

(b) g(x) = 0 if and only if x ∈ ZZ and |x| ≤ N ,

We shall construct a model Σ on the bidimensional torus. Since g is periodic and analytic,
also g′ is periodic and analytic, thus there exists L > 0 such that |g′(x)| ≤ L for all x ∈ IR.
Let U =

(− 1
2L , 1

2L

)
and parametrize the torus with coordinates in [−2N, 2N) × [−2N, 2N)

where 2N and −2N are identified. In these coordinates, the dynamics is described by{
x1(t + 1) = x1(t) + 1 + ug(x1) sin

(
π

2N x2
)

mod. 4N,
x2(t + 1) = x2(t) + u mod. 4N,

(16)
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and h(x1, x2) = x1.
We claim that this model is analytic and invertible. Analyticity is obvious. Notice that,

the evolution of the second component is independent of the first one and clearly invertible.
Thus, since | sin (

π
2N x

) | ≤ 1, to show that the whole map fu is invertible, it is enough to
prove that the map d(x) := x + 1 + vg(x) mod. 4N , for a given fixed v ∈ U and x in the one
dimensional torus, is one-to-one and onto. Since d′(x) = 1 + vg′(x) > 0, the map d without
the mod operation is invertible as a map from IR to IR. We first show that d is still onto on
the torus. Fix y ∈ [−2N, 2N), then there exists x ∈ IR such that x + 1 + ug(x) = y. Given
x, there exists k̄ ∈ ZZ such that x̄ = x + 4Nk̄ ∈ [−2N, 2N). Since g is periodic of period 4N ,
we have g(x) = g(x̄), which implies x̄ + 1 + vg(x̄) = y mod. 4N , thus the map d is onto on
the torus. We now prove injectivity by contradiction. Assume that d is not injective. This
implies that there exist two points y1, y2 ∈ [−2N, 2N) such that:

y1 + 1 + vg(y1) = y2 + 1 + vg(y2) + 4Nk,

for some integer k. Let y3 = y2 + 4Nk. Since g(y2) = g(y3), we can rewrite the previous
equation as:

y1 + vg(y1) = y3 + vg(y3).

This means:

|y1 − y3| = |u(g(y1)− g(y3))| ≤ |u|
∣∣∣∣∣sup
y∈IR

g′(y)

∣∣∣∣∣ |y1 − y3| ≤ 1
2
|y1 − y3| < |y1 − y3|,

which gives the desired contradiction.
This model is easily seen to be transitive. In fact, in at most N steps, using Σ or the inverse

system Σ−, from any initial conditions we reach an open subset of M . Being M compact
and Σ transitive, we know that forward observability and forward-backward observability are
equivalent.

Notice that if we take x0 = (−N, 0), then to check forward observability we need to
perform 2N + 1 steps, in fact dim dΘ+

k (x0) = 1 for all k ≤ 2N , while to check forward-
backward observability we only need 1 step, since dim dΘ2(x0) = 2.

5 Conclusions

This paper has presented a number of results concerning the observability of discrete time
nonlinear systems. Criteria to check observability, have been provided in terms of appropriate
codistributions. For relevant classes of systems, such as invertible models, these criteria have
been strengthened and more practical criteria can be given. Moreover, for invertible systems,
we have define the notion of forward-backward observability, which means that it is possible
to distinguish two states by evolving the system both forward and backward in time. Since
observability implies forward-backward observability, it is natural to ask the question of
wheather the converse is also true. We have given an example of a system which is forward-
backward observable but not observable, as well as a number of sufficient conditions for the
two notions to be equivalent. We also showed a simple example where the equivalence of the
two notions can be used to render the test of observability more efficient.
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