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Abstract

In this paper, we define four different notions of controllability of physical interest for multi-
level quantum mechanical systems. These notions involve the possibility of driving the evolution
operator as well as the state of the system. We establish the connections among these different
notions as well as methods to verify controllability.

1 Introduction

In this paper, we consider multilevel quantum systems described by a finite dimensional bilinear
model [7], [20]

˙|ψ > = (A+
m∑

i=1

Biui(t))|ψ >, (1)

where |ψ >3 is the state vector varying on the complex sphere Sn−1
CI , defined as the set of n-ples

of complex numbers xj + iyj , j = 1, ..., n, with
∑n

j=1 x
2
j + y2

j = 1. The matrices A, B1, ..., Bm

are in the Lie algebra of skew-Hermitian matrices of dimension n, u(n). If A and Bi, i = 1, ...,m
have zero trace they are in the Lie algebra of skew Hermitian matrices with zero trace, su(n).
The functions ui(t), i = 1, 2, ...,m are the controls. They are assumed to be piecewise continuous
functions although this assumption is immaterial for most of the theory developed here. Models of
quantum control systems different from the bilinear one (1) may be more appropriate in some cases
(see e.g. [2], [8]). Infinite dimensional (quantum) bilinear systems have been studied in control
theory in [3], [12].

The solution of (1) at time t, |ψ(t) > with initial condition |ψ0 >, is given by:

|ψ(t) >= X(t)|ψ0 >, (2)

where X(t) is the solution at time t of the equation

Ẋ(t) = (A+
m∑

i=1

Biui(t))X(t), (3)

with initial condition X(0) = In×n. The matrix X(t) varies on the Lie group of special unitary
matrices SU(n) or the Lie group of unitary matrices U(n) according to whether or not the matrices
A and Bi in (3) have all zero trace.

1Dipartimento di Matematica Pura ed Applicata, Universita’ di Padova, via Belzoni 7, 35100 Padova, Italy. Tel.
(+39) 049 827 5966 email: albertin@math.unipd.it
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3We use Dirac notation |ψ > to denote a vector on CI n of length 1, and < ψ| := |ψ >∗ where ∗ denotes transposed
conjugate

1



Equation (1) is the Schrödinger equation [22] which describes the dynamics of a quantum
system. The Hamiltonian operator H(t) := A +

∑n
i=1Biui(t) represents the energy of the system

at time t. More specifically, assuming the ui(t) constant, i = 1, ...,m, the eigenvectors of the matrix
H are the stationary states which are associated to the possible values for the energy of the system.
These values for the energy are given by the corresponding eigenvalues of H. It is always possible
to assume that A and the Bi’s have zero trace, since this can be achieved by adding a multiple
of the identity to H, which corresponds to shifting the values of the energy by a fixed amount.
It is assumed in (1) that the Hamiltonian has an affine dependence on some functions of time,
the controls ui, i = 1, ..,m, which can be varied in a given experimental set up. An example of a
system that can be described by an equation of this type is a particle with spin in a time varying
electro-magnetic field where the controls ui represent the x, y and z components of the field. The
problem of control for this particular system is treated in some detail in [7].

In several experiments, it is of interest to know whether or not fields ui can be chosen so as
to drive the state |ψ > in (1) between two given configurations. This is the case for example in
Molecular Control [6] where |ψ > represents the state of a chemical reaction. In other contexts, it
is important to know whether every unitary transformation between two states (X(t) in (2)) can be
implemented with a given physical set-up. This occurs, for example, in quantum computation [9]
where the state of the system |ψ > carries the information and the evolution operator X represents
a (logic) operation.

In this paper, we shall define four different notions of controllability which are of physical
interest for quantum mechanical systems of the form (1). Using general results on transitivity of
transformation groups, we shall provide criteria to check these controllability notions and establish
the connections among them.

The controllability of the system (1) is usually investigated by applying general results on
bilinear right invariant systems on compact Lie groups [13] [20]. These results, applied to our
model, give a necessary and sufficient condition for the set of states reachable for system (3) to be
the whole Lie group U(n) (or SU(n)). The condition is given in terms of the Lie algebra generated
by the matrices A, B1,...,Bm. Controllability results for quantum systems that do not use the Lie
algebraic approach have been developed in [14], [28] [29]. Investigations related to the one presented
here were carried out in [24]-[27] which also present some examples of applications.

2 Definitions of Notions of Controllability for Multilevel Quantum
Systems

The following notions of controllability are of physical interest for quantum mechanical systems
described in (1):

• Operator-Controllability (OC). The system is operator-controllable if every desired uni-
tary (or special unitary) operation on the state can be performed using an appropriate control
field. From (2) and (3), this means that there exists an admissible control to drive the state
X in (3) from the Identity to Xf , for any Xf ∈ U(n) (or SU(n)).

We shall use the term operator controllable for both the unitary case and the special unitary case
pointing out the difference between the two cases wherever appropriate. Operator controllability
in the unitary case is called ‘Complete Controllability’ in [24], [25].
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• Pure-State-Controllability (PSC). The system is pure-state-controllable if for every pair
of initial and final states, |ψ0 > and |ψ1 > in Sn−1

CI there exist control functions u1, ..., um

and a time t > 0 such that the solution of (1) at time t, with initial condition |ψ0 >, is
|ψ(t) >= |ψ1 >.

• Equivalent-State-Controllability (ESC). The system is equivalent-state-control-
lable if, for every pair of initial and final states, |ψ0 > and |ψ1 > in Sn−1

CI , there exist controls
u1, ..., um and a phase factor φ such that the solution of (1) |ψ >, with |ψ(0) >= |ψ0 >,
satisfies |ψ(t) >= eiφ|ψ1 >, at some t > 0.

A density matrix ρ is a matrix of the form ρ :=
∑r

j=1wj |ψj >< ψj |, where the coefficients wj > 0,
j = 1, 2, ..., r, satisfy

∑r
j=1wj = 1 (see e.g. [22] Chp. 3). The state of a quantum system can be

described by a density matrix. In particular, this is necessary when the system is an ensemble of
non interacting quantum systems. The constant wj , j = 1, . . . , r, gives the proportion of systems
in the state |ψj >.

• Density-Matrix-Controllability (DMC) The system is density matrix controllable if,
for each pair of unitarily equivalent 4 density matrices ρ1 and ρ2, there exists a control
u1, u2, ..., um and a time t > 0, such that the solution of (3) at time t, X(t), satisfies

X(t)ρ1X
∗(t) = ρ2. (4)

Equivalent state controllability is of interest because, in quantum mechanics, states that differ
by a phase factor are physically indistinguishable. Therefore, from a physics point of view, having
ESC is as good as having PSC. Density matrix controllability is of interest when a mixed ensemble
of different states is considered. In this case, the state at every time is represented by a density
matrix which evolves as ρ(t) = X(t)ρ(0)X∗(t), where X(t) is solution of (3) with initial condition
equal to the identity. Since X(t) is unitary, only density matrices that are unitarily equivalent to
the initial one can be obtained through time evolution.

In the following five sections we study the previous four notions of controllability, give criteria
to check them in practice, and discuss the relations among them.

3 Operator Controllability

Operator controllability is the type of controllability considered in [20]. Operator controllability
can be checked by verifying the Lie algebra rank condition [13], namely by verifying whether or not
the Lie algebra generated by {A,B1, B2, ..., Bm} is the whole Lie algebra u(n) (or su(n)). More
in general, recall that there exists a one to one correspondence between the Lie subalgebras of
u(n) and the connected Lie subgroups of U(n). We will denote in the sequel by L the Lie algebra
generated by {A,B1, B2, ..., Bm} and by eL the corresponding connected Lie subgroup of U(n).
The following result follows from the fact that U(n) is a compact Lie group (its proof can be easily
carried out by showing that I is a Poisson stable point and by applying Theorem 4.4 of [16]).

Theorem 1 The set of states attainable from the Identity for system (3) is given by the connected
Lie subgroup eL, corresponding to the Lie algebra L, generated by {A,B1, B2, ..., Bm}.

Corollary 3.1 System (3) is operator-controllable if and only if L = u(n) (or L = su(n)).
4Two matrices A, B ∈ U(n) are said to be unitarily equivalent if there exists a matrix C ∈ U(n) such that

CAC∗ = B
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4 Pure State Controllability

From the representation of the solution of Schrödinger equation (2), it is clear that the system is
pure state controllable if and only if the Lie group eL corresponding to the Lie algebra L generated
by {A,B1, ..., Bm} is transitive on the complex sphere Sn−1

CI . Results on the classification of the
compact and effective 5 Lie groups transitive on the (real) sphere were obtained in [4], [18], [23].
Applications to control systems were described in [5]. We will recall in Theorem 3 these results and
then will provide further results and make the necessary connections for the application of interest
here.

We consider the canonical Lie group isomorphism between U(n) and a Lie subgroup of SO(2n).
The correspondence between the matrices X = R+ iY in U(n), with R and Y real, and the matrix
X̃ ∈ SO(2n) is given by

X̃ :=
(
R −Y
Y R

)
. (5)

The same formula (5) provides the corresponding isomorphism between the Lie algebra u(n) and
a Lie subalgebra of so(2n). As X acts on |ψ >:= ψR + iψI on the complex sphere Sn−1

CI , X̃ acts

on the vector
(
ψR

ψI

)
on the real sphere S2n−1. Therefore, transitivity of one action is equivalent

to transitivity of the other. Since SO(2n) is effective on the real sphere S2n−1 so is each of its
Lie subgroups and in particular the one obtained from eL via the transformation (5). As for
compactness, notice that the transformation (5) preserves compactness. Moreover, eL is connected
and we have the following facts (see [19] pg. 226, we state here this result in a form suitable to our
purposes):

Theorem 2 ([19]) For every connected Lie group G which is transitive on the real sphere, there
exists a compact connected Lie subgroup H ⊆ G which is also transitive6.

Theorem 3 ([18], [23]) The only compact connected Lie subgroups of SO(2n) that are transitive
on the real sphere of odd dimensions S2n−1 are locally isomorphic to one of the following:

1) SO(2n) itself.
2) U(n).
3) SU(n), n ≥ 2.
4) The symplectic group Sp(n

2 ), for n even and n > 2. 7

5) The full quaternion-unitary group defined as the group generated by Sp(n
2 ) and the one

dimensional group {K ∈ U(n)|K := eiφIn, φ ∈ RI }, n > 2 and even.
6) The covering groups of SO(7) and SO(9) for n = 4 and n = 8, respectively.

Notice that Theorem 3 solves only partially the problem of determining which subgroups of
SO(2n) are transitive on the real sphere S2n−1. In fact, it only gives a necessary condition for the

5Recall (see e.g. [19] pg. 40) that a transformation group G on a manifold M is called effective if the only
transformation in G that leaves every element of M fixed is the identity in G.

6Connectedness is not explicitly mentioned in the result in [19] but it follows from the proof since H is in fact a
maximal compact subgroup of G which is always connected (see [19] pg. 188).

7Recall the Lie group of symplectic matrices Sp(k) is the Lie group of matrices X in SU(2k) satisfying XJXT = J ,

with J given by J =

(
0 Ik

−Ik 0

)
.

4



Lie algebra to be isomorphic to one of the Lie algebras of the Lie groups listed in the theorem. It is
known that, for example, the realification (5) of the symplectic group Sp(n

2 ) is transitive on S2n−1,
but nothing can be said from the Theorem for Lie groups that are only locally isomorphic (namely
have isomorphic Lie algebra) to Sp(n

2 ), unless further information is supplied. In this paper we are
interested only in the subgroups of SO(2n) that are isomorphic via (5) to a subgroup of SU(n)
(or U(n)). We will solve the problem of giving necessary and sufficient conditions for pure state
controllability in terms of the Lie algebra L generated by A,B1, B2, ..., Bm in Theorem 4. In the
following three Lemmas we use representation theory and structure theory (see e.g. [15]) to prove
three properties of classical Lie groups and algebras which we will use in the proof of Theorem 4.
We refer to [15] for the terminology and notions of Lie group theory used here. We relegate the
proofs of the three lemmas to the Appendix.

Recalling that, by definition, the covering groups of SO(7) and SO(9) have Lie algebras iso-
morphic to so(7) and so(9) respectively, Lemma 4.1 will be used to rule out that such groups arise,
after realification (5), as subgroups of SU(4) (or U(4)) and SU(8) (or U(8)).

Lemma 4.1 (a) There is no Lie subalgebra of su(4) (or u(4)) isomorphic to so(7).
(b) There is no Lie subalgebra of su(8) (or u(8)) isomorphic to so(9).

Lemma 4.2 Assume n even. All the subalgebras of su(n) or u(n) that are isomorphic to sp(n
2 )

are conjugate to sp(n
2 ) via an element of U(n).

Lemma 4.3 Assume n even. Then, the only subalgebra of su(n) containing sp(n
2 ) (or a Lie algebra

isomorphic to sp(n
2 )) properly is su(n) itself.

We are now ready to state a necessary and sufficient condition for pure state controllability in
terms of the Lie algebra L generated by {A,B1, B2, ..., Bm}.

Theorem 4 The system is pure state controllable if and only if L is isomorphic (conjugate) to
sp(n

2 ) or to su(n), for n even, or to su(n), for n odd (with or without the iI, where I is the identity
matrix).

Proof. If the system is pure state controllable then eL is transitive on the complex sphere Sn−1
CI ,

therefore its realification (5) is transitive on the real sphere S2n−1. Thus, from Theorem 2, it
must contain a Lie group locally isomorphic to one of the groups listed in Theorem 3. As a
consequence, the Lie algebra L must contain a Lie algebra isomorphic to one of the corresponding
Lie algebras. Assume first n odd, then cases 4) 5) and 6) are excluded. Case 1) is also excluded since
dim SO(2n) > dim U(n), when n ≥ 2 (recall that SO(2) is the realification of U(1)). Therefore
L must be either su(n) or u(n) in this case. If n = 2 then su(2) = sp(1) so cases 3) and 4) and
2) and 5) coincide. If n is even and n > 2, then case 1) is excluded as above and cases 2) through
5) all imply that sp(n

2 ) ⊆ L up to isomorphism of sp(n
2 ), which from Lemma 4.3 gives L = sp(n

2 )
or L = su(n) up to isomorphism (with or without the identity matrix). Case 6) is excluded by
Lemma 4.1. This proves that the only possible Lie algebras L that correspond to a transitive Lie
group are the ones given in the statement of the Theorem. The converse follows from the well
known properties of transitivity of SU(n) and Sp(n

2 ) as well as of any group conjugate to them via
elements in U(n), and from Lemma 4.2. 2

A physically motivated model which is pure state controllable but not operator controllable
was presented in [1]. This model describes three spin 1

2 particles interacting with each-other via
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Heisenberg interaction and with an external driving field. Particle 1 and 2 have the same g−factor
(namely they interact in the same way with the external field) and the coupling constant between
the two particles is equal to zero (they do not interact with each-other). Moreover the coupling
constant between particle 3 and particle 1 is the negative of the coupling constant between particle
3 and particle 2. Networks of spins of this type arise as model of the dynamics of Molecular Magnets
(see e.g. [17]).

5 Equivalent State Controllability

The notion of equivalent state controllability, although seemingly weaker, is in fact equivalent to
pure state controllability. This can be proved as a consequence of the following Theorem given in
[18].

Theorem 5 ([18]) Let G1 and G2 two compact and connected Lie groups and let G := G1 × G2.
If G is transitive on the real sphere Sn, then at least one of the groups G1, G2 is also transitive.

If the system is ESC then for every pair of states |ψ0 > and |ψ1 > there exists a matrix X in
eL and a ‘phase’ φ ∈ RI such that

X|ψ0 >= eiφ|ψ1 > . (6)

This can be expressed by saying that there exists an element Y in eiφeL := {Y ∈ U(n)|Y =
eiφX,X ∈ eL, φ ∈ RI } such that Y |ψ0 >= |ψ1 > and therefore eiφeL is transitive on the complex
sphere. Now, if span{iIn} ⊆ L, then eiφeL = eL and therefore eL is transitive and the system
is PSC. If this is not the case, then from Theorem 2, there must exist a compact connected Lie
group G ⊆ eL such that eiφG is transitive. From Theorem 5, it follows, writing eiφG as eiφIn ×G,
that one between the two groups eiφIn and G, must be transitive. Therefore G ⊆ eL is transitive.
In conclusion, we have the following Theorem.

Theorem 6 ESC and PSC are equivalent properties for quantum mechanical systems (1).

Theorems 4 and 6 show that a necessary and sufficient condition to have pure state controlla-
bility or equivalent state controllability is that the Lie algebra L is the whole su(n) or isomorphic
to sp(n

2 ) (with or without iI). To check this isomorphism one can apply the structure theory of
Lie algebras to L. A more practical way to check equivalent state controllability will be presented
in Section 7. This method only involves elementary matrix manipulations and can be extended to
check density matrix controllability starting from a fixed given matrix.

6 Density Matrix Controllability

Notice that if eL = SU(n) or eL = U(n) then obviously the system is DMC. Moreover, in order for
the system to be DMC, the model has to be equivalent state controllable (and therefore pure state
controllable) as well, because transitions between pure states represented by matrices of the form
|ψ >< ψ| must be possible. Therefore, to get DMC, L must be su(n), or, for n even and n > 2 (see
Theorem 4), it must be isomorphic (conjugate) to sp(n

2 ) (modulo multiples of the identity matrix).
The next example shows that Sp(n

2 ) is not enough to obtain DMC. The example constructs a
class of density matrices D with the property that

{WDW ∗ | W ∈ Sp(n
2
)} 6= {UDU∗|U ∈ SU(n)}. (7)
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Example 6.1 Choose any n > 2 with n even, and let |v >=

(
v1
v2

)
∈ CI n and |w >=

(
−v2
v1

)
∈

CI n, with v1, v2 ∈ RI n/2, ||v|| = 1. Then ||w|| = 1, < v|w >= 0, thus, in particular, these two
vectors are independent. Let

D =
1
2

(|v >< v|+ |w >< w|) .

It is easy to verify that DJ = JD (where J =

(
0 In
−In 0

)
). Thus, if W ∈ Sp(n

2 ) then we still

have that:
(WDW ∗) J = J(WDW ∗).

Choose any two orthonormal vectors |v′ >, |w′ >∈ CI n, such that:

D′ =
1
2
(
|v′ >< v′|+ |w′ >< w′|

)
,

satisfies D′J 6= JD̄′ (it is easy to see that two such vectors exist), and let U ∈ U(n) be any unitary
matrix such that Uv = v′ and Uw = w′, then, for all W ∈ Sp(n

2 ),

UDU∗ = D′ 6= WDW ∗.

From the above discussion and example, we can conclude that DMC is equivalent to OC. Given
a density matrix D, it is of interest to give a criterion on the Lie algebra L for the two orbits

OL := {WDW ∗|W ∈ eL} and OU := {UDU∗|U ∈ U(n)} (8)

to coincide. To this aim, notice that since D is Hermitian, iD is skew-Hermitian so that iD ∈ u(n),
and a matrix commutes with iD if and only if it commutes with D. The centralizer of iD is by
definition, the Lie subalgebra of u(n) of matrices that commute with iD. Call this subalgebra CD

and the corresponding connected Lie subgroup of U(n), eCD . Analogously, the centralizer of iD in
L is CD ∩L and we denote by eCD∩L the corresponding subgroup of U(n) (which is also a subgroup
of eL). For a given density matrix D, it is sufficient to calculate the dimensions of L, CD and CD∩L
to verify the equality of the two orbits OL and OU defined in (8). We have the following result.

Theorem 7 Let D be a given density matrix, then OL = OU if and only if

dimu(n)− dim CD = dimL − dim(L ∩ CD). (9)

Proof. We have the following isomorphisms between the two coset spaces U(n)/eCD and eL/eCD∩L

and the two manifolds OU and OL, respectively:

U(n)/eCD ' {UDU∗ | U ∈ U(n)}, (10)

eL/eCD∩L ' {WDW ∗ | W ∈ eL}, (11)

where ' means isomorphic. Therefore if the two orbits coincide, we must have that the two coset
spaces must coincide as well. So, in particular, their dimensions have to be equal which gives (9).

Conversely assume that (9) is verified. Then the dimensions of the two coset spaces on the left
hand sides of (10) and (11) are the same and so are the dimensions of the manifolds on the right
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hand side namely OU and OL. Notice also that these two manifolds are connected since both U(n)
and eL are connected. Since eCD is closed in U(n) and therefore compact, from Proposition 4.4 (b)
in [11] we have that eL/eL∩CD is closed in U(n)/eCD . On the other hand, since the two coset spaces
have the same dimensions, eL/eL∩CD is open in U(n)/eCD . By connectedness, we deduce that the
two coset spaces must coincide, and therefore the two orbits coincide as well. 2

Special cases of the above Theorem, are density matrices representing pure states or completely
random states. In the first case, the density matrix D has the form, D = |ψ >< ψ| and, in an
appropriate basis, it can be written as a diagonal matrix with the (1, 1) entry equal to one and
all the remaining entries equal to zero. The analysis in Section 4 shows that the only Lie algebras
L satisfying condition (9) are su(n) or, for n even, isomorphic to sp(n

2 ) (with or without iI). For
completely random states, the density matrix D is a real scalar matrix with trace equal to one, and
therefore its centralizer in L, L ∩ CD, is all of L, for every subalgebra L. Thus the condition (9)
holds with dimL − dimL ∩ CD = 0 for every L. The interpretation, from a physics point of view,
is the obvious fact that a completely random ensemble of quantum systems remains completely
random after any evolution. The paper [26] contains a complete classification of density matrices
as well as additional results on density matrix controllability.

7 Test of Controllability

As we have shown in the previous sections, the two notions of operator-controllability (in the
special unitary case) and density-matrix-controllability are equivalent and they are the strongest
among the controllability notions we have defined. On the other hand, pure state-controllability
and equivalent-state-controllability are equivalent. These facts are summarized in the following
diagram:

DMC ⇔ OC ⇒ PSC ⇔ ESC .

From a practical point of view, it is of great interest to give criteria on the Lie algebra L to ensure
that the corresponding group is transitive on the complex sphere. In this case the system is pure
state controllable. As we have seen from the analysis in Section 4, the Lie algebra L has to be
su(n) or u(n) or, for n even, conjugate and therefore isomorphic to sp(n

2 ) (modulo multiples of
the identity). To check this isomorphism, one can apply the Cartan theory of classification of
semisimple Lie algebras [11]. A simpler and self contained test can be derived from Theorem 7. To
this purpose, notice that pure state controllability is the same as equivalent state controllability
(see Theorem 6) and this can be easily seen to be equivalent to the possibility of steering the matrix

D = diag (1, 0, 0, ..., 0) (12)

to any unitarily equivalent matrix. The centralizer CD of the matrix iD in (12) in u(n), is given by
the set of matrices of the form

M :=
(
ia 0
0 H

)
, (13)

with a any real and H a matrix in u(n− 1). The dimension of CD is (n− 1)2 + 1 and therefore the
number on the right hand side of (9) is n2− ((n−1)2 +1) = 2n−2. In conclusion as a consequence
of Theorems 7 and 6 we have the following easily verifiable criterion for pure state controllability.
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Theorem 8 With the above notations and definitions, the system (3) is pure state controllable if
and only if the Lie algebra L generated by {A,B1, B2, . . . , Bm} satisfies

dimL − dim(L ∩ CD) = 2n− 2. (14)

We remark here that similar criteria can be given for different density matrices according to
Theorem 7.

Example 7.1 Assume that the Lie algebra L is given by the matrices of the form

F :=
(
L+ Z T + C
−T̄ + C̄ −L+ ZT

)
, (15)

with L diagonal and purely imaginary, T diagonal, and Z, C having zeros on the main diagonal, all
of them 2 × 2 matrices. This Lie algebra is in fact conjugate to sp(2). Verifying this fact directly
can be cumbersome. However to prove that the associated system is pure state controllable, one
can verify that the Lie subalgebra of matrices of L that have the form (13), namely L ∩ CD, has
dimension 4. Since the dimension of L is 10, we have (recall n = 4) dimL−dimL∩CD = 6 = 2n−2.
Therefore the criterion of Theorem 8 is verified.

8 Conclusions

For bilinear quantum mechanical systems in the multilevel approximation a number of concepts
concerning controllability can be considered. One can ask whether it is possible to drive the
evolution operator or the state to any desired configuration. One typically represents the state
with a vector with norm 1 or using the density matrix formalism. The possibility of driving a pure
state between two arbitrary configurations is in general a weaker property than the controllability
of the evolution operator. All the controllability properties of a given quantum system can studied
by studying the Lie algebra generated by the matrices {A, B1, . . . , Bm} of the system (1). This
Lie algebra has to be the full Lie algebra su(n) (or u(n)) for controllability of the operator while,
for controllability of the state, it can be conjugate and therefore isomorphic to the Lie algebra of
symplectic matrices of dimension n modulo a phase factor. We have also given a practical test to
check this isomorphism. This test can be extended for density matrices of rank different from one
and only requires elementary algebraic manipulations involving the centralizer of the given density
matrix.

References

[1] F. Albertini and D. D’Alessandro, The Lie algebra structure and controllability of spin systems,
Linear Algebra and its Applications, (350), (2002) pp. 213-235.

[2] O. Atabek, C. Dion, A. D. Bandrauk, A. Keller, H. Umeda and Y. Fujimura, Two-frequency
IR laser orientation of polar molecules. Numerical simulations for HCN , Chem. Phys. Letters,
1999, 302, 215-223.

[3] J. M. Ball, J. E. Marsden and M. Slemrod, Controllability for distributed bilinear systems,
SIAM J. Control and Optimization, vol. 20, (4) (1982) 575-597.

9



[4] A. Borel, Some remarks about transformation groups transitive on spheres and tori, Bull.
Amer. Math. Soc. 55, pp. 580-586, 1949.

[5] R. Brockett, Lie theory and control systems defined on spheres, SIAM J. Appl. Math. Vol. 25.
No. 2, September 1973.

[6] M. Dahleh, A. Peirce, H. A. Rabitz and V. Ramakrishna, Control of Molecular Motion, Pro-
ceedings of the IEEE,, Vol. 84, No. 1, January 1996.

[7] D. D’Alessandro and M. Dahleh, Optimal control of two-level quantum systems, in IEEE
Transaction on Automatic Control, vol. 46. No. 6, June 2001, pp. 866-876.

[8] C. Dion, A. Keller, O. Atabek and A. D Bandrauk, Laser-induced alignment dynamics of
HCN : roles of the permanent dipole moment and the polarizability, Phys. Rev. A, 59, p.
1382, 1999.

[9] D. DiVincenzo, Quantum Computation, Science Vol. 270, 13 October, 1995.

[10] E. B. Dynkin, Maximal subgroups of the classical groups, Transl. Amer. Math. Soc. (2) 6,
245-378, (1957).

[11] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New
York, 1978.

[12] G. M. Huang, T. J. Tarn and J. W. Clark, On the controllability of quantum mechanical
systems, J. Math. Phys. 24, 11, November 1983, pg. 2608-2618.
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Appendix: Proofs of Lemmas 4.1, 4.2 and 4.3

Proof of Lemma 4.1
First notice that neither so(7) nor so(9) have an element which commutes with all the algebra,
therefore if there exists a subalgebra of u(4) (resp. u(8)) isomorphic to so(7) (resp. so(9)), it must
be also a subalgebra of su(4) (resp. su(8)).

Statement (a) of the Lemma can be checked by calculating the dimensions of su(4) and so(7).
We have dim(su(4)) = 15 < dim(so(7)) = 21. As for statement (b), assume there exists a
subalgebra of su(8), call it F , isomorphic to so(9), namely a (faithful) representation of so(9).
Assume first this representation to be irreducible. Then there is an highest associated weight by
the fundamental theorem of representation theory (see e.g. [15], Theorem 4.28). The basic weights
are given by w1 = (0, 0, 0, 0), w2 = (1

2 ,
1
2 ,

1
2 ,

1
2), w3 = (1, 0, 0, 0), w4 = (1, 1, 0, 0), w5 = (1, 1, 1, 0),

w6 = (1, 1, 1, 1). w1 corresponds to the trivial representation which is obviously not faithful. For
each one of the others the underlying vector space V on which the representation acts has dimension
that can be calculated using Weyl formula (see e.g. [21] pg 332). This calculation gives the following
values for dim(V ), for the cases w2, w3, w4, w5, w6, respectively, 16, 9, 36, 84, 252. In any case,
the dimension is bigger than 8 which is the maximum allowed by the fact that F is a subalgebra of
su(8). All the other irreducible transformations can be calculated as tensor products of the basic
representations ([15] Pr.11 pg. 111, [21] Corollary 15.18 pg, 330) and therefore the dimension of
V in this case is the product of the dimensions of the basic representations and therefore > 8. If
the representation is not irreducible then it is the direct sum of irreducible transformations ([15]
pg. 15 Corollary 1.7) and therefore the vector space V has dimension which is the sum of sum
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above given. In this case, the only possibility to have dim(V ) ≤ 8 is that V = ⊕r
j=1Vj and the

representation acts as the trivial representation on any Vj , which makes it not faithful. 2

Proof of Lemma 4.2
Consider a subalgebra F ⊆ u(n) isomorphic to sp(n

2 ). It follows immediately from the fact that
F is semisimple that iI /∈ F and therefore F ⊆ su(n). Thus, F is a faithful representation
of sp(n

2 ). Assume first that this representation is irreducible. Consider the parametrizations of
the finite dimensional representations of sp(n

2 ) given by the theorem of the highest weight (see
e.g. [15] Theorem 4.28). The n − dimensional basic weight vectors are w1 = (0, 0, ..., 0), w2 =
(1, 0, ..., 0),w3 = (1, 1, 0, ..., 0),...,wn

2
+1 = (1, 1, 1, ..., 1). w1 gives the trivial representation which is

not faithful; the representation corresponding to w2 acts on a vector space V of dimension n. All
the other representations act on vector spaces V of dimension > n. The same is true for the other
irreducible representations whose weights are sums of some wj , j = 1, ..., n

2 + 1. As for reducible
representations they are sums of the irreducible ones and therefore the dimension of the underlying
vector space V is > n except for the sum of a number l ≤ n of trivial representations which is
a (higher dimensional) trivial representation and clearly not faithful. Therefore the only possible
representations of dimensions n are all equivalent to each other and in particular they are equivalent
to the basic representation of sp(n

2 ). In conclusion there exists a nonsingular matrix E such that

F = Esp(
n

2
)E−1. (16)

Notice that E is defined up to a multiplicative constant. It remains to show that E can be chosen
in U(n). The connected Lie subgroup of SU(n) with Lie algebra F is a unitary representation of
Sp(n

2 ) that assigns to an element g ∈ Sp(n
2 ) an element Φ(g) and, from (16), we have

E = Φ∗(g)Eg, (17)

from which it follows

EE∗ = Φ∗(g)EE∗Φ(g) ⇒ Φ(g)EE∗ = EE∗Φ(g). (18)

The matrix EE∗ commutes with all the elements of a unitary irreducible representation and there-
fore from Schur’s Lemma (see e.g. [15] Proposition 1.5) it must be a scalar matrix αI, with α real
> 0. Thus, scaling E by a factor

√
α we can make E unitary. 2

Proof of Lemma 4.3
It follows from the results in [10] that the complexification of sp(n

2 ) is a maximal subalgebra in the
complexification of su(n). Now, if there exists a proper subalgebra F of su(n) properly containing
sp(n

2 ), then its complexification will be a proper subalgebra of the complexification of su(n) properly
containing the complexification of sp(n

2 ) (cfr. [21] Section 9.3) which contradicts the maximality
of sp(n

2 ). 2
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