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Abstract

We analyse a system of arbitrarily intersecting D-branes in ten-dimensional supergravity. Chiral
anomalies are supported on the intersection branes, called I-branes. For non-transversal intersections
anomaly cancellation has been realized until now only cohomologically but not locally, due to short-
distance singularities. In this paper we presentrasistent local cancellatiomechanism, writing the
8-like brane currents as differentials of the recently introduced Chern-kerhelg/K . In particular,
for the first time we achieve anomaly cancellation for dual pairs of D-branes. The Chern-kernel
approach allows to construct an effective actionthe RR-fields which is free from singularities and
cancels the quantum anomalies on all D-branes and I-branes.
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1. Introduction and summary

Anomaly cancellation represents a basic quantum-consistency check for extended
objects inM-theory, and constrains eventually the physically allowed excitations. A par-
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ticularly interesting case regards D-branes in ten dimensions. IIA-branes carry an odd-
dimensional worldvolume and are trivially anomaly-free, while [IB-branes carry an
even-dimensional worldvolume and are actually plagued by gravitational anomalies; the
problem of their cancellation hagen addressed for the first time]it].

However, D-branes may also intersedttweach other. The requirement of anomaly
freedom for such configurations has indeed been usdd]ito deduce the anomalous
(Wess—Zumino) couplings of the IIA and 1IB RR-potentials to the fields on the branes: if
the intersection manifold, called I-brane, isea-dimensional there are potential anomalies
supported on it, which have to be cancelled by adding specific Wess—Zumino terms to
the action and by modifying;orrespondingly, the Bianchdentities for RR-curvatures.
Anomalies on I-branes represent the main topic of the present paper.

One has to distinguish two kinds of I-branes. InDadimensional spacetime two
D-branes withi-dimensional worldvolum@/; and, respectively;-dimensional worldvol-
ume M; may indeed intersect in two different ways, depending on the dimension of the
I-brane manifoldM;; = M; N M. In the first (generic) case we have

dim(Ml-j) =i+j—D,
and the intersection is calléthnsversal for such intersections the normal bundles of the
two branes do not intersedy;; = N; N N; =9. If i + j — D < 0 itis understood that
M;; = . An example of a transversal intersection are two planes in three dimensions that

intersect along a line.
In the second (exceptional) case the dimension of the I-brane satisfies
dim(M;;) >i+j— D,
and the intersection is calledon-transversalIn this caseN;; # ¢ and dim;;) =
dim(M;j) + D — (i + j). If i + j — D < 0 it is understood thad,; # . Examples in
three dimensions are two coinciding planestwo lines which intersect in a point.

The anomaly cancellation @ehanism presented [@] applies to transversal I-branes,
while the attempt off1] was to include the case of non-transversal I-branes as well.
Actually, the anomalycancellation mechanism ¢1] achieves only a “cohomological”
cancellation, in a sense that we will specifore precisely in a moment. The main pur-
pose of the present paper is to fill this gap,,ito present a cancellation mechanism for
non-transversal intersections which works “locally”, point-wise, as explained below.

The difference between these two kinds of I-branes can be translated in the language of
differential forms as follows. Introduce thefunction supported Poincaré dual forms for
M; andM;, i.e., their “currents’J; andJ;, of degreeD —i andD — j respectively, and the
currentJ;; associated td/;;, of degreeD — dim(M;;). Then for transversal intersections
the product/; J; is well-defined and one has simply

JiJj=Jij. (1.2)

For non-transversal intersections the degree of the pratidgtis greater then the degree
of J;; but, moreover, the product itself is ill defined. The reason is that sigcés non-
empty, there exists at least one direction\ipp, parametrized by a coordinate saysuch
that J; as well as/; contain a factor/u §(u). The product/; J; is therefore of the kind 0
(du A du) timesoo (8(u)5(0)).
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For what concerns anomalies on |-branes, the obstacle to their cancellation on non-
transversal intersections arises as follows. Suppose first that the intersection is transversal.
Then the anomaly polynomial due to chiral fermions on the I-brifpeis nonvanishing,
and it amounts to a sum of factorized terfhg?],

P;(P;) being supported oi/; (M ;). The anomaly is given by the descent
A=27 /(P,- PjHb. (1.3)
Mi;

Itis cancelled by a Wess—Zumino term in the action of the form
Swz =27 / Pié, (2.4)
M;

where the RR-potential entails an anomalous transformation supportedQn

~ 1
5C=-pPJ;. (1.5)
The WZ-term varies according to
8Swz = —2m f PV P =—2n / JiJ; (P PpH®, (1.6)
M;

which cancels4 thanks to(1.1).
For non-transversal intersections the addenda in the anomaly polynomial factorize only
partially [1]

Pij = 2m P Pj xij,

due to the presence of the Euler-fom = x (N;;) of the now no longer vanishing inter-
section of the normal bundleg ;—a form of degree difM;;) + D — (i + j). The anomaly
reads then

A=27T / Xij(Pin)<l). (17)
M;;

The Wess—Zumino term is still given i{g.4) but itsformal variation leads to the now ill
defined expressiofl.6).

We can now make a more precise statement of the problem attacked in this paper and
outline its solution. For non-transvelsatersections te quantum anomal{1.7) is still
well-defined, what is ill defined is the Wess—Zumino tgiim) itself, since its variation
leads to an ill defined expression. The problem consists therefore in constructing a well-
defined Wess—Zumino term and, afterwards;hiecking whether itgariation cancel§l.7)
or not.

1 As usual for a generic polynomial we set=d P©@, sP© =4p@D
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The authors ofl] proposed a partial solution to this problem, maintaining the above
Wess—Zumino term together with its variati¢h6), and trying to give a meaning to the
product “J; J;". Clearly, to cancel the anomaly whaie would need is the identification

JiJj < Jijxij- (1.8)
As it stands this identification is rather contradictory singég; is simply a product of
§-functions, while the r.h.s. contains, apart frésfunctions, the gravitational curvatures
present iny;;. Moreover, the Lh.s. is ill defined. The authors[bf proposed first to sub-
stitute sayJ; by a smoothcohomologicalrepresentativel;. Then they showed that the
productJ; J; is cohomologically equivalent td;; x;;, in the sense of de Rham. Although
this is clearly not enough to realize a local anomaly cancellation mechanism, the above
identification bears convincingly the correct idea.

The main lines of our solution are, indeed, as follows. The expres¢sidjitself looks
canonical and rigid: the unique feature aramn try to change is the definition of the RR-

potential?. Above it is indeed (implicitly) assumed that the RR-field strength is given in
terms ofC ag

dR="P;J; & R=dC+ P, (1.9)

which obligesC to the transformation lal..5), carrying as-like singularity onM;, mean-

ing that C itself is singular onM;, and therefore thatl.4) is ill defined. Our strategy
instead consists in keepirfd.4), while introducing a RR-potential that is regular ofy,
actually on all branes. A key step in this ditien is to search for a ewenient antideriva-
tive K; of the current,

Ji=dK;. (1.10)
Then one can solve the Bianchi identity f®ralternatively in terms of a different potential
~ (]
R=dC + PjK;, C:C—Pj K;, (1.12)

where( is invariant and, for a convenient choice &f, regular onM;. This timesC =
—d P;l) K ; and the variation of the Wess—Zumino tein4) amounts to

8Swz = —2m / d(P,P)VEK; =-2r / d(J; K j)(P; PP,
M;

The difference w.r.t(1.6)is that for a convenient choice &; the product/; K; may be
well-defined together with its differentialcontrary to what happens thJ;. The apparent
paradox is solved by the fact that, due to the singularities present, one is not allowed to use
Leibnitz’s rule when computing(J; K ;).

The key observation of the present paper is that if one choosés;far Chern-kernel
[3] then the product is not only well-definedjtione also has the new fundamental identity

d(JiK;) = Jijxij (1.12)

2 We focus here only on the above anomaly; the complete Bianchi identity for a RR-curvature is more com-
plicated, especially for the presence of gfield, and it is given in the text.
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realizing in some sense the “identificatioff.8), which is precisely what is needed to
cancel the anomaly. To be precise, this formula holds whentyetr A ;. The extremal
caseM; C M; needs a slight adaptation that is given in the text. For previous applications
of the Chern-kernel approach to anomaly cancellatiorf4€€].

A special case of non-transversal |-branes is represented by a couple of electromagnet-
ically dual branes,

i+j=D-2,

e.g., a D1- and a D5-brane, which have a non-empty intersection manifgldThen

the intersection of the normal bundles has dimension(dim = dim(M;;) + 2, and if it

is even it has a non-vanishing Euler-form of the same degree. In this case the anomaly
polynomial onf;; is given simply by the Euler-form itselil],

Pij = 27 Xij,

but its cancellation has not yet been achieved, not even “cohomologically”; for the solution
of a particular example i = 11 see howevef7]. As stated in1], the cancellation of
these anomalies requires “a more powerful approach”: Chern-kernels provide actually such
an approach. Indeed, in this case the relevant contribution in the Bianchi-identity, realizing
the minimal coupling but ignored ifi], is

dR=1J; < R=dC+Kj, (1.13)

and the Wess—Zumino term is conveniently written as the integral over an eleven-
dimensional manifold, with spacetini®'® as boundary, of a closed eleven-form:

Swz =27 / (RJi = Jijx).- (1.14)

Mg

The eleven-form is closed thanks(th.12) and

1 1 1
3SWZ=_27T/d(Ji,-Xig.))z_zn/Jijxl.(jﬂz_znfxfj),
M1 R10 Mij

which cancels the anomaly. Again, as we will see the definitlob3)leads to a potential
C thatis regular onv/;.

A third case regards the anomalies on the (even-dimensional) D-branes of IIB-super-
gravity. Formally the anomalies supported on a D-brane can be interpreted as anomalies
on the I-brane of two copies of the same D-brane (self-intersection). In light of this inter-
pretation these anomalies are just a specia ohanomalies on I-branes (their cancellation
has been discussed[it], again from a cohomological point of view). So the Chern-kernel
approach furnishes automatically a consistent local cancellation mechanism also for 11B
D-branes.

For concreteness in this paper we consider a system of arbitrarily interacting and in-
tersecting Abelian 11B-branes (one for eachldkmlume dimension), the case of Abelian
[IA-branes requiring only a straightforward gatation. Actually, I1B-branes have a richer
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anomaly structure because, being even-disi@ral, they carry anomalies even in the ab-
sence of intersections. The generalizatiombn-Abelian branes is exposed briefly in the
conclusions.

Usually a magnetic equation of the kid®k = J; requires the introduction of a Dirac-
brane, as antiderivative df;, whose unobsenbility is guaranteed by charge quantization.
The consistency of the employment of Chern-kernels as antiderivatives, instead of Dirac-
branes, has been proven[#.

In Section2 we recall the definition of odd (11B) and even (lIA) Chern-kernels, and
review in a self-contained way their basic properties. In Se@iae present the basis for
the fundamental identitg1.12) In Section4 we show how one arrives at formula.14)
for a pair of dual branes, explaining the interplay between Dirac-branes and Chern-kernels.
In Section5 we recall the specific form of the anomalies produced by chiral fermions on
D-branes and I-branes, we give the complete set of Bianchi-identities/equations of motion
for the RR-field strengths of [IB-Sugra in presence of branes, and present their solutions
in terms of Chern-kernels and regular potentials. This section is based on a systematic ap-
plication and elaboration of our proposals for the introduction of regular potentials, made
in (1.11)and(1.13) We take also a non-vanishing N&-field into account, whose con-
sistent inclusion is not completely trivial. In this section we write eventually the action,
in particular the Wess—Zumino term, producing the correct equations of motion (for the
“basic” potentialsCo, C2 andCa), verifying that it is well-defined and that it cancels all
anomalies. Sectiofiis more technical, in that there we write a manifestly duality-invariant
(physically equivalent) action, in which the RR-potenti@lg C2, C4 and their dual<g,

Cg appear on the same footing. In this form the distinctive features of our action with re-
spect to previous results emerge more clearly. Seatisndevoted to generalizations and
conclusions.

We remark briefly on our conventions and framework. We will assume that there are
no topological obstructions in spacetime, intmandar closed forms in the bulk are then
always exact. Since we are in presencé-tike currents, for consistency differential forms
are intended as distribution-valued, and the differential calculus is performed in the sense
of distributions. This implies that our differential operatbis alwaysnilpotent,d? = 0.

With our conventions it acts from the right rather than from the left.

2. Chern-kernels: definition and properties

In this section we review briefly the definition of Chern-kernels and recall their main
propertieqg4]. Since we will treat in detail only l11B-branes, that have an even-dimensional
worldvolume, we concentrate mainly on odd Chern-kernels, but for completeness and com-
parison we report also shortly on even kernels. For more details we refer the reader to the
above reference.

2.1. Odd kernels

Let M be a closed D — n)-dimensional brane worldvolume ina-dimensional space-
time, and introduce a set of normal coordinagés (¢ = 1, ..., n) associated td/; the



M. Cariglia, K. Lechner / Nuclear Physics B 700 (2004) 157-182 163

brane stays at” = 0. Then locally one can write the current associatetftas

1
J = Sete iy dy ™8 (y). (2.1)

One can also introduce &0(n)-connectiorA*? and its curvaturé” = dA + AA (both are
target-space forms), which are onlgristrained to reduce, if restricted 4@, respectively
to theSQn)-normal-bundle connection and curvature, defined intrinsicallyfon

For odd rank Chern-kernels (even currents, |IB-bramess) even,n = 2m. Then one
can define the Euler-form3 associated td& and its Chern—Simons form,

B 1
A= i @mym
Its anomaly descent is indicated as usualshy® = dx . Notice that the rank of the

Euler-form equals the rank of the current. The Chern-kekheksociated to the even cur-
rentJ is written as the sum

aij...dy Fa1a2 . Fanflarl — dX(O)

K=+ x9, (2.2)
dK =J, (2.3)
where2 is anSQn)-invariant (n — 1)-form with inverse-power-like singularities av,
polynomial in F and Dy = dy — Ay, wherey* = y%/|y|. For the expression o for a

genericn see[4]; for example fom = 2 andn = 4 respectively, the formula reported there
gives

1
2 = —5_sat25 g, (2.4)
@=L uasgapger(gpase g 8 pgo g (2.5)
2(4m)? 3 ' '

Chern-kernels are not unique due to the arbitrariness of normal coordinates and of
away from the brang.e., in the bulk, and due to the presence of the non-invariant Chern—
Simons formy 9. But since for a different kernel one has in any cé&é = J, one obtains

K'=K+dQ, (2.6)

for some target-space for®. What matters eventually is the behaviour@bn M. Since
2 has a singular buihvariant behaviour near the brane, it is ony/? that induces an
anomalous but finitehange onv,

olm=xY|,. (2.7)

The transformatio(2.6)has been calle@-transformationif4] and it is in some sense the
analogous of a change of Dirac-brane. Frgh¥) one sees that o a Q-transformation
reduces to a normal-bund&Q(n)-transformation, and it can give rise to anomalies sup-
ported onM. On the contrary, we demand a theory to@dnvariant in the bulk As we

will see below, also the RR-potentials have to transform um@ransformations, and so
Q-invariance and anomalies are intimately related.

3 Inthe following odd-dimensional Euler forms are taken to be bgrdefinition.
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2.2. Even kernels

For odd currents (I1A-branes) is odd, and the kernel is even. In this case it is only
constructed from atsQn)-invariant (n — 1)-form with inverse-power-like singularities
onM, (K =)

T(n/2)

T 202(n — 1))
dK = J, (2.9)

g n 01 7243 . Fln—1an (2.8)

with 7% = Feb 1 D$2 D3P, The reason is that for an odd normal bundle the Euler form
is vanishing.

Also this kernel is defined modul@-transformationsK’ = K + d Q, but sinces? is
invariant this time we have

Qlu =0.

We can thus write in generdl = 2 + x (@, with the convention that for even kernels
the Euler Chern—Simons form is set to zero.

3. A new identity

In this section we illustrate the new identity
d(JiK;) = Jijxij, M ¢ M, (3.1)

where it is understood that the Euler-form of an empty normal bundle is yqity,= 1.
Its proof is worked out ilAppendix A Wheni + j < D (3.1)is an identity between forms
whose degree exceeds In that caself; andM; have to be extended to worldvolumes in
a larger spacetime, keeping the degrees ofkfseeand thes’s unchanged; see, e.f¢].
The “non-extremality” conditiods; ¢ M, is needed to guarantee that the prodiz&t;
is well-defined, implying that also its differential is so.Appendix Ait is then shown that
d(J;K ;) is (1) closed, (2) invariant, (3) supported of;; and (4) constructed from the
curvatures ofV;;. The above identity follows then essentially for uniqueness reasons.
To simplify some formulae of the following sections, and motivated®g), we define
for arbitrary intersections

(Jidj)reg= Jij xij -

Consider now an extremal intersectidfs C M;, where the produck; K ; is ill defined.
Fortunately, as we will see, in the dynamics of intersecting D-branes such a product will
never show up. However, for notational convenience it will be usefdéefine

JiK; Mg M;,
iKreg= 1 Jix\” if M; C M;. K; odd (3.2)
0 if M; C M;, K; even.
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This definition is motivated as follows. If; ¢ M; then for the normal bundles we have
N;j = N;j, and therefore for the Euler-formg = x;;. If K is of odd rank, then/; is even
and x; # 0; if K; is even, ther/; is odd andy; = 0. This implies that with the above
definitions we havén any case

d(Jin)reQZ (Ji Jj)reg~

We conclude this section presenting an alternative, but equivalent, way of writing the
information contained if3.1). We may rewrite its |.h.s. in terms of the restriction &f
to M;, J;K; = J;(K|y;). Since this restriction is well-defined, in this form we can apply
Leibnitz’s rule to get

Jid(Kj\m;) = Jij Xij -

Denoting thes-function supported Poincaré-dual&f; w.r.t. M; with 7;;—this is a form
on M; and not on target-space—we ha¥ig = J; J;;. The target-space relatiq@.1) is
then equivalent to the relation di;,

d(Kjlm;) = Tijxij- (3.3)

We can go one step further and observe that, if the intersection is effectively non-
transversal, i.e.x;; # 1, then the above relation is equivalent to the existence of a form
L;i;j on M; such that

KM —ijisp) =dL;j, (3.4)

transforming unde@-transformations ok’; and under normal bundle transformations of
N;; respectively as

1
8Lij = Qjlm;, 8Lij = —jini(j)»
apart from closed forms.
If the intersection is extremak ;| is not defined and according to above one would
rather consider the expressiggno) lv; — TJij Xi(jp), which vanishes identically sincg; = 1.
This suggests tdefing for M; C M, £;; =0.

4. Basic applications

We present here two basic applications of the above identity, to dual pairs of branes and
to self-dual branes. These cases enter as main building blocks in the construction of the
action for arbitrary intersections, given in the next section. These two examples illustrate
the role played byQ-invariance, which is fundamental also in the general case. For the
sake of clarity we ignore here all other couplings but the minimal ones. We restore now the
brane chargeg; and Newton’s constan, taken until now ag; =1 andG =1/2r.
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4.1. Electromagnetically dual pairs of branes

Suppose that a RR-field strength satisfiesBlachi identity anl equation of motion

dR=g;Jj, (4.1)
d*RZgiJi, (42)

whereJ; (J;) is the current on the high-dimensionki-dimensional) magnetic (electric)
D-brane with worldvolumeé/;, (M;) and charge; (g;). M; andM; form an electromag-
netically dual pair whose dimensionalities satisfyy j = 8. For the self-dual D3-brane the
equation of motion has to be replaced Ry= xR, but we do not consider this case in the
present section.

To write an action for such a system one must first s@d&), introducing a potential
for R, and to do this one must search for an antiderivativé;adr of J; (or of both).

There are two candidates for such antiderivatives. The standard one is a Dirac-brane
M;j1, i.e., a brane whose boundarys;, with §-function supported Poincaré dual, say
W;. Then one has

Jj :de.

The same can be done fdr. The (9 — j)-form W; carries by constructioi-like sin-
gularities onM ;1 and hence also oi;. Since the Dirac-brane is unphysical one must
eventually ensure that it is unobservable. In this case one would solve the Bianchi iden-
tity (4.1)throughR =dC + g;W;, andC would carry the known singularities along the
Dirac-brane and on/;.

The second candidate for an antiderivative is a Chern-kéfnalhich carriesnvariant
inverse-power-like singularities o# ;,

Jj=dK;,

and due to this fact the potenti@l introduced according t® = dC + g; K is regular
on M;, because all singularities are containedkin. Since the Chern-kernel is defined
modulo Q-transformations, one must eventually ensure that the the@yiivariant, i.e.,
independent of the particular kernel one has chosen.

We recall now the recipe developed[d] for writing an action for the syster{d.1),
(4.2)if M; andM; have a transversal intersection. Then we will present its adaptation to
a non-transversal one. (Remember that for a dual pair of branes a transversal intersection
amounts to no intersection at all, while a non-transversal one means sifplt .)

The recipe goes as follows. Introduce a Chern-kernel for the magnetic Brane/K ;,
and a Dirac-brane for the electric brasie= dW;. Then solve the Bianchi-identit{4.1)
according to

R=dC+g;K;. (4.3)
UnderQ-transformations oK ; the potential must now also transform,

C’:C—ngj, K;:Kj+de, (44)
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to keep the field-strengtR invariant. For the restrictions aif; (2.7)implies then, for an
odd kernel,

1
5Clm; =—gjx;, (4.5)

while for an even kernet[‘|Mj is invariant. From these transformations one sees that the
potentialC is a field regular oM ;, becauséC|y; is finite. Equivalently, all singularities
of R are contained in the Chern-kerri}, more precisely in the invariant for;.

The action, generating the equation of mot{drR), is given by

1 1
= — —R*R iRW; ). 4.6
S G/(Z *R+g W) (4.6)

Under a change of the (unphysical) electric Dirac-braie—~ W; + dZ;, this action
changes by an integer multiple of 2if the quantization condition
8i&i _ 2rtn

holds, see, e.g[10]. Moreover, the actiol§ is trivially free from gravitational anomalies.

Two comments are in order. First, the equation of mo(i@ﬁ) could also be obtained
more simply from the actm% f(ZR *R+gidCW;) =55 L [RxR + % [}, C. However,
this action is inconsistent in that it breaksinvariance in the bulk, becaqu|s not Q-
invariant. Second, introducing an elevemnaéinsional manifold Wwich bounds target-space,
the above WZ-term can be rewritten equivalently as

‘g RW; = i/(RJj—ngjVV[)Z%/RJj mod 2z, 4.7)
Mi1 Mg

where in the last step we used thaf; W; is integef{10]. The eIeven-forn%'RJi isindeed
closed modulo a well-defined integer fofhbecause we are assuming thatandM; are
not intersectingd (£ RJ;) = 2nJ; J;.

Let us now adapt this recipe to a dual pair with a non-empty intersection manifold
M;;, starting from(4.7). In this case, due to the identif$.1), the form%RJi is no longer
closed, not even modulo integer forms, and#is the additional problem that for extremal
intersections the produd; J; is ill defined. But, in turn, thanks to this identity we know
how to amend the WZ-term. Replace

8 [ RI > syz= &

G
M1 M1

((RJi)reg_ngin[(Jp)), (4.8)

where the subscript reg refers to the prodiigt/;, defined in(3.2). the integrand is now
again awell-defined closeéleven-form. This is the WZ-term anticipated in the introduc-
tion, seg1.14) holding now for extremal intersections as well.

4 “Integer forms” are by definition forms that integrate over an arbitrary manifold (closed or open) to an
integer. It can be shown that all such forms are necessafiyctions on some manifold/. In particular our
currentsJ are integer forms, and a product of integer forms, whenever it is well-defined, is an integer form as
well.
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For an extremal intersectio®; C M;, due tox; = x;; andJ; = J;;, the above WZ
simplifies to

8i 8i
Swz = = dCJi== | C.
Wz G i G/

Mg M;

Despite the formal cancellation of the “anomalous” t@(bq), the anomaly itself has not
disappeared. Indeed, the potentiatransforms under @-transformation, and thanks to
(4.5), sinceM;; = M; C M;, we have

1 1
5CIm, =—gjx{" =—gjx}.

The anomaly polynomial supported af;; is then—2zny;; also for extremal intersec-
tions, and the action remairgg-invariant in the bulk.

As we observed, for non-empty (non-extremal) intersections @-gvariance that
forces to put in(4.8) the Q-invariant combinatiorR J; instead of the closed formiC J;.

So it is eventuallyQ-invariance in the bulk that requires the presence of the anomalous
term J;; Xi(jO)f needed to get back a closed eleven-form in the WZ. This interplay between
Q-invariance and anomalies will be a guiding principle also in our construction of an

anomaly-free effective action for an arbitrary system of intersecting D-branes in the next
section.

We may then summarize the propertiesSofz in (4.8) as follows. (1) It is written in
terms of a potentiaC that carries an anomalous transformation law but that is regular
on M;. (2) It gives rise to the equation of motiq#.2). (3) It exhibits no singularities.

(4) For transversal intersectiong (= 0) it is well-defined modulo 2, Q-invariant and
anomaly free. (5) For non-transversal intersections it is well-defined, it carries the grav-
itational anomaly—2nny;; supported onM;;, and it is Q-invariant in the bulk. (6) For
empty intersections the second term drops, bec#ise vanishing, and one gets back the
WZ-term for transversal intersections.

We conclude and summarize this subsection, giving a ten-dimensional representation
of (4.8). For transversal intersections oiméroduces an electric Dirac-brane fbf;, J; =
dW;, and uses tha.8) reduces tq4.7), while for non-transversal ones one ugast).

The results are:

Swz = (4.9)

G

8igj . ; ;
g [ o~ [ K;W; fortransversal intersections,
88 [, Lij  for non-transversal intersections.
M 1

We recall that for extremal intersectiods; is zero by definition. The eleven-dimensional

representatiot(4.8) for Swz is, howeveruniversalin that it holds for arbitrary intersec-
tions, transversal or not.

4.2. Self-dual branes

As second example we consider a self-dual brane, i.e., a fgneith 2j = D — 2,
which is coupled to a field-strength satisfy a self-duality condition rather than a
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Maxwell equation,
dRZngj, R =xR.

The brane we will be interested in is clearly the self-dual D3-brane in 1IB-Sugra. Strictly
speaking, this case can be treated without using the idgBtity, so we recall simply the
results off4]. One solves the Bianchi identity as aboye= dC + ¢; K ;, and using the
covariant PST-approa¢8] to deal with the self-dualityandition, one can write the action

as

1 8j
S=— | (R*R — | C.
e /( * R+ fafa) + ZG/

M;

The additional (overall) factor of/2 will be explained in the next section. A part from this

the WZ appearing here coincides with the one of the extremal intersection of a dual pair
discussed above; a self-dual brane amounts in some sense indége=td/;, a special

case ofM; C M;,i + j = D — 2. The potentiatl’ transforms unde@ according tq4.5).

This means thaf entails the anomaly polynomial

8]2- 2n
oK =TT X
supported or/;.

Due to the presence of the NiSfield and of the gauge-fields on the branes, the technical
details of the anomaly cancellation mechanism of a generic system of intersecting D-branes
in 1IB-Sugra appear slightly involved. For this reason we presented the new ingredients of
the Chern-kernel approach, which are crucial for the entire construction, separately and in
some detail in these first four sections.

We conclude this more general part by stressing again that the Chern-kernel approach,
as we saw, allows to write well-defined actiomkich entail no ambiguities or singulari-
ties, despite the dangerous short-distance configurations represented by branes intersect-
ing non-transversally. Furthermore, this approach does not require any regularization (or
smoothing) of the currents, a procedure that would immediately run into troubles with the
unobservability of the Dirac-brane, sgg10].

5. Anomaly cancellation for intersecting 1B D-branes

In this section we consider the full interacting system of 11B supergravity and Abelian
D-branes (one for each dimensionality) with arbitrary intersections. We recall first the
guantum anomalies of the system, including from the beginning the NS two-form
the dynamics. Then we give the full set ofaRchi identities and equations of motion
and solve them in terms of regular potentials, applying systematically the proposals of
Egs.(1.11) and (1.13)Next we present the action, check it is well defined and show it can-
cels all the anomalies. Eventually we discuss Born—Infeld actions and equations of motion
on the branes.
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5.1. Anomalies and thB8-field

On each D-brane with worldvolum¥; the pullback of the NS 2-forn® couples to the
Abelian gauge field4; living on M; through the invariant field strength

/’Li=B—27TOl/Fi, FiZdAi. (5.1)
Under a gauge transformatié® = d A, theU (1) potential transforms as
SA; = ! A (5.2)
T 2xa '

where pull backs are understood.
The anomaly polynomial that describes the anomalies of the system has been derived in
[1] and is given by the 12-form

i AT,
Pro=—x Y (~Dyterti=to [ 20D

- Jij ki (5.3)
i,j A(Nl) o

wherey = ﬁ, A is the roof genus and/; and7; are the normal and tangent bundles

respectively. Sincé; — h; = 2na’(F; — F;) the polynomialP;, is independent oB and
invariant undex5.2), as it should. The term in the sum is symmetric under exchange of
with j, so that on single branes (which can be considered as self-intersection) a factor of
7 appears since summation is on diagonal teirasj, while for intersecting branes one
recovers a factor of 2. (5.3) reproduces indeed the anomaly polynomial for both single
and intersecting D-branes. Notice that the anomaly on the (self intersectird)Dand
D1-branegi = 0, 2) vanishes since the degréH) — i) of the Euler formy;; exceeds + 2,

while the anomalies on self intersecting D3-, D5-, D7-branes are different from zero. The
case of the D9 is special in that the worldiwme theory is the super-Yang—Mills part of
type | string theory[9] and its anomaly is cancelled blgeg Green—Schwarz mechanism.
We do not include this contribution in our discussion since we consider it well known.

The anomalies that have not been dealt with bofRJand[1] are those for pairs of dual
branes, D—1)-D7, D1-D5, D3-D3, where the integrand(k13) for dimensional reasons
reduces entirely to the Euler form. In this case it was not understood how to perform an
inflow of charge and, as mentioned[i, “a more powerful approach is needed”. This can
be achieved using Chern-kernels as we have seen in the previous sections.

The charge of the D-brane with worldvolumg is given by[9]

gi :«/ZnGyi%“, gigs—i =27G. (5-4)

As noticed in1,2] a crucial step towards anomaly caltagon is to notice that the anomaly
polynomial(5.3)is partially “factorized”. On each D-brane one can introduce the closed
and invariant polynomial

U a9 41 (5.5)
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The formsyY; are those appearing in the Bianchi identities and equations of mot[@r2df
where B was kept zero. For a non-vanishiBgfield one notices thgb.5)is not invariant
under(5.2), so what should appear in the Bianchi identities and equations of motion is
rather the invariant expression

_ A(T;

Y, = el Q =e"Biy;. (5.6)

A(N;)

TheseY; are, however, no longer closed and satisfy

dYi=yY;H, H=dB. (5.7)

In terms of these forms one can define the following forms of degeee, . . ., 10,
Ap = g810-n Z(—l)% JiYi, (5.8)

where it is understood that on the r.h.s. one has to extraci-foem part.(5.4) implies
then the important relation

dA, = Ay_oH. (5.9)

These forms are crucial since they allow eventually to factorize the anomaly polynomial
completely. Indeed, it is not difficult to show that one can rew#t&) as

1 n/2
Pio= _E Zn:(—l) / (AnA12—n)reg, (5'10)

where the “regularized” product of two currents has been defined in the previous sec-
tion. This formula holds in the case of non-transversal intersections for all couples
of dual branes. In case these intersections are all transversal one has to add the term
—27 (JeJ2 — JgJo) which subtracts the same term from the above expression. Notice how-
ever that, since for transversal intersections the fdguh — JgJo is integer, it gives rise
through the descent formalism to an anomalyich is a well-defined integer multiple of
27, and can be disregarded.

Notice also tha{5.10)is independent oB—despite its expliciappearance—as is ob-
vious by construction. This can also be chedlexplicitly noticing that under a generic
variation of B one has

8Ap = Ap_28B. (5.11)

8 P1» vanishes under such a variation thanks to the alternating sighg/2 in Eq. (5.10)
This explains also the appearance of those signs.

Eventually, sinceP12 is invariant undei(5.2) there exist a Chern—Simons form and
a second descent which respect this symmetry,= d P11, § P11 = d P1o. The resulting
anomaly

A= / Pro (5.12)

can therefore always be chosen to respect this symmetry, too.
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5.2. Bianchi igntities and equi#ons of motion

In this section we describe the theory of IIB supergravity in presence of arbitrary D-
branes and with a non-zekfield turned on. We give new Bianchi identities and equations
of motion that apply in the presence of D-branes. Using the techniques developed in the
previous sections we solve Bianchi identities in terms of regular potentials, and then pro-
ceed to write down a classical action that gives the equations of m@idnvariance of
this classical action generates an anomatoaissformation law that exactly cancels the
guantum anomaly.

Start defining the formal sum of generalized currents as

A=A, (5.13)

where A, is defined in(5.8). The full set of Bianchi identities and equations of motion is
given by the compact formula

dR=RH + A, (5.14)

where Rg = xR1, R7 = *R3 and Rs = xRs. Three comments are in order. First, in the
limit where each brane chargg is set to zero(5.14)reduces to the Bianchi identities
and equations of motion of free IIB supergravity. Secon(Byl4)is well defined since
the right-hand side is a closed form, as can be seen (Si@y Third point to mention is
electro—magnetic duality. While an equation of the faf® = J is electro—magnetically
symmetric, the full equatio(b.14)is not, because of thR H andJY terms. These latter
can be thought of as currents associated to smeared branes.

The compact formula describing solutions of the Bianchi identities is

R=dC—CH+ f, (5.15)
wheref,,n =1, 3,5, is then-form
fo=89n Y (-D2K;Y;, (5.16)
i

and it satisfies
df = fH+ A. (5.17)
Notice that undeQ transformationg K; = d Q; and the RR-curvatures are invariant pro-
vided the potentials transform as
8Ch=—g8 n y (—D"?0;Y;, (5.18)
i

and therefore the pullback of the potentials on the branes is regular. Such pullback amounts
to an anomalous transformation of the potential, which plays an important role in cancel-
lation of anomalies.

As a specific example, the corrected form of the Bianchi identitie®R{cand R3 is

dR1 = gsJs, (5.19)
dR3=R1H + go(—Js + Ja¥s2), (5.20)
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(by Yg» we mean the degree 2 part of tileform defined on the D7-brane). Now we
introduce Chern-kernel&g, Kgs (and K4 for Rs) associated to the D7-, D5- (and D3-)
branes that appear in the Bianchi identities. Further sources appearing in the equations of
motion, J2 and Jp, have instead to be treated using Dirac braiesand Wy, as explained

in [4]. The solution we propose ftine Bianchi identities is

R1=dCo+ gsKs, (5.21)
R3=dC2 — CoH + go(—Ke + Kg¥s2), (5.22)
and similarly for Rs. It is straightforward to check thahese definitions ensure that the
Bianchi identities are satisfied, usify 7), (5.4). Notice the fact that this solution requires
theY forms to be extended to target space forms. One could object that a more standard

way to solve Bianchi identities that involves orffyfforms evaluated on branes would rather
be

R1=dCo+ gsKs, (5.23)
Rs=dCs— CoH + go(— Ko + Ja¥s ) + KgB). (5.24)
and similarly forRs. This is the approach used [it], and we remark that there the solu-

tion of Bianchi identities is incomplete, in that it misses the terms vkeeppears without
any Y form. However, this definition leads torgjular potentials and therefore to incon-

sistencies. Consider for example an anomalous gauge transformaﬂ(ﬁ) ah (5.24)

8Y§91) = dYé.lg. Since the curvaturgs is invariant the potentiat’, transforms accordingly
as

8Co = —gngYB(}g. (5.25)

The variation ofC; is always singular on the D7-brane so tidatitself is singular. Simi-
larly, one shows that an analogodis would be singular on the D7- and D5-branes.

We now show that the RR-curvatures are independent of the extension6fftnms.
Consider target space forni's = in<0) + 1. Under a change of extension they transform
as

§Y, =dX;, (5.26)
whereX; is an arbitrary target space form such that
JiX; =JiXilu; =0, (5.27)

since Y; is well defined on its D-brane. From here on we will refer to theseXas
transformations. Here we explicitly consider tRe curvature, but similar formulae apply
to all the potential€”. Under(5.26) R3 is invariant if C2 shifts by

8C2 = —geKgXs 1. (5.28)

Such X-transformations of the potentials always exist due to consistency of the Bianchi
identities. Even thouglk(g does not admit limit close to the D7-brane, it remains finite and
the productkgXs 1 is well behaved and goes to zero sicg1 goes to zero. This proves
that the RR-potentials as defined (By15)are completely regular close to the branes, and
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that the curvatures do not depend on the arbitrary extensions af fbems. In the next
section we will present the action for the system and see that it does not depend on such
extensions.

5.3. Action and anomaly cancellation

In this section we present an action that gives rise to the equations of n{btibf)
There are two ways to discuss the Wess—Zumino part of the action. One possibility is write
it as the integral of a closed 11-form. The advantage of this formulation is that it is the
most clear one: it immediately displag® and X-invariances of the theory and how the
gravitational anomaly is cancelled. However, even if the procedure is rigorous and does
not depend on the arbitrary extra dimension, nevertheless it is a natural expectation to ask
for the existence of a well-defined ten-dimensional action. Our approach to the problem
will be that of presenting at first the Wess—Zumino part of the action as the integral of an
11-form and discuss its properties. A well-defined 10D action will be given in the end of
the section, and its relationship with the former discussetpipendix C

We define the total effective action of the theory as the sum of a classical and quantum
part

1
I'= E(Skin + Swz) + I'guant (5.29)

wherelyuantgenerates the anomalies described in Se&i@nSyin is given by
1
Skin = /lexV —8672¢R + > / 672¢(8H1 * H1 + H3 x H3)

1 1 1
+E/(R1*R1—R3*R3+§R5*R5—§f4*f4), (5.30)
where the fieldfs = 1,(Rs — *Rs) appears as part of the PST approfgjhenforcing the
self-duality equation, and™ is the unit vector

ona
WV dada

wherea is an arbitrary scalar field. The PSa@rmulation then guarantees thais a non-
propagating, auxiliary field.

To describe the Wess—Zumino term instéakie an eleven-dimensional manifaldh 1
whose boundary is the spacetigg of the theoryp M11 = M10. Assume no topological
obstruction, and take the extra dimension to be parallel to the D-branes so that the degree
of J forms, which counts the number of normaletitions to a brane, is not changed. Then
one can write the Wess—Zumino as

Um

v =1, (5.31)

Swz = / L1, (5.32)
Mg
dL,1=0, (5.33)
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andL1 is given by

1
Li1= |:—§R5(R3H + Ag) — R3Ag — R1A10] ~GPu. (5.34)

reg

P11 is the Chern—Simons form of the anomaly and is given by

Pr=7 Y (=12 PO I xij + 27 (Ja-ex5 s — Jo-sxo ) — wJaxs, (5.35)

and Pig.o), in turn, is a Chern—Simons form%f

(Fi—F;) AT ACT.
py e (AT | Ay
A(Ni)\| A(Nj)

(5.36)

Some comments are in order. A direct check shows that the classical part of the action
gives the correct equations of motion. Moreowg¥,and X -invariances in this picture are
immediately displayed, since onlyRRinvariant curvatures appear.

Anomaly cancellation is guaranteed since the only term in the action which is not
invariant under anomalous transformations-ig P11, whose variation exactly cancels
the quantum anomaly. Lastly, notice the factor g2 in the minimal couplingRs Ag of
Eqg. (5.34) On one side it is an artifact of the PST formalism (see the kinetic part of the
action), and should not misunderstood as a novel feature. On the other side, it combines
exactly WIthT[J4X4 leaving only aC4 potential term, that cancels the anomaly on the
self-dual D3-brane according to what explained in Secfién

We now write down the Wess—Zumino term in a ten-dimensional fashion. Here we
simply display it as it is, leaving the proof of its equivalence wit34)to Appendix C
We split the Wess—Zumino into a term depending on the potentials and a remainder:

Swz = /( ot Lrem) (5.37)

The part depending on the potentials is

1 1
LSy= —§C4(R3H + Ag) — §C2Hf5 — C24g — CoA1o. (5.38)

The remainder can be written in two ways. In the case of transversal intersection for dual
branesi it is given by

Ligm= [f3f7 — fifo+2nG Z(—l)f/zpij.o)Ki Jj +47G(KeW2 — KgWo)],
iJ
(5.39)
where the formsf7, fo are formally defined as if6.16), but using Dirac brane®> and
Wo instead ofK, and Ko. For non-transversal intersection the two 1&$W; terms have
to be modified according to E(¢.9).

5 Notice thatp;; = dPl.(jO) + 1, which explains the form d6.35)
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In this 10D picture Q- and X -invariances are hidden and have to be checked one by one.
Anomaly cancellation arises for non-dual branes from the te?ms/; K ;. For dual branes
with non extremal intersection it arises from the terms of the dpd; . If the intersection
is extremal ther;; = 0 and the anomaly is cancelled by the anomalous transformation of
the potentials. This is always true for the D3-brane. All the otberariations instead are
cancelled between terms Irf, and in L™

5.4. Born-Infeld actions and equations of motion on the branes
In this section we describe the dynamicgbfl) fields on each D-brane and of the NS

form B. The action(5.29)describes all the dynamics of RR-fields but, as it stands, is not
complete. One has to add to it Born—Infeld terms forth@) fields on each brane

r= %(Skin + Swz + Sg1) + Tquans (5.40)
with
Sei= Y gilh. (5.41)
i
Ih = — / dx' €7¢\/— det(gi,, + Bun — 21’ F},,). (5.42)
Di

From such Born-Infeld term on can define generalized field strenghts
- 2 81,
m N detgﬁ,ln 8B '

justified by the fact that under a variation of the figddone hasszi, = [, 6B * h'. In
terms of these one can obtain, after a straightforward but lenghty calculation, the equation
of motion of B:

(5.43)

d+H=R3Rs— RiR7+ ) giJi*h', (5.44)

1

and the equations of motion for thé(1) field strenghts, that we report lyppendix B

These new equations of motion have three important properties. First of all, they are in-
variant underQ- and P-transformations. This is required by consistency since the action
we wrote down is invariant in first instanc@-invariance happens because a direct check
shows that such equations display dependence on Chern-kerndls. P-invariance is
evident since the equations are expressed in terriisofms pulled back on the appropri-

ate branes and of RR-curvatures. Second point is that the equations are explicitly invariant
under gauge transformations Bf

SB=dA, (5.45)

X 1
SA' = =— Alpi, (5.46)
27 a
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again as it should, by consistency. Third property is that, as expected(theheory on
the branes is anomalous. If one writes the equations of motion in the form

dxh' = j;, (5.47)
then an explicit check shows that
dj; #0. (5.48)

However the equation of motion fa (5.44) even though it contains the anomalous field
strenghtsi’, is non-anomalous.

The action constructed so far only involv@s, C2, C4 potentials. Often in the literature
the action is written in term of all the RR-potentials, and hence in the next section we
rewrite our results in a duality-invariant language.

6. PST duality-invariant formulation

In order to make contact with the formulation [df] in this section we construct the
action for the same system but using all the possible RR-potertijals=0, 2,...,8,
instead of the minimal on&%y, C2, C4. A duality-invariant formulation may also be useful
for the purpose of analysing the flux quantiza of dual potentials, or for dimensional
reductions involving dual branes and dual potentials.

Let us then introduce the new RR-potenti@lg, Cs and define the formg7 and fy
as in(5.16), but this time using proper Chern-kerndds and K instead of Dirac branes.
Introduce RR-curvatur®; and Rg using the same recipe ¢6.15) In order to deal with
Cs andCg one has to exploit the PST formalism. Introduce an arbitrary scalardialt
construct the unit vectar” as in(5.31) In term ofv™ construct the forms

ro = ty(R1 — *Ro), (6.1)
r2 = 1y(R3 — *R7). (6.2)

Then the PST duality-invariant action is

1
Sdual= Skin + Swz + S + E(rz %I — IQ * 1p). (6.3)

Such action has all the PST symmetries necessary to prove tbain auxiliary field and
that the condition®g = *R1, R7 = xR3 are enforced (s€fd,8]). In order to make contact
with the usual formulations one can use the following identities:

R
R3 % R3 —ro*rp=(R3, R7)P(v) (Rj) — R3R7, (6.4)

R
Ry % Ry —ro*ro=(R1, Ro) P(v) (Ré) + R1Ro, (6.5)
whereP (v) is the operator valued matrix

(—vtv* Viy ) (6.6)
Vly  —Ulyx
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Substituting this into the actid®.3)givesSdual = Skin.dual+ Swz.dual+ SBi, WhereSkin.dual
is a kinetic term for all the RR-potentials given by

1
Skin.dual = 5/[(&, Ro)P(v) (2;) — (R3, R7)P(v) (ﬁi)

1 1
—|—§R5*R5—§f4*f4], (6.7)

where there is symmetry und®i <> Rg, R3 <> R7, se€[10]. Swz.dual= f Ldualis a mod-
ified Wess—Zumino term whose 11D version reads

1
L11 dual= —5 Zn: Ry41410-n — G P11, (6.8)
while the 10D one is

1
Liodual=—3 Z CnA10-nn
+ —G[Z( D'2PP (K Jj)reg+ 2(KsWa2 — K8W0):|

= _E Z Rn+1f9—n

2
+ —G[Z( D2PP(Ki Jjreg+ 2(KsWa — KSWO)} (6.9)

i
Again the usual remark for non-transversal intersections of dual branes applies, where
Eq. (4.9) should be used. Now we can try to make contact with Eq. (2.11}Jofin our
notation it says that on each brane the Wess—Zumino term goes like

1/, =
-3 / (C; + RY?). (6.10)
M;
From Eq.(5.16)one can decompose the forrjs in the limit B =0, as
fo=g00 Y (~D2[(1Y + K;) +d(K:i¥[?)],. (6.11)

1
and plug them into the second line (&.9). Consider the first three terms {6.11) f,
on its own has only inverse power singularities near each brane, but the first and third
term in the decomposition individually displaylike singularities. Therefore, i(6.9)it is
not allowed to multiply each single term times a RR-curvature, but only the whole sum.
Suppose however we want to formally forget about this difficulty. Then we can see that
the first term in(6.11) reproduces the second term (@.10) The second term has two
effects. Part of it is multiplied in Eq6.9)times the potential part iR. Joint with some of
the Pl.g.O)(Ki Jj)reg terms, it reconstructs thé; part of (6.10) Remember that the passage

from C; to C; is purely formal since the latter is ill defined. The remaining part of the
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second term i1§6.11) together with the third ternd(K; IQ(O)), are dependent on the Chern-
kernelsK; and cancel completely with the rest of tﬁléo)(Ki Jj)reg terms of(6.9). This is

guaranteed since the (ill defined) potenti@)sof [1] are Q-invariant and so th& -depen-
dent terms have to disappeatr.

In conclusion, in the formal approximation when one can fosglite divergencies, in
the limit B = 0 and assuming it is possible to use thepotentials, one exactly recovers
the Wess—Zumino term ¢1], plus the extra terms that cancel the anomaly for dual branes.
The anomaly cancellation for the self-dual D3-brane is given by transformatio@g of
which are present only in the Chern-kernel formulation and cannot be reproduced in the
context of[1].

7. Conclusions and outlooks

We conclude by summarizing our results and commenting on their extension.

We have considered the system IIB supergravity interacting with all possible combina-
tions of single D-branes, with arbitrary intersections as long as there are no topological
obstructions. We have constructed a regular action that gives the equations of motion,
which is written in terms of potentials that are everywhere well defined.

We have provided a correct understanding of the mechanism of charge inflow using
Chern-kernel techniques. In particular, we have shown that, for pairs of dual branes which
had proven to be intractable before, charge inflow is not produced by curvatures but ei-
ther by potentials, in the case of the self-dual D3-brane and extremal intersections of dual
branes, or by th& forms for non-extremal, non-transversal intersections of dual branes.
Another important part of the understanding of charge inflow, that is used in order to im-
plement a Chern-kernel analysis, is the new fundamental id€Btity.

The Wess—Zumino term we obtained differs from other expressions that appeared in the
literature, like those of1,2,11]and in particular it contains extra terms which are related
to anomaly cancellation for pairs of dual branes. Moreover, it contains all the corrections
due to the presence of the NS fon

We have obtained the full, corrected equations of motionAdnteracting with RR
fields, gravity and/ (1) Yang—Mills fields, and for thé/ (1) fields themselves. The clas-
sical U (1) theory on the branes is anomalous but quantum corrections restore the full
symmetry.

We insist on remarking that Chern-kernel techniques have wide application to all the-
ories with extended objects, and not only D-branes of supergravity. They can be used for
example to deal with orientifolds, like in problems considereflli?,13], with O-planes
[14], with non-BPS braneld 5]. Another possible system to which apply these techniques
is lIlA supergravity in presence of D-branes. There, branes have odd-dimensional world-
volume but they still admit anomalies on their intersections.

Another possible generalization is to couple our system of D-branes to an NS5-brane,
which is interesting since in that case the bl8vature would not be closed. Its treatment
should go along the lines §] and we expect it to be straightforward to implement.

Lastly, we discuss generalization to tiéN) case. In this case, it is reasonable to argue
that, in constructing physicdl (N) fields on each brane, the colourless NS faBnwill



180 M. Cariglia, K. Lechner / Nuclear Physics B 700 (2004) 157-182

be coupled to somé& (1) subgroup onJ(N). Let F then be the fullU(N) curvature,
and decompose it into (1) part F, that couples taB as in(5.1), and anSU(N) part
with curvatureF. Since thelU (1) part commutes with the rest, it is easy to see that the
non-Abelian Chern character that enters in the anomaly has to be generalized to

ch(%) — e‘”%h(%). (7.1)

This would be the ingredient necessary to form the ie¥orms. SinceB enters in the

U (1) part the identity(5.7) continues to hold and from this one is able to impose again
Bianchi identities, equations of motion, and to find a Wess—Zumino term for the action
from which they come from. The only limitation is that one does not have a Born—Infeld
action that is uniquely fixed so far, and therefore for the time being it is not possible to find
equations of motion foB and the Yang—Mills fields on the brane.
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Appendix A. Proof of the new identity

The following proof holds for arbitrary Chern-kernels, even or odd. We begin by con-
sidering the properties of K ;. As we sawk ; = £2; + Xj.o) is singular onM; because?;
involvesy“ = y“/|y|, andM; stays aty“ = 0. But sinceM; ¢ M the product

JiKj=Ji(Kj|pm;)

is well defined and, therefore, in the sense of distributions also its differential is so. The
subtle pointis only that one naot apply Leibnitz’s rule to evaluate it, because the product
has (inverse-power ardelike) singularities onV; ;. Away from M;; one can apply Leibnitz

and there the result i8(J; K ;) = 0. This means thad (J;K ;) is supported onV;; and
hence proportional td;;,

d(JiK;) =P,

for some form@ defined onM;;. Furthermore, since the .h.s. is closed afsonust be a
closed form. Moreoverp must be a completely invariant form as is the I.h.s., becduse
is intrinsically defined and; transforms a&(; = K ; +d Q j, whereQ  isregularon M.
This means that one can apply Leibnitz aid; dQ;) = 0.

Furthermore@® can depend only on the curvature components of the intersection of
the normal bundle®/;;. This can be seen as follows. Sinkg is made out only of grav-
itational curvatures belonging W;, also® is a polynomial made out only of (a subset
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of) those curvatures. If (in addition tdf; ¢ M;) we have alsaM; ¢ M;, we can ap-
ply Leibnitz tod(K;K ;) = K;J; £ J; K, giving d(J; K ;) = £d(J; K;). This implies that
@ depends, moreover, only on the curvaturesvVpf and hence only on those of;;. If
on the contraryM; C M; then, using, e.g., the regularizations[4f, one can show that
d(KK;) = Xi(O)JJ- + J;K ;. Applying the differential to this one gets direc(§.1), since
inthis case/; = J;; andy; = x;;-

Eventually,® is a form of degree diiti/;;) + D — (i + j) and it is odd under parityp
shares all these properties uniquely with the Euler-fornygfand we conclude therefore
that it is proportional to it.

A cohomological argument can finally be usedfix the proportionality coefficient to
one. Perform a regularizatioki; — K%, J; — J;, J; = dK7, as for example the one
given in the appendix of4], Wherer‘? is cohomologically equivalent td; and regular
on M;. Thend(J;K;) = Iimg_)od(Jins.) = Iims_>oJl~Jj?, and as shown iifl], J,‘Jj‘.E is
cohomologically equivalent td;; x;; for everye. This proves that the l.h.s. ¢8.1) is
cohomologicallyequivalent toJ;; x;;, and it fixes the proportionality coefficient of our
locali.e., point-wise derivation to unity.

Appendix B. Equations of motion for the U (1) theory on the D-branes

The equations of motion obtained by the act{r0)for the U (1) fields are:

d+hy=—Ry, (B.1)
- 1 - Ag— A
dxhs=+4+R3— —R1Ysp — ﬁJg 4 8, (B.2)
y 2 2
- 1 - 1 - Ag — Ag Fp — F;
d+xhe=—Rs+ —R3Ye 2 — —2R1Y6,4~|—&J3 6 876 8, (B.3)
4 y 3 2 2
- 1 1 - 1
d+hg=+R7— —RsYg2+ —R3¥ga— —Ri¥sse
Y Y 14
1 Ag— Az 1 Ag— AgFg— Fs
—g2| =J. —=J . B.4
gz[z YTor 3% 2 2n } (B84

On the right-hand side the regularized products of currents and Chern-kernels are always
understood.

Appendix C. The Wess—Zumino term

Here we make contact between the Wess—Zumino written as the integral of an 11-form
(5.34)and the one written in usual ten-dimensional notat{ér88)and(5.39) The proce-
dure one realizes in practice is the following: first of all const(6c38) that is completely
fixed by equations of motion as showed in Secto® Then, the remaining pab.39)is
completely fixed by asking invariance of the action un@erand P-transformations. The
actual calculations are lenghty, though straightforward, and we do not include them here.
Once the ten-dimensional \&&-Zumino is fixed, one can take its differential and get the
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much simpler form(5.34) which displays all invariances and anomaly cancellations at a
first sight. What we do here instead is to proceed in the opposite direction, that is to show
how to transforn(5.34)into the ten-dimensional Wess—Zumino.

As a first step, considgb.34) and extract all the terms dependent on the potentials.
After some algebra and integration by part one shows that this amounts to

1 1
d|:—§C4(R3H +46) = 5C2H f5 — C2g — coalo] =dL$, (C.1)
Now, take the remainder if5.34) This is equal to

1
§f5(f3H — Ap) + f348 — fid10— G P11

1 1
= Ed(f3f7 — fifo) + E(—Azfg + Aaf7 — Asfs + Agfz — A10f1) — GP11
1 1 n
= Sd(f3f1= 119+ 5 ;(—1)?+1Alofnfn+1 ~GPpn
—Latsr —ff)+32<—1>%+1A f -GP (C.2)
== 2 3J7 1J9 2 - 10—n Jn+1 11, .

B>=0
where in the last passage independence fBardepends crucially on the alternating sign
and can be checked usiig.11)and an analogous variation fgr. Given this, one shows
with some algebra that

D DE A fura| =206 ) (DY K ;. (C3)
n B>=0 ij

Putting together EqgC.2), (C.3)and the expressiofb.35)for P11 one gets that the re-

minder is exactly given by5.39)
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