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Abstract

We analyse a system of arbitrarily intersecting D-branes in ten-dimensional supergravity.
anomalies are supported on the intersection branes, called I-branes. For non-transversal inte
anomaly cancellation has been realized until now only cohomologically but not locally, due to
distance singularities. In this paper we present a consistent local cancellation mechanism, writing the
δ-like brane currents as differentials of the recently introduced Chern-kernels,J = dK . In particular,
for the first time we achieve anomaly cancellation for dual pairs of D-branes. The Chern-
approach allows to construct an effective action for the RR-fields which is free from singularities a
cancels the quantum anomalies on all D-branes and I-branes.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction and summary

Anomaly cancellation represents a basic quantum-consistency check for ex
objects inM-theory, and constrains eventually the physically allowed excitations. A
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ticularly interesting case regards D-branes in ten dimensions. IIA-branes carry an
dimensional worldvolume and are trivially anomaly-free, while IIB-branes carry
even-dimensional worldvolume and are actually plagued by gravitational anomalie
problem of their cancellation has been addressed for the first time in[1].

However, D-branes may also intersect with each other. The requirement of anom
freedom for such configurations has indeed been used in[2] to deduce the anomalou
(Wess–Zumino) couplings of the IIA and IIB RR-potentials to the fields on the bran
the intersection manifold, called I-brane, is even-dimensional there are potential anoma
supported on it, which have to be cancelled by adding specific Wess–Zumino ter
the action and by modifying,correspondingly, the Bianchi-identities for RR-curvatures
Anomalies on I-branes represent the main topic of the present paper.

One has to distinguish two kinds of I-branes. In aD-dimensional spacetime tw
D-branes withi-dimensional worldvolumeMi and, respectively,j -dimensional worldvol-
umeMj may indeed intersect in two different ways, depending on the dimension o
I-brane manifoldMij = Mi ∩ Mj . In the first (generic) case we have

dim(Mij ) = i + j − D,

and the intersection is calledtransversal; for such intersections the normal bundles of
two branes do not intersect,Nij ≡ Ni ∩ Nj = ∅. If i + j − D < 0 it is understood tha
Mij = ∅. An example of a transversal intersection are two planes in three dimension
intersect along a line.

In the second (exceptional) case the dimension of the I-brane satisfies

dim(Mij ) > i + j − D,

and the intersection is callednon-transversal. In this caseNij �= ∅ and dim(Nij ) =
dim(Mij ) + D − (i + j). If i + j − D < 0 it is understood thatMij �= ∅. Examples in
three dimensions are two coinciding planes, or two lines which intersect in a point.

The anomaly cancellation mechanism presented in[2] applies to transversal I-brane
while the attempt of[1] was to include the case of non-transversal I-branes as
Actually, the anomalycancellation mechanism of[1] achieves only a “cohomologica
cancellation, in a sense that we will specifymore precisely in a moment. The main pu
pose of the present paper is to fill this gap, i.e., to present a cancellation mechanism
non-transversal intersections which works “locally”, point-wise, as explained below.

The difference between these two kinds of I-branes can be translated in the langu
differential forms as follows. Introduce theδ-function supported Poincaré dual forms f
Mi andMj , i.e., their “currents”Ji andJj , of degreeD− i andD − j respectively, and th
currentJij associated toMij , of degreeD − dim(Mij ). Then for transversal intersectio
the productJiJj is well-defined and one has simply

(1.1)JiJj = Jij .

For non-transversal intersections the degree of the productJiJj is greater then the degre
of Jij but, moreover, the product itself is ill defined. The reason is that sinceNij is non-
empty, there exists at least one direction inNij , parametrized by a coordinate sayu, such

thatJi as well asJj contain a factordu δ(u). The productJiJj is therefore of the kind 0
(du ∧ du) times∞ (δ(u)δ(0)).
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For what concerns anomalies on I-branes, the obstacle to their cancellation o
transversal intersections arises as follows. Suppose first that the intersection is tran
Then the anomaly polynomial due to chiral fermions on the I-braneMij is nonvanishing
and it amounts to a sum of factorized terms[1,2],

(1.2)Pij = 2πPiPj ,

Pi(Pj ) being supported onMi(Mj). The anomaly is given by the descent1

(1.3)A = 2π

∫
Mij

(PiPj )
(1).

It is cancelled by a Wess–Zumino term in the action of the form

(1.4)SWZ = 2π

∫
Mi

PiC̃,

where the RR-potential̃C entails an anomalous transformation supported onMj ,

(1.5)δC̃ = −P
(1)
j Jj .

The WZ-term varies according to

(1.6)δSWZ = −2π

∫
Mi

P
(1)
j JjPi = −2π

∫
JiJj (PiPj )

(1),

which cancelsA thanks to(1.1).
For non-transversal intersections the addenda in the anomaly polynomial factoriz

partially [1]

Pij = 2πPiPj χij ,

due to the presence of the Euler-formχij ≡ χ(Nij ) of the now no longer vanishing inte
section of the normal bundlesNij —a form of degree dim(Mij )+D−(i +j). The anomaly
reads then

(1.7)A = 2π

∫
Mij

χij (PiPj )
(1).

The Wess–Zumino term is still given by(1.4)but its formal variation leads to the now il
defined expression(1.6).

We can now make a more precise statement of the problem attacked in this pap
outline its solution. For non-transversal intersections the quantum anomaly(1.7) is still
well-defined, what is ill defined is the Wess–Zumino term(1.4) itself, since its variation
leads to an ill defined expression. The problem consists therefore in constructing a
defined Wess–Zumino term and, afterwards, in checking whether itsvariation cancels(1.7)
or not.
1 As usual for a generic polynomial we setP = dP (0), δP (0) = dP (1) .
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The authors of[1] proposed a partial solution to this problem, maintaining the ab
Wess–Zumino term together with its variation(1.6), and trying to give a meaning to th
product “JiJj ”. Clearly, to cancel the anomaly whatone would need is the identification

(1.8)JiJj ↔ Jij χij .

As it stands this identification is rather contradictory sinceJiJj is simply a product of
δ-functions, while the r.h.s. contains, apart fromδ-functions, the gravitational curvature
present inχij . Moreover, the l.h.s. is ill defined. The authors of[1] proposed first to sub
stitute sayJi by a smoothcohomologicalrepresentativeĴi . Then they showed that th
productĴiJj is cohomologically equivalent toJij χij , in the sense of de Rham. Althoug
this is clearly not enough to realize a local anomaly cancellation mechanism, the
identification bears convincingly the correct idea.

The main lines of our solution are, indeed, as follows. The expression(1.4)itself looks
canonical and rigid: the unique feature onecan try to change is the definition of the R
potentialC̃. Above it is indeed (implicitly) assumed that the RR-field strength is give
terms ofC̃ as2

(1.9)dR = PjJj ↔ R = dC̃ + P
(0)
j Jj ,

which obligesC̃ to the transformation law(1.5), carrying aδ-like singularity onMj , mean-
ing that C̃ itself is singular onMj , and therefore that(1.4) is ill defined. Our strategy
instead consists in keeping(1.4), while introducing a RR-potential that is regular onMj ,
actually on all branes. A key step in this direction is to search for a convenient antideriva
tive Kj of the current,

(1.10)Jj = dKj .

Then one can solve the Bianchi identity forR alternatively in terms of a different potenti

(1.11)R = dC + PjKj , C̃ = C − P
(0)
j Kj ,

whereC is invariant and, for a convenient choice ofKj , regular onMj . This timeδC̃ =
−dP

(1)
j Kj and the variation of the Wess–Zumino term(1.4)amounts to

δSWZ = −2π

∫
Mi

d(PiPj )
(1)Kj = −2π

∫
d(JiKj )(PiPj )

(1).

The difference w.r.t.(1.6) is that for a convenient choice ofKj the productJiKj may be
well-defined together with its differential—contrary to what happens toJiJj . The apparen
paradox is solved by the fact that, due to the singularities present, one is not allowed
Leibnitz’s rule when computingd(JiKj ).

The key observation of the present paper is that if one chooses forKj a Chern-kerne
[3] then the product is not only well-defined, but one also has the new fundamental iden

(1.12)d(JiKj ) = Jij χij ,
2 We focus here only on the above anomaly; the complete Bianchi identity for a RR-curvature is more com-
plicated, especially for the presence of theB2-field, and it is given in the text.
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realizing in some sense the “identification”(1.8), which is precisely what is needed
cancel the anomaly. To be precise, this formula holds wheneverMi �⊂ Mj . The extrema
caseMi ⊂ Mj needs a slight adaptation that is given in the text. For previous applica
of the Chern-kernel approach to anomaly cancellation see[4–7].

A special case of non-transversal I-branes is represented by a couple of electrom
ically dual branes,

i + j = D − 2,

e.g., a D1- and a D5-brane, which have a non-empty intersection manifoldMij . Then
the intersection of the normal bundles has dimension dim(Nij ) = dim(Mij ) + 2, and if it
is even it has a non-vanishing Euler-form of the same degree. In this case the an
polynomial onMij is given simply by the Euler-form itself[1],

Pij = 2πχij ,

but its cancellation has not yet been achieved, not even “cohomologically”; for the so
of a particular example inD = 11 see however[7]. As stated in[1], the cancellation o
these anomalies requires “a more powerful approach”: Chern-kernels provide actual
an approach. Indeed, in this case the relevant contribution in the Bianchi-identity, rea
the minimal coupling but ignored in[1], is

(1.13)dR = Jj ↔ R = dC + Kj,

and the Wess–Zumino term is conveniently written as the integral over an el
dimensional manifold, with spacetimeR10 as boundary, of a closed eleven-form:

(1.14)SWZ = 2π

∫
M11

(
RJi − Jij χ

(0)
ij

)
.

The eleven-form is closed thanks to(1.12), and

δSWZ = −2π

∫
M11

d
(
Jij χ

(1)
ij

) = −2π

∫
R10

Jij χ
(1)
ij = −2π

∫
Mij

χ
(1)
ij ,

which cancels the anomaly. Again, as we will see the definition(1.13)leads to a potentia
C that is regular onMj .

A third case regards the anomalies on the (even-dimensional) D-branes of IIB-
gravity. Formally the anomalies supported on a D-brane can be interpreted as ano
on the I-brane of two copies of the same D-brane (self-intersection). In light of this
pretation these anomalies are just a special case of anomalies on I-branes (their cancellat
has been discussed in[1], again from a cohomological point of view). So the Chern-ke
approach furnishes automatically a consistent local cancellation mechanism also
D-branes.

For concreteness in this paper we consider a system of arbitrarily interacting a

tersecting Abelian IIB-branes (one for each woldvolume dimension), the case of Abelian
IIA-branes requiring only a straightforward adaptation. Actually, IIB-branes have a richer
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anomaly structure because, being even-dimensional, they carry anomalies even in the a
sence of intersections. The generalization to non-Abelian branes is exposed briefly in t
conclusions.

Usually a magnetic equation of the kinddR = Jj requires the introduction of a Dirac
brane, as antiderivative ofJj , whose unobservability is guaranteed by charge quantizatio
The consistency of the employment of Chern-kernels as antiderivatives, instead of
branes, has been proven in[4].

In Section2 we recall the definition of odd (IIB) and even (IIA) Chern-kernels, a
review in a self-contained way their basic properties. In Section3 we present the basis fo
the fundamental identity(1.12). In Section4 we show how one arrives at formula(1.14)
for a pair of dual branes, explaining the interplay between Dirac-branes and Chern-k
In Section5 we recall the specific form of the anomalies produced by chiral fermion
D-branes and I-branes, we give the complete set of Bianchi-identities/equations of m
for the RR-field strengths of IIB-Sugra in presence of branes, and present their so
in terms of Chern-kernels and regular potentials. This section is based on a system
plication and elaboration of our proposals for the introduction of regular potentials,
in (1.11)and(1.13). We take also a non-vanishing NSB2-field into account, whose con
sistent inclusion is not completely trivial. In this section we write eventually the ac
in particular the Wess–Zumino term, producing the correct equations of motion (fo
“basic” potentialsC0, C2 andC4), verifying that it is well-defined and that it cancels
anomalies. Section6 is more technical, in that there we write a manifestly duality-invar
(physically equivalent) action, in which the RR-potentialsC0, C2, C4 and their dualsC6,
C8 appear on the same footing. In this form the distinctive features of our action wi
spect to previous results emerge more clearly. Section7 is devoted to generalizations an
conclusions.

We remark briefly on our conventions and framework. We will assume that ther
no topological obstructions in spacetime, in particular closed forms in the bulk are the
always exact. Since we are in presence ofδ-like currents, for consistency differential form
are intended as distribution-valued, and the differential calculus is performed in the
of distributions. This implies that our differential operatord is alwaysnilpotent,d2 = 0.
With our conventions it acts from the right rather than from the left.

2. Chern-kernels: definition and properties

In this section we review briefly the definition of Chern-kernels and recall their m
properties[4]. Since we will treat in detail only IIB-branes, that have an even-dimens
worldvolume, we concentrate mainly on odd Chern-kernels, but for completeness an
parison we report also shortly on even kernels. For more details we refer the reade
above reference.

2.1. Odd kernels
Let M be a closed(D − n)-dimensional brane worldvolume in aD-dimensional space-
time, and introduce a set of normal coordinatesya, (a = 1, . . . , n) associated toM; the
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brane stays atya = 0. Then locally one can write the current associated toM as

(2.1)J = 1

n!ε
a1...an dya1 · · ·dyan δn(y).

One can also introduce anSO(n)-connectionAab and its curvatureF = dA+AA (both are
target-space forms), which are only constrained to reduce, if restricted toM, respectively
to theSO(n)-normal-bundle connection and curvature, defined intrinsically onM.

For odd rank Chern-kernels (even currents, IIB-branes)n is even,n = 2m. Then one
can define the Eulern-form3 associated toF and its Chern–Simons form,

χ = 1

m!(4π)m
εa1...anF a1a2 · · ·Fan−1an = dχ(0).

Its anomaly descent is indicated as usual byδχ(0) = dχ(1). Notice that the rank of th
Euler-form equals the rank of the current. The Chern-kernelK associated to the even cu
rentJ is written as the sum

(2.2)K = Ω + χ(0),

(2.3)dK = J,

whereΩ is anSO(n)-invariant (n − 1)-form with inverse-power-like singularities onM,
polynomial inF andDŷ = dŷ − Aŷ, whereŷa = ya/|y|. For the expression ofΩ for a
genericn see[4]; for example forn = 2 andn = 4 respectively, the formula reported the
gives

(2.4)Ω = − 1

2π
εa1a2ŷa1Dŷa2,

(2.5)Ω = − 1

2(4π)2
εa1...a4ŷa1Dŷa2

(
4Fa3a4 + 8

3
Dŷa3Dŷa4

)
.

Chern-kernels are not unique due to the arbitrariness of normal coordinates anA

away from the brane, i.e., in the bulk, and due to the presence of the non-invariant Ch
Simons formχ(0). But since for a different kernel one has in any casedK ′ = J , one obtains

(2.6)K ′ = K + dQ,

for some target-space formQ. What matters eventually is the behaviour ofQ onM. Since
Ω has a singular butinvariant behaviour near the brane, it is onlyχ(0) that induces an
anomalous but finitechange onM,

(2.7)Q|M = χ(1)
∣∣
M

.

The transformation(2.6)has been calledQ-transformation in[4] and it is in some sense th
analogous of a change of Dirac-brane. From(2.7)one sees that onM a Q-transformation
reduces to a normal-bundleSO(n)-transformation, and it can give rise to anomalies s
ported onM. On the contrary, we demand a theory to beQ-invariant in the bulk. As we
will see below, also the RR-potentials have to transform underQ-transformations, and s
Q-invariance and anomalies are intimately related.
3 In the following odd-dimensional Euler forms are taken to be zeroby definition.
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2.2. Even kernels

For odd currents (IIA-branes)n is odd, and the kernel is even. In this case it is o
constructed from anSO(n)-invariant (n − 1)-form with inverse-power-like singularitie
onM, (K = Ω)

(2.8)K = �(n/2)

2πn/2(n − 1)!ε
a1···an ŷa1Fa2a3 · · ·Fan−1an,

(2.9)dK = J,

with Fab ≡ Fab + DŷaDŷb. The reason is that for an odd normal bundle the Euler f
is vanishing.

Also this kernel is defined moduloQ-transformations,K ′ = K + dQ, but sinceΩ is
invariant this time we have

Q|M = 0.

We can thus write in generalK = Ω + χ(0), with the convention that for even kerne
the Euler Chern–Simons form is set to zero.

3. A new identity

In this section we illustrate the new identity

(3.1)d(JiKj ) = Jij χij , Mi �⊂ Mj,

where it is understood that the Euler-form of an empty normal bundle is unity,χ(∅) = 1.
Its proof is worked out inAppendix A. Wheni + j < D (3.1)is an identity between form
whose degree exceedsD. In that caseMi andMj have to be extended to worldvolumes
a larger spacetime, keeping the degrees of theK ’s and theJ ’s unchanged; see, e.g.,[4].

The “non-extremality” conditionMi �⊂ Mj is needed to guarantee that the productJiKj

is well-defined, implying that also its differential is so. InAppendix Ait is then shown tha
d(JiKj ) is (1) closed, (2) invariant, (3) supported onMij and (4) constructed from th
curvatures ofNij . The above identity follows then essentially for uniqueness reasons

To simplify some formulae of the following sections, and motivated by(3.1), wedefine
for arbitrary intersections

(JiJj )reg≡ Jij χij .

Consider now an extremal intersectionMi ⊂ Mj , where the productJiKj is ill defined.
Fortunately, as we will see, in the dynamics of intersecting D-branes such a produ
never show up. However, for notational convenience it will be useful todefine

(3.2)(JiKj )reg≡

JiKj if Mi �⊂ Mj,

Jiχ
(0) if Mi ⊂ Mj, Kj odd,
 j

0 if Mi ⊂ Mj, Kj even.
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This definition is motivated as follows. IfMi ⊂ Mj then for the normal bundles we ha
Nj = Nij , and therefore for the Euler-formsχj = χij . If Kj is of odd rank, thenJj is even
andχj �= 0; if Kj is even, thenJj is odd andχj = 0. This implies that with the abov
definitions we havein any case

d(JiKj )reg= (JiJj )reg.

We conclude this section presenting an alternative, but equivalent, way of writin
information contained in(3.1). We may rewrite its l.h.s. in terms of the restriction ofKj

to Mi , JiKj = Ji(Kj |Mi ). Since this restriction is well-defined, in this form we can ap
Leibnitz’s rule to get

Jid(Kj |Mi ) = Jij χij .

Denoting theδ-function supported Poincaré-dual ofMij w.r.t.Mi with Jij —this is a form
on Mi and not on target-space—we haveJij = Ji Jij . The target-space relation(3.1) is
then equivalent to the relation onMi ,

(3.3)d(Kj |Mi ) = Jij χij .

We can go one step further and observe that, if the intersection is effectively
transversal, i.e.,χij �= 1, then the above relation is equivalent to the existence of a
Lij onMi such that

(3.4)Kj |Mi −Jij χ
(0)
ij = dLij ,

transforming underQ-transformations ofKj and under normal bundle transformations
Nij respectively as

δLij = Qj |Mi , δLij = −Jij χ
(1)
ij ,

apart from closed forms.
If the intersection is extremal,Kj |Mi is not defined and according to above one wo

rather consider the expressionχ
(0)
j |Mi −Jij χ

(0)
ij , which vanishes identically sinceJij = 1.

This suggests todefine, for Mi ⊂ Mj , Lij = 0.

4. Basic applications

We present here two basic applications of the above identity, to dual pairs of bran
to self-dual branes. These cases enter as main building blocks in the construction
action for arbitrary intersections, given in the next section. These two examples illu
the role played byQ-invariance, which is fundamental also in the general case. Fo

sake of clarity we ignore here all other couplings but the minimal ones. We restore now the
brane chargesgi and Newton’s constantG, taken until now asgi = 1 andG = 1/2π .
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4.1. Electromagnetically dual pairs of branes

Suppose that a RR-field strength satisfies theBianchi identity and equation of motion

(4.1)dR = gjJj ,

(4.2)d ∗ R = giJi,

whereJj (Ji) is the current on the high-dimensional (low-dimensional) magnetic (electric
D-brane with worldvolumeMj , (Mi) and chargegj (gi). Mi andMj form an electromag
netically dual pair whose dimensionalities satisfyi + j = 8. For the self-dual D3-brane th
equation of motion has to be replaced byR = ∗R, but we do not consider this case in t
present section.

To write an action for such a system one must first solve(4.1), introducing a potentia
for R, and to do this one must search for an antiderivative ofJj or of Ji (or of both).

There are two candidates for such antiderivatives. The standard one is a Dirac
Mj+1, i.e., a brane whose boundary isMj , with δ-function supported Poincaré dual, s
Wj . Then one has

Jj = dWj .

The same can be done forJi . The (9 − j)-form Wj carries by constructionδ-like sin-
gularities onMj+1 and hence also onMj . Since the Dirac-brane is unphysical one m
eventually ensure that it is unobservable. In this case one would solve the Bianch
tity (4.1) throughR = dC + gjWj , andC would carry the known singularities along th
Dirac-brane and onMj .

The second candidate for an antiderivative is a Chern-kernelKj , which carriesinvariant
inverse-power-like singularities onMj ,

Jj = dKj ,

and due to this fact the potentialC introduced according toR = dC + gjKj is regular
on Mj , because all singularities are contained inKj . Since the Chern-kernel is define
moduloQ-transformations, one must eventually ensure that the theory isQ-invariant, i.e.,
independent of the particular kernel one has chosen.

We recall now the recipe developed in[4] for writing an action for the system(4.1),
(4.2) if Mi andMj have a transversal intersection. Then we will present its adaptati
a non-transversal one. (Remember that for a dual pair of branes a transversal inter
amounts to no intersection at all, while a non-transversal one means simplyMij �= ∅.)
The recipe goes as follows. Introduce a Chern-kernel for the magnetic braneJj = dKj ,
and a Dirac-brane for the electric braneJi = dWi . Then solve the Bianchi-identity(4.1)
according to

(4.3)R = dC + gjKj .

UnderQ-transformations ofKj the potential must now also transform,
(4.4)C′ = C − gjQj , K ′
j = Kj + dQj ,
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to keep the field-strengthR invariant. For the restrictions onMj (2.7) implies then, for an
odd kernel,

(4.5)δC|Mj = −gjχ
(1)
j ,

while for an even kernelC|Mj is invariant. From these transformations one sees tha
potentialC is a field regular onMj , becauseδC|Mj is finite. Equivalently, all singularitie
of R are contained in the Chern-kernelKj , more precisely in the invariant formΩj .

The action, generating the equation of motion(4.2), is given by

(4.6)S = 1

G

∫ (
1

2
R ∗ R + giRWi

)
.

Under a change of the (unphysical) electric Dirac-brane,Wi → Wi + dZi , this action
changes by an integer multiple of 2π , if the quantization condition

gigj

G
= 2πn

holds, see, e.g.,[10]. Moreover, the actionS is trivially free from gravitational anomalies
Two comments are in order. First, the equation of motion(4.2)could also be obtaine

more simply from the action1
G

∫
(1

2R ∗R +gi dC Wi) = 1
2G

∫
R ∗R + gi

G

∫
Mi

C. However,
this action is inconsistent in that it breaksQ-invariance in the bulk, becauseC is notQ-
invariant. Second, introducing an eleven-dimensional manifold which bounds target-spac
the above WZ-term can be rewritten equivalently as

(4.7)
gi

G

∫
RWi = gi

G

∫
M11

(RJi − gj JjWi) = gi

G

∫
M11

RJi mod 2π,

where in the last step we used that
∫

JjWi is integer[10]. The eleven-formgi

G
RJi is indeed

closed modulo a well-defined integer form,4 because we are assuming thatMi andMj are
not intersecting:d(

gi

G
RJi) = 2πnJjJi .

Let us now adapt this recipe to a dual pair with a non-empty intersection man
Mij , starting from(4.7). In this case, due to the identity(3.1), the formgi

G
RJi is no longer

closed, not even modulo integer forms, and there is the additional problem that for extrem
intersections the productKjJi is ill defined. But, in turn, thanks to this identity we kno
how to amend the WZ-term. Replace

(4.8)
gi

G

∫
M11

RJi → SWZ ≡ gi

G

∫
M11

(
(RJi)reg− gjJij χ

(0)
ij

)
,

where the subscript reg refers to the productKjJi , defined in(3.2): the integrand is now
again awell-defined closedeleven-form. This is the WZ-term anticipated in the introd
tion, see(1.14), holding now for extremal intersections as well.

4 “Integer forms” are by definition forms that integrate over an arbitrary manifold (closed or open)
integer. It can be shown that all such forms are necessarilyδ-functions on some manifoldM . In particular our

currentsJ are integer forms, and a product of integer forms, whenever it is well-defined, is an integer form as
well.
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For an extremal intersection,Mi ⊂ Mj , due toχj = χij andJi = Jij , the above WZ
simplifies to

SWZ = gi

G

∫
M11

dC Ji = gi

G

∫
Mi

C.

Despite the formal cancellation of the “anomalous” termχ
(0)
ij , the anomaly itself has no

disappeared. Indeed, the potentialC transforms under aQ-transformation, and thanks
(4.5), sinceMij = Mi ⊂ Mj , we have

δC|Mi = −gjχ
(1)
j = −gjχ

(1)
ij .

The anomaly polynomial supported onMij is then−2πnχij also for extremal intersec
tions, and the action remainsQ-invariant in the bulk.

As we observed, for non-empty (non-extremal) intersections it isQ-invariance that
forces to put in(4.8) theQ-invariant combinationRJi instead of the closed formdC Ji .
So it is eventuallyQ-invariance in the bulk that requires the presence of the anom
termJij χ

(0)
ij , needed to get back a closed eleven-form in the WZ. This interplay bet

Q-invariance and anomalies will be a guiding principle also in our construction o
anomaly-free effective action for an arbitrary system of intersecting D-branes in the
section.

We may then summarize the properties ofSWZ in (4.8) as follows. (1) It is written in
terms of a potentialC that carries an anomalous transformation law but that is reg
on Mj . (2) It gives rise to the equation of motion(4.2). (3) It exhibits no singularities
(4) For transversal intersections (Jij = 0) it is well-defined modulo 2π , Q-invariant and
anomaly free. (5) For non-transversal intersections it is well-defined, it carries the
itational anomaly−2πnχij supported onMij , and it isQ-invariant in the bulk. (6) Fo
empty intersections the second term drops, becauseJij is vanishing, and one gets back t
WZ-term for transversal intersections.

We conclude and summarize this subsection, giving a ten-dimensional represe
of (4.8). For transversal intersections oneintroduces an electric Dirac-brane forMi , Ji =
dWi , and uses that(4.8) reduces to(4.7), while for non-transversal ones one uses(3.4).
The results are:

(4.9)SWZ = gi

G

∫
Mi

C +
{ gigj

G

∫
KjWi for transversal intersections,

gigj

G

∫
Mi

Lij for non-transversal intersections.

We recall that for extremal intersectionsLij is zero by definition. The eleven-dimension
representation(4.8) for SWZ is, however,universalin that it holds for arbitrary intersec
tions, transversal or not.

4.2. Self-dual branes
As second example we consider a self-dual brane, i.e., a braneMj with 2j = D − 2,
which is coupled to a field-strength satisfying a self-duality condition rather than a
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Maxwell equation,

dR = gjJj , R = ∗R.

The brane we will be interested in is clearly the self-dual D3-brane in IIB-Sugra. St
speaking, this case can be treated without using the identity(3.1), so we recall simply the
results of[4]. One solves the Bianchi identity as above,R = dC + gjKj , and using the
covariant PST-approach[8] to deal with the self-duality condition, one can write the actio
as

S = 1

4G

∫
(R ∗ R + f4f4) + gj

2G

∫
Mj

C.

The additional (overall) factor of 1/2 will be explained in the next section. A part from th
the WZ appearing here coincides with the one of the extremal intersection of a du
discussed above; a self-dual brane amounts in some sense indeed toMi = Mj , a special
case ofMi ⊂ Mj , i + j = D − 2. The potentialC transforms underQ according to(4.5).
This means thatS entails the anomaly polynomial

− g2
j

2G
χj = −2πn

2
χj ,

supported onMj .
Due to the presence of the NSB-field and of the gauge-fields on the branes, the techn

details of the anomaly cancellation mechanism of a generic system of intersecting D-
in IIB-Sugra appear slightly involved. For this reason we presented the new ingredie
the Chern-kernel approach, which are crucial for the entire construction, separately
some detail in these first four sections.

We conclude this more general part by stressing again that the Chern-kernel app
as we saw, allows to write well-defined actionswhich entail no ambiguities or singular
ties, despite the dangerous short-distance configurations represented by branes in
ing non-transversally. Furthermore, this approach does not require any regularizat
smoothing) of the currents, a procedure that would immediately run into troubles wi
unobservability of the Dirac-brane, see[5,10].

5. Anomaly cancellation for intersecting IIB D-branes

In this section we consider the full interacting system of IIB supergravity and Ab
D-branes (one for each dimensionality) with arbitrary intersections. We recall firs
quantum anomalies of the system, including from the beginning the NS two-formB in
the dynamics. Then we give the full set of Bianchi identities and equations of motio
and solve them in terms of regular potentials, applying systematically the propos
Eqs.(1.11) and (1.13). Next we present the action, check it is well defined and show it

cels all the anomalies. Eventually we discuss Born–Infeld actions and equations of motion
on the branes.
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5.1. Anomalies and theB-field

On each D-brane with worldvolumeMi the pullback of the NS 2-formB couples to the
Abelian gauge fieldAi living on Mi through the invariant field strength

(5.1)hi = B − 2πα′Fi, Fi = dAi.

Under a gauge transformationδB = dΛ, theU(1) potential transforms as

(5.2)δAi = 1

2πα′ Λ,

where pull backs are understood.
The anomaly polynomial that describes the anomalies of the system has been de

[1] and is given by the 12-form

(5.3)P12 = −π
∑
i,j

(−1)
i
2 eγ (hj−hi )

√
Â(Ti)

Â(Ni)

√√√√ Â(Tj )

Â(Nj )
Jij χij ,

whereγ ≡ 1
4π2α′ , Â is the roof genus andNi andTi are the normal and tangent bund

respectively. Sincehj − hi = 2πα′(Fi − Fj ) the polynomialP12 is independent ofB and
invariant under(5.2), as it should. The term in the sum is symmetric under exchangei

with j , so that on single branes (which can be considered as self-intersection) a fa
π appears since summation is on diagonal termsi = j , while for intersecting branes on
recovers a factor of 2π . (5.3) reproduces indeed the anomaly polynomial for both sin
and intersecting D-branes. Notice that the anomaly on the (self intersecting) D(−1)- and
D1-brane(i = 0,2) vanishes since the degree(10− i) of the Euler formχii exceedsi + 2,
while the anomalies on self intersecting D3-, D5-, D7-branes are different from zero
case of the D9 is special in that the worldvolume theory is the super-Yang–Mills part
type I string theory[9] and its anomaly is cancelled by the Green–Schwarz mechanis
We do not include this contribution in our discussion since we consider it well known

The anomalies that have not been dealt with both in[2] and[1] are those for pairs of dua
branes, D(−1)–D7, D1–D5, D3–D3, where the integrand in(5.3)for dimensional reason
reduces entirely to the Euler form. In this case it was not understood how to perfo
inflow of charge and, as mentioned in[1], “a more powerful approach is needed”. This c
be achieved using Chern-kernels as we have seen in the previous sections.

The charge of the D-brane with worldvolumeMi is given by[9]

(5.4)gi = √
2πGγ

i−4
2 , gig8−i = 2πG.

As noticed in[1,2] a crucial step towards anomaly cancellation is to notice that the anoma
polynomial(5.3) is partially “factorized”. On each D-brane one can introduce the clo
and invariant polynomial

Fi

√
Â(Ti)
 (5.5)Yi = e− 2π

Â(Ni)
= dY

(0)
i + 1.
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The formsYi are those appearing in the Bianchi identities and equations of motion of[1,2],
whereB was kept zero. For a non-vanishingB-field one notices that(5.5) is not invariant
under(5.2), so what should appear in the Bianchi identities and equations of moti
rather the invariant expression

(5.6)Ȳi = eγhi

√
Â(Ti)

Â(Ni)
= eγBiYi .

TheseȲi are, however, no longer closed and satisfy

(5.7)dȲi = γ ȲiH, H = dB.

In terms of these forms one can define the following forms of degreen = 2, . . . ,10,

(5.8)∆n = g10−n

∑
i

(−1)
i
2 JiȲi ,

where it is understood that on the r.h.s. one has to extract then-form part.(5.4) implies
then the important relation

(5.9)d∆n = ∆n−2H.

These forms are crucial since they allow eventually to factorize the anomaly polyn
completely. Indeed, it is not difficult to show that one can rewrite(5.3)as

(5.10)P12 = − 1

2G

∑
n

(−1)n/2(∆n∆12−n)reg,

where the “regularized” product of two currents has been defined in the previou
tion. This formula holds in the case of non-transversal intersections for all co
of dual branes. In case these intersections are all transversal one has to add t
−2π(J6J2 − J8J0) which subtracts the same term from the above expression. Notice
ever that, since for transversal intersections the formJ6J2 − J8J0 is integer, it gives rise
through the descent formalism to an anomaly which is a well-defined integer multiple o
2π , and can be disregarded.

Notice also that(5.10)is independent onB—despite its explicitappearance—as is ob
vious by construction. This can also be checked explicitly noticing that under a gener
variation of B one has

(5.11)δ∆n = ∆n−2δB.

δP12 vanishes under such a variation thanks to the alternating signs(−1)n/2 in Eq.(5.10).
This explains also the appearance of those signs.

Eventually, sinceP12 is invariant under(5.2) there exist a Chern–Simons form a
a second descent which respect this symmetry,P12 = dP11, δP11 = dP10. The resulting
anomaly

(5.12)A =
∫

P10
can therefore always be chosen to respect this symmetry, too.
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5.2. Bianchi identities and equations of motion

In this section we describe the theory of IIB supergravity in presence of arbitra
branes and with a non-zeroB field turned on. We give new Bianchi identities and equati
of motion that apply in the presence of D-branes. Using the techniques developed
previous sections we solve Bianchi identities in terms of regular potentials, and the
ceed to write down a classical action that gives the equations of motion.Q-invariance of
this classical action generates an anomaloustransformation law that exactly cancels t
quantum anomaly.

Start defining the formal sum of generalized currents as

(5.13)∆ =
∑
n

∆n,

where∆n is defined in(5.8). The full set of Bianchi identities and equations of motion
given by the compact formula

(5.14)dR = RH + ∆,

whereR9 = ∗R1, R7 = ∗R3 andR5 = ∗R5. Three comments are in order. First, in t
limit where each brane chargegi is set to zero,(5.14) reduces to the Bianchi identitie
and equations of motion of free IIB supergravity. Secondly,(5.14) is well defined since
the right-hand side is a closed form, as can be seen using(5.9). Third point to mention is
electro–magnetic duality. While an equation of the formdR = J is electro–magneticall
symmetric, the full equation(5.14)is not, because of theRH andJ Ȳ terms. These latte
can be thought of as currents associated to smeared branes.

The compact formula describing solutions of the Bianchi identities is

(5.15)R = dC − CH + f,

wherefn, n = 1,3,5, is then-form

(5.16)fn = g9−n

∑
i

(−1)
i
2 KiȲi,

and it satisfies

(5.17)df = f H + ∆.

Notice that underQ transformationsδKi = dQi and the RR-curvatures are invariant p
vided the potentials transform as

(5.18)δCn = −g8−n

∑
i

(−1)i/2QiȲi ,

and therefore the pullback of the potentials on the branes is regular. Such pullback a
to an anomalous transformation of the potential, which plays an important role in ca
lation of anomalies.

As a specific example, the corrected form of the Bianchi identities forR1 andR3 is
(5.19)dR1 = g8J8,

(5.20)dR3 = R1H + g6(−J6 + J8Ȳ8,2),
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(by Ȳ8,2 we mean the degree 2 part of theȲ form defined on the D7-brane). Now w
introduce Chern-kernelsK8, K6 (andK4 for R5) associated to the D7-, D5- (and D3
branes that appear in the Bianchi identities. Further sources appearing in the equa
motion,J2 andJ0, have instead to be treated using Dirac branesW2 andW0, as explained
in [4]. The solution we propose forthe Bianchi identities is

(5.21)R1 = dC0 + g8K8,

(5.22)R3 = dC2 − C0H + g6(−K6 + K8Ȳ8,2),

and similarly forR5. It is straightforward to check thatthese definitions ensure that t
Bianchi identities are satisfied, using(5.7), (5.4). Notice the fact that this solution requir
the Ȳ forms to be extended to target space forms. One could object that a more st
way to solve Bianchi identities that involves onlyY forms evaluated on branes would rath
be

(5.23)R1 = dC̃0 + g8K8,

(5.24)R3 = dC̃2 − C̃0H + g6
(−K6 + J8Y

(0)
8,1 + K8B

)
,

and similarly forR5. This is the approach used in[1], and we remark that there the so
tion of Bianchi identities is incomplete, in that it misses the terms wereK appears withou
anyY form. However, this definition leads to singular potentials and therefore to inco
sistencies. Consider for example an anomalous gauge transformation ofY

(0)
8,1 in (5.24),

δY
(0)
8,1 = dY

(1)
8,0. Since the curvatureR3 is invariant the potential̃C2 transforms accordingl

as

(5.25)δC̃2 = −g6J8Y
(1)
8,0.

The variation ofC̃2 is always singular on the D7-brane so thatC̃2 itself is singular. Simi-
larly, one shows that an analogousC̃4 would be singular on the D7- and D5-branes.

We now show that the RR-curvatures are independent of the extension of theȲ forms.
Consider target space formsYi = dY

(0)
i + 1. Under a change of extension they transfo

as

(5.26)δYi = dXi,

whereXi is an arbitrary target space form such that

(5.27)JiXi = JiXi |Mi = 0,

since Yi is well defined on its D-brane. From here on we will refer to these asX-
transformations. Here we explicitly consider theR3 curvature, but similar formulae app
to all the potentialsC. Under(5.26)R3 is invariant ifC2 shifts by

(5.28)δC2 = −g6K8X8,1.

SuchX-transformations of the potentials always exist due to consistency of the Bi
identities. Even thoughK8 does not admit limit close to the D7-brane, it remains finite

the productK8X8,1 is well behaved and goes to zero sinceX8,1 goes to zero. This proves
that the RR-potentials as defined by(5.15)are completely regular close to the branes, and
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that the curvatures do not depend on the arbitrary extensions of theY forms. In the next
section we will present the action for the system and see that it does not depend o
extensions.

5.3. Action and anomaly cancellation

In this section we present an action that gives rise to the equations of motion(5.14).
There are two ways to discuss the Wess–Zumino part of the action. One possibility is
it as the integral of a closed 11-form. The advantage of this formulation is that it i
most clear one: it immediately displaysQ- andX-invariances of the theory and how th
gravitational anomaly is cancelled. However, even if the procedure is rigorous and
not depend on the arbitrary extra dimension, nevertheless it is a natural expectation
for the existence of a well-defined ten-dimensional action. Our approach to the pr
will be that of presenting at first the Wess–Zumino part of the action as the integral
11-form and discuss its properties. A well-defined 10D action will be given in the e
the section, and its relationship with the former discussed inAppendix C.

We define the total effective action of the theory as the sum of a classical and qu
part

(5.29)Γ = 1

G
(Skin + SWZ) + Γquant,

whereΓquantgenerates the anomalies described in Section5.1. Skin is given by

Skin =
∫

d10x
√−ge−2φR + 1

2

∫
e−2φ(8H1 ∗ H1 + H3 ∗ H3)

(5.30)+ 1

2

∫ (
R1 ∗ R1 − R3 ∗ R3 + 1

2
R5 ∗ R5 − 1

2
f4 ∗ f4

)
,

where the fieldf4 = ιv(R5 − ∗R5) appears as part of the PST approach[8], enforcing the
self-duality equation, andvm is the unit vector

(5.31)vm ≡ ∂ma√
∂a∂a

, vmvm = 1,

wherea is an arbitrary scalar field. The PSTformulation then guarantees thata is a non-
propagating, auxiliary field.

To describe the Wess–Zumino term insteadtake an eleven-dimensional manifoldM11
whose boundary is the spacetimeM10 of the theory,∂M11 = M10. Assume no topologica
obstruction, and take the extra dimension to be parallel to the D-branes so that the
of J forms, which counts the number of normal directions to a brane, is not changed. Th
one can write the Wess–Zumino as

(5.32)SWZ =
∫

L11,
M11

(5.33)dL11 = 0,
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andL11 is given by

(5.34)L11 =
[
−1

2
R5(R3H + ∆6) − R3∆8 − R1∆10

]
reg

− GP11.

P11 is the Chern–Simons form of the anomaly and is given by

(5.35)P11 = π
∑
i,j

(−1)i/2+1P
(0)
ij Jij χij + 2π

(
J2−6χ

(0)
2−6 − J0−8χ

(0)
0−8

) − πJ4χ
(0)
4 ,

andP
(0)
ij , in turn, is a Chern–Simons form of5

(5.36)Pij = e
(Fi−Fj )

2π

√
Â(Ti)

Â(Ni)

√√√√ Â(Tj )

Â(Nj )
.

Some comments are in order. A direct check shows that the classical part of the
gives the correct equations of motion. Moreover,Q- andX-invariances in this picture ar
immediately displayed, since only RR invariant curvatures appear.

Anomaly cancellation is guaranteed since the only term in the action which i
invariant under anomalous transformations is− ∫

P11, whose variation exactly cance
the quantum anomaly. Lastly, notice the factor of 1/2 in the minimal couplingR5∆6 of
Eq. (5.34). On one side it is an artifact of the PST formalism (see the kinetic part o
action), and should not misunderstood as a novel feature. On the other side, it co
exactly withπJ4χ

(0)
4 leaving only aC4 potential term, that cancels the anomaly on

self-dual D3-brane according to what explained in Section4.2.
We now write down the Wess–Zumino term in a ten-dimensional fashion. Her

simply display it as it is, leaving the proof of its equivalence with(5.34)to Appendix C.
We split the Wess–Zumino into a term depending on the potentials and a remainder

(5.37)SWZ =
∫ (

LC
10 + Lrem

10

)
.

The part depending on the potentials is

(5.38)LC
10 = −1

2
C4(R3H + ∆6) − 1

2
C2Hf5 − C2∆8 − C0∆10.

The remainder can be written in two ways. In the case of transversal intersection fo
branes it is given by

(5.39)

Lrem
10 = 1

2

[
f3f7 − f1f9 + 2πG

∑
i,j

(−1)i/2P
(0)
ij KiJj + 4πG(K6W2 − K8W0)

]
,

where the formsf7, f9 are formally defined as in(5.16), but using Dirac branesW2 and
W0 instead ofK2 andK0. For non-transversal intersection the two lastKiWj terms have
to be modified according to Eq.(4.9).
5 Notice thatPij = dP
(0)
ij

+ 1, which explains the form of(5.35).
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In this 10D picture,Q- andX-invariances are hidden and have to be checked one by
Anomaly cancellation arises for non-dual branes from the termsP

(0)
ij JiKj . For dual branes

with non extremal intersection it arises from the terms of the kindLij Ji . If the intersection
is extremal thenLij = 0 and the anomaly is cancelled by the anomalous transformati
the potentials. This is always true for the D3-brane. All the otherQ-variations instead ar
cancelled between terms inLC

10 and inLrem
11 .

5.4. Born–Infeld actions and equations of motion on the branes

In this section we describe the dynamics ofU(1) fields on each D-brane and of the N
form B. The action(5.29)describes all the dynamics of RR-fields but, as it stands, is
complete. One has to add to it Born–Infeld terms for theU(1) fields on each brane

(5.40)Γ = 1

G
(Skin + SWZ + SBI) + Γquant,

with

(5.41)SBI =
∑

i

giI
i
BI ,

(5.42)I i
BI = −

∫
Di

dxi e−φ
√

−det
(
gi

mn + Bmn − 2πα′F i
mn

)
.

From such Born–Infeld term on can define generalized field strenghts

(5.43)h̃i
mn = 2√−detgi

mn

δI i
BI

δBmn

,

justified by the fact that under a variation of the fieldB one hasδI i
BI = ∫

Di
δB ∗ h̃i . In

terms of these one can obtain, after a straightforward but lenghty calculation, the eq
of motion ofB:

(5.44)d ∗ H = R3R5 − R1R7 +
∑

i

giJi ∗ h̃i ,

and the equations of motion for theU(1) field strenghts, that we report inAppendix B.
These new equations of motion have three important properties. First of all, they a
variant underQ- andP -transformations. This is required by consistency since the a
we wrote down is invariant in first instance.Q-invariance happens because a direct ch
shows that such equations display no dependence on Chern-kernelsKi . P -invariance is
evident since the equations are expressed in terms ofȲ forms pulled back on the appropr
ate branes and of RR-curvatures. Second point is that the equations are explicitly in
under gauge transformations ofB

(5.45)δB = dΛ,
(5.46)δAi = 1

2πα′ Λ|Di,
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again as it should, by consistency. Third property is that, as expected, theU(1) theory on
the branes is anomalous. If one writes the equations of motion in the form

(5.47)d ∗ h̃i = j̃i ,

then an explicit check shows that

(5.48)dj̃i �= 0.

However the equation of motion forB (5.44), even though it contains the anomalous fi
strenghts̃hi , is non-anomalous.

The action constructed so far only involvesC0, C2, C4 potentials. Often in the literatur
the action is written in term of all the RR-potentials, and hence in the next sectio
rewrite our results in a duality-invariant language.

6. PST duality-invariant formulation

In order to make contact with the formulation of[1] in this section we construct th
action for the same system but using all the possible RR-potentialsCi , i = 0,2, . . . ,8,
instead of the minimal onesC0, C2, C4. A duality-invariant formulation may also be usef
for the purpose of analysing the flux quantization of dual potentials, or for dimension
reductions involving dual branes and dual potentials.

Let us then introduce the new RR-potentialsC6, C8 and define the formsf7 andf9
as in(5.16), but this time using proper Chern-kernelsK2 andK0 instead of Dirac branes
Introduce RR-curvatureR7 andR9 using the same recipe of(5.15). In order to deal with
C6 andC8 one has to exploit the PST formalism. Introduce an arbitrary scalar fielda and
construct the unit vectorvm as in(5.31). In term ofvm construct the forms

(6.1)r0 ≡ ιv(R1 − ∗R9),

(6.2)r2 ≡ ιv(R3 − ∗R7).

Then the PST duality-invariant action is

(6.3)Sdual= Skin + SWZ + SBI + 1

2
(r2 ∗ r2 − r0 ∗ r0).

Such action has all the PST symmetries necessary to prove thata is an auxiliary field and
that the conditionsR9 = ∗R1, R7 = ∗R3 are enforced (see[4,8]). In order to make contac
with the usual formulations one can use the following identities:

(6.4)R3 ∗ R3 − r2 ∗ r2 = (R3,R7)P (v)

(
R3
R7

)
− R3R7,

(6.5)R1 ∗ R1 − r0 ∗ r0 = (R1,R9)P (v)

(
R1
R9

)
+ R1R9,

whereP(v) is the operator valued matrix( )

(6.6)

−vιv∗ vιv

vιv −vιv∗ .
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Substituting this into the action(6.3)givesSdual= Skin,dual+SWZ,dual+SBI , whereSkin,dual
is a kinetic term for all the RR-potentials given by

Skin,dual= 1

2

∫ [
(R1,R9)P (v)

(
R1
R9

)
− (R3,R7)P (v)

(
R3
R7

)

(6.7)+ 1

2
R5 ∗ R5 − 1

2
f4 ∗ f4

]
,

where there is symmetry underR1 ↔ R9, R3 ↔ R7, see[10]. SWZ,dual=
∫

Ldual is a mod-
ified Wess–Zumino term whose 11D version reads

(6.8)L11,dual= −1

2

∑
n

Rn+1∆10−n − GP11,

while the 10D one is

L10,dual= −1

2

∑
n

Cn∆10−nn

+ 2π

2
G

[∑
i,j

(−1)i/2P
(0)
ij (KiJj )reg+ 2(K6W2 − K8W0)

]

= −1

2

∑
n

Rn+1f9−n

(6.9)+ 2π

2
G

[∑
i,j

(−1)i/2P
(0)
ij (KiJj )reg+ 2(K6W2 − K8W0)

]
.

Again the usual remark for non-transversal intersections of dual branes applies,
Eq. (4.9) should be used. Now we can try to make contact with Eq. (2.11) of[1]. In our
notation it says that on each brane the Wess–Zumino term goes like

(6.10)−1

2

∫
Mi

(
C̃i + RY

(0)
i

)
.

From Eq.(5.16)one can decompose the formsfn, in the limit B ≡ 0, as

(6.11)fn = g9−n

∑
i

(−1)
i
2
[(

JiY
(0)
i + Ki

) + d
(
KiY

(0)
i

)]
n
,

and plug them into the second line of(6.9). Consider the first three terms in(6.11). fn

on its own has only inverse power singularities near each brane, but the first and
term in the decomposition individually displayδ-like singularities. Therefore, in(6.9)it is
not allowed to multiply each single term times a RR-curvature, but only the whole
Suppose however we want to formally forget about this difficulty. Then we can se
the first term in(6.11) reproduces the second term of(6.10). The second term has tw
effects. Part of it is multiplied in Eq.(6.9)times the potential part inR. Joint with some of

(0) ˜
thePij (KiJj )reg terms, it reconstructs theCi part of (6.10). Remember that the passage

from Ci to C̃i is purely formal since the latter is ill defined. The remaining part of the
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second term in(6.11), together with the third termd(KiY
(0)
i ), are dependent on the Cher

kernelsKi and cancel completely with the rest of theP
(0)
ij (KiJj )reg terms of(6.9). This is

guaranteed since the (ill defined) potentialsC̃i of [1] areQ-invariant and so theK-depen-
dent terms have to disappear.

In conclusion, in the formal approximation when one can forgetδ-like divergencies, in
the limit B ≡ 0 and assuming it is possible to use theC̃i potentials, one exactly recove
the Wess–Zumino term of[1], plus the extra terms that cancel the anomaly for dual bra
The anomaly cancellation for the self-dual D3-brane is given by transformationsC4
which are present only in the Chern-kernel formulation and cannot be reproduced
context of[1].

7. Conclusions and outlooks

We conclude by summarizing our results and commenting on their extension.
We have considered the system IIB supergravity interacting with all possible com

tions of single D-branes, with arbitrary intersections as long as there are no topol
obstructions. We have constructed a regular action that gives the equations of m
which is written in terms of potentials that are everywhere well defined.

We have provided a correct understanding of the mechanism of charge inflow
Chern-kernel techniques. In particular, we have shown that, for pairs of dual branes
had proven to be intractable before, charge inflow is not produced by curvatures
ther by potentials, in the case of the self-dual D3-brane and extremal intersections
branes, or by theL forms for non-extremal, non-transversal intersections of dual bra
Another important part of the understanding of charge inflow, that is used in order t
plement a Chern-kernel analysis, is the new fundamental identity(3.1).

The Wess–Zumino term we obtained differs from other expressions that appeared
literature, like those of[1,2,11]and in particular it contains extra terms which are rela
to anomaly cancellation for pairs of dual branes. Moreover, it contains all the corre
due to the presence of the NS formB.

We have obtained the full, corrected equations of motion forB interacting with RR
fields, gravity andU(1) Yang–Mills fields, and for theU(1) fields themselves. The cla
sical U(1) theory on the branes is anomalous but quantum corrections restore th
symmetry.

We insist on remarking that Chern-kernel techniques have wide application to a
ories with extended objects, and not only D-branes of supergravity. They can be us
example to deal with orientifolds, like in problems considered in[12,13], with O-planes
[14], with non-BPS branes[15]. Another possible system to which apply these techniq
is IIA supergravity in presence of D-branes. There, branes have odd-dimensional
volume but they still admit anomalies on their intersections.

Another possible generalization is to couple our system of D-branes to an NS5-
which is interesting since in that case the NScurvature would not be closed. Its treatme
should go along the lines of[6] and we expect it to be straightforward to implement.
Lastly, we discuss generalization to theU(N) case. In this case, it is reasonable to argue
that, in constructing physicalU(N) fields on each brane, the colourless NS formB will
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be coupled to someU(1) subgroup onU(N). Let F then be the fullU(N) curvature,
and decompose it into aU(1) part F , that couples toB as in(5.1), and anSU(N) part
with curvatureF̃ . Since theU(1) part commutes with the rest, it is easy to see that
non-Abelian Chern character that enters in the anomaly has to be generalized to

(7.1)ch

( F
2π

)
→ e−γ h ch

(
F̃

2π

)
.

This would be the ingredient necessary to form the newȲ forms. SinceB enters in the
U(1) part the identity(5.7) continues to hold and from this one is able to impose ag
Bianchi identities, equations of motion, and to find a Wess–Zumino term for the a
from which they come from. The only limitation is that one does not have a Born–I
action that is uniquely fixed so far, and therefore for the time being it is not possible t
equations of motion forB and the Yang–Mills fields on the brane.
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Appendix A. Proof of the new identity

The following proof holds for arbitrary Chern-kernels, even or odd. We begin by
sidering the properties ofJiKj . As we saw,Kj = Ωj +χ

(0)
j is singular onMj becauseΩj

involvesŷa = ya/|y|, andMj stays atya = 0. But sinceMi �⊂ Mj the product

JiKj = Ji(Kj |Mi )

is well defined and, therefore, in the sense of distributions also its differential is so
subtle point is only that one cannot apply Leibnitz’s rule to evaluate it, because the prod
has (inverse-power andδ-like) singularities onMij . Away fromMij one can apply Leibnitz
and there the result isd(JiKj ) = 0. This means thatd(JiKj ) is supported onMij and
hence proportional toJij ,

d(JiKj ) = JijΦ,

for some formΦ defined onMij . Furthermore, since the l.h.s. is closed alsoΦ must be a
closed form. Moreover,Φ must be a completely invariant form as is the l.h.s., becausJi

is intrinsically defined andKj transforms asK ′
j = Kj +dQj , whereQj is regularonMj .

This means that one can apply Leibnitz andd(Ji dQj ) = 0.
Furthermore,Φ can depend only on the curvature components of the intersecti
the normal bundlesNij . This can be seen as follows. SinceKj is made out only of grav-
itational curvatures belonging toNj , alsoΦ is a polynomial made out only of (a subset
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of) those curvatures. If (in addition toMi �⊂ Mj ) we have alsoMj �⊂ Mi , we can ap-
ply Leibnitz tod(KiKj ) = KiJj ± JiKj , giving d(JiKj ) = ±d(JjKi). This implies that
Φ depends, moreover, only on the curvatures ofNi , and hence only on those ofNij . If
on the contraryMj ⊂ Mi then, using, e.g., the regularizations of[4], one can show tha

d(KiKj ) = χ
(0)
i Jj ± JiKj . Applying the differential to this one gets directly(3.1), since

in this caseJj = Jij andχi = χij .
Eventually,Φ is a form of degree dim(Mij ) + D − (i + j) and it is odd under parity.Φ

shares all these properties uniquely with the Euler-form ofNij and we conclude therefor
that it is proportional to it.

A cohomological argument can finally be usedto fix the proportionality coefficient to
one. Perform a regularizationKj → Kε

j , Jj → J ε
j , J ε

j = dKε
j , as for example the on

given in the appendix of[4], whereJ ε
j is cohomologically equivalent toJj and regular

on Mj . Thend(JiKj ) = limε→0 d(JiK
ε
j ) = limε→0 JiJ

ε
j , and as shown in[1], JiJ

ε
j is

cohomologically equivalent toJij χij for every ε. This proves that the l.h.s. of(3.1) is
cohomologicallyequivalent toJij χij , and it fixes the proportionality coefficient of o
local i.e., point–wise derivation to unity.

Appendix B. Equations of motion for the U(1) theory on the D-branes

The equations of motion obtained by the action(5.40)for theU(1) fields are:

(B.1)d ∗ h̃2 = −R1,

(B.2)d ∗ h̃4 = +R3 − 1

γ
R1Ȳ4,2 − g6

2
J8

A4 − A8

2π
,

(B.3)d ∗ h̃6 = −R5 + 1

γ
R3Ȳ6,2 − 1

γ 2
R1Ȳ6,4 + g4

3
J8

A6 − A8

2π

F6 − F8

2π
,

d ∗ h̃8 = +R7 − 1

γ
R5Ȳ8,2 + 1

γ 2R3Ȳ8,4 − 1

γ 3R1Ȳ8,6

(B.4)− g2

[
1

2
J4

A8 − A4

2π
− 1

3
J6

A8 − A6

2π

F8 − F6

2π

]
.

On the right-hand side the regularized products of currents and Chern-kernels are
understood.

Appendix C. The Wess–Zumino term

Here we make contact between the Wess–Zumino written as the integral of an 1
(5.34)and the one written in usual ten-dimensional notation,(5.38)and(5.39). The proce-
dure one realizes in practice is the following: first of all construct(5.38), that is completely
fixed by equations of motion as showed in Section5.3. Then, the remaining part(5.39)is
completely fixed by asking invariance of the action underQ- andP -transformations. The

actual calculations are lenghty, though straightforward, and we do not include them here.
Once the ten-dimensional Wess–Zumino is fixed, one can take its differential and get the
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much simpler form(5.34), which displays all invariances and anomaly cancellations
first sight. What we do here instead is to proceed in the opposite direction, that is to
how to transform(5.34)into the ten-dimensional Wess–Zumino.

As a first step, consider(5.34)and extract all the terms dependent on the potent
After some algebra and integration by part one shows that this amounts to

(C.1)d

[
−1

2
C4(R3H + ∆6) − 1

2
C2Hf5 − C2∆8 − C0∆10

]
= dLC

10.

Now, take the remainder in(5.34). This is equal to

1

2
f5(f3H − ∆6) + f3∆8 − f1∆10 − GP11

= 1

2
d(f3f7 − f1f9) + 1

2
(−∆2f9 + ∆4f7 − ∆6f5 + ∆8f3 − ∆10f1) − GP11

= 1

2
d(f3f7 − f1f9) + 1

2

∑
n

(−1)
n
2+1∆10−nfn+1 − GP11

(C.2)= 1

2
d(f3f7 − f1f9) + 1

2

∑
n

(−1)
n
2+1∆10−nfn+1

∣∣∣∣∣
B2=0

− GP11,

where in the last passage independence fromB2 depends crucially on the alternating si
and can be checked using(5.11)and an analogous variation forf . Given this, one show
with some algebra that

(C.3)
∑
n

(−1)
n
2+1∆10−nfn+1

∣∣∣∣∣
B2=0

= 2πG
∑
i,j

(−1)i/2+1PijKiJj .

Putting together Eqs.(C.2), (C.3)and the expression(5.35)for P11 one gets that the re
minder is exactly given by(5.39).
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