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0. Introduction

The Fourier and Radon hyperplane transforms are closely related, and one such
relation was established by Brylinski [4] in the framework of holonomic D-modules.
The integral kernel of the Radon hyperplane transform is associated with the
hypersurface SCP� P� of pairs ðx; yÞ; where x is a point in the n-dimensional
complex projective space P belonging to the hyperplane yAP�: As it turns out, a
useful variant is obtained by considering the integral transform associated with the
open complement U of S in P� P�: In the first part of this paper, we generalize
Brylinski’s result in order to encompass this variant of the Radon transform, and
also to treat arbitrary quasi-coherent D-modules, as well as (twisted) abelian
sheaves. Our proof is entirely geometrical, and consists in a reduction to the one-
dimensional case by the use of homogeneous coordinates.
The second part of this paper applies the above result to the quantization of the

Radon transform, in the sense of [7]. First we deal with line bundles. More precisely,

let P ¼ PðVÞ be the projective space of lines in the vector spaceV; denote by ð�Þ 3D R

the Radon transform associated with UCP� P�; and for mAZ set

m� ¼ �m � n � 1; DPðmÞ ¼ DP#OOPðmÞ;

where OPðmÞ is the �mth tensor power of the tautological line bundle OPð�1Þ: In [7],
it was shown that the natural morphism

DPð�m�Þ 3D R#detV-DP� ð�mÞ
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is an isomorphism for mo0:Using the Fourier transform we give a different proof of
this result in Theorem 6, as well as a description of the Radon transform ofDPð�m�Þ
for mX0: Then we consider differential forms. More precisely, denote by SpP

� the
Spencer complex. Recall that the Spencer and de Rham complexes are interchanged

by the solution functor, so that the shifted subcomplex SpP
Xq½q	 describes the sheaf

of closed q-forms. We establish in Theorem 7 the isomorphism

SpP
pq½q	 3

D
R’

B
SpP�

Xn�q½n � q	: ð�Þ

Consider the maps P’
p

V\f0g!j
V: Denoting by y the Euler vector field, the sheaf

p�1Oq
P is identified with the subsheaf of j�1Oq

V whose sections o satisfy

Lyo ¼ yqo ¼ 0;

where Ly denotes the Lie derivative, and q the interior product. We obtain (�) by
first relating in Theorem 8 the Radon transform of the sheaf of q-forms with the

subsheaf of j�1Onþ1�q
V� whose sections s satisfy the Fourier transform of the above

relations, namely

Lys ¼ ds ¼ 0:

1. Radon and Fourier transforms for D-modules

Let V and W be mutually dual ðn þ 1Þ-dimensional real vector spaces, P and P�

the associated projective spaces, and x ¼ ðx0;y; xnÞ and y ¼ ðy0;y; ynÞ dual
systems of homogeneous coordinates. Consider the Leray form on P given by

oðxÞ ¼
Xn

j¼0
ð�1Þj

xj dx04? cdxjdxj?4 dxn;

and note that, setting x̃ ¼ tx; one has dx̃ ¼ tnoðxÞ dt þ tnþ1 dx: Let uðtÞ be one of the
distributions 1, YðtÞ; 1=t; or dðtÞ on the real line, so that ûðtÞ ¼ dðtÞ; 1=t; Y ðtÞ; 1;
respectively. Let jðxÞ be a homogeneous function with homogeneity degree such
that jðxÞûð/x; ySÞoðxÞ descends to a relative density on P� P� (e.g. if u ¼ 1; then
û ¼ d; and j must satisfy the homogeneity relation jðtxÞ ¼ sgnðtÞ�n

t�njðxÞ). One
then has the following formal relation between the Radon and Fourier transforms,
the usual Radon hyperplane transform corresponding to the case u ¼ 1;Z

jðxÞûð/x; ySÞoðxÞ ¼
Z

jðxÞ
Z

uðtÞe�t/x;yS dt

� �
oðxÞ

¼
Z

cðx̃Þe�/x̃;yS dx̃ for cðx̃Þ ¼ jðxÞt�nuðtÞ:
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(It is quite delicate to make the above formula precise for functions, but [14] provides
a convenient framework.) The aim of this section is to establish the corresponding
relation for D-modules, thus generalizing a result of Brylinski [4].

1.1. Review on algebraic D-modules

For the reader’s convenience, we recall here the notions and results from the
theory of D-modules that we need. Refer e.g. to [10,12,17] for the analytic case, and
to [2,3] for the algebraic case.
Let X be a smooth algebraic variety over a field k of characteristic zero, and let OX

and DX be its structure sheaf and the ring of differential operators, respectively. Let

ModðDX Þ be the abelian category of left DX -modules, D
bðDX Þ its bounded derived

category, and Dbq-cohðDX Þ (resp. DbcohðDX Þ) the full triangulated subcategory of
DbðDX Þ whose objects have quasi-coherent (resp. coherent) cohomologies. To
MADbcohðDX Þ one associates its characteristic variety charðMÞ; a closed involutive
subvariety of the cotangent bundle T�X :
We use the following notations for the operations of external tensor product,

inverse image, and direct image for D-modules:

2
D

:DbðDX Þ � DbðDY Þ-DbðDX�Y Þ;

Df � :DbðDY Þ-DbðDX Þ;

Df� :D
bðDX Þ-DbðDY Þ;

where f :X-Y is a map of smooth algebraic varieties. More precisely, denoting by
DX-Y and DY’X the transfer bimodules, one has

Df �N ¼ DX-Y #
L

f �1DY

f �1N;

Df�M ¼ Rf�ðDY’X #
L

DX

MÞ:

Recall that these operations preserve quasi-coherency, and if g :Y-Z is another
map of smooth algebraic varieties, then there are natural isomorphisms

Dg�Df�MCDðg 3 f Þ�M and Df �Dg�PCDðg 3 f Þ�P: Moreover, to any Cartesian
square is attached a canonical isomorphism as follows:

where dX denotes the dimension of X :
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The internal tensor product

#
D

:DbðDX Þ � DbðDX Þ-DbðDX Þ

is defined by M1#
D

M2 ¼ Dd�ðM12
D

M2Þ; where d :X+X � X is the diagonal

embedding. Recall that M1#
D

M2CM1#L
OX

M2 as OX -modules, and

Df �ðM1#
D

M2ÞCDf �M1#
D

Df �M2: Moreover, one has the projection formula

Df�ðM#
D

Df �NÞCDf�M#
D

N; MADbq-coh ðDX Þ; NADbq-coh ðDY Þ:

The duality functor

DX :D
bðDX Þop-DbðDX Þ

is defined by DXM ¼ RHomDX
ðM;DX#OX

O#�1
X Þ½dX 	; where OX denotes the sheaf

of forms of maximal degree. Duality preserves coherency, but it does not preserve
quasi-coherency, in general. The functor

Df! :D
bðDX Þ-DbðDY Þ

is defined by Df!M ¼ DYDf�DXM:
Consider the microlocal correspondence associated with f :

T�X ’
fd

X �Y T�Y !fp T�Y :

One says that NADbcohðDY Þ is non-characteristic for f if

f �1
d ðT�

X X Þ-f �1
p ðcharðNÞÞCX �Y T�

Y Y ;

where T�
X X denotes the zero section of T�X : Recall the following results.

Theorem 1. (i) The exterior tensor product 2
D

preserves coherency and commutes with

duality.
(ii) If f is proper, then Df� preserves coherency and commutes with duality. In

particular, Df�MCDf!M for MADbcohðDX Þ:
(iii) If NADbcohðDY Þ is non-characteristic for f ; then Df �N is coherent and

DXDf �NCDf �DYN: In particular, if f is smooth then Df � preserves coherency and

commutes with duality.
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Let DbholðDX Þ (resp. Dbr-holðDX Þ) be the full-triangulated subcategory of DbcohðDX Þ
consisting of holonomic (resp. regular holonomic) objects. Holonomy is stable for all
of the above operations, and regular holonomy is stable under tensor product,
inverse image, and proper direct image.

1.2. Review on the Fourier–Laplace transform

Let V be the affine space associated with an ðn þ 1Þ-dimensional vector space over
k; and let V� be the dual affine space. Denote by DðVÞ ¼ GðV;DVÞ the Weyl
algebra, and recall that since V is affine the two functors

Dbq-cohðDVÞ $
RGðV;�Þ

DV#L
DðVÞð�Þ

Dbq-cohðDðVÞÞ

are quasi-inverse to each other. The formal relation

Pðx; @xÞe�/x;yS ¼ Qðy; @yÞe�/x;yS

associates to each QADðV�Þ a unique PADðVÞ; called its Fourier transform. Since
P1P2e

�/x;yS ¼ P1Q2e
�/x;yS ¼ Q2P1e

�/x;yS ¼ Q2Q1e
�/x;yS; this gives a k-algebra

isomorphism

DðV�Þ!B DðVÞop:

(Note that, choosing dual systems of coordinates V ¼ Specðk½x0;y; xn	Þ and V� ¼
Specðk½y0;y; yn	Þ; the above isomorphism is described by yi/� @xi

; @yi
/� xi:)

Moreover, one has algebra isomorphisms

DðVÞopCGðV;OV#ODV#OO
#�1
V Þ

C detV�#DðVÞ#detV;

the identification OVCOV#detV
� being induced by T�V ¼ V�V�: It is then

possible to consider the functor associating to a quasi-coherent DðVÞ-module M the
quasi-coherent DðV�Þ-module M4 ¼ detV�#M: Since this functor is exact, it
induces a functor

4 :Dbq-cohðDVÞ-Dbq-cohðDV� Þ ð1:1Þ

called the Fourier–Laplace transform. The Fourier–Laplace transform is an
equivalence, it preserves coherency and holonomy, but it does not preserve regular
holonomy, in general. (For references see e.g. [4,14,16].)
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1.3. Review on the Radon transform(s)

Let P ¼ PðVÞ be the n-dimensional projective space associated with V; and P� ¼
PðV�Þ the dual projective space. Let us denote by S the smooth hypersurface of
P� P� defined by the homogeneous equation /x; yS ¼ 0; and set U ¼ ðP� P�Þ\S:
Identifying P� with the family of hyperplanes in P; the set S describes the incidence
relation ‘‘the point xAP belongs to the hyperplane yAP�:’’ Consider the smooth
maps

P’
pS

S!qS P�; P’
pU

U!qU P�;

defined by restriction of the natural projections p and q from P� P�: To these maps
are attached the pull-back–push-forward functors

DqS�Dp�
S; DqU�Dp�

U :D
b
q-cohðDPÞ-Dbq-cohðDP� Þ: ð1:2Þ

The first functor is the D-module analogue of the usual Radon transform, consisting
in ‘‘integrating along hyperplanes.’’ The second functor (cf. [1,15,17]) is a small
variation1 on the first one which has, amongst others, the advantage of giving an
equivalence of categories.
Note that since pS and qS are smooth and proper, the first functor preserves

coherency. Even though qU is not proper, it follows e.g. from Lemma 1 below that
also DqU�Dp�

U preserves coherency, as does the functor

DqU!Dp�
U :D

bðDPÞ-DbðDP� Þ: ð1:3Þ

(For references see e.g. [7].)

1.4. Review on the blow-up transform(s)

Let ’V ¼ V\f0g and consider the natural projection and embedding

P ’
p ’V+

j
V:

They induce an embedding ðp; jÞ of ’V as a locally closed subvariety of P�V: Let fV0V0
be the closure of ’V in P�V; a smooth subvariety, and consider the maps

P’
*p fV0V0 !

*;
V

obtained by restriction of the natural projections from P�V: Note that *; is the

blow-up of the origin 0 in V; *; is proper, and *p is smooth. To these maps are
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attached the functors

Dj�Dp�; D *; �D *p� :Dbq-cohðDPÞ-Dbq-cohðDVÞ: ð1:4Þ

Using similar remarks as for the Radon transform one checks that these functors
preserve coherency, as does the functor

Dj!Dp� :DbðDPÞ-DbðDVÞ: ð1:5Þ

1.5. A first statement of the result

As a last piece of notation, let ’V� ¼ V�
\f0g and consider the natural projection

and embedding

P� ’
p ’V� +

j
V�:

The next theorem generalizes a result of Brylinski [4, Théorème 7.27],
who obtained the isomorphism (1.7) assuming M regular holonomic. In order to
help the reader in following the pull-back–push-forward procedures, let us
summarize in the next diagram the maps that we will use. The starting point is P;

and the target is ’V�:

ð1:6Þ

Theorem 2. For MADbcohðDPÞ there are natural isomorphisms in DbðD ’V� Þ

Dp�ðDqU�Dp�
UMÞCDj�½ðDj!Dp�MÞ4	;

Dp�ðDqU!Dp�
UMÞCDj�½ðDj�Dp�MÞ4	:

For MADbq-cohðDPÞ there is a natural isomorphism in DbðD ’V� Þ

Dp�ðDqS�Dp�
SMÞCDj�½ðD *; �D *p�MÞ4	: ð1:7Þ
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The statement may be visualized by the commutative diagram:

In order to prove this theorem we will first restate it, using the language of integral
kernels, as Theorem 3. This has the advantage of applying to quasi-coherent
modules, and gives a reason for the strange-looking pattern of �’s and !’s in the
above formulae.

1.6. Review on integral kernels

Let X and Y be smooth algebraic varieties, and consider the projections

X ’
p

X � Y !q Y :

For KADbðDX�Y Þ the functor

ð�Þ 3D K :DbðDX Þ-DbðDY Þ

M/M 3
D
K ¼ Dq�ðDp�M#

D

KÞ

is called integral transform with kernel K: More generally, if Z is another smooth

algebraic variety and LADbðDY�ZÞ; one sets

K 3
D
L ¼ Dq13�ðDq�

12K#
D

Dq�
23LÞADbðDX�ZÞ;

where qij denotes the projection from X � Y � Z to the corresponding factors, so

that for example q13ðx; y; zÞ ¼ ðx; zÞ: The bifunctor 3
D
preserves quasi-coherency, is

associative in the sense that ðM 3
D
KÞ 3D LCM 3

D ðK 3
D
LÞ; and the identity

functor corresponds to the regular holonomic kernel BX jX�X ¼ Dd�OX ; where

d :X+X � X is the diagonal embedding.

One says that KADbcohðDX�Y Þ and LADbcohðDY�ZÞ are transversal if

ðcharðKÞ � T�
ZZÞ-ðT�

X X � charðLÞÞCT�
X�Y�ZðX � Y � ZÞ:
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In particular, MADbcohðDX Þ is transversal to K if

ðcharðMÞ � T�
Y YÞ-charðKÞCT�

X�Y ðX � YÞ:

In this case, assuming moreover that suppðKÞ is proper over Y ; it follows from

Theorem 1 that M 3
D
K is coherent, and

DY ðM 3
D
KÞCDXM 3

D
DX�YK: ð1:8Þ

1.7. Basic regular holonomic kernels

Let S be a smooth variety, let Z be a closed smooth subvariety of S of
codimension d; set U ¼ S\Z; and consider the embeddings

jZ :Z+S; jU :U+S:

The simplest regular holonomic DS-modules attached to the stratification S ¼ Z0U

are

OS; BZjS ¼ DjZ�OZ; BU jS ¼ DjU�OU ; DSBU jS ¼ DjU !OU :

As an alternative description, one has

BZjS ¼ RG½Z	OS½d	; BU jS ¼ RG½U 	OS;

where RG½Z	MCDjZ�Dj�ZM½�d	; and RG½U 	MCDjU�Dj�UM: Recall that one has a

distinguished triangle

RG½Z	M-M-RG½U 	M!þ1 : ð1:9Þ

The basic model is the stratification A1k ¼ f0g0 ’A1k of the affine line A1k ¼
Specðk½t	Þ; where one has the regular holonomic modules

OA1
k
¼ DA1

k
=/@tS ¼ DA1

k
� 1;

B0jA1
k
¼ DA1

k
=/tS ¼ DA1

k
� d;

B ’A1
k
jA1

k
¼ DA1

k
=/@t tS ¼ DA1

k
� 1=t;

DA1
k
B ’A1

k
jA1

k
¼ DA1

k
=/t @tS ¼ DA1

k
� Y :

ð1:10Þ

Here we used the pattern

M ¼ DA1
k
=/PS ¼ DA1

k
� u

to indicate that M is a cyclic DA1
k
-module with generator u and relation Pu ¼ 0:
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Let now S be a closed smooth subvariety of X � Y ; and consider the embedding

i : S+X � Y ;

and the maps

X ’
pS

S !qS
Y ; X ’

pU
U !qU

Y ;

obtained by restriction of the natural projections p and q from X � Y : Note that
Di�OSCBSjX�Y ; Di�BZjSCBZjX�Y :

Lemma 1. For MADbq-cohðDX Þ; there are natural isomorphisms in DbðDY Þ:

M 3
D
BSjX�YCDqS�Dp�

SM;

M 3
D
Di�BU jSCDqU�Dp�

UM;

M 3
D
OX�YCOY#DRðMÞ;

where DRðMÞ ¼ RGðX ;OX#L
DX

MÞ: If moreover M is coherent and transversal to

Di�BU jS; and S is proper over Y ; then there is an isomorphism of functors from

DbcohðDX Þ to DbcohðDY Þ:

M 3
D
Di�DSBU jSCDqU !Dp�

UM:

In order to check the transversality condition, note that

charðDi�BU jSÞCT�
ZðX � Y Þ,T�

SðX � Y Þ:

Proof. The first isomorphism is a particular case of the second one for Z ¼ |; S ¼
U : To prove the second isomorphism, note that forMADbq-cohðDX Þ there is the chain
of isomorphisms

M 3
D
Di�BU jSCDq�ðDp�M#

D

Di�DjU�OUÞ

CDq�Di�DjU�ðDj�UDi�Dp�M#
D

OUÞ

CDqU�Dp�
UM:

As for the third isomorphism, using the first one with S ¼ X � Y we get

M 3
D
OX�YCDq�Dp�M

CDa�
YDaX�M;
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where aX :X-fptg denotes the map to the variety reduced to a point. Finally, for
MADbcohðDX Þ; the last isomorphism follows from the second one by (1.8), as follows:

M 3
D
Di�DSBU jSCM 3

D
DX�YDi�BU jS

CDY ððDXMÞ 3D Di�BU jSÞ

CDYDqU�Dp�
UDXM

CDYDqU�DUDp�
UM

¼DqU !Dp�
UM: &

1.8. Radon and Fourier transforms for D-modules

Consider the holonomic kernel (irregular at infinity)

L ¼ DV�V�=I ¼ DV�V�e�/x;yS; ð1:11Þ

where I is the left ideal of differential operators PADV�V� such that, formally,

Pe�/x;yS ¼ 0: ThenL is the kernel attached to the Fourier–Laplace transform, since
one has (see [16, Section 7.5])

M4CM 3
D
L; MADbq-cohðDVÞ:

Concerning the Radon transform, it follows from Lemma 1 that the functors in
(1.2) and (1.3) are given by composition with the regular holonomic kernels attached
to the stratification P� P� ¼ S0U: According to (1.10), let us give these kernels the
following names:

R1 ¼ OP�P� ; RY ¼ DP�P�BUjP�P� ; R1=t ¼ BUjP�P� ; Rd ¼ BSjP�P� : ð1:12Þ

As for the blow-up, let E ¼ fV0V0\ ’V be its exceptional divisor, a smooth hypersurface

of fV0V0: It follows from Lemma 1 that the functors in (1.4) and (1.5) are given by

composition with the regular holonomic kernels attached to the stratification fV0V0 ¼
E0 ’V: According to (1.10), let us give these kernels the following names:

S1 ¼ eOV0 ; SY ¼ fDV0 fB ’VjV0 ; S1=t ¼ fB ’VjV0 ; Sd ¼ fBEjV0 : ð1:13Þ
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Summarizing, one has

Consider the maps

fV0V0+
*i
P�V; P� ’

p ’V� !j
V�:

Theorem 3. Let MADbq-cohðDPÞ; and let u be one of the four generators in (1.10), so

that

u ¼ 1;Y ; 1=t; d; û ¼ d; 1=t;Y ; 1;

respectively. Then there is a natural isomorphism in DbðD ’V� Þ:

Dp�ðM 3
D
RûÞCDj �ðM 3

D
D*i�Su 3

D
LÞ:

As we already pointed out, this statement implies Theorem 2.

Proof. Consider the maps

P� P� ’
p00

P� ’V� !j
00
P�V�

induced by P� ’
p ’V� !j

V�: Denote by S00 the hypersurface of P�V� defined by the

equation /x; yS ¼ 0; let U00 ¼ ðP�V�Þ\S00; and set

R00
1 ¼ OP�V� ; R00

Y ¼ DP�V�BU00jP�V� ; R00
1=t ¼ BU00jP�V� ; R00

d ¼ BS00jP�V� :

One has

Dp�ðM 3
D
RûÞCM 3

D
Dp00�RûCM 3

D
Dj00�R00

ûCDj�ðM 3
D
R00

ûÞ:

Then the statement is a corollary of the following proposition. &
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Proposition 1. There is an isomorphism in DbðDP�V� Þ:

R00
ûCD*i�Su 3

D
L:

Proof. Let us start by observing that fV0V0 is the quotient of A
1
k � ’VC ’V�P

fV0V0 by the

action of the multiplicative group Gm given by cðt;xÞ ¼ ðc�1t; cxÞ: Let us denote by
1t; xU the equivalence class of ðt; xÞ: Consider the commutative diagram

where pi; qi; pij ; and qij are the natural projections,

tðt; xÞ ¼ t; tðt; xÞ ¼ 1t; xU; ’gðx; yÞ ¼ /x; yS;

*ið1t; xUÞ ¼ ð½x	; txÞ; *; ð1t; xUÞ ¼ tx; *pð1t; xUÞ ¼ ½x	;

’g00 ¼ idA1
k
� ’g; and f 0 ¼ f � idV� for f ¼ t; *i; *p; *; ; p: There are natural isomorphisms

in DbðDP�V� Þ:

D*i�Su 3
D
LCDq13�ðDq�

12D*i�Su #
D

Dq�
23LÞ

CDq13�ðD*i0�Dq�
1Su #

D

Dq�
23LÞ

CDq13�D*i0�ðDq�
1Su #

D

D*i0�Dq�
23LÞ

CD *p0�ðDq�
1Su #

D

D *; 0�LÞ:

There are natural isomorphisms in DbðD ’V�V� Þ:

Dp0�D *p0�ðDq�
1Su #

D

D *; 0�LÞCDp23�Dt0�ðDq�
1Su #

D

D *; 0�LÞ

CDp23�ðDt0�Dq�
1Su #

D

Dt0�D *; 0�LÞ

CDp23�ðDp�
12Dt�Su #

D

Dt0�D *; 0�LÞ

CDp23�ðDp�
12Dt�ðDA1

k
� uÞ#

D

D’g00�L1Þ
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CDp23�ðD’g00�Dp�
1ðDA1

k
� uÞ#

D

D’g00�L1Þ

CDp23�D’g00�ðDp�
1ðDA1

k
� uÞ#

D

L1Þ

CD’g�ððDA1
k
� uÞ 3DL1Þ

CD’g�ðDA1
k
� ûÞ

CDp0�R00
û ;

whereL1 ¼ DA1
k
�A1

k
e�tu is the one-dimensional Fourier–Laplace kernel, and DA1

k
� u

is the cyclic module defined in (1.10). Summarizing, we have an isomorphism

Dp0�ðD*i�Su 3
D
LÞCDp0�R00

û:

One concludes by the following lemma. &

Lemma 2. Let f :X-Y be a fibration with fiber ’A1k ¼ A1k\f0g: Then the functor

Df � : Modq-cohðDY Þ-Modq-cohðDX Þ is exact and fully faithful.

Proof. Since f is smooth, Df � is exact. Moreover, one has an isomorphism:

RHomDX
ðDf �N1;Df �N2ÞCRHomDY

ðN1;Df�Df �N2Þ½�1	: ð1:14Þ

By the projection formula, Df�Df �N2CDf�OX #
D

N2; and one has

Df�OXCRf� OX �!dX=Y

O1X=Y

� �
;

where O1X=Y ; the sheaf of relative one-forms, sits in degree zero. Hence, locally on Y

one has Df�OXCOY"OY ½1	: Taking zeroth cohomology, (1.14) gives

HomDX
ðDf �N1;Df �N2ÞCHomDY

ðN1;N2Þ: &

1.9. Twisted case

For k ¼ C and lAC; one can replace the ring DP with the ring of twisted
differential operators (TDO-ring):

DP;l ¼ OPðlÞ#ODP#OOPð�lÞ;

whose sections, by definition, are locally of the form s�l#P#sl; where s is a
nowhere vanishing section of the tautological line bundle OPð�1Þ; with the glueing
condition s�l

1 #P1#sl1 ¼ s�l
2 #P2#sl2 if and only if P2 ¼ ðs1=s2Þ�l

P1ðs1=s2Þl: If
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l� mAZ; the functor OPðm� lÞ#Oð�Þ gives an equivalence of categories from
DbðDP;lÞ to DbðDP;mÞ; so that classical D-modules correspond to the case lAZ:

We do not recall here the theory of TDO-modules, referring instead to [1,11,15].
We just point out that this allows one to consider for lAC\Z the twisted Radon
kernel (see [6,15]),

Rtl : D
bðDP;l� Þ-DbðDP�;lÞ;

where l� ¼ �n � 1� l; as well as a blow-up kernel

St�l�1 : DbðDP;l� Þ-DbðDVÞ:
The following analogue of Theorem 3 is then obtained by much the same proof.

Theorem 4. Let lAC\Z and MADbq-cohðDP;l� Þ: Then there is a natural isomorphism in

DbðD ’V� Þ:

Dp�ðM 3
D
RtlÞCDj�ðM 3

D
D*i�St�l�1 3

D
LÞ:

2. Radon and Fourier transforms for sheaves

2.1. Review on sheaves

Mainly to fix the notations, we recall here some definitions from the theory of
sheaves. Refer to [13] for details. In this section, we will take k ¼ C and work in the
analytic topology.
Let X be a locally compact topological space. Let kX be the constant sheaf with

fiber k ¼ C; and for a locally closed subset ACX ; let kAjX be the sheaf on X

characterized by ðkAjX ÞjA ¼ kA; ðkAjX ÞjX \A ¼ 0: Denote by DbðkX Þ the bounded
derived category of sheaves of k-vector spaces on X ; and by#; f �1; Rf!; RHom; Rf�
and f ! the usual six operations, where f :X-Y is a continuous map with finite c-soft

dimension. For FADbðkX Þ; we set

D0
X F ¼ RHomðF ; kX Þ:

Let Y and Z be locally compact topological spaces, and let KADbðkX�Y Þ;
LADbðkY�ZÞ: As for D-modules, one sets

K 3 L ¼ Rq13!ðq�1
12 K#q�1

23 LÞ:
In particular, the integral transform with kernel K is the functor

ð�Þ 3 K : DbðkX Þ-DbðkY Þ;

F/F 3 K ¼ Rq!ðp�1F#KÞ:
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The operation 3 is associative, and the identity is associated with the kernel kX jX�X ;

where X is diagonally embedded in X � X :

Assume that X is a real analytic manifold. To FADbðkX Þ one associates
its microsupport SSðFÞ; a closed involutive subset of T�X whose complement
describes the codirections along which F propagates. One says that K and L are
transversal if

ðSSðKÞ � T�
ZZÞ-ðT�

X X � SSðLÞÞCT�
X�Y�ZðX � Y � ZÞ:

2.2. Radon and Fourier transforms for sheaves

Let us use the same notations as in Section 1, summarized in (1.6). Note that here
we consider all spaces V;V�; P;y as well as the maps between them, in the category
of real analytic manifolds.

Denote by DbRþðkVÞ the full triangulated subcategory of DbðkVÞ whose objects
have conic cohomologies, i.e. cohomologies which are locally constant along the

orbits of the multiplicative group Rþ of positive real numbers. The Fourier–Sato
transform for sheaves is the equivalence of categories

ð�Þ 3 L : DbRþðkVÞ-DbRþðkV� Þ;

where L ¼ kQjV�V� for Q ¼ fðx; yÞAV�V� : Re/x; ySp0g (cf. e.g. [13]).
For the Radon and blow-up transforms, one considers the solution com-

plexes of the corresponding kernels for D-modules in (1.12) and (1.13), i.e. one
considers

where, as in the D-module case, one uses transversality in order to get the above
isomorphisms of functors. Consider the maps

fV0V0+
*i
P�V; P� ’

p ’V� !j
V�:

Theorem 5. Let FADbðkPÞ; and let u be one of the four generators in (1.10), so

that

u ¼ 1;Y ; 1=t; d; û ¼ d; 1=t;Y ; 1;
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respectively. Then there is a natural isomorphism in Dbðk ’V� Þ

p�1ðF 3RûÞCj�1ðF 3 R*i!Su 3 LÞ½1	:

The proof is a line by line analogue of the one for D-modules, making use of the
isomorphisms

kf0gjC 3 L1CkC; kC 3 L1Ckf0gjC½�2	;

k ’CjC 3 L1CD0
Ck ’CjC½�1	; D0

Ck ’CjC 3 L1Ck ’CjC½�1	:

Here, L1 ¼ kfRe/t;uSp0gjC�C is the kernel of the Fourier–Sato transform on C:

Remark 1. Let M be a coherent algebraic D-module on P; denote by Man the
associated analytic D-module on P; considered as a complex analytic manifold, and
setSolðMÞ ¼ RHomDan

P
ðMan;OanP Þ: Using the Riemann–Hilbert correspondence and

the compatibility between Fourier and the solution functor (see e.g. [14]), one can
recover the isomorphism in Theorem 5 for F ¼ SolðMÞ from the one in Theorem 3.

Remark 2. As for D-modules and TDOs, one has a statement analogue to Theorem
5 in the framework of twisted sheaves.

2.3. Link with the real blow-up

The Fourier–Sato kernel is related to the real analytic space structure underlying
the complex vector space V: We give here an alternative description of the blow-up
transform, using such a real structure. Although addressing a natural question, this
subsection is independent from the rest of this paper. The reader in a hurry may
prefer to skip to Section 3.
Let PR ¼ PRðVÞ be the real projective space of lines in the 2ðn þ 1Þ-dimensional

real vector space underlyingV:Note that PR is orientable, and recall that for n41 one
has p1ðPRÞ ¼ Z=2Z: Thus, up to isomorphism, there are only two locally constant
sheaves of rank one on PR: We denote them by kPR

ðeÞ for eAZ=2Z; assuming that

kPR
ð0Þ is the constant sheaf. There is a natural fibration with fiber PRðCÞCS1:

r :PR-P

associating to a real line Rx in V its complexification Cx: Recall that Rr!kPR
ð1Þ ¼ 0:

As in the complex case, the natural maps

PR ’
pR ’V+

j
V

induce an embedding of ’V as a locally closed subset in PR �V:We denote by fVR
0VR
0 the

closure of ’V in PR �V; and set ER ¼ fVR
0VR
0 \

’V: These are, respectively, the real blow-up
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of 0 in V; and its exceptional divisor. The natural projections from PR �V induce
maps

PR ’
fpR fVR

0 !
fjR

V:

Since fpRpR is a line bundle, one has p1ðfVR
0VR
0 Þ ¼ Z=2Z: For eAZ=2Z; we denote by ekVR

0
ðeÞ

the two locally constant sheaves of rank one on fVR
0VR
0 : Note that the relative

orientation sheaf forER=VR
0
is non-trivial, and hence eor VR

0
C eorVR

0
=PR

C forER=VR
0

is non-trivial. Consider the diagram

where r00 ¼ ðr� idVÞ ejVR
0
:

Proposition 2. There are natural isomorphisms in Dbð ekV0Þ
eD0
V0 ek ’VjV0CRr00! ekVR

0
; ek ’VjV0CRr00! ekVR

0
ð1Þ:

Proof. Note that r00! ekV0Cr00! eoV0 ½�dim
RfV0V0	C eoVR

0
½�dim fVR

0VR
0 	C ekVR

0
ð1Þ; where eoV0

denotes the dualizing complex. Hence, for FADbð ekVR
0
Þ one has

eD0
V0

Rr00! FCRHomðRr00! F ; ekV0Þ
CRr00�RHomðF ; r00! ekV0Þ
CRr00� eD0

VR
0

ðF# ekVR
0
ð1ÞÞ:

The second isomorphism in the statement thus follows from the first one. To prove
the first isomorphism, note that

eD0
V0
k

’VjfV0C eD0
V0

Rr00! ek ’VjVR
0

CRr00! eD0
VR
0

ð ek ’VjVR
0
# ekVR

0
ð1ÞÞ

CRr00! eD0
VR
0
ek ’VjVR
0
:

Using the distinguished triangle

eD0
VR
0

ekERjVR
0
- ekVR

0
- eD0

VR
0
ek ’VjVR
0
!þ1;
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it is then enough to prove that Rr00! eD0
VR
0

ekERjVR
0
¼ 0: Since ER is not relatively

orientable in fVR
0VR
0 ; one has eD0

VR
0

ekERjVR
0
C ekERjVR

0
# ekVR

0
ð1Þ½�1	; and hence

Rr00! eD0
VR
0

ekERjVR
0
CRr00! ð ekERjVR

0
# ekVR

0
ð1ÞÞ½�1	

CRr00! RlR!kERð1Þ½�1	

CRl!Rr!kERð1Þ½�1	 ¼ 0: &

3. Applications

For the remainder of this paper we consider the case k ¼ C; and we concentrate on
the Radon transform R1=t ¼ BUjP�P� : From now on we thus simply set

R ¼ BUjP�P� ; R ¼ kUjP�P� ;

so that

ð�Þ 3D RCDqU�Dp�
U; ð�Þ 3RCRqU!p

�1
U :

3.1. Radon transform of line bundles

For mAZ; let OPðmÞ denote the �mth tensor power of the tautological line bundle
OPð�1Þ: The Leray form on P is defined in homogeneous coordinates by

yqdx04?4dxn ¼
Xn

j¼0
ð�1Þj

xj dx04? cdxjdxj?4dxn;

where q denotes the interior product and y the Euler vector field. It is thus a global
section of OP#OOPðn þ 1Þ which only depends on the choice of a volume element in
detV�: Removing this dependency, we get a canonical section

oðxÞAGðP;OP#OOPðn þ 1Þ#detVÞ:

Set

DPðmÞ ¼ DP#OP
OPðmÞ; m� ¼ �m � n � 1;

and note that, using the identification

OPCOPð�n � 1Þ#detV� ð3:1Þ

ARTICLE IN PRESS
A. D’Agnolo, M. Eastwood / Advances in Mathematics 180 (2003) 452–485470



induced by oðxÞ; we get an identification

DPðDPð�mÞÞ½�n	CDPð�m�Þ#detV: ð3:2Þ

It was shown in [7] that for mo0 the integral kernel

/x; ySmoðxÞAGðP� P�; ðOPð�m�Þ2OP� ðmÞÞ#OP2OP�R#detVÞ

induces an isomorphism

DPð�m�Þ 3D R#detV’
B

DP� ð�mÞ: ð3:3Þ

The integral kernel

/x; ySm�
Yð/x; ySÞoðyÞAGðP� P�; ðOPðm�Þ2O�

Pð�mÞÞ

#OP2OP�DP�P�R#detV�Þ

gives a morphism

DPð�m�Þ 3D R#detV-DP� ð�mÞ

which is an inverse to (3.3) for mo0: The following statement describes its kernel
and cokernel for mX0 (this should be compared with the topological results in [5]),
and recovers the case mo0 by different methods, using the results from Section 1.
Let us denote by SmV the mth symmetric tensor power of V:

Theorem 6. For any mAZ there is a long exact sequence of DP�-modules

0-OP�#SmV�-DPð�m�Þ 3D R#detV-DP� ð�mÞ-OP�#SmV�-0:

Before starting the proof, let us explicitly describe the morphisms entering the

above long exact sequence. The natural identification SmV�CGðP;OPðmÞÞ gives a
canonical monomorphism

kP#SmV�-OPðmÞ;

which in turn corresponds to a surjective DP-linear morphism

DPð�mÞ-OP#SmV

(for m ¼ 0 this is but the beginning of the Spencer resolution of OP). Consider its
kernel

D0
Pð�mÞ ¼ kerðDPð�mÞ-OP#SmVÞ;
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and set

D0
Pð�mÞ� ¼ DPðD0

Pð�mÞÞ½�n	:

Note that by (3.2) there is a distinguished triangle

OP½�n	#SmV�-DPð�m�Þ#detV-D0
Pð�mÞ� !þ1 :

Then the statement of Theorem 6 is equivalent to the isomorphism

D0
Pð�mÞ� 3D R!B D0

P� ð�mÞ: ð3:4Þ

Proof. By Lemma 2, it suffices to prove that there is a distinguished triangle in

DbðD ’V� Þ

Dp�ðDPð�m�Þ 3D RÞ#detV-Dp�DP� ð�mÞ

-Dp�ðOP�"OP� ½1	Þ#SmV� !þ1 :

Consider the cyclic DV-module

DVðmÞ ¼ DV=/yþ mS;

and note thatDp�DPðmÞCDj�DVðmÞ: Since one also hasDp�OPCDj�OV; the above
distinguished triangle is equivalent to

Dp�ðDPð�m�Þ 3D RÞ-Dj�DV� ð�mÞ#detV�

-Dj�ðOV�"OV� ½1	Þ#SmV�#detV� !þ1 :

By Theorem 3, it is enough to prove that there is a distinguished triangle in DbðDV� Þ

DPð�m�Þ 3D Deii� eDV0 eB ’VjV0 3
D
L-DV� ð�mÞ#detV�

- ðOV�"OV� ½1	Þ#SmV�#detV� !þ1 :

This is obtained by Fourier transform if we prove that there is a distinguished

triangle in DbðDVÞ:

DPð�m�Þ 3D Deii� eDV0 eB ’VjV0-DVð�m�Þ-ðB0jV"B0jV ½1	Þ#SmV�#detV� !þ1 :

SinceDPð�m�Þ 3D Deii� eDV0 eB ’VjV0CDj!Dp�DPð�m�ÞCDj!Dj�DVð�m�Þ; this is exactly
what is claimed in Proposition 3 below. &
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Recall that on a smooth variety X there is a natural isomorphism of left DX#DX -
modules:

BX jX�XCDX#OX
O#�1

X ;

where DX acts on BX jX�X via the first and second projections. Concerning B0jV;

recall that B0jV#detV
� has a generator d0jV and relations xi d0jV ¼ 0 for i ¼

0;y; n: One then has an identification of k-vector spaces B0jV#detV
�C

"ak � @a
xd0jV or, more intrinsically,

B0jVCS�V#detV:

Proposition 3. For any mAZ there is a distinguished triangle in DbðDVÞ:

Dj!Dj�DVð�m�Þ-DVð�m�Þ-ðB0jV"B0jV½1	Þ#SmV�#detV� !þ1 :

Proof. One has Dj!Dj�DVð�m�ÞCDVRG½ ’V	DVDVð�m�Þ: Using the distinguished
triangle deduced from (1.9),

DVRG½ ’V	DVDVð�m�Þ-DVð�m�Þ-DVRG½0	DVDVð�m�Þ!þ1

it is then enough to prove the isomorphism

DVRG½0	DVDVð�m�ÞCðB0jV"B0jV½1	Þ#SmV�#detV�: ð3:5Þ

Consider the short exact sequence

0-DV ����!�ðy�m�Þ
DV-DVð�m�Þ-0:

Using the identification DV#OV
O#�1

V CBVjV�V; we get a distinguished triangle

DVDVð�m�Þ-BVjV�V½n þ 1	 ����!ðy�m�Þ2
BVjV�V½n þ 1	!þ1;

where ðy� m�Þ2 means that y� m� acts on BVjV�V via the second projection. Using

the identifications

RG½0	BVjV�V½n þ 1	CRG½0	RG½V	OV�V½2ðn þ 1Þ	

CRG½0	OV�V½2ðn þ 1Þ	

CB0jV�V;
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we get a distinguished triangle

RG½0	DVDVð�m�Þ-B0jV�V ����!ðy�m�Þ2
B0jV�V !þ1 : ð3:6Þ

As we recalled before entering the proof, B0jV�V#det
2 V� is generated as a k-vector

space by @a
x@

b
x̃d0jV�V: Using the commutation relation ½@x̃i

; x̃i	 ¼ 1; one gets

y2 @a
x@

b
x̃d0jV�V ¼

Xn

i¼0
x̃i@x̃i

 !
@a

x@
b
x̃d0jV�V ¼ ð�n � 1� jbjÞ @a

x@
b
x̃d0jV�V:

In particular, ðy� m�Þ2 acts diagonally sending to zero only the base elements
@a

x@
b
x̃d0jV�V with jbj ¼ �m� � n � 1 ¼ m: We thus get an isomorphism of DV-

modules:

kerðy� m�Þ2Ccoker ðy� m�Þ2CB0jV#SmV#detV:

It follows from (3.6) that

HiRG½0	DVDVð�m�Þ ¼
B0jV#SmV#detV for i ¼ 0; 1;
0 otherwise:

(

Hence, there is a distinguished triangle

B0jV#SmV#detV-RG½0	DVDVð�m�Þ-B0jV½�1	#SmV#detV!þ1 :

Since HomDV
ðB0jV½�1	;B0jV½1	Þ ¼ 0; one has

RG½0	DVDVð�m�ÞCðB0jV"B0jV½�1	Þ#SmV#detV;

and (3.5) follows by duality. &

3.2. Radon transform of closed forms

Let X be a smooth n-dimensional algebraic variety. Recall that if F and G are
locally free OX -modules of finite rank there is a natural isomorphism

Diff ðF;GÞCHomDX
ðDX#OG

�;DX#OF
�Þ; ð3:7Þ

where F� ¼ HomOP
ðF;OPÞ; and where Diff denotes the sheaf of differential

homomorphisms. The de Rham complex

O�
X ¼ ðO0X !

d0
X O1X-?-On�1

X �!dn�1
X On

X Þ;
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thus corresponds to a complex of DX -modules, called the Spencer complex,

SpX
� ¼ ðSpX

0 ’
dX
0
SpX

1 ’?’SpX
n�1 ’

dX
n�1

SpX
n Þ;

where we set SpX
q ¼ DX#O

Vq
O YX ; denoting by YX the sheaf of holomorphic

vector fields. Recall that the map P/P1 gives a quasi-isomorphism

OX ’
qis

SpX
� : ð3:8Þ

Moreover, one checks that

dX
q�1ðP#y14?4yqÞ ¼

Xq

i¼1
ð�1Þi�1

Pyi#y14?byiyi?4yq

þ
X

1piojpq

ð�1Þiþj
P#½yi; yj 	4y14?byiyi?byjyj?4yq:

(See [12] for a detailed exposition.)

Let us denote by SpX
Xq the subcomplex obtained from SpX

� by replacing SpX
j

with 0 when joq: Thus,

SpX
Xq½q	 ¼ ð0’SpX

q ’
dX

q

?’SpX
n�1 ’

dX
n�1

SpX
n Þ!

qis
coker dX

q

is concentrated in degree zero, and for 0pqpn it has the sheaf of closed q-forms as

solutions. We similarly define SpX
pq: Note that SpX

pq½q	 is isomorphic to
SpX

Xqþ1½q þ 1	; up to flat connections, and that one has isomorphisms

DXSpX
pqCSpX

Xn�q:

Finally, note that SpX
Xq½q	 and SpX

pq½q	 are microlocally free outside of the zero
section.

Theorem 7. There are natural isomorphisms in DbðDP� Þ:

SpP
pq½q	 3

D
R’

B
SpP�

Xn�q½n � q	:

In fact, the more general statement obtained by replacing the Spencer complex
with a ‘‘BGG sequence’’ also holds, but we will discuss this matter elsewhere. Here,
we will obtain Theorem 7 as a corollary of Theorem 8 below, which computes the

Radon transforms of SpP
q itself.

Note that for q ¼ n the above statement gives the isomorphism

OP½�n	 3DR’
B

OP� :

ARTICLE IN PRESS
A. D’Agnolo, M. Eastwood / Advances in Mathematics 180 (2003) 452–485 475



For q ¼ 0 and n � 1 one recovers the isomorphisms (3.4) for m ¼ n þ 1 and m ¼ 0;
respectively. In fact, using the identification (3.1) one has an identification

SpP
n CDPðn þ 1Þ#detV:

The case q ¼ n � 1 is related to the so-called Andreotti–Norguet correspondence, of
which a D-module interpretation was given in [9]. Finally, note that taking

holomorphic solutions in the analytic category we get the isomorphisms in DbðkP� Þ

Opq
P ½q	 3R!B OXn�q

P� ½�q	;

describing the Radon transform of the sheaf of closed q-forms.

3.3. Euler complex

Denote by y the Euler vector field on the vector space V; which is the infinitesimal
generator of the action of the multiplicative group k�: As any vector field, y acts on
differential forms in two ways, by interior product and Lie derivative:

eVq�1 ¼ yq� :Oq
V-Oq�1

V ;

hV
q ¼ Ly :O

q
V-Oq

V:

Recall that there is a long exact sequence

0-Onþ1
V !

eVn ?-O1V !
eV
0 O0V-kf0gjV-0;

and that eVq ; hV
q ; and the exterior differential d

q
V are related by the homotopy

formula

hV
q ¼ eVq 3 d

q
V þ d

q�1
V 3 eVq�1: ð3:9Þ

By (3.7), to eVq�1 and hV
q correspond DV-linear morphisms

e
q�1
V :SpV

q�1-SpV
q ;

h
q
V :SpV

q -SpV
q ;

and we consider the Euler complex defined by

Eu�
V ¼ ðSpV

0 !
e0
V
SpV

1 -?-SpV
n !

en
V
SpV

nþ1Þ:
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Recall that there is a quasi-isomorphism

Eu�
V½n þ 1	!qisBf0gjV: ð3:10Þ

Note also that on V there is a natural identification

SpV
q ¼ Eu

q
V ¼ DV #

O

q̂

O

YVCDV#
q̂

V: ð3:11Þ

Remark 3. The Euler vector field is written y ¼
Pn

j¼0 xj@xj
in the system of

coordinates ðx0;y; xnÞ; and using the identification (3.11) one checks the
equalities

dV
q�1ðP#@aÞ ¼

Xn

j¼0
P@xj

#c@xj
@xj

4@a; e
q
VðP#@aÞ ¼

Xn

j¼0
Pxj#@xj

4@a;

h
q
VðP#@aÞ ¼ Pðyþ qÞ#@a;

where we set a ¼ ða1;y; aqÞ with 0pa1o?oaqpn; @a ¼ @xa1
4?4@xaq

; and we

used the notation

c@xj
@xj

4@a ¼
0; if jaai for any i;

ð�1Þi�1@xa1
4?d@xaj

@xaj
?4@xaq

; if j ¼ ai:

(

From (3.9), it follows that h�
V induces endomorphisms of the complexes SpV

� and

Eu�
V; and we can consider the complexes SpV;y

� and Eu�
V;y defined by the short exact

sequences

0-SpV
� !

h�
V
SpV

� -SpV;y
� -0;

0-Eu�
V !

h�
V
Eu�

V-Eu�
V;y-0:

Lemma 3. In DbðDVÞ one has the isomorphisms Eu�
V;yCBf0gjV½�n	"Bf0gjV½�n � 1	

and SpV;y
� COV"OV½1	:

Proof. By (3.10) there is a distinguished triangle

Bf0gjV !h Bf0gjV-Eu�
V;y½n þ 1	!þ1;
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where h is defined by the commutative diagram with exact rows

Let us use the notations in Remark 3. For a ¼ ð0; 1;y; nÞ one has

hðqðP#@aÞÞ ¼ qðhnþ1
V ðP#@aÞÞ

¼ q P
Xn

j¼0
xj@xj

þ n þ 1
 !

#@a

 !

¼ q P
Xn

j¼0
@xj

xj

 !
#@a

 !
¼ q en

V

Xn

i¼0
P@xi

#c@xi
@xi

4@a

 ! !
¼ 0:

So h ¼ 0; and the first isomorphism is proved. The proof of the second isomorphism
is like the one above, using (3.8) instead of (3.10). &

Consider the maps P’
p ’V!j

V: By (3.11) one has identifications

SpV;y
q ¼ Eu

q
V;yCDVðqÞ#

q̂

V; ð3:12Þ

so that

Dj�SpV;y
q ¼ Dj�Eu

q
V;yCDp�DPðqÞ#

q̂

V:

We can then consider the complexes

gSpSpP
� ¼ ðDPð0Þ’

dV
0
DPð1Þ#V’?’

dV
n
DPðn þ 1Þ#detVÞ;

fEuEu�
P ¼ ðDPð0Þ!

e0
V
DPð1Þ#V-?!

en
V
DPðn þ 1Þ#detVÞ;

whose differentials are induced, via Lemma 2, by those of SpV;y
� and Eu�

V;y;

respectively.

Lemma 4. The complex fEuEu�
P is exact, and there is a distinguished triangle in DbðDPÞ

OP½1	-gSpSpP
�-OP !þ1 :
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Proof. By Lemma 3 one has the isomorphisms in DbðD ’VÞ:

Dp�fEuEu�
PCDj�Eu�

V;yCDj�ðBf0gjV½�n	"Bf0gjV½�n � 1	ÞC0;

hence fEuEu�
P is exact by Lemma 2. Again by Lemma 3, one has the isomorphisms in

DbðD ’VÞ:

Dp�gSpSpP
�CDj�SpV;y

� CDj�ðOV"OV½1	ÞCDp�ðOP"OP½1	Þ:

It follows from Lemma 2 that

HjðgSpSpP
� ÞC

0; for ja0;�1;
OP; for j ¼ 0;�1;

(
ð3:13Þ

and hence there is a distinguished triangle as stated. &

Recall that a form oAj�1Oq
V is the pull-back o ¼ p�a of a form aAOq

P if and only if

hV
q o ¼ 0;

eVq�1o ¼ 0:

(

In other words, there is a quasi-isomorphism

SpP
q ’
qis fEuEu

pq
P ½q	; ð3:14Þ

and moreover the Spencer differentials dP
q correspond to the morphisms of complexes

dV
� :
fEuEu

pq�1
P ½q � 1	’fEuEu

pq
P ½q	:

Note also that by Lemma 4 there is a quasi-isomorphism fEuEu
pq
P ½q	!qis fEuEu

Xqþ1
P ½q þ 1	:

Interchanging the role of Spencer and Euler, let us set the following definition.

Definition 1. For 0pqpn set

Eu
q
P ¼ H0ðgSpSpP

Xqþ1½q þ 1	Þ;

and consider the complex

Eu�
P ¼ ðEu0P !

e0
P
Eu1P-? �!en�1

P
Eun

PÞ

whose differentials are induced by the morphisms of complexes

e�V :
gSpSpP

Xqþ1½q þ 1	-gSpSpP
Xqþ2½q þ 2	:
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Note that by Lemma 4 there is a quasi-isomorphism

Eu
q
P ’
qis gSpSpP

Xqþ1½q þ 1	;

but one should beware that gSpSpP
pq½q	I/ gSpSpP

Xqþ1½q þ 1	: Note also that, by definition

Eun
P ¼ SpP

n :

Lemma 5. For 0pqpn there are isomorphisms in DbðDPÞ

Eu
Xq
P ½q	CSpP

Xq½q	:

Proof. Denoting by s� and s� the simple complexes associated with a double
complex, one has

Eu
Xq
P ½q	Cs�ðgSpSpP

Xqþ1½q þ 1	!eV gSpSpP
Xqþ2½q þ 2	!eV ?!eV gSpSpP

Xnþ1½n þ 1	Þ;

SpP
Xq½q	Cs�ðfEuEu

Xqþ1
P ½q þ 1	’d

V fEuEu
Xqþ2
P ½q þ 2	’d

V

?’
dV fEuEuXnþ1

P ½n þ 1	Þ:

One concludes by noticing that the first double complex coincides with the second
one after interchanging the roles of rows and columns. &

In particular, for q ¼ 0 we get a quasi-isomorphism

OP !B Eu�
P:

Moreover, using the distinguished triangle

Eu
Xqþ1
P -Eu

Xq
P -Eu

q
P½�q	!þ1;

one gets short exact sequences

0-coker dP
q -Eu

q
P-coker dP

qþ1-0 ð3:15Þ

which should be compared with the usual

0-coker dP
qþ1-SpP

q -coker dP
q -0: ð3:16Þ

To end this section, it is interesting to note that the distinguished triangle in

Lemma 4 does not split. In other words, the complex gSpSpP
� is not isomorphic to the

direct sum OP"OP½1	:
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Proposition 4. The morphism a :OP-OP½2	 induced by the distinguished triangle in

Lemma 4 is not zero in HomDP
ðOP;OP½2	ÞCk:

Proof. Using (3.13), from the distinguished triangle

gSpSpP
0 !

dV gSpSpP
� !d

V gSpSpP
X1!

þ1

we get the long exact cohomology sequence

0-OP-Eu0P !d
V

DP-OP-0;

which describes a as a Yoneda extension. Since im dV ¼ DPYPCDP; this sequence
decomposes into the short exact sequences

0-OP-Eu0P-DPYP-0;

0-DPYP-DP-OP-0; ð3:17Þ
which are but (3.15) and (3.16) for q ¼ 0: These sequences describe, as Yoneda
extensions, the morphisms b :DPYP-OP½1	 and g : OP-DPYP½1	; respectively, and
one has a ¼ b½1	 3 g: Note that b and g are essentially unique, since

HomDP
ðDPYP;OP½1	ÞCkCHomDP

ðOP;DPYP½1	Þ;

as follows by applying the functors RHomDP
ð�;OPÞ and RHomDP

ðOP; �Þ to the
exact sequence (3.17). Note also that ba0ag since

HomDP
ðEu0P;OPÞ ¼ 0 ¼ HomDP

ðOP;DPÞ;

where the second equality is obvious, and the first one follows from the exact

sequence 0-HomDP
ðEu0P;OPÞ-GðP;OPð�1ÞÞ#V� ¼ 0 obtained by applying the

functor HomDP
ð�;OPÞ to the exact sequence DPð1Þ#V-Eu0P-0: To conclude,

consider the morphism of distinguished triangles:

If a were zero, then b also would be zero, which is a contradiction. &

3.4. Radon transform of differential forms

Theorem 8. There are natural isomorphisms

SpP
q 3

D
R’

B
Eu

n�q
P� :
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Taking holomorphic solutions one get a description of the Radon transform of
the sheaf of differential forms which, using (3.15), should be compared with the
results in [8].

Proof. First, note that using the identification (3.12) one has

Eu
q
V;y 3

D
LCDV� ðn þ 1� qÞ#detV�#

q̂

VCSpV�;y
nþ1�q : ð3:18Þ

Since dV�
and eV are interchanged by Fourier, one gets the following isomorphisms

Eu
pq
V;y½q	 3

D
LCSp

V�;y
Xnþ1�q½n þ 1� q	: ð3:19Þ

One has the chain of isomorphisms

Dp�ðSpP
q 3

D
RÞCDj�½ðDj!Dp�SpP

q Þ 3
D
L	

CDj�½ðDj!Dj�Eu
pq
V;y½q	Þ 3

D
L	

CDj�ðEu
pq
V;y½q	 3

D
LÞ

CDj�SpV�;y
Xnþ1�q½n þ 1� q	

CDp�Eu
n�q
P� ;

where the first isomorphism follows from Theorem 3, the second by (3.14), the fourth

by (3.19), and the last by the definition of Eu
n�q
P : The third isomorphism follows

from Proposition 3, using the identification (3.12). &

Proof of Theorem 7. The proof goes as the one above, considering the chain of
isomorphisms:

Dp�ðSpP
pp½q	 3

D
RÞCDj�½ðDj!Dp�SpP

pq½q	Þ 3
D
L	

CDj�½ðDj!Dj�s�ðEup0
V;y½0	’

dV

?’
dV

Eu
pq
V;y½q	Þ½q	Þ 3

D
L	

CDj�½s�ðEup0
V;y½0	’

dV

?’
dV

Eu
pq
V;y½q	Þ½q	 3

D
L	

CDj�s�ðSpV�;y
Xnþ1½n þ 1	’eV�

?’
eV�

SpV�;y
Xnþ1�q½n þ 1� q	Þ½q	
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CDj�s�ðEuXnþ1
V�;y ½n þ 1	 �!dV�

? �!dV�

Eu
Xnþ1�q
V�;y ½n þ 1� q	Þ½q	

CDj�s�ðEu
pn�q
V�;y ½n � q	’d

V�

?’
dV�

Eupn
V�;y½n	Þ

CDp�SpP�
Xn�q½n � q	;

where the sixth isomorphism is due to Lemma 3, and the fifth uses the same
argument as in Lemma 5. &

3.5. Quantization of the Radon transform for differential forms

According to [7], the integral kernel of the morphism

SpP�
Xn�q½n � q	-SpP

pq½q	 3
D
R

in Theorem 7 is given by a section

sn�qðx; yÞAHomDP�P� ðSpP
Xn�q½n � q	2

D

SpP�
Xn�q½n � q	;BUjP�P� Þ:

Similarly, the integral kernel of the morphism

Eu
n�q
P� -SpP

q 3
D
R

in Theorem 8 is given by a section

tn�qðx; yÞAHomDP�P� ðSpP
n�q 2

D

Eu
n�q
P� ;BUjP�P� Þ:

Let us describe them.

The canonical map k-
Vq

V�#
Vq

V induces a monomorphism

OV�V�+Oq
V 2

O

Oq
V� ;

and we denote by sqðx; yÞ the image of 1. Equivalently, consider the maps

O1V 2
O

O1V�+O2V�V� !
Vq

O2qV�V� !
p

Oq
V 2

O

Oq
V� ;

where p is the projector to the ðq; qÞ component. Then s1 is the symplectic form of
V�V�; and sq coincides, suitably normalized, with pð

Vq s1Þ:
Setting

uqðx; yÞ ¼ sqðx; yÞ
/x; ySq;
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one checks that

hVuqðx; yÞ ¼ hV�
uqðx; yÞ ¼ 0;

dV�eVuqðx; yÞ ¼ dVeV
�
uqðx; yÞ ¼ 0;

eV
�
eVuqþ1ðx; yÞ ¼ dVdV�uq�1ðx; yÞ:

8><>:
Then, one has

tn�qðx; yÞ ¼ eVunþ1�qðx; yÞ;

sn�qðx; yÞ ¼ eV
�
eVunþ1�qðx; yÞ:

Using homogeneous coordinates,

sn�qðx; yÞ ¼ /x; yS�n�1þq det y; dy;y; dy
zfflfflfflfflfflffl}|fflfflfflfflfflffl{n�q

; @x;y; @x

zfflfflfflfflfflffl}|fflfflfflfflfflffl{q
0@ 1AqoðxÞ;

where q denotes the interior product, and o the Leray form. In particular, one has

s1ðx; yÞ ¼ �dVdV� log/x; yS ¼ �dV�
/y; dxS
/x; yS

;

and

snðx; yÞ ¼ oðxÞ4oðyÞ
/x; ySnþ1 :
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