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Abstract

We use the recursive structure of the compactification of the instanton moduli space ofN = 2 super-Yang–Mills theory with
gauge groupSU(2) to construct, by an inductive limit, a universal moduli space which includes all the multi-instanton moduli
spaces. Furthermore, by exploiting an analogy with the strong and weak coupling expansions in the Matrix Model formulation
of 2D Quantum Gravity, we discuss the possible field theoretical meaning of the contributions to the prepotential in the strong
coupling region. In particular, whereas the weak and strong coupling expansions of the Painlevé I correspond to the genus and
punctured spheres expansions, in the case of the instantons there should exist a space dual to the instanton moduli space. 2001
Published by Elsevier Science B.V.

Recently in [1] it has been shown that the instanton
moduli spaces ofN = 2 super-Yang–Mills theory with
gauge groupSU(2) admit a compactification which is
at the heart of the recursive relations derived in [2].
The structure of this compactification explains why, in
spite of the technical difficulties, the Seiberg–Witten
(SW) solution [3] is simple. In the SW model there
exists a relation between the modulusu = 〈Trφ2〉
and the effective prepotential [2] (see also [4]), which
allowed to prove the SW conjecture by using the
reflection symmetry of quantum vacua [5]. Thus,
essentially, the research started from the exact solution
and ended with the reconstruction of the field theoretic
structure of the theory.

A basic point in [1] was the observation of the strict
similarity between the properties of the instanton mod-
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uli space and its measure on the one hand and the
corresponding quantities in the theory of punctured
spheres, on the other. In particular, it has been shown
that a compactification similar to the one by Deligne–
Knudsen–Mumford [6] and the restriction phenom-
enon satisfied by the Weil–Petersson volume form [7]
lead to the recursive structure obtained in the SW
model. The coefficients which determine the divisors
at the boundary of the instanton moduli space and the
structure of the instanton 2-form are fixed by the coef-
ficients defining the recursion relations [2]. This mech-
anism is similar to the one considered in [8,9]. In this
respect the appearance of linear differential equations
plays a crucial role [1,2,10,11]. According to [11], this
may be related to a sort of mirror phenomenon. In
particular, we recall that the recursion relations satis-
fied by the instanton contributions and by the Weil–
Petersson volume forms are fixed by an underlying lin-

0370-2693/01/$ – see front matter 2001 Published by Elsevier Science B.V.
PII: S0370-2693(01)00783-3



162 M. Matone / Physics Letters B 514 (2001) 161–164

ear differential equation. In [1] it has been shown that
the instanton contribution to

(1)
〈
Trφ2〉= a2

∞∑
n=0

Gn

(
Λ

a

)4n

,

can be expressed as

(2)Gn =
∫

�V (n)
I

2n−1∧
k=1

ω
(n)
I .

The 2-formω
(n)
I is defined on�V (n)

I denoting a suit-
able compactification of then-instanton moduli space
V

(n)
I . This result follows from some algebraic geomet-

rical calculations whose details are given in [1]. Let us
stress that the integral reproduces the recursion rela-
tions [1,2]

Gn+1 = 1

2(n + 1)2

[
(2n − 1)(4n − 1)Gn

+
n−1∑
k=0

bk,nGn−kGk+1

(3)− 2
n−1∑
j=1

j∑
k=1

dj,k,nGn−jGj+1−kGk

]
,

wheren > 0,G1 = 1/4, bk,n = ck,n − 2dk,0,n and

ck,n = 2k(n − k − 1) + n − 1,

(4)

dj,k,n = [2(n − j) − 1]
× [2n − 3j − 1+ 2k(j − k + 1)].

The above result is due to two basic properties. First,
as we said, the compactification ofV

(n)
I is similar

to the Deligne–Knudsen–Mumford compactification.
Actually, this has an obvious recursive structure. In the
case of instantons we have that the boundary of the
(2n − 1)-dimensional space�V (n)

I decomposes as [1]

D(n+1) = �V (n+1)
I /V

(n+1)
I

(5)=
n−1∑
j=0

D1,j +
n−1∑
j=1

j∑
k=1

D2,j,k +D3,n,

where

D1,j = c
(1)
n,j

�V (n−j)

I × �V (j+1)

I ,

D2,j,k = c
(2)
n,j,k

�V (n−j)
I × �V (j+1−k)

I × �V (k)
I × �V (1)

I ,

(6)D3,n = c(3)
n

�V (n)
I × �V (1)

I .

Note thatD3,n can be included either inD1,0 orD1,n−1
by changing the coefficients. The second relevant
property we used to reproduce the recursion relations
is the restriction phenomenon. This is a property
satisfied by the Weyl–Petersson 2-form. We defined
ω

(n)
I in such a way that a similar phenomenon occurs

also in the present framework. Roughly speaking,
this phenomenon consists in the property that the
restriction ofω(n)

I to a component, e.g., to�V (k)
I , of

the boundary of�V (n)
I , is in the same cohomological

class ofω(k)
I . By simple calculations it is then easy

to see that these two properties allow to reproduce
the recursion relations. The parameters definingω

(n)
I

and �V (n)
I are fixed by the parameters of the recursion

relations themselves. Let us then recall howω
(n)
I is

constructed. LetD(n+1)
ω be the 4n-cycle corresponding

to the Poincaré dual to the “instanton” class[ω(n+1)
I ] =

c1([D(n+1)
ω ]), where[D] is the line bundle associated

to a given divisorD and c1 denotes the first Chern
class. In terms of the divisors at the boundary of the
moduli space we have

D(n+1)
ω =

n−1∑
j=0

d
(1)
n,jD1,j +
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d
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(7)+ d(3)
n D3,n.

The coefficients satisfy the relations [1]

d
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(8)d(3)
n c(3)

n = (2n − 1)(4n − 1)

n(n + 1)2
.

An open problem in SW theory consists in under-
standing the field theoretical characterization of the
theory in the strong coupling region. In particular, it
is not clear how it is possible to determine, by purely
field theoretical means, the coefficients in the expan-
sion of the prepotential nearu = ±Λ2. Thus, it would
be desirable to find expressions representing, in the
strong coupling region, the analogues of the integrals
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on the instanton moduli spaces. Usually, the theory in
the strong coupling region is investigated by consider-
ing the corresponding dual Abelian theory. However,
the meaning of the coefficients in the expansion ofFD

is still unclear. On the other hand, from a mathemat-
ical point of view, the expansion ofF itself in the
strong coupling region is well defined. In this context,
we observe that the SW solution is essentially fixed by
the transformation properties of the prepotential under
duality. In other words, the transformation properties
of the prepotential essentially fixesF itself. In turn,
it determines all the instanton contributions. A possi-
ble way to investigate the dual space is to relate the
two regions by deforming the instanton moduli space.
In this way we should obtain the corresponding space
near tou = ±Λ2. A natural approach is to consider
the Borel sum. In particular, in the following we will
expressu = 〈Trφ2〉 as an integral on an infinite dimen-
sional space which depends on a parameter on which
we will perform the Borel sum. This is a first step to-
wards expressing relevant quantities on spaces which,
outside the weak coupling region, do not correspond to
instanton moduli spaces. A similar expression for the
prepotentialF can be obtained fromu by using [2]

(9)u = πi

(
F − a2 ∂F

∂a2

)
,

which is equivalent to

(10)F(a) = a2

(
2i

π

a∫
a0

dy y−3G(y) + aD0

2a0
− i

π

u0

a2
0

)
,

whereu = Λ2G(a), while u0 andaD0 correspond tou
andaD ata0.

Although we know the differential equation satis-
fied by 〈Trφ2〉 andF , as we said, we are interested
in deriving their expression outside the weak coupling
region by assuming Borel summability. Thus, we will
consider the expression

(11)
〈
Trφ2〉= a2

∞∫
0

dx e−x
∞∑

n=0

1

n!Gnx
n

(
Λ

a

)4n

,

whereG0 = 1/2. The precise domain of this Borel
sum is related to an asymptotic analysis which we will
consider elsewhere. One may also investigate other
analytic continuations.

We now define the “instanton universal moduli
space”�V (∞)(q). Let us consider the embedding

(12)in : �V (n)
I −→ �V (n+1)

I , n > 1.

Let q ∈ R+, we define by inductive limit

�V (∞)(q) =
∞∐

n=0

(�V (n)
I × [0, qn])/(�V (n)

I , qn
)

(13)∼ (
in�V (n)

I ,0
)
,

where �V (0)
I is a point. Letdy denote the Lebesgue

measure on the real axis and consider the indefinite
rank forms

(14)η(∞) =
[

1

2
+

∞∑
n=1

ω
(n)2n−1

I

n!

]
∧ dy.

We then have

(15)
〈
Trφ2〉= a2

∞∫
0

dx e−x

∫
�V (∞)(xΛ4/a4)

η(∞).

This expression should correspond to the one obtained
by purely field theoretical means. This would provide
a possible approach to understanding the role of the
higher order contributions toFD . In this respect we
observe that the moduli space in (15) depends onx.
We note that, in principle, similar moduli spaces in
the strong coupling region can be constructed by using
the recursion relations which follow by expanding the
prepotential atu = ±Λ2.

In the case in whicha → ∞, Eq. (15) reproduces
the usual result in the form of an integral on the
infinite-dimensional universal moduli space. In partic-
ular, we have

(16)
〈
Trφ2〉= a2

∫
�V (∞)(xΛ4/a4)

ω(∞),

where

(17)ω(∞) =
[

1

2
+

∞∑
n=1

ω
(n)2n−1

I

]
∧ dy.

We observe that the appearance of a recursive struc-
ture similar to the one considered in the Deligne–
Knudsen–Mumford compactification suggests a deep
relation between the geometry of 4D SYM theory and
the theory of Riemann surfaces. On the other hand,
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we already encountered a similar structure when the
role of uniformization (Liouville) theory appeared to
be relevant in the SW solution [2,5].

The similarity between this approach and the theory
of moduli space of punctured spheres suggests another
analogy. Namely, in the Matrix Model formulation
of 2D Quantum Gravity, it has been shown that the
theory is described by the Painlevé I equation. In
particular, in [9] it has been argued that, while the
genus expansion corresponds to the weak coupling
expansion, the expansion labeled by the number of
punctures inserted on the sphere corresponds to a
strong coupling expansion. This similarity, and the
above remarks, suggest that the expansion at strong
coupling corresponds to a new kind of moduli space,
which is a sort of dual of the instanton moduli
space. Presumably, this investigation is related to the
Seiberg–Witten monopole equation [12].

In conclusion, we have introduced the instanton
universal moduli space forN = 2 SYM theory with
gauge groupSU(2). In particular, we used the re-
cursive structure of the compactification of instanton
moduli space introduced in [1] to build, by an induc-
tive limit, an infinite-dimensional moduli space which
encompasses all instanton moduli spaces.
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