
Multi-agent meeting scheduling with preferences:
efficiency, privacy loss, and solution quality

M. S. Franzin1, E. C. Freuder2, F. Rossi1, R. Wallace2
1: Department of Pure and Applied Mathematics

University of Padova, Italy.
frossi@math.unipd.it, mfranzin@studenti.math.unipd.it

2: Cork Constraint Computation Centre
University College Cork, Cork, Ireland.fr.wallace,e.freuderg@4c.ucc.ie

Abstract

We consider multi-agent systems with preferences, which are
just standard multi-agent systems, except that each agent can
set some preferences over its local data. This makes these
systems more flexible and realistic, since it is possible to
represent possibilities, costs, probabilities, preferences, and
penalties. However, it also transforms the search for a feasi-
ble solution into the search for an optimal, or good enough,
solution, since the use of preferences naturally implies the
adoption of an optimization criterion, both for each agent and
also for the system as a whole. Thus solution quality becomes
an important aspect of such systems. Moreover, each agent
may want to keep its information as private as possible. Thus
privacy loss is another important aspect of such systems. Fi-
nally, an obvious crucial aspect is efficiency, since we would
like to find a good solution as quickly as possible.
In this paper, we study the relations among these three aspects
in the context of a multi-agent meeting scheduling system.
We do this by first implementing a multi-agent system that
incorporates preferences, and then by running experiments
to capture the interesting and useful trade-offs among these
three aspects.

Introduction
In multi-agent systems, usually each agent has its own
knowledge and reasoning engine that can solve local prob-
lems. In many cases, this knowledge can be expressed by
a set of constraints, restricting the combination of valuesof
some variables (Tsang 1993). Such constraints can be hard
(that is, satisfiable or not), but in most real-life scenariothey
rather specify preferences (Bistarelli, Montanari, & Rossi
March 1997). In this case, problem solving means finding
the most preferred solution, according to an optimization
criterion. In a multi-agent system with preferences, each
agent has its own optimization criterion, possibly different
from that of the other agents.

Moreover, agents need to communicate, to solve problems
that involve knowledge coming from several agents’ sites.
Thus they need to exchange information to obtain a global
solution which satisfies all the agents. Also for such global
problem solving tasks, there must be an optimization crite-
rion, possibly different from that of the single agents, which
guides the search to the best global solution.
Copyright c 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

It is often desirable that agents exchange as little infor-
mation as possible, to keep their data private, while in the
meantime reaching a good global solution in a short amount
of time. Thus one would like to minimize privacy loss, to
maximize the solution quality, and to be as fast as possible.
However, it is predictable that optimizing all these three as-
pects (efficiency, privacy loss, solution quality) may some-
times be difficult. Thus we think it is interesting to study the
relations among them.

In this paper we study these issues in the context of a
multi-agent meeting scheduling system. In this system, each
agent has its own calendar, with some meetings already
scheduled. In addition, agents can have preferences for time
slots and meeting locations, and usually there are constraints
between time-slots which describe the distance to reach one
location from another one.

In this paper, the optimization criterion for all agents
and also for the global tasks is to maximize the mini-
mum preferences, thus we use the fuzzy constraint for-
malism (Dubois, Fargier, & Prade 1993; Ruttkay 1994;
Schiex 1992). However, in general, each agent can have its
own optimization criterion, and the global one can be differ-
ent as well.

To solve a global task, agents communicate in several pro-
posal phases. In each phase, one agent proposes a solution
to the other agents, which can either accept or reject the pro-
posal. If there is some rejection, a new proposal phase is
started. If they all accept, then we have a solution, whose
preference value is the minimum among all the agents’ pref-
erences for that time-slot. At this point, a new negotiation
process starts, to find a better solution, if needed. This con-
tinues until no better solution is found, which means that we
already have an optimal solution.

To speed up the search for a solution and exchange little
amount of information, each agent has its own constraints,
describing its own knowledge, but it also accumulates a set
of constraints which represents its view of the other agents.
In fact, whenever agents communicate during the proposal
phases, the information they exchange can be used to build
an approximation of the constraint set of the other agents.

For example, when a proposal is rejected, the proposing
agent can infer that the rejecting agent has already a meet-
ing in that slot, or in a slot which is not reachable from that
one because of the distance constraints. Also, whenever a



proposal is accepted, the proposing agent can infer that the
accepting agent does not have a meeting in that slot, nor in
any slot which would be incompatible with this one because
of the distance constraints. Finally, each agent receivinga
proposal can infer that the proposing agent does not have
meeting in that slot, nor in any slot that would be incompat-
ible because of the distnace constraints.

We developed our system starting from an existing sys-
tem which did not have preferences but just hard constraints
(Freuder, Minca, & Wallace 2001). For that system, the re-
lation between privacy loss and efficiency has been deeply
studied and shown with experimental results. We added
preferences to that system and we observed the behavior of
the new system under several conditions, to learn the rela-
tions among solution quality, efficiency, and privacy loss.
This paper describes the new system and reports and dis-
cusses the experimental results.

Other approaches to multi-agent meeting scheduling sys-
tems have been proposed (Garrido & Sycara 1995; Luo, Le-
ung, & Lee 2000; Tsuruta & Shintani 2000; Scott, Jenkin, &
Senjen 1988; Sen, Haynes, & Arora 1997). Some of them
don’t have preferences, others are not completely distributed
because they add a coordinator agent. More importantly,
none of them studies the relations among efficiency, privacy
loss, and solution quality, which is the main focus of this
paper.

Hard and soft constraints
Hard constraints (Tsang 1993) are restrictions over the com-
bination of values of certain variables, which state what is
allowed and what is forbidden. They are said to be “hard”
because there is no possibility for tolerance: either a tuple of
values is allowed, or it is not.

The concept of soft constraints tries to make the hard con-
straint formalism more flexible and more widely applicable
to real life. It tries to add enough machinery to be able
to represent more flexible situations, like those where one
constraint is more important than another, or a combination
of values is preferred over another, or we have to deal with
costs, possibilities, probabilities, or the like.

This is done in a rather simple and elegant way, by asso-
ciating to each combination of variables’ values (in a con-
straint), an element taken from an ordered set. These ele-
ments can play the role of preferences, costs, probabilities,
and many other things. It is important that the set of such el-
ements is ordered, since this order can help us compare two
elements to understand which is the preferred one. How-
ever, the order can also be partial, showing the possibility
that some elements are incomparable. This may happen, for
example, when the elements represent lists of values, and
each list item has its own total order, as in a multi-criteria
constraint optimization problem.

In this more general formalism, hard constraints are just
a very simple instance where the set of preference values
has just two elements: allowed and forbidden, with allowed
better than forbidden. Thus the extension from hard to soft
constraints is very similar to passing from a two-valued to a
multi-valued logic.

Once every tuple in every constraint has its preference
value, we also need to understand how to generate the prefer-
ence value of a complete assignment (of values to variables)
from the preference values of the tuples in the constraints.
To do this, we need a combination operator, say�, which
performs this work.

In a soft constraint setting, the goal is to find a complete
assignment with the best preference value, where the mean-
ing of ”best” is given by the order over the preference values.

For example, in hard constraints the combination operator
is AND, since all constraints need to be satisfied in order for
a complete assignment to be a solution (and thus be associ-
ated to the allowed preference value).

Another, widely used, example of soft constraints is the
class of fuzzy constraints: here, preference values are taken
from the [0,1] interval, which is totally ordered, and where1
is the best preference and 0 the worst one. The combination
operator is min. This means that, in fuzzy constraint solving,
the optimization goal is to find a complete assignment which
has the maximum preference value, where the preference
value of a solution is the minimum preference among all
those of the tuples which are part of the solution.

It is possible to see that the set of preference values,
the ordering over it, and the combination operator, form a
mathematical structure which is very similar to a semiring
(Bistarelli, Montanari, & Rossi March 1997) (actually, a c-
semiring, which is just a semiring plus two additional prop-
erties).

In this paper, preferences will be added to multi-agent sys-
tems via the use of fuzzy constraints. However, any instance
of the soft constraint formalism could be used to add prefer-
ences to such systems.

Preferences in meeting scheduling problems
In this paper we focus on a specific class of multi-agent
systems, whose task is to reach agreement on a common
meeting. Our version of the multi-agent meeting scheduling
problem involvesk agents. Each agent has its own calendar,
which consists of appointments that are already fixed. Each
appointment consists of a certain location (a city in our case)
and a certain time (in our case, a single time slot).

The problem is to find a meeting time and place where all
agents can meet together. Thus this meeting time has to be
compatible with the schedules of the agents.

Each agent can also set a preference value for each city in
each time slot. If each time slot is represented by a variable,
whose values are the possible cities, according to the previ-
ous section, such preferences are associated to the values of
the variables, and are taken from an ordered setP ; the order
tells which value ofP represents a higher or a lower pref-
erence. In this paper, we consider values between 0 and 1,
with higher values denoting higher preferences.

In addition, since each meeting has a preference value,
these must be combined to obtain an overall preference. An
aggregation operator, say�, combines these preference val-
ues and obtains the overall preference of the meeting; the
goal is to find a meeting time and place which has the high-
est overall preference. For this paper, the aggregation oper-



ator is min. Thus the goal is to maximize the minimum of
the agents’ preferences.

For this paper, we consider five possible cities (New York,
Boston, Philadelphia, Los Angeles, ...), and meeting times
are between 9AM to 6PM, on any day of the week. Each
meeting is one hour long. The constraints describing the cal-
endar of each agent basically set the already fixed meetings
and the distance constraints among cities, which are shown
in Figure 1.

LA

SF

P

B

NY3

2

3

5

24

West Coast Est Coast

Figure 1: The distance constraints.

Notice that, while preferences can be set over single time-
city slots, distance constraints are hard. That is, if two cities
in two different time slots are not reachable from each other
because the slots are too close (closer than the number of
hours required to travel from one city to the other one), then
the constraint is not satisfied by such two cities. It is instead
satisfied if they are reachable. In other words, no prefer-
ence is put over the compatible pairs of cities in this pa-
per. However, it is very reasonable to think that in real life
we would prefer to travel as little as possible, for example,
and this could be easily expressed via the use of soft con-
straints rather than hard constraints also for the distancere-
quirements.

Agent communication and knowledge
inference

For this paper, we consider a very simple form of agent co-
munication. In fact, each agent can communicate with the
others in only one of these ways:� by proposing a time and a city, and a preference for such

a proposal;� by accepting a proposal and giving its preference value
(higher than 0);� by rejecting a proposal (that is, giving a 0 preference
value).

Moreover, when an agent makes a proposal, this proposal
is communicated to all the other agents. On the other hand,
when an agent responds to a proposal, it responds only to
the proposing agent.

More elaborate forms of communication can be consid-
ered. For example, in (Freuder, Minca, & Wallace 2001)
they also allow agents to give one or all reasons for a rejec-
tion (in the form of already scheduled meetings).

Whenever two agents communicate in one of the above
forms, they get some information about each other’s sched-
ule, because of the information that is actually communi-
cated. Moreover, they can also infer some more knowledge

about each other. In other words, they incrementally build
an approximate view of the other agents’ calendars. This
knowledge can then be used to guide the selection of the
future proposals, and thus hopefully speed up the whole so-
lution process.

For example, when a proposal is rejected, the proposing
agent can infer that the rejecting agent either has already a
meeting in that slot already, or in a slot which is not reach-
able from that one because of the distance constraints. As
an example, if agentA proposes to meet at 2pm on Monday
in New York, and agentB rejects this proposal, then agentA can infer some knowledge aboutB: that either it has a
meeting already at 2pm on Monday, or it has a meeting in a
time-city that is incompatible with being 2pm in New York.
However, the inference that can be made from a rejection is
very vague, since nothing can be surely deleted from the set
of possible future proposals.

On the other hand, whenever a proposal is accepted, the
proposing agent can infer that the accepting agent does not
have a meeting in that slot, nor in any slot which would
be incompatible with this one because of the distance con-
straints. For the same proposal as above (2pm on Monday in
NY), if agentB accepts the proposal, it means that surely it
means that it must not have a meeting set for 2pm on Mon-
day (in any city), and also that it does not have a meeting
in a time-city that is incompatible with 2pm in New York.
For example,B cannot have a meeting at 3pm on Monday
in Los Angeles, because there is no time to get from NY to
LA in one hour.

Finally, each agent receiving a proposal can infer that the
proposing agent does not have meeting in that slot, nor in
any slot that would be incompatible because of the distance
constraints. Thus, in the example above,B can infer thatA
does not have a meeting already at 2pm on Monday in NY.
So the inference is the same as for the acceptance case.

In general, we call ”positive information” the information
which is inferred from an agentA about another agentB,
and which describes the time-city slots whereA has discov-
ered thatB does not have meetings already, and thus are
possibly good candidate slots for a common meeting. In-
stead, we call ”negative information” the information which
is inferred fromA aboutB, and which describes the time-
city slots whereA has discovered thatB has already a meet-
ing, or it cannot reach a certain location because of other
meetings, and thus cannot meet withA.

These two kinds of information are very similar to what
is called ”possible-has-meetings deleted” and ”possible-can-
meet deleted” in (Wallace, Freuder, & Minca 2002). In fact,
positive information is related to the fact that we discover
that some agent cannot have a meeting already in a certain
time-city slot, while negative information is related to the
discovery that an agent cannot possibly meet the others in a
time slot.

Notice that the concept of positive information, with
which we discover that an agent cannot have a meeting in
certain locations at certain times, allows also to discoverthe
agents’ open slots: those time slots in which we are sure
that an agent does not have any meeting already, in none of
the cities. These are in fact easily related to acceptances of



meeting proposals.

Searching for a feasible or optimal solution:
the negotiation scenario

Without preferences, the goal of a multi-agent meeting
scheduling system is to find a feasible solution, that is, the
first time-city slot which is acceptable for all the agents,
given their schedule. With the addition of preferences over
each time-city slot, we have turned the problem into the
search for an optimal solution, which, as defined above,
should mazimize the minimum preference over all agents.

For example, consider three agents, sayA,B andC, and a
proposal for 2pm on Monday in NY. Each agent has a pref-
erence value for this time-city slot. AgentA could give it
preference0:5, agentB preference0:8, and agentC prefer-
ence0:3. Then, the overall preference for such a proposal
is 0:3 = min(0:5; 0:8; 0:3). Consider now a different pro-
posal, say 3pm on Tuesday in Los Angeles, and assume the
following preference values:0:5 for A, 0:5 for B, and1 forC. Then the overall preference value is0:5. Thus this solu-
tion is better than the previous one.

Notice that, in this preference scheme, a rejection (thus a
preference value of0) from one or more of the agents auto-
matically gives an overall preference value of0, thus making
the proposal one of the worst ones.

To find an optimal solution, in a centralized system one
would employ a branch-and-bound or local search -based
search engine, which would collect all the information and
search the solution space more or less intelligently to find
one optimal solution. In our multi-agent system, instead,
we keep the agents’ information private, and thus we rely
on the communication among the agents to find an optimal
solution. More precisely:� Agents communicate in several proposal phases.� In each phase, a proposal is made by one of the agents

(chosen following a certain strategy). Such a proposal is
taken from the best time-city slots in the proposer’s cal-
endar, and a check is made to make sure that this proposal
has not been made previously, and also that it is consis-
tent with the knowledge that the proposing agent has col-
lected about the other agents. More precisely, both neg-
ative and positive information about the other agents are
used to focus the search on a subset of the possible pro-
posals. We recall that the negative information tell us that
a certain agent cannot meet with the others in certain time-
city slots. Thus it would be useless to propose such slots.
On the other hand, the positive information tell us that a
certain agent does not have a meeting in certain time-city
slots. Thus such slots are possible candidates for a com-
mon meeting, and therefore they can be proposed. The
first viable proposal which passes all these tests is com-
municated to the other agents.� The other agents, which receive the proposal, reply (to
the proposer alone) with a rejection (preference = 0) or
an acceptance (and a preference value6= 0). In the mean-
time, the negative and positive information for each agent
(about the other ones) are updated according to the pro-
posal and the answers to it.

� If there is some rejection, a new proposal phase is started.
Otherwise, if they all accept, then we have a solution,
whose preference value is the minimum among all the
agents’ preferences for that time-slot.� At this point, a new negotiation process starts, with the
same constraints as before, except that all the preference
values which are smaller than or equal to the value of the
last solution found are set to0. This implies that the new
negotiation process will necessarily find a better solution,
or else it will find a solution with preference0.� When the negotiation process ends with a solution with
preference 0, and it will certainly happen after a finite
number of negotiation processes, we are sure that the last
found solution is an optimal one. Thus our algorithm al-
ways find an optimal solution in a finite number of steps.
Of course, the complexity of this algorithm is, in the worst
case, exponential in the size of the problem (number of
slots and agents).

We also introduce the concept of a threshold, to model the
situation in which one looks for a feasible solution above a
certain threshold. In this case, proposals are always chosen
among those above the threshold, and answers are rejections
whenever the agent receiving the proposal has a preference
smaller than the threshold. Thus the threshold is actively
used to reduce the number of proposals and thus speeds up
the whole process.

We also consider the use of thresholds to find optimal so-
lutions: in this case, the threshold is instrumental to reduce
the number of proposals to get to an optimal solution above
the threshold, or to state that there is no solution above it.
In both cases, when using a threshold, several negotiation
processes may be needed to find the solution.

Our system
Our system has been developed in Java, starting from
the code of an existing system which solves the same
kind of problems but without preferences (Freuder, Minca,
& Wallace 2001). The system is available at the URL
http://www.studenti.math.unipd.it/˜mfranzin.

The system shows a meeting scheduling problem with 3
agents, and allows the user to choose the number of initial
meetings the agents have already in their weekly schedule.
This number is the same for all the agents.

The interface is shown in Figure 2. In this case there
are 15 initial meetings: the number is set via the slider in
the lower left corner, and the meetings are chosen randomly
among all possible slots, in a way that is consistent.

The upper right panel shows the initial schedule for each
of the three agents (agent A in this case, see upper left win-
dow). The 15 meetings are represented by higligthed time
slots in the calendar. Moreover, another slot is darkened and
it represents a common solution for all the agents. In fact,
we only generate problems where there is at least one guar-
anteed solution. Preferences are set randomly by the system
over all time-city slots, and can be shown by clicking with
the mouse on the calendar time slots. Here we have shown
the preferences for the Sunday at 10am time-slot.



Figure 2: Java interface for our system.

The user can also set a threshold, by clicking on the lower
middle button, that will be used to find a feasible or opti-
mal solution above the chosen value. If no value is set, the
default value is 0. In Figure 2, the thrshold is set to 0.5.

The lower right window shows the interaction and the
information collected during the run of the system. More
precisely, we record here number of proposals, positive and
negative information, open slots discovered, proposals and
corresponding acceptance or rejection, preference value of
each solution found, and preference value of the optimal so-
lution.

Experimental choices
Our experiments show the behaviour of the system while the
number of initial agents varies from 5 to 40 in steps of 5. We
show what happens both while searching for the first feasible
solution, and also while searching for an optimal solution.

In each experiment, we show the figures related to one test
run, which consists of different things depending on whether
we are looking for� a feasible solution: here a run is a series of proposals, until

a proposal which is accepted by all agents;� an optimal solution: here a run consists of several se-
quences of proposals, until no better solution can be
found;� a feasible solution above a certain threshold: here a run
is a sequence of proposal which lead to the first solution
above the threshold;� an optimal solution above a certain threshold: here a run
is several sequences of proposal, which lead to an optimal
solution above the threshold.

At each step, a proposal is made by one of the agents,
chosen following a round-robin strategy. Such a proposal
is taken from the best time-city slots in the proposer’s cal-
endar, and a check is made to make sure that this proposal
has not been made previously, and also that it is consistent
with the knowledge that the proposing agent has collected

about the other agents (as explained in the negotiation sec-
tion). The first viable proposal which passes all these testsis
communicated to the other two agents, each of which replies
(to the proposer alone) with a rejection (preference = 0) or
an acceptance (and a preference value6= 0).

In these experiments, all the figures on they axis are aver-
aged over 100 experimental runs with the same parameters.
Efficiency is measured in terms of number of proposals dur-
ing a test run. Privacy loss is measured via the positive infor-
mation, the negative information, the open slots discovered
during a run. These privacy loss measures were divided by
6, which is the number of communication links in a system
of three agents (n� (n� 1) in a system withn agents).

Experimental results
Figure 3 shows the privacy loss measures (open slots, nega-
tive information, and positive information) computed during
the search for a feasible solution.

5 10 15 20 25 30 35 40

0

2

4

6

8

10

12

14

16

first solution

neg info / 6

open slots / 6

pos info / 60

initial meetings
m

ea
n 

va
lu

es

Figure 3: Privacy loss to find a feasible solution.

It is easy to see a curvilinear relation of these measures
over the number of initial meetings. More precisely, with a
small number of initial meetings, the problem has more fea-
sible solutions and thus little privacy loss is required to find
a solution. On the other hand, with a large number of ini-
tial meetings, there are many conflicting situations, which
reduce the number of common solutions and thus also the
possibilities for information exchange, which are mainly re-
lated to proposal acceptance. So again little privacy loss is
needed to find a feasible solution. This behaviour is very
similar to what was computed for the system in (Freuder,
Minca, & Wallace 2001), and the main reason is that prefer-
ences are not involved when looking for any feasible solu-
tion.

When instead we look for a feasible solution above a cer-
tain threshold, the peak in the privacy loss measures, which
is around 15 initial meetings without threshold, gets shifted
to the left (see Figures 4 and 5). The reason is that, even with
few initial meetings, the threshold generates more rejections
and in general more interaction to find a feasible solution.
On the other hand, with a large number of initial meetings,
we get less privacy loss, since less proposals (and thus less
interaction) can be performed because of unacceptable time-
slots (that is, with a preference below the threshold).

When we look for an optimal solution, the relation be-
tween number of initial meetings and privacy loss changes



5 10 15 20 25 30 35 40

0

2

4

6

8

10

12

14

16

18

first solution threshold 0.4

neg info / 6

open slots / 6
pos info / 60

initial meetings

m
ea

n 
va

lu
es

Figure 4: Privacy loss to find a feasible solution with thresh-
old 0.4.

5 10 15 20 25 30 35 40

0

2

4

6

8

10

12

14

16

18

20

first solution threshold 0.7

neg info / 6

open slots / 6

pos info / 60

initial meetings

m
ea

n 
va

lu
es

Figure 5: Privacy loss to find a feasible solution with thresh-
old 0.7.

substantially (see Figure 6): with smaller numbers of initial
meetings we need to exchange a larger amount of private
information to find an optimal solution. In fact, the pres-
ence of many solutions when there are few initial meetings
does not help. Figure 6 shows also another information: the
number of rejections which depend on the fact that the pre-
vious solution found has a preference value higher than, or
equal to, the preference of the proposed slot for a receiving
agent. This number, together with the negative information
bar, shows the number of rejections.

5 10 15 20 25 30 35 40

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

optimal solution

neg info /6
open slots / 6

pos info / 60

value pref < sol 
/6

initial meetings

m
ea

n 
va

lu
es

Figure 6: Privacy loss to find an optimal solution.

Figure 7 shows the number of proposals and the prefer-
ence values of the first and best solutions found. As the num-
ber of meetings grows, the difference between the prefer-
ence value of the first and the optimal solution gets smaller.
The same holds also for the difference between the number

of proposals needed to find such solutions. However, it can
be noted that this difference remains substantial, while the
preference values are almost the same with a large number
of meetings. This means that, if we have a large enough
number of initial meetings (say 25 or more), we can get a
very good approximation of an optimal solution by taking
any feasible solution, and saving much time (that is, number
of proposals). This is probably due to the small number of
common solutions when the agents have many initial meet-
ings.

It is also interesting to notice that the efficiency of the
system (in terms of number of proposals) when looking
for a first feasible solution, is practically the same as in
the system described in (Freuder, Minca, & Wallace 2001),
where preferences are not used. Thus the generalization to a
preference-based system does not slow down the search for
a feasible solution.

5 10 15 20 25 30 35 40

0

10

20

30

40

50

60

70

80

90

solutions‘ value preference and proposals 

first sol * 100
first sol 
proposals

optim al sol * 
100

total proposals

initial meetings

m
ea

n 
va

lu
e

Figure 7: Number of proposals and preference values for
first and optimal solutions.

The analysis done over Figure 7 can be done also with the
setting of a threshold. In this case, the threshold helps in
finding either a feasible solution or an optimal solution in a
faster way. Figures 8 and 9 show the difference in preference
value and in number of proposals for the case of threshold
0.4 and 0.7. We can see that, as the threshold gets higher, it is
more and more convenient to search for a feasible solution
even if we care for an optimal one, since the difference in
preference value is very small while the number of proposals
is much smaller.

5 10 15 20 25 30 35 40

0

10

20

30

40

50

60

70

80

90

solutions‘ value preference threshold 0.4 

first sol * 100
first sol 
proposals

optim a sol * 
100

total proposals

initial meetings

m
ea

n 
va

lu
e

Figure 8: Number of proposals and preference values for
first and optimal solutions with threshold 0.4.

However, one needs to be careful with this, because the



5 10 15 20 25 30 35 40

0

10

20

30

40

50

60

70

80

90

solutions‘ value preference threshold 0.7

first sol * 100
first sol 
proposals

optim al sol * 
100

total proposals

initial meetings

m
ea

n 
va

lu
e

Figure 9: Number of proposals and preference values for
first and optimal solutions with threshold 0.7.

number of unsolvable problems grows with the threshold, as
shown in Figure 10, which refers to the problem of finding
an optimal solution. Thus it is risky to set a high threshold.
Notice also how the number of proposals and the privacy
loss measures decrease as the threshold increases. For this
figure, we have set the number of initial meetings to 25. Fig-
ure 11 shows a similar graph for the case of searching for a
feasible solution.

no 
thr

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

optimal solution‘s efficency and privacy loss

pos info / 60

proposals
neg info / 6

no solvable 
problems/100

threshold values

m
ea

n 
va

lu
e

25
 in

iti
al

 m
ee

tin
gs

 

Figure 10: Number of proposals, positive and negative in-
formation, and number of unsolvable problems, to find an
optimal solution, with 25 initial meetings.

Conclusions and further work
We have implemented a multi-agent scheduling meeting sys-
tem with preferences, and we have run experiments to study
the relations among privacy loss, efficiency, and solution
quality. The main lesson we have learnt from such experi-
ments concerns the fact that both the number of initial meet-
ings and the threshold influence the level of such measures.
In particular, for example, when agents have already a large
number of initial meetings, searching for a feasible solution
will give us a very good approximation of an optimal so-
lution in a shorter time (w.r.t. looking for an optimal solu-
tion). Moreover, it is important to notice that the search for
a feasible solution is not slowed down by the addition of the
preferences.

Many extensions of the current system are possible. For
example, in the current system all agents have the same opti-
mization criterion (max-min), which coincides also with the
overall one. In many real-life scenario, on the other hand,

no 
thr

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

first solution‘s efficency and privacy loss

pos info / 60

proposals

neg info / 6

no solvable 
problems/100

threshold values

m
ea

n 
va

lu
es

25
 in

iti
al

 m
ee

tin
gs

Figure 11: Number of proposals, positive and negative infor-
mation, and number of unsolvable problems, to find a feasi-
ble solution, with 25 initial meetings.

it is possible to have agents with different criteria and also
to combine their work via another criterion. We could also
allow for a variable number of agents. Moreover, also the
distance constraints (rather than just the slots) could have
preferences or importance levels. This could allow for ex-
ample to express optimization criteria like the desire to min-
imize the overall travel time for an agent.

Also, it would be interesting to address issues like liars
(agents who respond to a proposal with a lie) or proposal re-
jections which include reasons for the rejections (like other
meetings) or counter-proposals.

Acknowledgments
We would like to thank Marius Minca, who developed
the multi-agent meeting scheduling system described in
(Freuder, Minca, & Wallace 2001), for providing the code
from which we started to implement our system, and for
many useful discussions about the behaviour of his sys-
tem. Eugene Freuder is supported by a Principal Investigator
award from Science Foundation Ireland.

References
Bistarelli, S.; Montanari, U.; and Rossi, F. March
1997. Semiring-based Constraint Solving and Optimiza-
tion. Journal of the ACM44(2):201–236.

Dubois, D.; Fargier, H.; and Prade, H. 1993. The calculus
of fuzzy restrictions as a basis for flexible constraint satis-
faction. InProc. IEEE International Conference on Fuzzy
Systems, 1131–1136. IEEE.

Freuder, E. C.; Minca, M.; and Wallace, R. J. 2001. Pri-
vacy/efficiency tradeoffs in distributed meeting scheduling
by constraint-based agents. InIJCAI-01 Workshop on Dis-
tributed Constraint Reasoning.

Garrido, L., and Sycara, K. 1995. Multi-agent meeting
scheduling: Preliminary experimental results. In Lesser,
V., ed.,Proceedings of the First International Conference
on Multi–Agent Systems. MIT Press.

Luo, X.; Leung, H.; and Lee, J. H. 2000. Theory and prop-
erties of a selfish protocol for multi-agent meeting schedul-
ing using fuzzy constraints. InProc. ECAI 2000.



Ruttkay, Z. 1994. Fuzzy constraint satisfaction. In
Proc. 3rd IEEE International Conference on Fuzzy Sys-
tems, 1263–1268.
Schiex, T. 1992. Possibilistic constraint satisfaction prob-
lems, or “how to handle soft constraints?”. InProc. 8th
Conf. of Uncertainty in AI, 269–275.
Scott, A.; Jenkin, K.; and Senjen, R. 1988. Design of
an agent-based, multi-user scheduling implementation. In
Proc. 4th Australian DAI Workshop, Brisbane. Springer
LNAI 1544.
Sen, S.; Haynes, T.; and Arora, N. 1997. Satisfying
user preferences while negotiating meetings.Internat. J.
Human-Computer Stud.47:407–427.
Tsang, E. P. K. 1993.Foundations of Constraint Satisfac-
tion. Academic Press.
Tsuruta, T., and Shintani, T. 2000. Scheduling meetings
using distributed valued constraint satisfaction algorithm.
In Proc. ECAI 2000.
Wallace, R. J.; Freuder, E. C.; and Minca, M. 2002. Consis-
tency reasoning and privacy/efficiency relations in multi-
agent systems. Insubmitted for publication.


